JP2019189752A - Process for producing carbon fiber reinforced resin molded product - Google Patents

Process for producing carbon fiber reinforced resin molded product Download PDF

Info

Publication number
JP2019189752A
JP2019189752A JP2018083904A JP2018083904A JP2019189752A JP 2019189752 A JP2019189752 A JP 2019189752A JP 2018083904 A JP2018083904 A JP 2018083904A JP 2018083904 A JP2018083904 A JP 2018083904A JP 2019189752 A JP2019189752 A JP 2019189752A
Authority
JP
Japan
Prior art keywords
resin
carbon fiber
fiber bundle
molded product
impregnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018083904A
Other languages
Japanese (ja)
Other versions
JP7119539B2 (en
Inventor
龍広 岸川
Tatsuhiro Kishikawa
龍広 岸川
忠 大谷
Tadashi Otani
忠 大谷
正行 杉浦
Masayuki Sugiura
正行 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018083904A priority Critical patent/JP7119539B2/en
Publication of JP2019189752A publication Critical patent/JP2019189752A/en
Application granted granted Critical
Publication of JP7119539B2 publication Critical patent/JP7119539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

To provide a process for producing a carbon fiber reinforced resin molded product, in which, even with a fast-curing resin, a carbon fiber reinforced resin molded product free from defective resin impregnation can be obtained by an inexpensive resin-injection resin control device without using a complicated resin-impregnation mold.SOLUTION: The process for producing a carbon fiber reinforced resin molded product includes the following steps [1] to [4]. Step [1]: while widening the fiber spacing of a continuous carbon fiber bundle, a resin is added from slit nozzle to the carbon fiber bundle. Step [2]: the excess resin is removed from the carbon fiber bundle to which the resin is added. Step [3]: the carbon fiber bundle to which the resin is added is compressed to promote the impregnation of the resin into the carbon fiber bundle. Step [4]: the carbon fiber bundle impregnated with the resin is heat-cured.SELECTED DRAWING: Figure 2

Description

本発明は引抜装置を用いた炭素繊維強化樹脂成形品の製造方法及びその装置に関するものである。   The present invention relates to a method for manufacturing a carbon fiber reinforced resin molded article using a drawing apparatus and an apparatus therefor.

従来の炭素繊維部材の引抜成形の一般的な方法及びその装置としては図1に示すように、炭素繊維束(1)をレジンバス槽(2)に通してこれに熱硬化性樹脂を含浸し、そのあと成形金型(3)で成形し、引取り機(4)で引取りながら連続した成形部材を製造する。
熱硬化性樹脂を炭素繊維束(1)に含浸させる方法としては、レジンバス槽(2)でディッピングによる方法が用いられている。
As shown in FIG. 1, as a general method and apparatus for pultrusion of a conventional carbon fiber member, a carbon fiber bundle (1) is passed through a resin bath tank (2) and impregnated with a thermosetting resin. After that, it is molded by a molding die (3), and a continuous molded member is manufactured while being taken by a take-up machine (4).
As a method for impregnating the carbon fiber bundle (1) with the thermosetting resin, a method by dipping in the resin bath tank (2) is used.

また、特開平6−79796号公報(特許文献1)に記載の如く、速硬化性樹脂を用いた引抜成形方法では、主剤と硬化剤をスタティックミキサーで混合したあと樹脂含浸金型に導き繊維束に樹脂を含浸し、成形金型を通って引抜成形する方法が知られている。   Further, as described in Japanese Patent Laid-Open No. 6-79796 (Patent Document 1), in a pultrusion method using a fast-curing resin, a main bundle and a curing agent are mixed with a static mixer and then guided to a resin-impregnated mold. There is known a method of impregnating a resin with a resin and drawing it through a molding die.

特開平6−79796号公報Japanese Patent Laid-Open No. 6-79796

しかしながら、図1に示す引抜成形方法では、速硬化性樹脂を用いるとレジンバス槽で硬化が始まるため連続した引抜成形が出来ない問題あった。
また、速硬化性樹脂に適した引抜成形方法の特許文献1では、樹脂含浸金型への複数穴による繊維の導入経路および複数の樹脂添加経路は、樹脂含浸金型が複雑な構造になるため樹脂含浸金型が高価になる問題があった。また、複数の樹脂添加経路は、個々の樹脂添加量が安定せず繊維束に含浸斑が発生し、炭素繊維のような細い繊維束では、成形品の中にボイドが発生してしまう問題があった。
However, the pultrusion method shown in FIG. 1 has a problem in that continuous pultrusion cannot be performed when a fast-curing resin is used, since curing starts in a resin bath tank.
In Patent Document 1 of a pultrusion method suitable for a fast-curing resin, the fiber introduction path and the plurality of resin addition paths through a plurality of holes into the resin-impregnated mold have a complicated structure. There is a problem that the resin-impregnated mold becomes expensive. In addition, a plurality of resin addition paths have a problem that the amount of individual resin addition is not stable and impregnation spots are generated in the fiber bundle, and in a thin fiber bundle such as carbon fiber, voids are generated in the molded product. there were.

本発明者等は、上記課題を解決すべく鋭意検討した結果、樹脂を添加した炭素繊維束から余剰樹脂を取除き、樹脂を添加した炭素繊維束を加圧して炭素繊維束に樹脂の含浸を促進させることにより上記課題を解決できることを見出し、本発明を解決するに至った。即ち、本発明の要旨は以下の(1)から(6)に存する。   As a result of intensive studies to solve the above problems, the present inventors have removed excess resin from the carbon fiber bundle to which the resin has been added, pressurized the carbon fiber bundle to which the resin has been added, and impregnated the carbon fiber bundle with the resin. The inventors have found that the above-mentioned problems can be solved by promoting them, and have solved the present invention. That is, the gist of the present invention resides in the following (1) to (6).

(1) 以下の工程[1]〜[4]を含み、工程[1]の後に工程[2]および[3]を含み、工程[2]および[3]の後に工程[4]を含む、炭素繊維強化樹脂成形品の製造方法。
工程[1]:連続した炭素繊維束の繊維間隔を広げながら、当該炭素繊維束にスリットノズルから樹脂を添加する工程、
工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程
工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程
工程[4]:樹脂が含浸した炭素繊維束を加熱硬化させる工程
(2) 前記工程[2]において、繊維含有率が60〜70体積%となる樹脂量となるように余剰樹脂を取り除く、上記(1)に記載の炭素繊維強化樹脂成形品の製造方法。
(3) 前記工程[2]と前記工程[3]をダイにより同時に行う、上記(1)または(2)に記載の炭素繊維強化樹脂成形品の製造方法。
(4) 前記工程[2]の後に前記工程[3]を含む、上記(1)または(2)に記載の炭素繊維強化樹脂成形品の製造方法。
(5) 前記工程[1]と工程[2]の間に、下記工程[5]を含む、上記(1)から(4)のいずれかに記載の炭素繊維強化樹脂成形品の製造方法。
工程[5]:ロールを用いて炭素繊維束に樹脂を含浸させる予備含浸工程
(6) 前記工程[4]の樹脂が含浸した炭素繊維束を加熱硬化させる工程が、樹脂が含浸した炭素繊維束を成形金型内へ引き込み、成形品形状を保持した状態で加熱硬化させる工程である、請求項1から5のいずれかに記載の炭素繊維強化樹脂成形品の製造方法
(1) The following steps [1] to [4] are included, steps [2] and [3] are included after step [1], and steps [4] are included after steps [2] and [3]. Manufacturing method of carbon fiber reinforced resin molded product.
Step [1]: A step of adding a resin from the slit nozzle to the carbon fiber bundle while expanding the fiber interval of the continuous carbon fiber bundle.
Step [2]: Step of removing surplus resin from carbon fiber bundle added with resin Step [3]: Step of pressing carbon fiber bundle added with resin to promote impregnation of resin into carbon fiber bundle Step [4] ]: Step of heat curing the carbon fiber bundle impregnated with resin (2) In the step [2], the excess resin is removed so that the amount of the resin is 60 to 70% by volume. The manufacturing method of the carbon fiber reinforced resin molded product of description.
(3) The method for producing a carbon fiber reinforced resin molded article according to (1) or (2), wherein the step [2] and the step [3] are simultaneously performed using a die.
(4) The method for producing a carbon fiber reinforced resin molded article according to (1) or (2), which includes the step [3] after the step [2].
(5) The method for producing a carbon fiber reinforced resin molded article according to any one of (1) to (4), including the following step [5] between the step [1] and the step [2].
Step [5]: Pre-impregnation step of impregnating carbon fiber bundle with resin using roll (6) The step of heat curing the carbon fiber bundle impregnated with resin in step [4] is a carbon fiber bundle impregnated with resin. The method for producing a carbon fiber reinforced resin molded product according to any one of claims 1 to 5, which is a step of drawing the resin into a molding die and heat-curing the molded product while maintaining the shape of the molded product.

本発明の炭素繊維強化樹脂成形品の製造方法によれば、速硬化性樹脂でも、複雑な樹脂含浸金型を用いることなく安価な樹脂注入レジンコントロール装置で樹脂の含浸不良がない炭素繊維強化樹脂成形品が得られた。   According to the method for producing a carbon fiber reinforced resin molded article of the present invention, a carbon fiber reinforced resin that does not have poor resin impregnation with an inexpensive resin injection resin control device without using a complicated resin impregnation mold even with a fast-curing resin. A molded product was obtained.

従来の引抜成型方法の示す図である。It is a figure which shows the conventional pultrusion molding method. 第1の発明の炭素繊維強化樹脂成形品の製造方法を示す図である。It is a figure which shows the manufacturing method of the carbon fiber reinforced resin molded product of 1st invention. 第2の発明の炭素繊維強化樹脂成形品の製造方法を示す図である。It is a figure which shows the manufacturing method of the carbon fiber reinforced resin molded product of 2nd invention. 本発明の製造工程の工程[1]に用いる樹脂注入レジンコントロール装置のスリットノズル概略図である。It is the slit nozzle schematic of the resin injection resin control apparatus used for process [1] of the manufacturing process of this invention. 工程[2]および工程[3]に用いるレジンコントロールダイの概略図である。イIt is the schematic of the resin control die | dye used for process [2] and process [3]. I 比較例の炭素繊維強化樹脂成形品の製造方法を示す図である。It is a figure which shows the manufacturing method of the carbon fiber reinforced resin molded product of a comparative example.

本発明の炭素繊維強化樹脂成形品の製造方法は、以下の工程[1]〜[4]を含み、工程[1]の後に工程[2]および[3]を含み、工程[2]および[3]の後に工程[4]を含むことを特徴とする。
工程[1]:連続した炭素繊維束の繊維間隔を広げながら、当該炭素繊維束にスリットノズルから樹脂を添加する工程、
工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程
工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程
工程[4]:樹脂が含浸した炭素繊維束を加熱硬化させる工程
The method for producing a carbon fiber reinforced resin molded article of the present invention includes the following steps [1] to [4], includes steps [2] and [3] after step [1], and includes steps [2] and [3]. [3] is followed by step [4].
Step [1]: A step of adding a resin from the slit nozzle to the carbon fiber bundle while expanding the fiber interval of the continuous carbon fiber bundle.
Step [2]: Step of removing surplus resin from carbon fiber bundle added with resin Step [3]: Step of pressing carbon fiber bundle added with resin to promote impregnation of resin into carbon fiber bundle Step [4] ]: Heat curing the carbon fiber bundle impregnated with resin

本発明においては、ポットライフの短い樹脂を炭素繊維束への樹脂含浸の観点から、前記工程[2]と前記工程[3]をダイにより同時に行うことが好ましい。また、ポットライフの長い樹脂を炭素繊維束への樹脂含浸の観点からは、前記工程[2]の後に前記工程[3]を含むことが好ましい。   In the present invention, from the viewpoint of impregnating a carbon fiber bundle with a resin having a short pot life, the step [2] and the step [3] are preferably performed simultaneously by a die. Further, from the viewpoint of impregnating the carbon fiber bundle with a resin having a long pot life, it is preferable to include the step [3] after the step [2].

更に炭素繊維束への樹脂含浸の安定性および速さの観点から、前記工程[1]と工程[2]の間に、下記工程[5]を含むことが好ましい。
工程[5]:ロールを用いて炭素繊維束に樹脂を含浸させる予備含浸工程
Furthermore, from the viewpoint of stability and speed of resin impregnation into the carbon fiber bundle, it is preferable to include the following step [5] between the step [1] and the step [2].
Step [5]: Pre-impregnation step of impregnating carbon fiber bundle with resin using a roll

<工程[1]>
本発明において「連続した炭素繊維束の繊維間隔を広げ」とは、具体的には炭素繊維のトウ幅と厚みを均一に維持することを意味する。連続した炭素繊維束の繊維間隔を広げる方法としては、固定式ロールおよび回転式ロール等が挙げられる。
<Process [1]>
In the present invention, “expanding the fiber interval of continuous carbon fiber bundles” specifically means that the tow width and thickness of the carbon fibers are kept uniform. Examples of a method for widening the fiber interval between continuous carbon fiber bundles include a fixed roll and a rotary roll.

(炭素繊維束)
本発明で用いる炭素繊維束に特に限定はないが、炭素繊維のJIS(日本工業規格)R 7601に準拠した引張強度が、3500MPa以上であることが好ましく、5000MPa以上であることがより好ましく、6000MPa以上であることがさらに好ましい。引張弾性率は150GPa以上であることが好ましく、200GPa以上であることがより好ましく、250GPa以上であることがさらに好ましい。
(Carbon fiber bundle)
The carbon fiber bundle used in the present invention is not particularly limited, but the tensile strength of the carbon fiber according to JIS (Japanese Industrial Standard) R7601 is preferably 3500 MPa or more, more preferably 5000 MPa or more, and 6000 MPa. More preferably, it is the above. The tensile elastic modulus is preferably 150 GPa or more, more preferably 200 GPa or more, and further preferably 250 GPa or more.

炭素繊維の繊維径は、3μm以上であることが好ましく、12μm以下であることが好ましい。炭素繊維の繊維径が3μm以上であれば、炭素繊維を加工するための、例えば、コーム、ロール等のプロセスにおいて、炭素繊維が横移動して炭素繊維同士が擦れたり、炭素繊維とロール表面等とが擦れたりするときに、炭素繊維が切断したり、毛羽だまりが生じたりしにくい。このため、安定した強度の繊維強化複合材料を好適に製造することができる。また、炭素繊維の繊維径が12μm以下であれば、通常の方法で炭素繊維を製造することができる。
炭素繊維束における炭素繊維の本数は、1,000〜70,000本が好ましい。
The fiber diameter of the carbon fiber is preferably 3 μm or more, and preferably 12 μm or less. If the fiber diameter of the carbon fiber is 3 μm or more, for example, in a process such as comb or roll for processing the carbon fiber, the carbon fiber moves laterally and the carbon fibers rub against each other, the carbon fiber and the roll surface, etc. When carbon fiber rubs, the carbon fibers are less likely to break or fluff. For this reason, the fiber reinforced composite material of the stable intensity | strength can be manufactured suitably. Moreover, if the fiber diameter of a carbon fiber is 12 micrometers or less, carbon fiber can be manufactured by a normal method.
The number of carbon fibers in the carbon fiber bundle is preferably 1,000 to 70,000.

(樹脂)
本発明で用いる樹脂としては特に限定はないが、成形性の観点から熱硬化性樹脂であることが好ましい。熱硬化性樹脂としては、具体的にはポリウレタン樹脂、エポキシ樹脂等が挙げられ、速硬化性樹脂の観点から好ましくはポリウレタン樹脂である。
本発明において、炭素繊維束にスリットノズルから樹脂を添加する際の樹脂添加量は、任意のVFを設定し、当該VFになるように引抜成形の成形スピードまたは成形物の大きさにより適時調整すればよい。
(resin)
The resin used in the present invention is not particularly limited, but is preferably a thermosetting resin from the viewpoint of moldability. Specific examples of the thermosetting resin include a polyurethane resin and an epoxy resin, and a polyurethane resin is preferred from the viewpoint of a fast-curing resin.
In the present invention, the amount of resin added when adding resin from the slit nozzle to the carbon fiber bundle is set to an arbitrary VF, and is adjusted as appropriate according to the molding speed of the pultrusion molding or the size of the molded product so as to be the VF. That's fine.

<工程[2]>
工程[2]においては、樹脂を添加した炭素繊維束から余剰樹脂を取除く。余剰樹脂とは、炭素繊維束に樹脂含浸された後の樹脂であり、繊維含有率が60〜70体積%となる樹脂量から算出できる。
<Step [2]>
In step [2], excess resin is removed from the carbon fiber bundle to which the resin has been added. The surplus resin is a resin after the carbon fiber bundle is impregnated with the resin, and can be calculated from the amount of the resin having a fiber content of 60 to 70% by volume.

<工程[3]>
工程[3]においては、樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる。加圧条件は炭素繊維量とレジンコントロールダイの口金の断面積から算出される繊維含有率が60〜70体積%となる樹脂量で加圧することが好ましい。
樹脂の含浸を促進させるためには、レジンコントロールダイの長さを50mm以上保持すればよい。
<Step [3]>
In the step [3], the carbon fiber bundle to which the resin is added is pressurized to promote the impregnation of the carbon fiber bundle with the resin. It is preferable that the pressurization is performed with a resin amount such that the fiber content calculated from the carbon fiber amount and the cross-sectional area of the base of the resin control die is 60 to 70% by volume.
In order to promote the impregnation of the resin, the length of the resin control die may be maintained at 50 mm or more.

<工程[4]>
工程[4]においては、樹脂が含浸した炭素繊維束を加熱硬化させる。加熱条件は、樹脂の硬化温度以上であればよく、例えば、樹脂の硬化温度は室温+30〜180℃であることが好ましい。
<Step [4]>
In the step [4], the carbon fiber bundle impregnated with the resin is heated and cured. The heating condition should just be more than the curing temperature of resin, for example, it is preferable that the curing temperature of resin is room temperature + 30-180 degreeC.

<工程[5]>
工程[5]においては、ロールを用いて炭素繊維束に樹脂を予備含浸させる。具体的には、ロールで炭素繊維束のトウ幅と厚みを均一に保持しつつ炭素繊維束にかかる張力により樹脂を予備含浸させる。なお、予備含侵とは、炭素繊維束の内部への樹脂を含浸することである。当該予備含浸によって、工程[3]における最終的な樹脂の含浸を容易にコントロールすることができる。
<Step [5]>
In step [5], the carbon fiber bundle is pre-impregnated with a resin using a roll. Specifically, the resin is pre-impregnated with a tension applied to the carbon fiber bundle while keeping the toe width and thickness of the carbon fiber bundle uniform with a roll. In addition, preliminary impregnation is impregnating resin inside the carbon fiber bundle. By the preliminary impregnation, the final resin impregnation in the step [3] can be easily controlled.

以下、本発明の実施の形態を図に基づいて説明する。
本発明の炭素繊維強化樹脂成形品の製造方法は下記の組合せの工程からなる。
工程[1]:連続した炭素繊維束の繊維間隔を広げながら、当該炭素繊維束にスリットノズルから樹脂を添加する工程、
工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程
工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程
工程[4]:樹脂が含浸した炭素繊維束を成形金型内へ引き込み、成形品形状を保持した状態で加熱硬化させる工程
工程[5]:ロールを用いて炭素繊維束に樹脂を含浸させる予備含浸工程、
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The method for producing a carbon fiber reinforced resin molded article of the present invention comprises the following combination of steps.
Step [1]: A step of adding a resin from the slit nozzle to the carbon fiber bundle while expanding the fiber interval of the continuous carbon fiber bundle.
Step [2]: Step of removing surplus resin from carbon fiber bundle added with resin Step [3]: Step of pressing carbon fiber bundle added with resin to promote impregnation of resin into carbon fiber bundle Step [4] ]: A step of drawing a carbon fiber bundle impregnated with a resin into a molding die and heat-curing it while maintaining the shape of the molded product Step [5]: A pre-impregnation step of impregnating the carbon fiber bundle with a resin using a roll,

(第1の実施形態)
工程[1]〜工程[3]・工程[4]からなる本発明の炭素繊維強化樹脂成型品の製造方法を図2を用い説明する。
多錘の炭素繊維をそれぞれのクリールから引き出しガイドロール(11)を介して揃え炭素繊維束(10)が形成される。炭素繊維束(10)を樹脂注入レジンコントロール装置(20)へ導き、工程[1]:連続した炭素繊維束(10)をスリットノズル(21)の曲面に沿わせ、当該炭素繊維束の幅を広げかつトウ形態を均一に維持するよう広げながら、当該炭素繊維束にスリットノズル(21)から樹脂を添加し、当該炭素繊維束の集合体の幅を設定値(例えば60mm)に保持した。
(First embodiment)
A method for producing a carbon fiber reinforced resin molded product of the present invention comprising the steps [1] to [3] and the step [4] will be described with reference to FIG.
The carbon fiber bundles (10) are formed by aligning the multiple carbon fibers from each creel through the guide rolls (11). The carbon fiber bundle (10) is guided to the resin injection resin control device (20), and the process [1]: the continuous carbon fiber bundle (10) is brought along the curved surface of the slit nozzle (21), and the width of the carbon fiber bundle is set. While spreading and maintaining the tow form uniformly, resin was added to the carbon fiber bundle from the slit nozzle (21), and the width of the aggregate of the carbon fiber bundle was maintained at a set value (for example, 60 mm).

この時、炭素繊維束(10)の集合体の幅方向に厚みのムラが生じると、樹脂の含浸不良が発生しやすくなるため、炭素繊維束(10)は等間隔になるよう配置するのが好ましい。   At this time, if unevenness in thickness occurs in the width direction of the aggregate of carbon fiber bundles (10), resin impregnation defects are likely to occur. Therefore, the carbon fiber bundles (10) should be arranged at equal intervals. preferable.

ここで樹脂供給部の構成を説明する。
樹脂供給部は、樹脂を供給するタンク(12a)および(12b)とポンプ(図示なし)からなる主剤(A液剤)供給路と硬化剤(B液剤)供給路からなり、これらを合流する合流金具(13)と樹脂を混合するスタティックミキサー(14)と樹脂を吐出するスリットノズル(21)からなる。
Here, the configuration of the resin supply unit will be described.
The resin supply unit is composed of a main agent (A liquid) supply path and a curing agent (B liquid) supply path composed of tanks (12a) and (12b) for supplying resin and a pump (not shown), and a joining metal fitting for joining these. (13) and a static mixer (14) for mixing the resin and a slit nozzle (21) for discharging the resin.

樹脂を供給するタンク(12a)および(12b)から樹脂を吐出するスリットノズル(21)までの経路はチューブで接続されている。
樹脂を混合するスタティックミキサー(14)は、ノードソン製の直径11.1mm×長さ322mmでエレメント数30を用いた。
エレメント数は特に限定はないが24以上を用いれば問題なく混合できる。
The paths from the tanks (12a) and (12b) for supplying the resin to the slit nozzle (21) for discharging the resin are connected by a tube.
The static mixer (14) for mixing the resin used Nordson diameter 11.1 mm × length 322 mm and 30 elements.
The number of elements is not particularly limited, but if 24 or more are used, they can be mixed without any problem.

スタティックミキサー(14)で混合された樹脂は、図4のスリットノズルの樹脂供給口(22)より充填されスリット部(23)より樹脂を吐出する。
図4のスリットノズルは、直径10mm×長さ100mmの外形を要し、混合された樹脂が供給される樹脂供給口(22)と、樹脂を吐出するスリット部(23)が設けてあり、スリット部(23)の形状は、0.5mm×50mmのスリット状の穴である。
The resin mixed by the static mixer (14) is filled from the resin supply port (22) of the slit nozzle of FIG. 4 and discharged from the slit portion (23).
The slit nozzle of FIG. 4 requires an outer shape of 10 mm in diameter × 100 mm in length, and is provided with a resin supply port (22) through which mixed resin is supplied and a slit portion (23) through which resin is discharged. The shape of the part (23) is a slit-shaped hole of 0.5 mm × 50 mm.

スリットノズル(21)に供給された樹脂は、スリット部(23)より樹脂が吐出され該炭素繊維束へ樹脂を添加する。
スリットの長さは炭素繊維束(10)のトウ幅と同じか若干狭い方が、樹脂が均等に添加され好ましい。
樹脂の吐出量は、引抜成形のスピードに応じて決めれば良く、引抜きスピードが0.25m/minでは樹脂の吐出量は10mg/minであった。
The resin supplied to the slit nozzle (21) is discharged from the slit portion (23) and added to the carbon fiber bundle.
The length of the slit is preferably the same as or slightly narrower than the tow width of the carbon fiber bundle (10) because the resin is evenly added.
The amount of resin discharged may be determined according to the speed of pultrusion molding, and the amount of resin discharged was 10 mg / min when the drawing speed was 0.25 m / min.

図2中の、樹脂注入レジンコントロール装置(20)は、工程[1]:連続した炭素繊維束の繊維間隔を広げながら、当該炭素繊維束にスリットノズルから樹脂を添加する工程に用いるスリットノズル(21)と、工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程、工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程に用いるレジンコントロールダイ(24)からなり、スリットノズル(21)は、上段と下段とに分かれ段差をつけ配置してあり、その後ろにレジンコントロールダイ(24)が配置される。   The resin injection resin control device (20) in FIG. 2 is a step [1]: slit nozzle (used in a step of adding resin from the slit nozzle to the carbon fiber bundle while expanding the fiber interval of the continuous carbon fiber bundle. 21) and step [2]: a step of removing excess resin from the carbon fiber bundle to which the resin has been added; step [3]: pressurizing the carbon fiber bundle to which the resin has been added to promote the impregnation of the carbon fiber bundle with the resin. The slit nozzle (21) is divided into an upper stage and a lower stage and is provided with a step difference, and the resin control die (24) is arranged behind the slit nozzle (21).

工程[2]および工程[3]に用いられる図5のレジンコントロールダイは、入口側テーパー状含浸路(26)を要し入口側より5度のテーパー状で狭くなっており、出口側含浸路(27)まで幅50mm×高さ2mm×長さ100mmの長方形の穴で形成されている。
入口側テーパー状含浸路(26)に導かれた炭素繊維束(10)は、工程[1]で添加された樹脂を、工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程で、該炭素繊維束に添加された樹脂を、入口側テーパー状含浸路(26)に引込まれる該炭素繊維束からテーパー形状部で余剰樹脂を削ぎ落としながら、繊維含有率が60〜70%の範囲になるよう樹脂量が調整される。
The resin control die of FIG. 5 used in the step [2] and the step [3] requires an inlet side tapered impregnation passage (26) and is narrowed by a taper shape of 5 degrees from the inlet side. Up to (27), it is formed of a rectangular hole having a width of 50 mm, a height of 2 mm, and a length of 100 mm.
The carbon fiber bundle (10) guided to the inlet side tapered impregnation passage (26) removes the resin added in the step [1] and the excess resin from the carbon fiber bundle added with the step [2]: resin. While the resin added to the carbon fiber bundle in the step is scraped off the excess resin from the carbon fiber bundle drawn into the inlet side tapered impregnation path (26) with a tapered portion, the fiber content is 60 to 70. The resin amount is adjusted to be in the range of%.

次工程の、工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程では、幅50mm×高さ2mm×長さ80mm矩形断面形状の出口側含浸路(27)へ該炭素繊維束が移動する際に、樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させ、炭素繊維束(10)と樹脂の繊維含有率が60〜70%の範囲になるよう樹脂量が調整されるよう維持した。
繊維含有率が低すぎると、成形品の表面がざらつく等製品品質の劣化原因となる。また、繊維含有率が高すぎると、製造する際に金型内に炭素繊維束が詰まるなどして製造できない場合がある。
In the next step, step [3]: pressurizing the carbon fiber bundle to which the resin is added to promote the impregnation of the carbon fiber bundle with the resin, the outlet side having a rectangular cross-sectional shape of width 50 mm × height 2 mm × length 80 mm When the carbon fiber bundle moves to the impregnation passage (27), the carbon fiber bundle to which the resin is added is pressurized to promote the impregnation of the carbon fiber bundle with the resin, and the carbon fiber bundle (10) and the resin fiber are contained. The resin amount was maintained so that the rate was in the range of 60 to 70%.
If the fiber content is too low, the quality of the product may be deteriorated, such as a rough surface of the molded product. In addition, if the fiber content is too high, the carbon fiber bundle may be clogged in the mold at the time of manufacturing, and the manufacturing may not be possible.

次工程の、工程[4]:樹脂が含浸した炭素繊維束を成形金型内へ引き込み、成形品形状を保持した状態で加熱硬化させる工程では、成形金型(3)は、幅50mm×高さ2mm×長さ540mmの長方形状の空間を要し、150℃に加熱してある。
成形金型(3)へ樹脂が含浸した炭素繊維束を成形金型内へ引き込み硬化させ成形したあと引取り機(4)で引抜き連続した炭素繊維強化樹脂成形品を得た。
Step [4] of the next step: In the step of drawing the carbon fiber bundle impregnated with the resin into the molding die and heating and curing it while maintaining the shape of the molded product, the molding die (3) has a width of 50 mm × high A rectangular space measuring 2 mm long by 540 mm long is required and heated to 150 ° C.
The carbon fiber bundle impregnated with the resin in the molding die (3) was drawn into the molding die, cured and molded, and then a continuous carbon fiber reinforced resin molded product was drawn by the take-up machine (4).

(第2の実施形態)
工程[1]と工程[2]の間に、工程[5]を含み、工程[3]・工程[5]からなる炭素繊維強化樹脂成形品の製造方法を図3を用いて説明する。
工程[5]:ロールを用いて炭素繊維束に樹脂を含浸させる予備含浸工程である。
(Second Embodiment)
A method for producing a carbon fiber reinforced resin molded article including step [5] between step [1] and step [2] and including step [3] and step [5] will be described with reference to FIG.
Step [5]: A pre-impregnation step of impregnating the carbon fiber bundle with resin using a roll.

図3中の、樹脂注入レジンコントロール装置(30)では、スリットノズル(21)とレジンコントロールダイ(24)の間に樹脂含浸ロール(25)を配置する。
工程[5]:ロールを用いて炭素繊維束に樹脂を含浸させる予備含浸行った以外は図2と同様の構成とした。
In the resin injection resin control device (30) in FIG. 3, the resin impregnated roll (25) is disposed between the slit nozzle (21) and the resin control die (24).
Step [5]: The configuration was the same as in FIG. 2 except that the carbon fiber bundle was impregnated with resin using a roll.

樹脂含浸ロール(25)は、テフロン製で直径25mm×100mmのロールを自由に回転できる構造とし80mm離して2本設置した。1本目の樹脂含浸ロール(25)の下部と2本目の樹脂含浸ロール(25)上部と交互に炭素繊維束(10)を通した。
樹脂含浸ロール(25)の本数は必要に応じ増減すればよい。
Two resin-impregnated rolls (25) were made of Teflon and had a structure in which a roll having a diameter of 25 mm × 100 mm could be freely rotated, and two rolls were installed 80 mm apart. The carbon fiber bundle (10) was alternately passed through the lower part of the first resin-impregnated roll (25) and the upper part of the second resin-impregnated roll (25).
The number of resin impregnated rolls (25) may be increased or decreased as necessary.

炭素繊維束(10)を樹脂注入レジンコントロール装置(30)へ導き、工程[1]:連続した炭素繊維束(10)の繊維間隔をスリットノズル(21)の曲面に炭素繊維束(10)を沿わせ当該炭素繊維束の幅を等間隔に広げかつトウ形態を均一に維持するよう広げながら、当該炭素繊維束にスリットノズル(21)から樹脂を添加し、当該炭素繊維束の幅を60mmで保持した。   The carbon fiber bundle (10) is guided to the resin injection resin control device (30), and the process [1]: the carbon fiber bundle (10) is formed on the curved surface of the slit nozzle (21) with the fiber interval of the continuous carbon fiber bundle (10). While expanding the width of the carbon fiber bundle along the same interval and maintaining the tow form uniformly, resin is added to the carbon fiber bundle from the slit nozzle (21), and the width of the carbon fiber bundle is 60 mm. Retained.

次工程の、工程[5]:ロールを用いて炭素繊維束に樹脂を含浸させる予備含浸工程では、樹脂が添加された該炭素繊維束を、樹脂含浸ロール(25)を介して炭素繊維束(10)と樹脂を予備含浸させた。
そのあと、レジンコントロールダイ(24)の入口側テーパー状含浸路(26)に導かれた炭素繊維束(10)は、工程[1]・工程[5]をへて予備含浸された該炭素繊維束を、工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程で、該炭素繊維束に添加された樹脂を、入口側テーパー状含浸路(26)に引込まれる該炭素繊維束からテーパー形状部で余剰樹脂を削ぎ落としながら、繊維含有率が60〜70%の範囲になるよう樹脂量が調整される。
Step [5] of the next step: In the pre-impregnation step of impregnating the resin into the carbon fiber bundle using a roll, the carbon fiber bundle to which the resin has been added is passed through the resin-impregnated roll (25). 10) and a resin were pre-impregnated.
Thereafter, the carbon fiber bundle (10) guided to the inlet side tapered impregnation path (26) of the resin control die (24) is preliminarily impregnated through the steps [1] and [5]. In the step [2]: removing excess resin from the carbon fiber bundle added with the resin, the carbon added to the carbon fiber bundle is drawn into the inlet side tapered impregnation passage (26). The amount of resin is adjusted so that the fiber content is in the range of 60 to 70% while scraping off excess resin from the fiber bundle with a tapered portion.

次工程の、工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程では、幅50mm×高さ2mm×長さ80mm矩形断面形状の出口側含浸路(27)へ該炭素繊維束が移動する際に、樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させ、炭素繊維束(10)と樹脂の繊維含有率が60〜70%の範囲になるよう樹脂量が調整されるよう維持した。   In the next step, step [3]: pressurizing the carbon fiber bundle to which the resin is added to promote the impregnation of the carbon fiber bundle with the resin, the outlet side having a rectangular cross-sectional shape of width 50 mm × height 2 mm × length 80 mm When the carbon fiber bundle moves to the impregnation passage (27), the carbon fiber bundle to which the resin is added is pressurized to promote the impregnation of the carbon fiber bundle with the resin, and the carbon fiber bundle (10) and the resin fiber are contained. The resin amount was maintained so that the rate was in the range of 60 to 70%.

次工程の、工程[4]:樹脂が含浸した炭素繊維束を成形金型内へ引き込み、成形品形状を保持した状態で加熱硬化させる工程では、成形金型(3)は、幅50mm×高さ2mm×長さ540mmの長方形状の空間を要し、150℃に加熱してある。
成形金型(3)へ樹脂が含浸した炭素繊維束を成形金型内へ引き込み硬化させ成形したあと引取り機(4)で引抜き連続した炭素繊維強化樹脂成形品を得た。
Step [4] of the next step: In the step of drawing the carbon fiber bundle impregnated with the resin into the molding die and heating and curing it while maintaining the shape of the molded product, the molding die (3) has a width of 50 mm × high A rectangular space measuring 2 mm long by 540 mm long is required and heated to 150 ° C.
The carbon fiber bundle impregnated with the resin in the molding die (3) was drawn into the molding die, cured and molded, and then a continuous carbon fiber reinforced resin molded product was drawn by the take-up machine (4).

(実施例1)
以下、この発明の実施例を図2及び図4、図5を用いて説明する。
三菱ケミカル製の炭素繊維TRW40−50Lを31本用意した。上段のガイドロール(11)に16本、下段のガイドロール(11)に15本それぞれに炭素繊維束(10)を並べるように配置した。
(Example 1)
Embodiments of the present invention will be described below with reference to FIGS. 2, 4 and 5. FIG.
31 carbon fibers TRW40-50L made by Mitsubishi Chemical were prepared. Sixteen carbon fiber bundles (10) were arranged on the upper guide roll (11) and 15 on the lower guide roll (11).

樹脂は、速硬化性のバイエルマテリアルサイエンス社製ポリウレタン樹脂BAYDUR−PUL20PL10/PULVP.PU30PL02(A液剤)を104g、イソシアネートDESMODUR−PUL10PL01(B液剤)を131gの比率で樹脂を供給するタンク12aおよび12bより各々吐出し合流金具(13)をへてスタティックミキサー(14)にて混合し速硬化性樹脂を得た。
スタティックミキサー(14)は、ノードソン製の直径11.1mm×長さ322mmでエレメント数30を用いた。
The resin is a fast-curing polyurethane resin BAYDUR-PUL20PL10 / PULVP. PU30PL02 (Liquid A) is 104g and Isocyanate DESMODUR-PUL10PL01 (Liquid B) is discharged from tanks 12a and 12b at a ratio of 131g, respectively, and mixed with the static metal mixer (14) through the junction fitting (13). A fast-curing resin was obtained.
The static mixer (14) used Nordson diameter 11.1 mm × length 322 mm and 30 elements.

図4の工程[1]に用いられるスリットノズル(21)は、直径10mm×長さ100mmの外形を要し、混合された樹脂が供給される樹脂供給口(22)と、樹脂を吐出するスリット部(23)が設けてある。スリット部(23)の形状は、0.5mm×50mmのスリット状の穴である。   The slit nozzle (21) used in the step [1] of FIG. 4 has an outer shape of 10 mm in diameter × 100 mm in length, a resin supply port (22) through which the mixed resin is supplied, and a slit for discharging the resin A part (23) is provided. The shape of the slit portion (23) is a 0.5 mm × 50 mm slit-like hole.

図2中の、樹脂注入レジンコントロール装置(20)は、工程[1]:連続した炭素繊維束の繊維間隔を広げながら、当該炭素繊維束にスリットノズルから樹脂を添加する工程に用いるスリットノズル(21)と、工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程、工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程に用いるレジンコントロールダイ(24)からなり、スリットノズル(21)は、上段と下段とに分かれ段差をつけ配置してあり、その後ろにレジンコントロールダイ(24)を配置した。   The resin injection resin control device (20) in FIG. 2 is a step [1]: slit nozzle (used in a step of adding resin from the slit nozzle to the carbon fiber bundle while expanding the fiber interval of the continuous carbon fiber bundle. 21) and step [2]: a step of removing excess resin from the carbon fiber bundle to which the resin has been added; step [3]: pressurizing the carbon fiber bundle to which the resin has been added to promote the impregnation of the carbon fiber bundle with the resin. The slit nozzle (21) is divided into an upper stage and a lower stage and is provided with a step difference, and the resin control die (24) is arranged behind the slit nozzle (21).

工程[2]および工程[3]に用いられる図5のレジンコントロールダイは、入口側テーパー状含浸路(26)を要し入口側より5度のテーパー状で狭くなっており、出口側含浸路(27)まで幅50mm×高さ2mm×長さ100mmの長方形の穴で形成されている。
クリールから引き出された炭素繊維は、ガイドロール(11)を介して、上段のガイドロール(11)に16本、下段のガイドロール(11)に15本それぞれに炭素繊維束(10)を並べるように配置した。
The resin control die of FIG. 5 used in the step [2] and the step [3] requires an inlet side tapered impregnation passage (26) and is narrowed by a taper of 5 degrees from the inlet side, and the outlet side impregnation passage. Up to (27), it is formed of a rectangular hole having a width of 50 mm, a height of 2 mm, and a length of 100 mm.
The carbon fibers drawn from the creels are arranged in such a way that 16 carbon fiber bundles (10) are arranged on the upper guide roll (11) and 15 carbon fiber bundles (10) are arranged on the lower guide roll (11) through the guide roll (11). Arranged.

そのあと、樹脂注入レジンコントロール装置(20)へ導き、導かれた炭素繊維束(10)は、上段と下段とに分かれたスリットノズル(21)の曲面に沿って炭素繊維束(10)を沿わせ該炭素繊維束の幅を等間隔に広げかつトウ形態を均一に維持するようにし、該炭素繊維束の幅を60mmに保持した。   Thereafter, the carbon fiber bundle (10) led to the resin injection resin control device (20) is guided along the carbon fiber bundle (10) along the curved surface of the slit nozzle (21) divided into an upper stage and a lower stage. The width of the carbon fiber bundle was expanded at equal intervals and the tow form was kept uniform, and the width of the carbon fiber bundle was kept at 60 mm.

次いで樹脂を供給するタンク(12a)および(12b)より吐出されたA液剤104gとB液剤131gの比率で合流金具(13)をへてスタティックミキサー(14)にて混合しスリットノズル(21)のスリット部(23)より速硬化性樹脂を10mg/minで吐出し該炭素繊維束へ添加した。   Next, in the ratio of the liquid A 104 g and the liquid B 131 g discharged from the tanks (12 a) and (12 b) for supplying the resin, the joining metal fitting (13) is mixed with the static mixer (14), and the slit nozzle (21) is mixed. A fast-curing resin was discharged at 10 mg / min from the slit portion (23) and added to the carbon fiber bundle.

次いで、炭素繊維束(10)をレジンコントロールダイ(24)へ導き、入口側テーパー状含浸路(26)から出口側含浸路(27)に移動する際に、炭素繊維束(10)に添加された速硬化性樹脂の余剰樹脂を削ぎ落としながら、繊維含有率が60〜70%になるよう樹脂量を調整し、炭素繊維束(10)と速硬化樹脂を加圧して、該炭素繊維束へ速硬化樹脂の含浸を促進させ、炭素繊維束(10)と速硬化樹脂の繊維含有率が60〜70%になるよう樹脂量を維持した。   Next, the carbon fiber bundle (10) is guided to the resin control die (24) and added to the carbon fiber bundle (10) when moving from the inlet side tapered impregnation passage (26) to the outlet side impregnation passage (27). While scraping off the excess resin of the fast-curing resin, the resin content is adjusted so that the fiber content is 60 to 70%, and the carbon fiber bundle (10) and the fast-curing resin are pressurized to the carbon fiber bundle. The impregnation of the fast-curing resin was promoted, and the resin amount was maintained so that the fiber content of the carbon fiber bundle (10) and the fast-curing resin was 60 to 70%.

工程[4]:そのあと150℃に加熱された成形金型(3)へ導き、炭素繊維束(10)を硬化させ成形したあと引取り機(4)で0.25m/minのスピードで引抜き連続した炭素繊維強化樹脂成形品を製作した。   Step [4]: After that, it is led to a molding die (3) heated to 150 ° C., and the carbon fiber bundle (10) is cured and molded, and then drawn at a speed of 0.25 m / min by a take-up machine (4). A continuous carbon fiber reinforced resin molded product was produced.

(実施例2)
図3中の樹脂注入レジンコントロール装置(30)では、スリットノズル(21)とレジンコントロールダイ(24)の間に樹脂含浸ロール(25)を介して含浸を行った以外は図2と同様の構成とした。
樹脂注入レジンコントロール装置(30)へ導かれた炭素繊維束(10)は、上段と下段とに分かれたスリットノズル(21)の曲面に沿って炭素繊維束(10)を沿わせ該炭素繊維束の幅を等間隔に広げかつトウ形態を均一に維持するようにし、該炭素繊維束の幅を60mmに保持した。
(Example 2)
The resin injection resin control device (30) in FIG. 3 has the same configuration as that in FIG. 2 except that the resin impregnation roll (25) is impregnated between the slit nozzle (21) and the resin control die (24). It was.
The carbon fiber bundle (10) led to the resin injection resin control device (30) is aligned with the carbon fiber bundle (10) along the curved surface of the slit nozzle (21) divided into an upper stage and a lower stage. The width of the carbon fiber bundle was widened at equal intervals and the tow form was kept uniform, and the width of the carbon fiber bundle was kept at 60 mm.

次いで樹脂を供給するタンク(12a)および(12b)より吐出されたA液剤104gとB液剤131gの比率で合流金具(13)をへてスタティックミキサー(14)にて混合しスリットノズル(21)のスリット部(23)より速硬化性樹脂を10mg/minで吐出し該炭素繊維束へ添加したあと、含浸ロール(25)を介して炭素繊維束(10)と速硬化性樹脂を予備含浸させた。   Next, in the ratio of the liquid A 104 g and the liquid B 131 g discharged from the tanks (12 a) and (12 b) for supplying the resin, the joining metal fitting (13) is mixed with the static mixer (14), and the slit nozzle (21) is mixed. After rapidly curing resin was discharged from the slit portion (23) at 10 mg / min and added to the carbon fiber bundle, the carbon fiber bundle (10) and the fast curing resin were pre-impregnated through the impregnation roll (25). .

次いで、炭素繊維束(10)をレジンコントロールダイ(24)へ導き、入口側テーパー状含浸路(26)から出口側含浸路(27)に移動する際に、炭素繊維束(10)に添加された速硬化性樹脂の余剰樹脂を削ぎ落としながら、繊維含有率が60〜70%になるよう樹脂量を調整し、炭素繊維束(10)と速硬化樹脂を加圧して、該炭素繊維束へ速硬化樹脂の含浸を促進させ、炭素繊維束(10)と速硬化樹脂の繊維含有率が60〜70%なるよう樹脂量を維持した。   Next, the carbon fiber bundle (10) is guided to the resin control die (24) and added to the carbon fiber bundle (10) when moving from the inlet side tapered impregnation passage (26) to the outlet side impregnation passage (27). While scraping off the excess resin of the fast-curing resin, the resin content is adjusted so that the fiber content is 60 to 70%, and the carbon fiber bundle (10) and the fast-curing resin are pressurized to the carbon fiber bundle. The impregnation of the fast-curing resin was promoted, and the resin amount was maintained so that the fiber content of the carbon fiber bundle (10) and the fast-curing resin was 60 to 70%.

工程[4]:そのあと150℃に加熱された成形金型(3)へ導き、炭素繊維束(10)を硬化させ成形したあと引取り機(4)で0.25m/minのスピードで引抜き連続した炭素繊維強化樹脂成形品を製作した。
速硬化性樹脂でも、複雑な樹脂含浸金型を用いることなく安価な樹脂注入レジンコントロール装置で樹脂の含浸不良がない炭素繊維強化樹脂成形品が得られた。
(比較例):工程[1]を有さない製造方法。
Step [4]: After that, it is led to a molding die (3) heated to 150 ° C., and the carbon fiber bundle (10) is cured and molded, and then drawn at a speed of 0.25 m / min by a take-up machine (4). A continuous carbon fiber reinforced resin molded product was produced.
Even with a fast-curing resin, a carbon fiber reinforced resin molded article free from poor resin impregnation was obtained with an inexpensive resin injection resin control device without using a complicated resin-impregnated mold.
(Comparative example): Manufacturing method which does not have process [1].

図6は、比較例の炭素繊維強化樹脂成形品の製造方法を概略的に示す説明図である。図6中の樹脂注入レジンコントロール装置(40)で含浸を行った以外は図2と同様の構成とした。   FIG. 6 is an explanatory view schematically showing a method for producing a carbon fiber reinforced resin molded article of a comparative example. The configuration was the same as that in FIG. 2 except that the impregnation was performed with the resin injection resin control device (40) in FIG.

樹脂注入レジンコントロール装置(40)は、樹脂含侵ダイ(41)と樹脂供給スリットノズル(42)で構成されている。
樹脂含侵ダイ(41)は、炭素繊維束(10)の導入路から導出路まで、幅50mm×高さ2mm×長さ100mmの長方形の穴で形成されており、導入路の上部より樹脂供給用の樹脂供給スリットノズル(42)が取付く構造となっている。
The resin injection resin control device (40) includes a resin impregnation die (41) and a resin supply slit nozzle (42).
The resin-impregnated die (41) is formed by a rectangular hole having a width of 50 mm, a height of 2 mm, and a length of 100 mm from the introduction path to the lead-out path of the carbon fiber bundle (10). The resin supply slit nozzle (42) is attached.

樹脂供給スリットノズル(42)は、混合された樹脂が供給される樹脂供給口と、樹脂を吐出するスリット部が設けてあり、スリット部の形状は、実施例と同じ0.5mm×50mmのサイズとした。   The resin supply slit nozzle (42) is provided with a resin supply port through which the mixed resin is supplied and a slit portion for discharging the resin, and the shape of the slit portion is the same size as the embodiment of 0.5 mm × 50 mm. It was.

炭素繊維束(10)を樹脂注入レジンコントロール装置(40)へ導き、樹脂含侵ダイ(41)の導入路から導出部に移動する際に、樹脂供給スリットノズル(42)より添加された速硬化樹脂を該炭素繊維束へ速硬化樹脂を含侵させ、炭素繊維束(10)と速硬化樹脂の繊維含有率が60〜70%になるよう樹脂量を調整した。   When the carbon fiber bundle (10) is led to the resin injection resin control device (40) and moved from the introduction path of the resin impregnation die (41) to the lead-out portion, the rapid curing added from the resin supply slit nozzle (42) The resin was impregnated with the fast-curing resin in the carbon fiber bundle, and the amount of the resin was adjusted so that the fiber content of the carbon fiber bundle (10) and the fast-curing resin was 60 to 70%.

そのあと150℃に加熱された成形金型(3)へ導き、炭素繊維束(10)を硬化させ成形したあと引取り機(4)で0.25m/minのスピードで引抜き連続した炭素繊維強化樹脂成形品を製作したところ、成形品に樹脂の未含浸部があり良好な成形品が製作する事ができなかった。   After that, the carbon fiber reinforced (10) was heated to 150 ° C., and the carbon fiber bundle (10) was cured and formed, and then drawn and continuous at a speed of 0.25 m / min with a take-up machine (4). When a resin molded product was manufactured, there was an unimpregnated portion of the resin in the molded product, and a good molded product could not be manufactured.

1 炭素繊維束
10 〃
2 レジンバス槽
3 成形金型
4 引取り機
11 ガイドロール
12a タンク
12b タンク
13 合流金具
14 スタティックミキサー
20 樹脂注入レジンコントロール装置
30 〃
21 スリットノズル
22 樹脂供給口
23 スリット部
24 レジンコントロールダイ
25 樹脂含浸ロール
26 入口側テーパー状含浸路
27 出口側含浸路
40 樹脂注入レジンコントロール装置
41 樹脂含侵ダイ
42 樹脂供給スリットノズル
1 Carbon fiber bundle 10 〃
2 Resin bath tank 3 Mold 4 Drawer 11 Guide roll 12a Tank 12b Tank 13 Junction fitting 14 Static mixer 20 Resin injection resin control device
30 〃
21 Slit nozzle 22 Resin supply port
DESCRIPTION OF SYMBOLS 23 Slit part 24 Resin control die 25 Resin impregnation roll 26 Inlet side taper-shaped impregnation path 27 Outlet side impregnation path 40 Resin injection resin control apparatus 41 Resin impregnation die 42 Resin supply slit nozzle

Claims (6)

以下の工程[1]〜[4]を含み、工程[1]の後に工程[2]および[3]を含み、工程[2]および[3]の後に工程[4]を含む、炭素繊維強化樹脂成形品の製造方法。
工程[1]:連続した炭素繊維束の繊維間隔を広げながら、当該炭素繊維束にスリットノズルから樹脂を添加する工程、
工程[2]:樹脂を添加した炭素繊維束から余剰樹脂を取除く工程
工程[3]:樹脂を添加した炭素繊維束を加圧して、炭素繊維束に樹脂の含浸を促進させる工程
工程[4]:樹脂が含浸した炭素繊維束を加熱硬化させる工程
Carbon fiber reinforcement including the following steps [1] to [4], including steps [2] and [3] after step [1], and including steps [4] after steps [2] and [3] Manufacturing method of resin molded product.
Step [1]: A step of adding a resin from the slit nozzle to the carbon fiber bundle while expanding the fiber interval of the continuous carbon fiber bundle.
Step [2]: Step of removing surplus resin from carbon fiber bundle added with resin Step [3]: Step of pressing carbon fiber bundle added with resin to promote impregnation of resin into carbon fiber bundle Step [4] ]: Heat curing the carbon fiber bundle impregnated with resin
前記工程[2]において、繊維含有率が60〜70体積%となる樹脂量となるように余剰樹脂を取り除く、請求項1に記載の炭素繊維強化樹脂成形品の製造方法。   The method for producing a carbon fiber reinforced resin molded article according to claim 1, wherein in the step [2], surplus resin is removed so that a fiber content becomes a resin amount of 60 to 70% by volume. 前記工程[2]と前記工程[3]をダイにより同時に行う、請求項1または2に記載の炭素繊維強化樹脂成形品の製造方法。   The manufacturing method of the carbon fiber reinforced resin molded product of Claim 1 or 2 which performs the said process [2] and the said process [3] simultaneously with die | dye. 前記工程[2]の後に前記工程[3]を含む、請求項1または2に記載の炭素繊維強化樹脂成形品の製造方法。   The manufacturing method of the carbon fiber reinforced resin molded product of Claim 1 or 2 which contains the said process [3] after the said process [2]. 前記工程[1]と工程[2]の間に、下記工程[5]を含む、請求項1から4のいずれかに記載の炭素繊維強化樹脂成形品の製造方法。
工程[5]:ロールを用いて炭素繊維束に樹脂を含浸させる予備含浸工程
The method for producing a carbon fiber reinforced resin molded product according to any one of claims 1 to 4, comprising the following step [5] between the step [1] and the step [2].
Step [5]: Pre-impregnation step of impregnating carbon fiber bundle with resin using a roll
前記工程[4]の樹脂が含浸した炭素繊維束を加熱硬化させる工程が、樹脂が含浸した炭素繊維束を成形金型内へ引き込み、成形品形状を保持した状態で加熱硬化させる工程である、請求項1から5のいずれかに記載の炭素繊維強化樹脂成形品の製造方法。   The step of heat-curing the carbon fiber bundle impregnated with the resin in the step [4] is a step of drawing the carbon fiber bundle impregnated with the resin into a molding die and heat-curing it while maintaining the shape of the molded product. The manufacturing method of the carbon fiber reinforced resin molded product in any one of Claim 1 to 5.
JP2018083904A 2018-04-25 2018-04-25 Manufacturing method of carbon fiber reinforced resin molding Active JP7119539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018083904A JP7119539B2 (en) 2018-04-25 2018-04-25 Manufacturing method of carbon fiber reinforced resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083904A JP7119539B2 (en) 2018-04-25 2018-04-25 Manufacturing method of carbon fiber reinforced resin molding

Publications (2)

Publication Number Publication Date
JP2019189752A true JP2019189752A (en) 2019-10-31
JP7119539B2 JP7119539B2 (en) 2022-08-17

Family

ID=68391330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083904A Active JP7119539B2 (en) 2018-04-25 2018-04-25 Manufacturing method of carbon fiber reinforced resin molding

Country Status (1)

Country Link
JP (1) JP7119539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178286B1 (en) * 2020-06-11 2020-11-13 주식회사 대명테크 Method for preparing carbon fiber reinforced plastic using roll to roll process and laminated carbon fiber reinforced plastic prepared by the same
KR20230082067A (en) * 2021-12-01 2023-06-08 재단법인 한국탄소산업진흥원 Method for manufacturing carbon fiber wire for high-pressure hose and high-pressure hose made of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698136A (en) * 1980-01-08 1981-08-07 Kanegafuchi Chem Ind Co Ltd Continuous manufacture of laminated substance
JP2014069391A (en) * 2012-09-28 2014-04-21 Mitsubishi Rayon Co Ltd Method of producing prepreg
WO2015111536A1 (en) * 2014-01-22 2015-07-30 帝人株式会社 Molding material for injection molding, extrusion molding, or pultrusion molding, carbon-fiber-reinforced thermoplastic resin pellets, molded article, method for producing injection molded article, and injection molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698136A (en) * 1980-01-08 1981-08-07 Kanegafuchi Chem Ind Co Ltd Continuous manufacture of laminated substance
JP2014069391A (en) * 2012-09-28 2014-04-21 Mitsubishi Rayon Co Ltd Method of producing prepreg
WO2015111536A1 (en) * 2014-01-22 2015-07-30 帝人株式会社 Molding material for injection molding, extrusion molding, or pultrusion molding, carbon-fiber-reinforced thermoplastic resin pellets, molded article, method for producing injection molded article, and injection molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178286B1 (en) * 2020-06-11 2020-11-13 주식회사 대명테크 Method for preparing carbon fiber reinforced plastic using roll to roll process and laminated carbon fiber reinforced plastic prepared by the same
KR20230082067A (en) * 2021-12-01 2023-06-08 재단법인 한국탄소산업진흥원 Method for manufacturing carbon fiber wire for high-pressure hose and high-pressure hose made of the same
KR102667555B1 (en) 2021-12-01 2024-05-20 재단법인 한국탄소산업진흥원 High pressure hose made of carbon fiber wire

Also Published As

Publication number Publication date
JP7119539B2 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
US20190232579A1 (en) Composite Fibers and Method of Producing Fibers
KR100880805B1 (en) Equipment for pultrusion molding of fiber reinforced composites by closed-type injection
US20200283591A1 (en) Reinforcing composite filament, prepreg, 3-d printing tape and machines for their production
JP6703541B2 (en) Method and apparatus for producing fiber composite material
JP6890547B2 (en) Methods and equipment for manufacturing fiber composites
CN104011273A (en) Method for manufacturing reinforcing fiber strands
CN106273554B (en) Device and method for producing a composite reinforcing component
JPH0371258B2 (en)
JP6713487B2 (en) Method and apparatus for manufacturing fiber composites
JP2019189752A (en) Process for producing carbon fiber reinforced resin molded product
JPH05220745A (en) Method and device for producing composite material having fiber impregnated with resin and composite material thus produced
JP2005335296A (en) Manufacturing method of tow prepreg
KR102032819B1 (en) Apparatus for manufacturing tow prepreg and method for the same
US20230256688A1 (en) Device And Process For Producing Composite Components Comprising At Least One Wound Fiber Reinforced Polymer Layer
US20210245456A1 (en) Composite fibers
KR102217071B1 (en) Non-impregnation type continuous fiber composite manufacturing equipment
RU2682627C1 (en) Process line forming unit for making nonmetallic fittings, technological line and method of creating rod for manufacturing of composite fittings
JP2018001682A (en) Method and apparatus for producing pultruded material
KR102492082B1 (en) Resin impregnated mold for pultrusion molding of composite material and pultrusion molding method of composite meterial using the same
KR102344943B1 (en) Continuous fiber composite manufacturing equipment
JPS6360738A (en) Method of molding frp
US20210245455A1 (en) Method of producing improved composite fibers
EP3680081A1 (en) Device and method for impregnating a filament
JP2009066912A (en) Pull-off molded product manufacturing method
JPH04369529A (en) Manufacture of long frp molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151