JP2019190254A - Estimation columnar diagram creation method by microtremor measurement, and program - Google Patents

Estimation columnar diagram creation method by microtremor measurement, and program Download PDF

Info

Publication number
JP2019190254A
JP2019190254A JP2018090958A JP2018090958A JP2019190254A JP 2019190254 A JP2019190254 A JP 2019190254A JP 2018090958 A JP2018090958 A JP 2018090958A JP 2018090958 A JP2018090958 A JP 2018090958A JP 2019190254 A JP2019190254 A JP 2019190254A
Authority
JP
Japan
Prior art keywords
hfi
vfi
period
depth
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018090958A
Other languages
Japanese (ja)
Other versions
JP6596626B2 (en
Inventor
真次 岩田
Shinji Iwata
真次 岩田
貴美子 田村
Kimiko Tamura
貴美子 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN DESIGN OFFICE CO Ltd
Original Assignee
GREEN DESIGN OFFICE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN DESIGN OFFICE CO Ltd filed Critical GREEN DESIGN OFFICE CO Ltd
Priority to JP2018090958A priority Critical patent/JP6596626B2/en
Application granted granted Critical
Publication of JP6596626B2 publication Critical patent/JP6596626B2/en
Publication of JP2019190254A publication Critical patent/JP2019190254A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

To provide a ground investigation method which compensates or replaces a conventional ground investigation method, and can be implemented with space saving, low noise and low cost in short time.SOLUTION: An estimation columnar diagram creation method includes: an Hfi/Vfi ratio calculation step of calculating an Hfi/Vfi ratio obtained by dividing a Fourier amplitude Hfi corresponding to a period Ti (i=1,2,3,...n (the number of layers)) of a horizontal component of microtremor of a ground measured with one microtremor measurement sensor by a Fourier amplitude Vfi corresponding to the period Ti of a vertical component of microtremor, at an arbitrary measurement point of the ground surface; and an estimation columnar diagram creation step of determining an Ni value in a depth Hi from a relationship between the period Ti and the depth Hi from the ground surface and a relationship between the Hfi/Vfi ratio and the Ni value, and creating an estimation columnar diagram at the measurement point.SELECTED DRAWING: Figure 2

Description

本発明は、地盤の常時微動計測結果から省スペース、低騒音、低コストかつ短時間で柱状図を作成する方法及びプログラムに関する。      The present invention relates to a method and a program for creating a columnar diagram in a short time from space-saving, low-noise, low-cost and short-time measurement results of ground.

平成12年の建築基準法改正により建物の耐震設計に限界耐力計算法が導入され、伝統的木造住宅など仕様規定外の建物の耐震設計が可能になった。この限界耐力計算法では建設地の地盤および建物の固有周期を使用するため、標準貫入試験などにより地盤の振動特性を調査する必要がある。戸建住宅レベルで実施されている地盤調査としてはスウェーデン式貫入試験が一般的であるが、この方法は地盤の振動特性を把握することが難しく、標準貫入試験は手間と費用の問題がある。そこで、経済的な簡易探査法である常時微動計測により建設地の固有周期を計測して耐震設計に必要である地盤種別を判定し、データを解析して地盤構造を推定する方法が考えられる。      With the revision of the Building Standards Act in 2000, the ultimate strength calculation method was introduced in the seismic design of buildings, making it possible to design seismic designs for buildings that are out of specification, such as traditional wooden houses. Since this critical strength calculation method uses the ground of the construction site and the natural period of the building, it is necessary to investigate the vibration characteristics of the ground by a standard penetration test. As a ground survey conducted at the detached house level, the Swedish penetration test is common, but it is difficult to grasp the vibration characteristics of the ground, and the standard penetration test has problems of labor and cost. Therefore, a method of estimating the ground structure by measuring the natural period of the construction site by microtremor measurement, which is an economical simple exploration method, determining the ground type necessary for the seismic design, and analyzing the data can be considered.

従来からある地盤調査方法は、建築物の構造関係技術基準解説書に規定され、ボーリング調査、標準貫入試験、静的貫入試験、ページ試験、土質試験、物理探査等が挙げられる。常時微動計測法は、これらのうち物理探査に属する。又、これらの地盤調査以外にも、令第93条の表に規定する地盤種別の判定に用いる手法や、国際的あるいは土木分野で広く利用されている調査法で、建築物のための地盤調査として実績があるものであれば、従来の地盤調査と当該試験法との比較検討に基づき、試験結果から告示で用いる各種の係数や地盤定数への換算が適切に行われるものであることを確認した上で、用いることができる。特に、戸建て住宅の分野では、くいの支持層の確認や宅地の地層構成の把握を目的として、物理探査の一種である表面波探査や動的貫入試験といった調査法も採用されてきている(平13国交告第1113号、最終改定 平成17年7月21日国土交通省告示第690号)。      Conventional ground survey methods are specified in the structural technical standard manual for buildings, and include boring surveys, standard penetration tests, static penetration tests, page tests, soil tests, and physical exploration. The microtremor measurement method belongs to physical exploration among these. In addition to these ground surveys, ground surveys for buildings can be carried out using the methods used to determine the type of ground specified in the table of Article 93 of the Ordinance and survey methods widely used in the international and civil engineering fields. If there is a proven track record, confirm that the conversion from the test results to the various coefficients and ground constants used in the notification is appropriate, based on a comparison between the conventional ground survey and the test method. And can be used. In particular, in the field of detached houses, survey methods such as surface wave exploration and dynamic penetration tests, which are types of geophysical exploration, have been adopted for the purpose of confirming the pile support layer and understanding the stratum structure of residential land (Platinum). 13 Country Notification No. 1113, Last Revised July 21, 2005 Ministry of Land, Infrastructure, Transport and Tourism Notification No. 690).

本発明に関連する技術としては、例えば、特許文献1に記載の地盤調査方法は、建築地近傍の複数のボーリング地点のボーリング調査データを収集し、該調査データに対応する複数のボーリング地点の地表波スペクトルを算出し、各地表波スペクトルのうち規模の大きい側のデータを接続して合成することにより、建築地の設計用地表波スペクトルを得ることを特徴としている。      As a technique related to the present invention, for example, the ground survey method described in Patent Document 1 collects boring survey data of a plurality of boring points in the vicinity of a building, and the ground surface of the plurality of boring points corresponding to the survey data. It is characterized in that the surface wave spectrum for design of a building is obtained by calculating the wave spectrum and connecting and synthesizing the data on the larger side of the surface wave spectrum of each place.

又、特許文献2に記載の地盤速度構造の推定方法は、複数の振動センサと、前記振動センサの出力を解析する解析装置とを備える推定システムを調査地に設置し、レイリー波の分散特性からインバージョン法によって地盤の速度構造を推定する方法であって、前記調査地近隣の地盤データベースのデータが存在する深度までは、そのデータを使用し、前記深度から所望の基盤層までの間は、S波速度と層数を複数に分割したモデルを追加し、前記モデルより分散特性を求めて地盤構造を推定することを特徴としている。      In addition, the ground velocity structure estimation method described in Patent Document 2 includes an estimation system including a plurality of vibration sensors and an analysis device for analyzing the output of the vibration sensor at a survey site, and from the dispersion characteristics of Rayleigh waves. It is a method for estimating the velocity structure of the ground by an inversion method, using the data up to the depth at which the data of the ground database in the vicinity of the survey site exists, and between the depth and the desired base layer, A model in which the S wave velocity and the number of layers are divided into a plurality of parts is added, and the ground structure is estimated by obtaining dispersion characteristics from the model.

又、特許文献3に記載の地盤速度構造の推定方法は、調査目的地にて複数の振動センサを有する微動観測装置により地盤の微動探査を行い、その分散特性から参考速度モデルを初期値にして逆解析により地盤速度構造を推定する方法であり、前記調査目的地周辺の複数の地盤データから複数の理論卓越周期を算出し、前記調査目的地にて計測した観測卓越周期と前記複数の理論卓越周期とを比較して最も近似している理論卓越周期を有する地盤データを選択し、この選択された地盤データを参考速度モデルとして逆解析を行い、前記調査目的地の地盤速度構造を推定することを特徴としている。      In addition, the ground velocity structure estimation method described in Patent Document 3 uses a microtremor observation device having a plurality of vibration sensors at a survey destination, and sets a reference velocity model as an initial value from its dispersion characteristics. It is a method of estimating the ground velocity structure by inverse analysis, calculating a plurality of theoretical dominant periods from a plurality of ground data around the survey destination, and measuring the observation dominant periods measured at the survey destination and the plurality of theoretical superiority Select the ground data with the theoretical dominant period that is most approximated by comparing with the period, perform reverse analysis using the selected ground data as a reference speed model, and estimate the ground speed structure of the survey destination It is characterized by.

更に、特許文献4に記載の地盤構造推定方法は、調査対象地点におけるレイリー波による微動観測から観測分散特性を算出する第1のステップと、調査対象地点近傍の地盤データベースから地盤の深さごとのS波速度を算出してデータベースモデルのS波速度構造を作成して理論分散特性を算出する第2のステップと、前記第2のステップで算出されたS波速度構造の理論分散特性が前記観測分散特性の位相速度に近似するまで前記S波速度を変換して参考モデルを作成し参考分散特性を算出する第3のステップと、前記第3のステップで求めた参考モデルのS波速度構造に基づいて調査対象地点の地盤構造を推定する第4のステップと、からなることを特徴としている。      Furthermore, the ground structure estimation method described in Patent Document 4 includes a first step of calculating observation dispersion characteristics from microtremor observation by Rayleigh waves at a survey target point, and a ground database from the ground database near the survey target point. The second step of calculating the S wave velocity to create the S wave velocity structure of the database model and calculating the theoretical dispersion characteristic, and the theoretical dispersion characteristic of the S wave velocity structure calculated in the second step is the observation. A reference model is created by converting the S wave velocity until the phase velocity of the dispersion characteristic is approximated, and a reference dispersion characteristic is calculated, and the S wave velocity structure of the reference model obtained in the third step is used. And a fourth step of estimating the ground structure of the survey target point based on the fourth step.

特開2002−250027号公報JP 2002-250027 A 特開2001−311781号公報JP 2001-311781 A 特開2001−193046号公報JP 2001-193046 A 特開2001−091657号公報JP 2001-091657 A

特許文献1に記載された方法は、建築地近傍の複数の地点におけるボーリングデータを収集する必要があった。又、特許文献2及び特許文献3に記載された方法は、調査目的地とその周囲に複数の振動センサを設置する必要があった。ボーリングデータを用いない上に一点観測で足りるという本発明の特徴的な構成に関しては、記載も示唆もされていなかった。      The method described in Patent Document 1 needs to collect boring data at a plurality of points in the vicinity of the building. In addition, the methods described in Patent Document 2 and Patent Document 3 require a plurality of vibration sensors to be installed at and around the survey destination. There was no description or suggestion regarding the characteristic configuration of the present invention in which boring data is not used and one point observation is sufficient.

又、特許文献1から特許文献4に記載された方法は、いずれも地盤の速度構造を推定することを目的とするものにすぎず、柱状図を推定することを目的とするものではなかった。      In addition, the methods described in Patent Document 1 to Patent Document 4 are merely for the purpose of estimating the velocity structure of the ground, and are not intended for estimating the columnar diagram.

そして、特許文献1から特許文献4には、周期Tiと地表面からの深さHiの関係、及び水平方向及び垂直方向のフーリエ振幅の比Hfi/VfiとNi値の関係を用いて、深さHiにおけるNi値を推定するという本発明の特徴的な構成に関して、記載も示唆もされていなかった。      Patent Documents 1 to 4 describe the relationship between the period Ti and the depth Hi from the ground surface, and the relationship between the horizontal and vertical Fourier amplitude ratios Hfi / Vfi and the Ni value. There has been no description or suggestion regarding the characteristic configuration of the present invention to estimate the Ni value in Hi.

更に、特許文献1には、理論式を用いて算出される地盤固有周期と常時微動計測により得られる卓越周期を比較することにより、工学的基盤までの深度を求めるという本発明の特徴的な構成に関して、記載も示唆もされていなかった。      Furthermore, Patent Document 1 discloses a characteristic configuration of the present invention in which the depth to the engineering base is obtained by comparing the natural period of the ground calculated using a theoretical formula with the dominant period obtained by continuous microtremor measurement. Was not described or suggested.

そこで、本発明では、従来からある地盤調査方法を補完し、あるいは、これに置き換わる、省スペース、低騒音、低コストかつ短時間で実施可能な地盤調査方法を提供することを課題とする。      Therefore, an object of the present invention is to provide a ground investigation method that can be carried out in a short time, in a space-saving manner, with low noise, at low cost, that complements or replaces a conventional ground investigation method.

上記課題を解決するために、請求項1記載の推定柱状図作成方法は、任意の地表面の計測地点において、常時微動計測センサ1台で計測した地盤の常時微動の水平成分の周期Ti(i=1,2,3,・・・n(層の数))に対応するフーリエ振幅Hfiを、前記常時微動の垂直成分の前記周期Tiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するHfi/Vfi比算出ステップと、前記周期Tiと前記地表面からの深さHiの関係、及び前記Hfi/Vfi比とNi値の関係から、前記深さHiにおける前記Ni値を求め、前記計測地点における推定柱状図を作成する推定柱状図作成ステップと、を含むことを特徴とする。      In order to solve the above-described problem, the estimated columnar diagram creation method according to claim 1 is the periodic component period Ti (i) of the ground microtremor measured by one microtremor measurement sensor at any measurement point on the ground surface. = 1, 2, 3,... N (number of layers)) is calculated by dividing the Hfi / Vfi ratio by dividing the Fourier amplitude Hfi corresponding to the period Ti of the vertical component of the fine movement by the Fourier amplitude Vfi. The Ni value at the depth Hi is obtained from the Hfi / Vfi ratio calculating step, the relationship between the period Ti and the depth Hi from the ground surface, and the relationship between the Hfi / Vfi ratio and the Ni value, and the measurement An estimated columnar diagram creating step of creating an estimated columnar diagram at the point.

地盤の固有周期は工学的基盤までの地層の深さと硬さに影響され、基盤までの地層が深ければ固有周期は長くなり、地層が硬ければ固有周期は短く、振幅は小さくなる。従って、常時微動のスペクトル比と固有周期の解析図は地盤構造をフラクタルに表示していると考えられ、振幅の大きさは地盤の硬さを、固有周期は地層の深さに相似すると推定される。この考え方に基づいて、計測した常時微動のスペクトル解析図から地盤の卓越周期および地層のNi値と深さHiを読取り、推定柱状図を作成する。      The natural period of the ground is affected by the depth and hardness of the formation up to the engineering base. The deeper the formation up to the base, the longer the natural period. The harder the formation, the shorter the natural period and the smaller the amplitude. Therefore, it is considered that the analysis figure of the spectrum ratio and natural period of microtremors shows the ground structure as a fractal, and the magnitude of the amplitude is estimated to be similar to the hardness of the ground and the natural period is similar to the depth of the formation. The Based on this idea, the prevailing period of the ground and the Ni value and depth Hi of the formation are read from the measured spectrum analysis map of microtremors, and an estimated columnar diagram is created.

本発明は、常時微動測定による周期Ti(sec)から任意のi層の深さHi(m)を推定し、周期Tiにおける水平x、y方向2成分のフーリエ振幅からHfi=√(Hfxi×Hfyi)式で求めたHfi(cm/sec)と鉛直方向1成分のフーリエ振幅Vfi(cm/sec)の比Hfi/Vfiから深さHi層のNi値を推定するものである。      In the present invention, the depth Hi (m) of an arbitrary i layer is estimated from the period Ti (sec) by microtremor measurement, and Hfi = √ (Hfxi × Hfyi) from the Fourier amplitude of two components in the horizontal x and y directions in the period Ti. ) The Ni value of the depth Hi layer is estimated from the ratio Hfi / Vfi of Hfi (cm / sec) obtained by the equation (1) and the Fourier amplitude Vfi (cm / sec) of one component in the vertical direction.

次に、請求項2記載の推定柱状図作成方法は、請求項1記載の推定柱状図作成方法において、前記周期Tiと前記深さHiの関係、又は前記Hfi/Vfi比と前記Ni値の関係が、前記計測地点以外の地点における常時微動計測値と既存のボーリング柱状図を用いた同定によって予め求めたものであることを特徴とする。尚、前記計測地点以外の地点は、前記計測地点から1km以上離隔した地点とすることができる。      Next, the estimated columnar diagram creation method according to claim 2 is the estimated columnar diagram creation method according to claim 1, wherein the relationship between the period Ti and the depth Hi, or the relationship between the Hfi / Vfi ratio and the Ni value. However, it is characterized in that it is obtained in advance by identification using a microtremor measurement value at a point other than the measurement point and an existing boring column diagram. In addition, points other than the said measurement point can be made into the point 1 km or more away from the said measurement point.

本発明では、横軸を周期Ti、縦軸をHfi/Vfiとするグラフを90度時計回りに回転させたものが、縦軸を深さHi、横軸をNi値とする柱状図に対応するように(表1)、前記周期Tiと前記地表面からの深さHiの関係、及び前記Hfi/Vfi比と前記Ni値の関係を求める。下図は、H/Vスペクトル(H/Vと周期の関係)図を90度回転させると、周期Tが深さHを、H/VがN値とするボーリング柱状図と相似することを示している。

Figure 2019190254
In the present invention, a graph in which the horizontal axis is the period Ti and the vertical axis is Hfi / Vfi rotated 90 degrees clockwise corresponds to a columnar diagram in which the vertical axis is the depth Hi and the horizontal axis is the Ni value. Thus (Table 1), the relationship between the period Ti and the depth Hi from the ground surface, and the relationship between the Hfi / Vfi ratio and the Ni value are obtained. The figure below shows that when the H / V spectrum (relationship between H / V and period) is rotated 90 degrees, the period T resembles a boring columnar diagram with depth H and H / V N values. Yes.
Figure 2019190254

前記周期Tiと前記深さHiの関係の求め方について説明する。まず、実際のボーリングデータを基に、この式から地盤周期Tg(sec)を求める。次に、ボーリングデータによる深さと各層の深さで求めたTgと実測値の固有周期、ボーリングデータのNi値とHfi/Vfiの数値を対比することで、数値の傾向を読み取る。又、使用していたボーリングデータからTgを求める計算値は、土質の係数も考慮する。更に精度をあげるため、Hi(i層の厚さ)を一定厚さにカットし、その厚みの層がn(層の数)あると仮定して、ボーリングデータとの同定を試みる。      A method for obtaining the relationship between the period Ti and the depth Hi will be described. First, the ground period Tg (sec) is obtained from this equation based on actual boring data. Next, the tendency of the numerical value is read by comparing the Tg obtained by the depth of the boring data and the depth of each layer, the natural period of the actually measured value, the Ni value of the boring data and the numerical value of Hfi / Vfi. In addition, the calculated value for obtaining Tg from the used boring data also takes into account the soil coefficient. In order to further improve the accuracy, Hi (thickness of the i layer) is cut to a constant thickness, and it is assumed that there are n (number of layers) of the thickness and identification with the boring data is attempted.

尚、深さが合わないことが多い。これは、ボーリングは必ずしも、基盤まで貫入するとは限らず、杭を打つ予定プラスアルファで止めることがある、ということによる。又、古いデータはその後、掘り返したり、盛土をしたりしている場合が多く、常時微動計測をしたGL位置が異なる場合が多いことにもよる。あるいは、水平距離での不一致は、データの不一致となることもある。試行錯誤の中で確定していった固有周期Tiと深さHi、Hfi/VfiとNi値の関係を次に示す。      The depth often does not match. This is because the drilling does not necessarily penetrate to the base, but may stop at the plus alpha that is expected to hit the pile. In addition, old data is often dug up or filled afterwards, and the GL position where the fine movement measurement is always performed is often different. Alternatively, a mismatch at the horizontal distance may result in a data mismatch. The relationship between the natural period Ti, depth Hi, Hfi / Vfi, and Ni value determined through trial and error is shown below.

ケース1は砂質土が支配的で、ケース2は粘性土が支配的な場合の関係式であるが、実際の地盤では、これらは混在しているので、その都度ボーリングデータ、地質図などと同定して最終的にケース1又はケース2のいずれかを採用する。データから導いた関係式の相関係数が限りなく1.0となるように、グラフに区間を設けて、区間ごとに最も近似する曲線式又は直線式を採用する。      Case 1 is the relationship when sandy soil is dominant, and Case 2 is the relationship when viscous soil is dominant. However, in the actual ground, these are mixed. Finally, either Case 1 or Case 2 is adopted after identification. A section is provided in the graph so that the correlation coefficient of the relational expression derived from the data is 1.0 as much as possible, and a curve expression or a linear expression that is most approximated for each section is adopted.

次のグラフは、実績に基づくT(sec)に対する平均地質が砂質土の場合のH(m)であって、後記のT(sec.)の抜粋値(表5)を含む固有周期と、それに対応したH(m)との相関関数とグラフ(ケース1)である。

Figure 2019190254
The following graph shows the natural period including H (m) when the average geology with respect to T (sec) based on results is sandy soil, and includes an excerpt value (Table 5) of T (sec.) Described later, It is a correlation function with H (m) corresponding to it, and a graph (case 1).
Figure 2019190254

次のグラフは、実績に基づくT(sec)に対する平均地質が粘性土の場合のH(m)であって、後記のT(sec.)の抜粋値(表6)を含む固有周期と、それに対応したH(m)との相関関数とグラフ(ケース2)である。

Figure 2019190254
The following graph shows H (m) when the average geology with respect to T (sec) based on actual results is cohesive soil, and includes a natural period including an excerpt value (Table 6) of T (sec.) Described later, and It is a correlation function and graph (Case 2) with corresponding H (m).
Figure 2019190254

尚、土質が大きく異なる地域では、固有周期Tiと深さHi、Hfi/VfiとNi値の関係に修正を加える必要が生じ得る。このような場合には、再度同定を行う。      In areas where the soil quality is greatly different, it may be necessary to modify the relationship between the natural period Ti and the depth Hi, Hfi / Vfi and the Ni value. In such a case, identification is performed again.

以上の同定方法によって求めた前記周期Tiと深さHiの関係を含む請求項3記載の推定柱状図作成方法は、請求項1記載の推定柱状図作成方法において、前記周期Ti(sec)と前記深さHi(m)の関係が、次の(数1)又は(数2)で表わされることを特徴とする。

Figure 2019190254
Figure 2019190254
Figure 2019190254
The estimated columnar diagram creation method according to claim 3, wherein the estimated columnar diagram creation method according to claim 3 includes the relationship between the cycle Ti and the depth Hi obtained by the identification method described above, wherein the cycle Ti (sec) and the cycle The relationship of the depth Hi (m) is expressed by the following (Equation 1) or (Equation 2).
Figure 2019190254
Figure 2019190254
Figure 2019190254

次に、前記Hfi/Vfi比と前記Ni値の関係の求め方について説明する。まず、横軸を周期Ti、縦軸をHfi/Vfiとするグラフを90度時計回りに回転させて、縦軸を深さHi、横軸をNi値とする柱状図に対応するように、実際のボーリングデータと同定を重ね、前記Hfi/Vfi比と前記Ni値の関係を求める。
次のグラフは、実績に基づくH/Vに対するN値であって、後記のH/Vの抜粋値を含むH/V値と、それに対応したN値との相関関数とグラフである。

Figure 2019190254
Next, how to obtain the relationship between the Hfi / Vfi ratio and the Ni value will be described. First, the graph with the horizontal axis as the period Ti and the vertical axis as Hfi / Vfi is rotated 90 degrees clockwise so that the vertical axis corresponds to the columnar diagram with the depth Hi and the horizontal axis as the Ni value. Then, the identification is repeated and the relationship between the Hfi / Vfi ratio and the Ni value is obtained.
The following graph shows the correlation function between the H / V value based on the actual results and the H / V value including the H / V excerpt value described later and the corresponding N value.
Figure 2019190254

以上の同定方法によって求めた前記Hfi/Vfi比と前記Ni値の関係を含む請求項4記載の推定柱状図作成方法は、請求項1記載の推定柱状図作成方法において、前記Hfi/Vfi比と前記Ni値の関係が、次式で表わされることを特徴とする。

Figure 2019190254
Figure 2019190254
The estimated columnar drawing creation method according to claim 4, which includes the relationship between the Hfi / Vfi ratio obtained by the identification method and the Ni value, and the estimated columnar drawing creation method according to claim 1, wherein the Hfi / Vfi ratio is The relationship between the Ni values is expressed by the following equation.
Figure 2019190254
Figure 2019190254

(数1)に対応した各範囲内で、実績に基づくT(sec)に対する平均地質が砂質土の場合のH(m)(ケース1)に於ける関係から、抜粋した固有周期値(Ti)に対応したHiを求めた結果を、(表5)に示す。尚、下記の表のT(sec.)は近似式(数1)の抜粋値である。

Figure 2019190254
Within each range corresponding to (Equation 1), the natural period value (Ti) extracted from the relationship in H (m) (Case 1) when the average geology with respect to T (sec) based on the results is sandy soil Table 5 shows the results of obtaining Hi corresponding to (). In the table below, T (sec.) Is an excerpt of the approximate expression (Equation 1).
Figure 2019190254

(数2)に対応した各範囲内で、実績に基づくT(sec)に対する平均地質が粘性土の場合のH(m)(ケース2)に於ける関係から、抜粋した固有周期値(Ti)に対応した(Hi)を求めた結果を、(表6)に示す。尚、下記の表のT(sec.)は近似式(数2)の抜粋値である。

Figure 2019190254
In each range corresponding to (Equation 2), the natural period value (Ti) extracted from the relationship in H (m) (Case 2) when the average geology with respect to T (sec) based on actual results is cohesive soil The results of obtaining (Hi) corresponding to are shown in (Table 6). In the table below, T (sec.) Is an excerpt of the approximate expression (Equation 2).
Figure 2019190254

(数3)に対応した各範囲内で、実績に基づくH/Vに対するN値に於ける関係から、抜粋したHfi/Vfiに対応したNi値を求めた結果を、(表7)に示す。尚、下記の表のH/Vは抜粋値である。

Figure 2019190254
Table 7 shows the results of obtaining the Ni value corresponding to the extracted Hfi / Vfi from the relationship in the N value with respect to H / V based on the results within each range corresponding to (Equation 3). In the table below, H / V is an excerpt value.
Figure 2019190254

次に、請求項5記載の推定柱状図作成方法は、請求項1から請求項4のいずれかに記載の推定柱状図作成方法において、理論式から算出される地盤の卓越周期Tgcと、常時微動計測により得られる卓越周期Tgmとを比較することによって、前記地表面から岩盤までの深さHgを求めることを特徴とする。      Next, an estimated columnar diagram creation method according to claim 5 is the estimated columnar diagram creation method according to any one of claims 1 to 4, wherein the ground dominant period Tgc calculated from a theoretical formula is The depth Hg from the ground surface to the rock mass is obtained by comparing with the dominant period Tgm obtained by measurement.

次に、請求項6記載のプログラムは、任意の地表面の計測地点において、常時微動計測センサ1台で計測した地盤の常時微動の水平成分の周期Ti(i=1,2,3,・・・n(層の数))に対応するフーリエ振幅Hfiを、前記常時微動の垂直成分の前記周期Tiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するHfi/Vfi比算出処理と、前記周期Tiと前記地表面からの深さHiの関係、及び前記Hfi/Vfi比とNi値の関係から、前記深さHiにおける前記Ni値を求め、前記計測地点における推定柱状図を作成する推定柱状図作成処理と、をコンピュータに実行させるためのプログラムである。      Next, the program according to claim 6 is a program for calculating the horizontal component period Ti (i = 1, 2, 3,...) Of the ground fine movement measured by one fine movement measurement sensor at an arbitrary ground surface measurement point. An Hfi / Vfi ratio calculation process for calculating an Hfi / Vfi ratio obtained by dividing the Fourier amplitude Hfi corresponding to n (number of layers) by the Fourier amplitude Vfi corresponding to the period Ti of the vertical component of the fine movement; Estimating the Ni value at the depth Hi from the relationship between the period Ti and the depth Hi from the ground surface, and the relationship between the Hfi / Vfi ratio and the Ni value, and creating an estimated column diagram at the measurement point This is a program for causing a computer to execute columnar diagram creation processing.

無騒音・無振動の小型計測器を用いるため、計測場所の制約がない。又、計測は地表面で行うが、土間コン、舗装の上でも計測可能である。更に、計測現場付近の地質図、ボーリングデータ等を参考にして、液状化、加速度増幅率を推定できる。      There are no restrictions on the measurement location because it uses a small noise-free and vibration-free measuring instrument. In addition, the measurement is performed on the ground surface, but it can also be measured on a dirt floor or on pavement. Furthermore, liquefaction and acceleration gain can be estimated with reference to geological maps near the measurement site, borehole data, and the like.

図1は、本発明の実施形態に係る計測システム構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a measurement system configuration according to an embodiment of the present invention. 図2は、本発明の実施形態に係る運用場面の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of an operation scene according to the embodiment of the present invention. 図3は、請求項6に記載の発明をコンピュータで実行させるプログラムの常時微動計測値と既存のボーリング柱状図を用いた同定のためのフローチャート1(ボーリング柱状図と相違しない場合)の一例を示す説明図である。FIG. 3 shows an example of a flowchart 1 for identification using a microtremor measurement value of a program for causing a computer to execute the invention according to claim 6 and an existing boring column diagram (when it is not different from the boring column diagram). It is explanatory drawing. 図4は、請求項6に記載の発明をコンピュータで実行させるプログラムの常時微動計測値と既存のボーリング柱状図を用いた同定のためのフローチャート2(ボーリング柱状図と相違する場合)の一例を示す説明図である。FIG. 4 shows an example of a flow chart 2 for identification using a microtremor measurement value of a program for causing a computer to execute the invention according to claim 6 and an existing boring columnar diagram (when different from the boring columnar diagram). It is explanatory drawing. 図5は、推定柱状図とボーリング柱状図とを比較した結果の一例を示す説明図(その1)である。FIG. 5 is an explanatory diagram (part 1) illustrating an example of a result of comparing the estimated columnar diagram and the boring columnar diagram. 図6は、推定柱状図とボーリング柱状図とを比較した結果の一例を示す説明図(その2)である。FIG. 6 is an explanatory diagram (part 2) illustrating an example of a result of comparing the estimated columnar diagram and the boring columnar diagram. 図7は、推定柱状図とボーリング柱状図とを比較した結果の一例を示す説明図(その3)である。FIG. 7 is an explanatory diagram (part 3) illustrating an example of a result obtained by comparing the estimated columnar diagram and the boring columnar diagram. 図8は、推定柱状図と橋梁柱脚部深さとを比較した結果の一例を示す説明図(その4)である。FIG. 8 is an explanatory diagram (part 4) illustrating an example of a result of comparing the estimated columnar diagram and the depth of the bridge column base. 図9は、地層タイプが新規だった場合の、ボーリングデータから固有周期を出す計算書(粘土層、遠賀川 ボーリング 新No.1)である。FIG. 9 is a calculation form (clay layer, Onaga River Boring No. 1) for calculating the natural period from the boring data when the strata type is new. 図10は、地層タイプが新規だった場合の、近辺の既存ボーリングデータから固有周期を出す計算書(粘土層、遠賀川 ボーリング 旧No.1(既存)、新No.1との高低差2.8+1.37=4.17を考慮)である。Fig. 10 shows a calculation form for calculating a natural period from existing boring data in the vicinity when the strata type is new (clay layer, Toga River boring old No. 1 (existing), height difference from new No. 1). 8 + 1.37 = 4.17). 図11は、上記(図9)、(図10)のボーリングデータから計算して岩盤までの深さを追記した柱状図の工学的基盤、岩盤深さと常時微動計測結果の工学的基盤、岩盤深さを同定して作成した推定柱状図である。Fig. 11 shows the engineering base of the columnar figure in which the depth to the rock was added by calculation from the boring data of (Figure 9) and (Figure 10) above, the engineering base of the rock depth and the microtremor measurement results, the rock base depth It is an estimated columnar diagram created by identifying the height.

以下に、本実施形態について説明する。尚、以下に説明する実施例は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。又、実施例で説明される構成の全てが、本発明において必須のものであるとは限らない。尚、課題を解決するための手段における記載と重複する内容及び当業者であれば当然に知り得る公知技術に関する内容はできるだけ省略する。      Hereinafter, the present embodiment will be described. The embodiments described below do not unduly limit the contents of the present invention described in the claims. In addition, all the configurations described in the embodiments are not necessarily essential in the present invention. In addition, the content which overlaps with the description in the means for solving a subject, and the content regarding the well-known technique which a person skilled in the art can understand naturally are omitted as much as possible.

図1に本発明の実施形態に係る計測システム構成の一例を示す。常時微動計測には、常時微動測定用AD変換器内蔵型地表用受信器(2秒計)を使用した。ノート型パーソナルコンピュータと組み合わせて、常時微動の測定が可能である。尚、ノート型パーソナルコンピュータに限らず、スマートフォン、タブレット型端末、デスクトップ型パーソナルコンピュータ等、本発明の処理を実行させることができるものであれば、その形態を問わない。又、常時微動計測器に本発明の処理を実行する機能をもたせることも考えられる。更には、ネットワークを介して、サーバにおいて本発明の処理を実行させるようにしてもよい。      FIG. 1 shows an example of a measurement system configuration according to an embodiment of the present invention. For microtremor measurement, a ground surface receiver (2-second meter) with a built-in AD converter for microtremor measurement was used. In combination with a notebook personal computer, it is possible to always measure fine movement. Note that the present invention is not limited to a notebook personal computer, and any form may be used as long as it can execute the processing of the present invention, such as a smartphone, a tablet terminal, or a desktop personal computer. It is also conceivable that the microtremor measuring instrument is provided with a function for executing the processing of the present invention. Furthermore, the processing of the present invention may be executed in a server via a network.

図2に本発明の実施形態に係る運用場面の一例を示す。本発明は、常時微動計測センサ1台を任意の地表面の計測地点に設置するだけで実施できるので、場所の制約が殆どない。常時微動計測センサとノート型パーソナルコンピュータをケーブルで接続して実施したが、将来的には、これらを一体化したり、ネットワークを介してサーバで処理したりすることも可能である。      FIG. 2 shows an example of an operation scene according to the embodiment of the present invention. Since the present invention can be implemented simply by installing one microtremor measurement sensor at a measurement point on an arbitrary ground surface, there is almost no place restriction. Although the microtremor measurement sensor and the notebook personal computer are connected by a cable, they can be integrated or processed by a server via a network in the future.

地盤調査は常時微動計(固有周期1secの速度計)で地盤の卓越周期を測定し、地盤の種別を判定すると共にNi値を推定した。測定は、1地点について1回の測定間隔を100秒とし、3回実施した。サンプリング周波数は100Hz、観測成分は水平動2成分、上下動1成分の3成分である。各100秒間の観測記録のフーリエスペクトル(平滑化:バンド幅0.4HzのParzen Window)を計算し、水平動2成分をスペクトル合成したものを水平動フーリエスペクトルとし、水平動フーリエスペクトルを上下動フーリエスペクトルで除したものをHfi/Vfiスペクトルとして表示した。      The ground survey was performed by measuring the dominant period of the ground with a microtremor meter (speed meter with a natural period of 1 sec), judging the ground type and estimating the Ni value. The measurement was carried out three times with one measurement interval at one point as 100 seconds. The sampling frequency is 100 Hz, the observed components are three components, two horizontal motion components and one vertical motion component. A Fourier spectrum (smoothing: Parzen Window with a bandwidth of 0.4 Hz) of each 100-second observation record is calculated, and a horizontal dynamic Fourier spectrum is obtained by synthesizing two horizontal motion spectra. What was divided by the spectrum was displayed as an Hfi / Vfi spectrum.

具体的な実施手順は以下の通りである。
まず、対象敷地において、常時微動測定用動コイル型速度計を適切な微動記録が得られるように設置する。設置箇所は、同一敷地内5地点以上とする。1地点について1回の測定間隔を100秒以上とし、3回以上実施する。
The specific implementation procedure is as follows.
First, a moving coil speedometer for fine movement measurement is installed at the target site so that appropriate fine movement recording can be obtained. The installation location shall be at least 5 points on the same site. The measurement interval for one point is 100 seconds or more, and the measurement is carried out three times or more.

次に、計測におけるサンプリング周波数は100Hz、観測成分は水平動2成分、上下動1成分の3成分とし、各100秒以上間の観測記録のフーリエスペクトル(平滑化:バンド幅0.4HzのParzen Window)を計算し、水平動2成分をスペクトル合成したものを水平動フーリエスペクトルとし、水平動フーリエスペクトルを上下動フーリエスペクトルで除したものをH/Vスペクトルとして表示する。      Next, the sampling frequency in the measurement is 100 Hz, the observation components are 3 components of 2 horizontal motion components and 1 vertical motion component, and the Fourier spectrum of the observation record for each 100 seconds or longer (smoothing: Parzen Window with a bandwidth of 0.4 Hz). ) Is calculated, and a horizontal motion Fourier spectrum is obtained by spectrally synthesizing two horizontal motion components, and an H / V spectrum is obtained by dividing the horizontal motion Fourier spectrum by a vertical motion Fourier spectrum.

最後に、H/Vスペクトル(H/V−Tの関係)の表計算ソフトウェア用データから、近似式(数1)又は(数2)を使用して固有周期Tに対応する深さHを読み取り、近似式数3を使用してH/Vに対応するN値を読み取る。読み取った深さHと、N値のデータを使用して柱状図を作成する。      Finally, the depth H corresponding to the natural period T is read from the spreadsheet software data of the H / V spectrum (H / V-T relationship) using the approximate expression (Equation 1) or (Equation 2). The N value corresponding to H / V is read using the approximate expression (3). A columnar diagram is created using the read depth H and N value data.

図3は、請求項6に記載の発明をコンピュータで実行させるプログラムの常時微動計測値と既存のボーリング柱状図を用いた同定のためのフローチャート1(ボーリング柱状図と相違しない場合)の一例を示す説明図である。
1.このフローチャート1は、既に同様の推定地質でデータ収集が最低でも10箇所以上(それぞれ別の地域での調査箇所)で行われていること。
2.その時々で、ボーリング柱状図と大きな矛盾が発生していないこと。以上1,2の場合に、このフローチャートで計測及び解析が可能である。
3.尚、新規調査で、ボーリング柱状図の工学的基盤の深さに於いて、大きな矛盾がある場合は、フローチャート2でボーリング柱状図と同定すること。
FIG. 3 shows an example of a flowchart 1 for identification using a microtremor measurement value of a program for causing a computer to execute the invention according to claim 6 and an existing boring column diagram (when it is not different from the boring column diagram). It is explanatory drawing.
1. In this flowchart 1, data collection has already been carried out at least 10 locations (survey locations in different regions) with the same estimated geology.
2. From time to time, there should be no major contradiction with the boring column. In cases 1 and 2 above, measurement and analysis are possible with this flowchart.
3. In addition, if there is a major contradiction in the depth of the engineering base of the boring column diagram in a new survey, identify it as a boring column diagram in Flowchart 2.

図4は、請求項6に記載の発明をコンピュータで実行させるプログラムの常時微動計測値と既存のボーリング柱状図を用いた同定のためのフローチャート2(ボーリング柱状図と相違する場合)の一例を示す説明図である。
1.このフローチャート2は、フローチャート1の方法で解析した結果が、同一場所でのボーリング柱状図の工学的基盤の深さと比較して大きな矛盾がある場合に、工学的基盤の深さがほぼ一致するように近似式(数1)の抜粋値(表5)又は近似式(数2)の抜粋値(表6)を基にして補正を行い、抜粋値(補正後の(表5)又は補正後の(表6))及び近似式(補正後の(数1)又は補正後の(数2))を作成するための方法である。(以降、抜粋値(補正(表5))又は抜粋値(補正(表6))及び近似式(補正(数1))又は近似式(補正(数2))とする。)
2.あるいは、このフローチャート2は、計測地点と同様の推定地質でのデータ収集が無いか、データ収集が10箇所未満(それぞれ別の地域での調査箇所)の収集しか行われていない場合に、同一場所でのボーリングデータと比較して、工学的基盤の深さがほぼ一致するように近似式(数1)の抜粋値(表5)又は近似式(数2)の抜粋値(表6)を基にして補正を行い、抜粋値(補正(表5))又は抜粋値(補正(表6))及び近似式(補正(数1))又は近似式(補正(数2))を作成するための方法である。
3.同一場所の各ポイントで、ボーリング柱状図の工学的基盤深さと大きく異なることの無いよう、抜粋値(補正(表5))又は抜粋値(補正(表6))及び近似式(補正(数1))又は近似式(補正(数2))を作成すること。以上1,2、3の場合に、このフローチャート2で計測及び解析が可能である。
4.尚、(数1)、(数2)、(表5)、(表6)は、前記フローチャート1で10箇所以上の計測を行って得たデータを基に作成したものである。
FIG. 4 shows an example of a flowchart 2 (when different from a boring column diagram) for identification using a microtremor measurement value of a program for causing a computer to execute the invention according to claim 6 and an existing boring column diagram. It is explanatory drawing.
1. This flowchart 2 shows that the depth of the engineering base is almost the same when the result analyzed by the method of the flowchart 1 has a large contradiction compared with the depth of the engineering base of the boring column diagram at the same place. Is corrected based on the extracted value (Table 5) of the approximate expression (Equation 1) or the extracted value (Table 6) of the approximate expression (Equation 2), and the extracted value (corrected (Table 5) or corrected) (Table 6)) and an approximate expression (corrected (Equation 1) or corrected (Equation 2)). (Hereafter, the extracted value (correction (Table 5)) or the extracted value (correction (Table 6)) and the approximate expression (correction (Expression 1)) or approximate expression (correction (Expression 2)).)
2. Or this flowchart 2 is the same place when there is no data collection with the same estimated geology as the measurement point, or when the data collection is less than 10 points (research points in different regions). Based on the excerpt value (Table 5) of the approximate expression (Equation 1) or the excerpt value (Table 6) of the approximate expression (Formula 2) so that the depth of the engineering base is almost the same as the borehole data at To make an excerpt value (correction (Table 5)) or excerpt value (correction (Table 6)) and an approximate expression (correction (Expression 1)) or approximate expression (correction (Expression 2)) Is the method.
3. Excerpt value (correction (Table 5)) or excerpt value (correction (Table 6)) and approximate expression (correction (Equation 1) so that it does not differ greatly from the engineering base depth of the boring column diagram at each point in the same place. )) Or an approximate expression (correction (Equation 2)). In the above cases 1, 2, and 3, measurement and analysis are possible with this flowchart 2.
4). In addition, (Equation 1), (Equation 2), (Table 5), and (Table 6) are created based on data obtained by performing measurement at 10 or more locations in the flowchart 1.

図5から図7は、本発明を用いて作成した推定柱状図と常時微動計測地点以外の地点における常時微動計測値と既存のボーリング柱状図とを比較した結果の一例を示す説明図である。図8は本発明を用いて作成した推定柱状図と橋梁柱脚部とを比較した結果の一例を示す説明図である。尚、図5、図6中T字型で示している部分は、支持地盤まで施工した杭の深さを表している。図8のI字型で示している部分は、岩盤まで施工した鋼矢板の深さを表している。
図5は、岩国市内公共施設における杭支持地盤の検討結果である。図5は、ボーリング柱状図と本発明による推定柱状図を比較したものである。支持地盤までの数値が近似しており、本発明による推定柱状図により敷地全体の杭の支持層深さを決定した。
図6は、山口市内高等学校における杭基礎支持地盤の検討結果である。図6は、ボーリング柱状図と本発明の推定柱状図を比較したもので、転石などの障害物で、バラツキが大きく、支持層位置の特定が困難であるボーリング柱状図に対して、本発明では障害物によるバラツキのほぼ平均的な数値を表しており、支持層深さが特定しやすいため、実施設計では本発明により支持層深さを決定した。杭施工の結果、本発明による支持層で強固な支持地盤が得られることが確認された。
図7は、地盤種別による検討結果である。図7に地盤種別毎の本発明とボーリングによる柱状図を比較した。第1種(宇部市内寺院)、2種(山口市内高等学校)、3種地盤(広島市内小学校)のいずれにおいても、ボーリング柱状図に近似していることがわかる。
図8は、宇部市内橋梁現場における柱脚部掘削後に施工した鋼矢板深さ(この場合は岩盤)と同場所の地上部際で計測して得られた本発明の推定柱状図とを比較したもので、岩盤までの深さが一致していることを確認できた。
以上の結果からも、本発明によって、従来、常時微動計測センサ1台のみではできなかった高精度な推定が可能になることがわかる。
FIG. 5 to FIG. 7 are explanatory diagrams showing an example of a result of comparing the estimated columnar diagram created by using the present invention, the microtremor measurement value at a point other than the microtremor measurement point, and the existing boring columnar diagram. FIG. 8 is an explanatory diagram showing an example of the result of comparing the estimated columnar diagram created using the present invention with the bridge column base. In addition, the part shown by T shape in FIG. 5, FIG. 6 represents the depth of the pile constructed to the support ground. The part shown by the I shape of FIG. 8 represents the depth of the steel sheet pile constructed to the bedrock.
Fig. 5 shows the results of examination of pile support ground in Iwakuni city public facilities. FIG. 5 compares the boring columnar diagram with the estimated columnar diagram according to the present invention. The numerical values up to the supporting ground are approximated, and the supporting layer depth of the pile in the entire site was determined by the estimated columnar diagram according to the present invention.
Fig. 6 shows the results of examination of pile foundation support ground at Yamaguchi City High School. FIG. 6 is a comparison between the boring columnar diagram and the estimated columnar diagram of the present invention. In contrast to the boring columnar diagram where obstacles such as boulders are large, variation is difficult, and it is difficult to specify the position of the support layer, Since the average value of the variation due to the obstacle is expressed and the depth of the support layer is easy to specify, the depth of the support layer is determined according to the present invention in the practical design. As a result of the pile construction, it was confirmed that a strong support ground was obtained with the support layer according to the present invention.
FIG. 7 shows the result of examination according to the ground type. FIG. 7 compares the present invention for each ground type and the columnar diagram by boring. It can be seen that both Type 1 (Ube City Temple), Type 2 (Yamaguchi City High School), and Type 3 Ground (Hiroshima City Elementary School) are similar to a boring column diagram.
Figure 8 compares the steel sheet pile depth (in this case, rock) that was constructed after excavation of the column base at the Ube city bridge site and the estimated columnar diagram of the present invention obtained by measuring near the ground. It was confirmed that the depth to the bedrock was the same.
From the above results, it can be seen that according to the present invention, it is possible to perform high-precision estimation that cannot be conventionally performed with only one microtremor measurement sensor.

本発明を杭位置の判定に使用した場合の実施例について説明する。
次図は、山陽小野田市内の公共施設で杭の施工中に障害物があり、施工が出来なくなったケースで、本発明の方法で障害物の深さ位置と大きさを推定した。これにより、図中の注記に示すように、障害物の深さ位置と大きさを推定し、これに合わせて杭位置を変更して施工を完了した。

Figure 2019190254
An embodiment in the case where the present invention is used for determining a pile position will be described.
The following figure shows a case where there was an obstacle during construction of a pile in a public facility in Sanyo Onoda city, and the depth position and size of the obstacle were estimated by the method of the present invention. As a result, as shown in the note in the figure, the depth position and size of the obstacle were estimated, and the pile position was changed accordingly, and the construction was completed.
Figure 2019190254

次に、本発明を古洞探査に使用した場合の実施例について説明する。宇部市内の5階建共同住宅に高齢者用EVを設置する場所を、本発明により調査したところ、石炭採掘による古洞の深さ、位置を発見し、併せて建物周囲の狭小地について、古洞の探査を実施した。この結果、古洞を考慮したEV設置場所、杭基礎施工方法を迅速に提案することができた。

Figure 2019190254
Next, an embodiment when the present invention is used for ancient cave exploration will be described. As a result of investigating the location where EVs for elderly people are installed in a five-story apartment house in Ube City, the depth and position of an old cave by coal mining was discovered. Exploration was conducted. As a result, we were able to promptly propose an EV installation location and a pile foundation construction method considering the old caves.
Figure 2019190254

参考として、図9に、地層タイプが新規だった場合の、ボーリングデータ(常時微動計測時と同じ盛土後の地盤G.L)から固有周期を出す計算書(粘土層、遠賀川 ボーリング 新No.1)を示す。又、図10に、地層タイプが新規だった場合の、旧ボーリングデータ(盛土前のボーリングデータ)から固有周期を出す計算書(粘土層、遠賀川 ボーリング 旧No.1、新No.1との高低差2.8+1.37=4.17及びボーリングデータ開始深さ0.7mを考慮)を示す。      As a reference, Fig. 9 shows a calculation sheet (clay layer, Togagawa Boring New No. 1) for generating a natural period from the boring data (the ground GL after the same embankment as in the case of microtremor measurement) when the strata type is new. 1). In addition, in Fig. 10, when the stratum type is new, the calculation sheet (clay layer, Onaga River boring old No. 1 and new No. 1) that calculates the natural period from the old boring data (boring data before embankment) The height difference is 2.8 + 1.37 = 1.17 and the drilling data start depth is 0.7 m).

最後に、地層タイプが新規だった場合のボーリングデータから計算して岩盤までの深さを追記した柱状図深さと常時微動計測結果の深さとを同定して作成した推定柱状図を図11に示す。
図11は、上記(図9)、(図10)のボーリングデータから計算して岩盤までの深さを追記した柱状図の工学的基盤、岩盤深さと常時微動計測結果の工学的基盤、岩盤深さとを同定して作成した推定柱状図である。図11左側のグラフは、新ボーリングNo.1(盛土後)及び同時期、ほぼ同時期、場所にて計測した常時微動による推定柱状図である。図11右側のグラフは、旧ボーリングNo.1(盛土前)及び盛土後、2m程度離れた場所にて計測した常時微動による推定柱状図である。
Finally, Fig. 11 shows an estimated column diagram created by identifying the depth of the columnar figure calculated from the borehole data when the strata type is new and adding the depth to the rock, and the depth of the microtremor measurement result. .
Fig. 11 shows the engineering base of the columnar figure which added the depth to the rock mass calculated from the borehole data of the above (Fig. 9) and (Fig. 10), the engineering foundation of the rock mass depth and the microtremor measurement result, It is an estimated columnar diagram created by identifying Sato. The graph on the left side of FIG. 1 (after embankment) and at the same time, almost the same time, is an estimated columnar figure by microtremor measured at a place. The graph on the right side of FIG. 1 (before embankment) and after embankment, it is an estimated columnar figure by microtremor measured at a location about 2 m away.

1 計測者
2 ノート型パーソナルコンピュータ
3 ケーブル
4 常時微動計測センサ
1 Measurer 2 Notebook personal computer 3 Cable 4 Microtremor measurement sensor

Claims (6)

任意の地表面の計測地点において、常時微動計測センサ1台で計測した地盤の常時微動の水平成分の周期Ti(i=1,2,3,・・・n(層の数))に対応するフーリエ振幅Hfiを、前記常時微動の垂直成分の前記周期Tiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するHfi/Vfi比算出ステップと、前記周期Tiと前記地表面からの深さHiの関係、及び前記Hfi/Vfi比とNi値の関係から、前記深さHiにおける前記Ni値を求め、前記計測地点における推定柱状図を作成する推定柱状図作成ステップと、を含むことを特徴とする推定柱状図作成方法。    Corresponds to the horizontal component period Ti (i = 1, 2, 3,... N (number of layers)) of the ground microtremor measured by one microtremor measurement sensor at an arbitrary ground surface measurement point. An Hfi / Vfi ratio calculating step of calculating an Hfi / Vfi ratio by dividing the Fourier amplitude Hfi by the Fourier amplitude Vfi corresponding to the period Ti of the normal fine movement vertical component; the period Ti and the depth from the ground surface An estimated column diagram creating step of obtaining the Ni value at the depth Hi from the relationship of Hi and the relationship between the Hfi / Vfi ratio and the Ni value and creating an estimated column diagram at the measurement point. Estimated columnar drawing creation method. 前記周期Tiと前記深さHiの関係、又は前記Hfi/Vfi比と前記Ni値の関係が、前記計測地点以外の地点における常時微動計測値と既存のボーリング柱状図を用いた同定によって予め求めたものであることを特徴とする請求項1記載の推定柱状図作成方法。    The relationship between the period Ti and the depth Hi, or the relationship between the Hfi / Vfi ratio and the Ni value was obtained in advance by identification using a microtremor measurement value at a point other than the measurement point and an existing boring column diagram. The estimated columnar drawing creation method according to claim 1, wherein the method is a thing. 前記周期Ti(sec)と前記深さHi(m)の関係が、次の(数1)又は(数2)で表わされることを特徴とする請求項1記載の推定柱状図作成方法。
Figure 2019190254
Figure 2019190254
The estimated columnar drawing creation method according to claim 1, wherein the relationship between the period Ti (sec) and the depth Hi (m) is expressed by the following (Equation 1) or (Equation 2).
Figure 2019190254
Figure 2019190254
前記Hfi/Vfi比と前記Ni値の関係が、次式で表わされることを特徴とする請求項1記載の推定柱状図作成方法。
Figure 2019190254
The estimated columnar drawing creation method according to claim 1, wherein the relationship between the Hfi / Vfi ratio and the Ni value is expressed by the following equation.
Figure 2019190254
理論式から算出される地盤の卓越周期Tgcと、常時微動計測により得られる卓越周期Tgmとを比較することによって、前記地表面から岩盤までの深さHgを求めることを特徴とする請求項1から請求項4のいずれかに記載の推定柱状図作成方法。    The depth Hg from the ground surface to the rock is determined by comparing the ground dominant period Tgc calculated from the theoretical formula with the dominant period Tgm obtained by continuous microtremor measurement. The estimated columnar drawing creation method according to claim 4. 任意の地表面の計測地点において、常時微動計測センサ1台で計測した地盤の常時微動の水平成分の周期Ti(i=1,2,3,・・・n(層の数))に対応するフーリエ振幅Hfiを、前記常時微動の垂直成分の前記周期Tiに対応するフーリエ振幅Vfiで除したHfi/Vfi比を算出するHfi/Vfi比算出処理と、前記周期Tiと前記地表面からの深さHiの関係、及び前記Hfi/Vfi比とNi値の関係から、前記深さHiにおける前記Ni値を求め、前記計測地点における推定柱状図を作成する推定柱状図作成処理と、をコンピュータに実行させるためのプログラム。    Corresponds to the horizontal component period Ti (i = 1, 2, 3,... N (number of layers)) of the ground microtremor measured by one microtremor measurement sensor at an arbitrary ground surface measurement point. Hfi / Vfi ratio calculation processing for calculating an Hfi / Vfi ratio obtained by dividing the Fourier amplitude Hfi by the Fourier amplitude Vfi corresponding to the period Ti of the vertical component of the fine movement, and the depth from the period Ti and the ground surface Based on the relationship between Hi and the relationship between the Hfi / Vfi ratio and the Ni value, the Ni value at the depth Hi is obtained, and an estimated column diagram creation process for creating an estimated column diagram at the measurement point is executed by a computer. Program for.
JP2018090958A 2018-04-19 2018-04-19 Estimated columnar drawing creation method and program by microtremor measurement Active JP6596626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018090958A JP6596626B2 (en) 2018-04-19 2018-04-19 Estimated columnar drawing creation method and program by microtremor measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018090958A JP6596626B2 (en) 2018-04-19 2018-04-19 Estimated columnar drawing creation method and program by microtremor measurement

Publications (2)

Publication Number Publication Date
JP6596626B2 JP6596626B2 (en) 2019-10-30
JP2019190254A true JP2019190254A (en) 2019-10-31

Family

ID=68383182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090958A Active JP6596626B2 (en) 2018-04-19 2018-04-19 Estimated columnar drawing creation method and program by microtremor measurement

Country Status (1)

Country Link
JP (1) JP6596626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466930A (en) * 2021-07-20 2021-10-01 北京市水电物探研究所 Micro-motion exploration method and device and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146373A (en) * 1993-11-22 1995-06-06 Kumagai Gumi Co Ltd Method for evaluating earthquake vibration-amplifying characteristic of surface layer
JPH09178863A (en) * 1995-12-27 1997-07-11 Nobuhisa Yamada Ground strength analyzing method
JPH11183630A (en) * 1997-12-22 1999-07-09 Osaka Gas Co Ltd Method for evaluating amplification characteristic of ground at earthquake
JP3475312B2 (en) * 1995-06-27 2003-12-08 株式会社システムアンドデータリサーチ Ground cavity detection method and apparatus
JP2007327731A (en) * 2006-06-09 2007-12-20 Meiwa Fudosan:Kk Earth resource thermosiphon system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146373A (en) * 1993-11-22 1995-06-06 Kumagai Gumi Co Ltd Method for evaluating earthquake vibration-amplifying characteristic of surface layer
JP3475312B2 (en) * 1995-06-27 2003-12-08 株式会社システムアンドデータリサーチ Ground cavity detection method and apparatus
JPH09178863A (en) * 1995-12-27 1997-07-11 Nobuhisa Yamada Ground strength analyzing method
JPH11183630A (en) * 1997-12-22 1999-07-09 Osaka Gas Co Ltd Method for evaluating amplification characteristic of ground at earthquake
JP2007327731A (en) * 2006-06-09 2007-12-20 Meiwa Fudosan:Kk Earth resource thermosiphon system

Also Published As

Publication number Publication date
JP6596626B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
Green et al. Characterizing broadband seismic noise in Central London
Anbazhagan et al. Spatial variability of the depth of weathered and engineering bedrock using multichannel analysis of surface wave method
Motamed et al. Seismic microzonation and damage assessment of Bam city, southeastern Iran
Gupta et al. Site characterization through combined analysis of seismic and electrical resistivity data at a site of Dhanbad, Jharkhand, India
Tian et al. Measuring the sediment thickness in urban areas using revised H/V spectral ratio method
Khan et al. Mapping sediment thickness of Islamabad city using empirical relationships: Implications for seismic hazard assessment
Esfehanizadeh et al. Correlation between standard penetration (N SPT) and shear wave velocity (VS) for young coastal sands of the Caspian Sea
Akin et al. Site characterization using surface wave methods in the Arsin-Trabzon province, NE Turkey
Ansal et al. A preliminary microzonation study for the town of Dinar
Pancha et al. Determination of 3D basin shear‐wave velocity structure using ambient noise in an urban environment: A case study from Reno, Nevada
Raptakis Pre-loading effect on dynamic soil properties: Seismic methods and their efficiency in geotechnical aspects
JP6596626B2 (en) Estimated columnar drawing creation method and program by microtremor measurement
Kurtuluş Istanbul geotechnical downhole arrays
Almadani et al. Site response assessment and ground conditions at King Saud University Campus, Riyadh City, Saudi Arabia
Lombardo et al. Local seismic response in Catania (Italy): a test area in the northern part of the town
Huang et al. S-wave velocity structures of the Taipei Basin, Taiwan, using microtremor array measurements
Mohamed et al. Effects of surface geology on the ground-motion at New Borg El-Arab City, Alexandria, Northern Egypt
Öztürk et al. Estimation of ground types in different districts of Gümüşhane province based on the ambient vibrations H/V measurements
Demiroz et al. Investigation of the dynamic behavior of soils of Konya Organized Industrial Zone by equivalent linear analysis method
Herrera et al. Assessment of Nakamura methodology for evaluating soil liquefaction potential
Theland et al. Assessment of small-strain characteristics for vibration predictions in a Swedish clay deposit
Ozaslan et al. Determination of local site soil conditions by microtremor measurements for sustainable buildings
Molnar et al. Comparison of geophysical shear-wave velocity methods
Oborie et al. Integration of GIS with the generalized reciprocal method (GRM) for determining foundation bearing capacity: A case study in Opolo, Yenagoa Bayelsa State, Nigeria
Herak Recent applications of ambient vibration measurements in Croatia

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6596626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250