JP2019189545A - Reactive fluorine-containing sulfonylimide and polymer thereof, and antistatic agent containing the same - Google Patents

Reactive fluorine-containing sulfonylimide and polymer thereof, and antistatic agent containing the same Download PDF

Info

Publication number
JP2019189545A
JP2019189545A JP2018081811A JP2018081811A JP2019189545A JP 2019189545 A JP2019189545 A JP 2019189545A JP 2018081811 A JP2018081811 A JP 2018081811A JP 2018081811 A JP2018081811 A JP 2018081811A JP 2019189545 A JP2019189545 A JP 2019189545A
Authority
JP
Japan
Prior art keywords
group
reactive fluorine
cation
sulfonylimide
containing sulfonylimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018081811A
Other languages
Japanese (ja)
Other versions
JP7088727B2 (en
Inventor
典明 松村
Noriaki Matsumura
典明 松村
武志 神谷
Takeshi Kamiya
武志 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Electronic Chemicals Co Ltd
Priority to JP2018081811A priority Critical patent/JP7088727B2/en
Publication of JP2019189545A publication Critical patent/JP2019189545A/en
Application granted granted Critical
Publication of JP7088727B2 publication Critical patent/JP7088727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Polymers (AREA)

Abstract

To provide a novel compound capable of preventing bleeding out from a resin, and having excellent antistatic action, and an antistatic agent containing the same.SOLUTION: There is provided a polymer having reactive fluorine-containing sulfonylimide represented by the following general formula (1) and a repeating unit based thereon. In the general formula (1), Rrepresents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkali metal ion or an onium cation, Rrepresents a methyl group or an ethyl group, Rfrepresents a fluorine atom or a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms, Rfrepresents a linear or branched perfluoroalkylene group having 1 to 4 carbon atoms, X represents a connection group which is a bivalent organic group, and Arepresents an alkali metal ion or an onium cation.SELECTED DRAWING: None

Description

本発明は、反応性含フッ素スルホニルイミドとその重合体並びにそれを含有する帯電防止剤に関するものである。   The present invention relates to a reactive fluorine-containing sulfonylimide, a polymer thereof, and an antistatic agent containing the same.

樹脂は、一般に表面抵抗率が高いため、摩擦などの物理的な作用によって静電気を帯電しやすいという性質を有している。樹脂に帯電した静電気は、電子機器に対して電気的な衝撃を与えて、誤作動やデータの破損などの障害を引き起こす原因となるおそれがある。また、静電気を帯電した樹脂は、ごみや埃を吸着しやすく、見栄えを損なうだけでなく、周囲の電子機器を汚染して、誤作動やデータの破損などの障害を引き起こす原因となるおそれがある。このため、樹脂に帯電防止剤を添加して、樹脂製品の表面抵抗率を低減することが行なわれている。   Since the resin generally has a high surface resistivity, it has a property of being easily charged with static electricity by a physical action such as friction. The static electricity charged on the resin may cause an electric shock to the electronic device and cause a malfunction such as malfunction or data corruption. In addition, the resin charged with static electricity is easy to adsorb dust and dust, and not only looks bad, but also contaminates the surrounding electronic devices, which may cause malfunctions and data corruption. . For this reason, an antistatic agent is added to the resin to reduce the surface resistivity of the resin product.

特許文献1には、帯電防止剤として、ジメチルジメトキシシランと、メチルトリメトキシシランと、1−(3−トリメトキシシリルプロピル)−1,1,1−トリブチルホスホニウム=ビス(トリフルオロメタンスルホニル)イミドとを共重合させて得たポリシロキサン共重合体が開示されている。この特許文献1の実施例12によると、上記のポリシロキサン共重合体を、過酸化物硬化型シリコーン粘着剤(固形分60%)4.0gに対して48mg添加して作製したシリコーン樹脂粘着剤層は、表面抵抗率が7.5×1011Ω/□であり、ポリシロキサン共重合体を添加しないで作製したシリコーン樹脂粘着剤層(表面抵抗率:>1015Ω/□)と比較して低減している。 In Patent Document 1, as antistatic agents, dimethyldimethoxysilane, methyltrimethoxysilane, 1- (3-trimethoxysilylpropyl) -1,1,1-tributylphosphonium = bis (trifluoromethanesulfonyl) imide and A polysiloxane copolymer obtained by copolymerizing is disclosed. According to Example 12 of Patent Document 1, a silicone resin pressure-sensitive adhesive prepared by adding 48 mg of the polysiloxane copolymer to 4.0 g of a peroxide-curable silicone pressure-sensitive adhesive (solid content: 60%). The layer has a surface resistivity of 7.5 × 10 11 Ω / □ and is compared with a silicone resin pressure-sensitive adhesive layer (surface resistivity:> 10 15 Ω / □) prepared without adding a polysiloxane copolymer. Has been reduced.

特許第6179668号公報Japanese Patent No. 6179668

ところで、近年の電子機器の精密化に伴って、静電気による電気的な衝撃、ごみや塵などによる汚染から電子機器を保護する必要性が増しており、電子機器のケースや保護フィルムなど種々の樹脂成形品について、さらなる帯電防止性能の向上が求められている。   By the way, with the recent refinement of electronic equipment, there is an increasing need to protect electronic equipment from electrical shock due to static electricity, contamination from dust, dust, etc., and various resins such as cases and protective films of electronic equipment. There is a demand for further improvement in antistatic performance of molded products.

本発明は、上記事情に鑑みてなされたものであって、その目的は、樹脂からのブリードアウトを防止でき、優れた帯電防止作用を有する新規な化合物およびこれを含有する帯電防止剤を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel compound that can prevent bleed out from a resin and has an excellent antistatic action and an antistatic agent containing the same. There is.

本発明の発明者は、上記課題について鋭意検討した結果、反応性官能基としてトリアルコキシシリル基を有し、カチオン成分としてアルカリ金属イオンまたはオニウムカチオンを含む反応性含フッ素スルホニルイミドおよびこれに基づく単位を含む重合体を樹脂に添加することによって、ブリードアウトが発生しにくく、かつ表面抵抗率が低く、静電気が帯電しにくい樹脂組成物を得ることが可能となることを見出して、本発明を完成させた。
すなわち、本発明は、以下の構成を有する。
As a result of intensive studies on the above problems, the inventor of the present invention has a reactive fluorine-containing sulfonylimide having a trialkoxysilyl group as a reactive functional group and an alkali metal ion or onium cation as a cation component, and a unit based thereon The present invention was completed by finding that adding a polymer containing a resin to a resin makes it possible to obtain a resin composition that hardly causes bleed out, has low surface resistivity, and is hardly charged with static electricity. I let you.
That is, the present invention has the following configuration.

[1]下記の一般式(1)で表される反応性含フッ素スルホニルイミド。 [1] Reactive fluorine-containing sulfonylimide represented by the following general formula (1).

Figure 2019189545
Figure 2019189545

ただし、上記の一般式(1)において、Rは水素原子、炭素数1〜10の直鎖状あるいは分岐状のアルキル基、アルカリ金属イオンまたはオニウムカチオンを表し、Rはメチル基またはエチル基を表し、Rfはフッ素原子または炭素数1〜4の直鎖状あるいは分岐状のパーフルオロアルキル基を表し、Rfは炭素数1〜4の直鎖状あるいは分岐状のパーフルオロアルキレン基を表し、Xは2価の有機基である連結基を表し、Aはアルカリ金属イオンまたはオニウムカチオンを表す。 However, in the above general formula (1), R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkali metal ion or an onium cation, and R 2 represents a methyl group or an ethyl group. Rf 1 represents a fluorine atom or a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms, and Rf 2 represents a linear or branched perfluoroalkylene group having 1 to 4 carbon atoms. X represents a linking group which is a divalent organic group, and A + represents an alkali metal ion or an onium cation.

[2]前記Rfが、炭素数3の直鎖状パーフルオロアルキレン基であることを特徴とする[1]に記載の反応性含フッ素スルホニルイミド。 [2] The reactive fluorine-containing sulfonylimide according to [1], wherein Rf 2 is a linear perfluoroalkylene group having 3 carbon atoms.

[3]前記Xが、下記の一般式(2)で表される2価の有機基であることを特徴とする[1]または[2]に記載の反応性含フッ素スルホニルイミド。 [3] The reactive fluorine-containing sulfonylimide according to [1] or [2], wherein X is a divalent organic group represented by the following general formula (2).

Figure 2019189545
Figure 2019189545

ただし、上記の一般式(2)において、*は、Siとの接合手を表す。   However, in said general formula (2), * represents a joint with Si.

[4]前記Aが、アルカリ金属イオンであることを特徴とする[1]〜[3]のいずれか1つに記載の反応性含フッ素スルホニルイミド。 [4] The reactive fluorine-containing sulfonylimide according to any one of [1] to [3], wherein the A + is an alkali metal ion.

[5]前記[1]〜[4]のいずれか1つに記載の反応性含フッ素スルホニルイミドを含む帯電防止剤。 [5] An antistatic agent comprising the reactive fluorine-containing sulfonylimide according to any one of [1] to [4].

[6]前記[1]〜[4]のいずれか1つに記載の反応性含フッ素スルホニルイミドに基づく繰り返し単位を有することを特徴とする重合体。 [6] A polymer having a repeating unit based on the reactive fluorine-containing sulfonylimide according to any one of [1] to [4].

[7]前記[6]に記載の重合体を含む帯電防止剤。 [7] An antistatic agent comprising the polymer according to [6].

本発明によれば、樹脂からのブリードアウトを防止でき、優れた帯電防止作用を有する新規な化合物およびこれを含有する帯電防止剤を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the novel compound which can prevent the bleed out from resin, and has the outstanding antistatic effect, and the antistatic agent containing this.

以下、本発明にかかる一実施形態である反応性含フッ素スルホニルイミドとその重合体並びにそれを含有する帯電防止剤を詳細に説明する。   Hereinafter, the reactive fluorine-containing sulfonyl imide which is one Embodiment concerning this invention, its polymer, and the antistatic agent containing it are demonstrated in detail.

<反応性含フッ素スルホニルイミド>
本実施形態の反応性含フッ素スルホニルイミドは、下記の一般式(1)で表される。
<Reactive fluorine-containing sulfonylimide>
The reactive fluorine-containing sulfonylimide of this embodiment is represented by the following general formula (1).

Figure 2019189545
Figure 2019189545

上記の一般式(1)において、Rは水素原子、炭素数1〜10の直鎖状あるいは分岐状のアルキル基、アルカリ金属イオンまたはオニウムカチオンを表す。アルカリ金属イオンの例としては、リチウム、ナトリウム、カリウムを挙げることができる。オニウムカチオンは、例えば、窒素、硫黄、酸素、リン、セレン、錫、ヨウ素、アンチモン等の孤立電子対を有する元素を含んだ化合物に陽イオン型の原子団が配位して生ずる少なくとも一つの有機基を有するカチオンであれば、特に制限されるものではない。オニウムカチオンとしては、アンモニウムカチオン類、ピロリジニウムカチオン類、イミダゾリウムカチオン類、ピリジニウムカチオン類、スルホニウムカチオン類、ホスホニウムカチオン類を用いることができる。アンモニウムカチオン類の例としては、テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラブチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン、トリメチルプロピルアンモニウムカチオン、トリメチルイソプロピルアンモニウムカチオン、ブチルトリメチルアンモニウムカチオン、ヘキシルトリメチルアンモニウムカチオン、オクチルトリメチルアンモニウムカチオン、ドデシルトリメチルアンモニウムカチオン、ビニルトリメチルアンモニウムカチオン、アリルトリメチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、トリエチルプロピルアンモニウムカチオン、トリエチルメトキシメチルアンモニウムカチオン、トリブチルエチルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、ジメチルジプロピルアンモニウムカチオン、ヘキサメトニウムカチオン等を挙げることができる。ピロリジニウムカチオン類の例としては、N,N−ジメチルピロリジニウムカチオン、N,N−ジエチルピロリジニウムカチオン、N,N−ジプロピルピロリジニウムカチオン、N−エチル−N−メチルピロリジニウムカチオン、N−メチル−N−プロピルピロリジニウムカチオン、N−ブチル−N−メチルピロリジニウムカチオン、N−ヘキシル−N−メチルピロリジニウムカチオン等を挙げることができる。イミダゾリウムカチオン類の例としては、1,3−ジメチルイミダゾリウムカチオン、1,3−ジエチルイミダゾリウムカチオン、1,3−ジプロピルイミダゾリウムカチオン、1−エチル−3−メチルイミダゾリウムカチオン、1−メチル−3−プロピルイミダゾリウムカチオン、1−ブチル−3−メチルイミダゾリウムカチオン、1−イソプロピル−3−プロピルイミダゾリウムカチオン、1−tert−ブチル−3−イソプロピルイミダゾリウムカチオン等を挙げることができる。ピリジニウムカチオン類の例としては、N−エチルピリジニウムカチオン、N−ブチルピリジニウムカチオン等を挙げることができる。スルホニウムカチオン類の例としては、トリメチルスルホニウムカチオン、トリエチルスルホニウムカチオン、トリブチルスルホニウムカチオン、ジエチルメチルスルホニウムカチオン、ジメチルプロピルスルホニウムカチオン、ヘキシルジメチルスルホニウムカチオン等を挙げることができる。ホスホニウムカチオン類の例としては、テトラメチルホスホニウムカチオン、テトラエチルホスホニウムカチオン、テトラプロピルホスホニウムカチオン、テトラブチルホスホニウムカチオン、テトラオクチルホスホニウムカチオン、テトラフェニルホスホニウムカチオン、エチルトリメチルホスホニウムカチオン、トリエチルメチルホスホニウムカチオン、ヘキシルトリメチルホスホニウムカチオン、トリメチルオクチルホスホニウムカチオン等を挙げることができる。
は、水素原子または炭素数1〜10の直鎖状あるいは分岐状のアルキル基であることが好ましく、炭素数1〜4の直鎖状あるいは分岐状のアルキル基であることが特に好ましい。
In the general formula (1), R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkali metal ion, or an onium cation. Examples of alkali metal ions include lithium, sodium, and potassium. An onium cation is, for example, at least one organic compound formed by coordination of a cation-type atomic group to a compound containing an element having a lone pair such as nitrogen, sulfur, oxygen, phosphorus, selenium, tin, iodine, and antimony. If it is a cation which has group, it will not restrict | limit in particular. As the onium cation, ammonium cations, pyrrolidinium cations, imidazolium cations, pyridinium cations, sulfonium cations, and phosphonium cations can be used. Examples of ammonium cations include tetramethylammonium cation, tetraethylammonium cation, tetrabutylammonium cation, ethyltrimethylammonium cation, trimethylpropylammonium cation, trimethylisopropylammonium cation, butyltrimethylammonium cation, hexyltrimethylammonium cation, octyltrimethylammonium Cation, dodecyltrimethylammonium cation, vinyltrimethylammonium cation, allyltrimethylammonium cation, triethylmethylammonium cation, triethylpropylammonium cation, triethylmethoxymethylammonium cation, tributylethylammonium cation, diethyldi It can be exemplified chill ammonium cations, dimethyl dipropyl ammonium cation, hexamethonium cation, and the like. Examples of pyrrolidinium cations include N, N-dimethylpyrrolidinium cation, N, N-diethylpyrrolidinium cation, N, N-dipropylpyrrolidinium cation, N-ethyl-N-methylpyrrolidi Examples thereof include a nium cation, an N-methyl-N-propylpyrrolidinium cation, an N-butyl-N-methylpyrrolidinium cation, and an N-hexyl-N-methylpyrrolidinium cation. Examples of imidazolium cations include 1,3-dimethylimidazolium cation, 1,3-diethylimidazolium cation, 1,3-dipropylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1- Examples thereof include methyl-3-propylimidazolium cation, 1-butyl-3-methylimidazolium cation, 1-isopropyl-3-propylimidazolium cation, 1-tert-butyl-3-isopropylimidazolium cation, and the like. Examples of pyridinium cations include N-ethylpyridinium cation and N-butylpyridinium cation. Examples of sulfonium cations include trimethylsulfonium cation, triethylsulfonium cation, tributylsulfonium cation, diethylmethylsulfonium cation, dimethylpropylsulfonium cation, and hexyldimethylsulfonium cation. Examples of phosphonium cations include tetramethylphosphonium cation, tetraethylphosphonium cation, tetrapropylphosphonium cation, tetrabutylphosphonium cation, tetraoctylphosphonium cation, tetraphenylphosphonium cation, ethyltrimethylphosphonium cation, triethylmethylphosphonium cation, hexyltrimethylphosphonium. A cation, a trimethyloctyl phosphonium cation, etc. can be mentioned.
R 1 is preferably a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms, and particularly preferably a linear or branched alkyl group having 1 to 4 carbon atoms.

は、メチル基またはエチル基を表す。
Rfは、フッ素原子または炭素数1〜4の直鎖状あるいは分岐状のパーフルオロアルキル基を表す。
Rfは、炭素数1〜4の直鎖状あるいは分岐状のパーフルオロアルキレン基を表す。Rfは、直鎖状パーフルオロアルキレン基であることが好ましく、炭素数3の直鎖状パーフルオロアルキレン基であることが特に好ましい。
R 2 represents a methyl group or an ethyl group.
Rf 1 represents a fluorine atom or a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms.
Rf 2 represents a straight-chain or branched perfluoro alkylene group having 1 to 4 carbon atoms. Rf 2 is preferably a linear perfluoroalkylene group, particularly preferably a linear perfluoroalkylene group having 3 carbon atoms.

Xは、2価の有機基である連結基を表す。2価の有機基としては、2価の炭化水素基、酸素原子(エーテル結合)、硫黄原子(スルフィド結合)、カルボニル基、イミノ基、スルホン基及びこれらを組合せた基を挙げることができる。2価の炭化水素基は、炭素数が1〜10の範囲内にあることが好ましい。2価の炭化水素基は、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。また、2価の炭化水素基は、直鎖状あるいは分岐状の鎖状炭化水素基であってもよいし、環状炭化水素基であってもよいし、さらにこれらを組合せた基であってもよい。鎖状炭化水素基の例としては、アルキレン基、アルケニレン基、アルキニレン基を挙げることができる。環状炭化水素基の例としては、シクロアルキレン基、フェニレン基を挙げることができる。2価の炭化水素基は、置換基を有していてもよい。置換基の例としては、ヒドロキシ基、炭素数1〜6のアルコキシ基を挙げることができる。イミノ基は、水素原子が、炭素数1〜10の直鎖状あるいは分岐状のアルキル基で置換されていてもよい。   X represents a linking group which is a divalent organic group. Examples of the divalent organic group include a divalent hydrocarbon group, an oxygen atom (ether bond), a sulfur atom (sulfide bond), a carbonyl group, an imino group, a sulfone group, and a combination thereof. The divalent hydrocarbon group preferably has 1 to 10 carbon atoms. The divalent hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The divalent hydrocarbon group may be a linear or branched chain hydrocarbon group, a cyclic hydrocarbon group, or a combination of these. Good. Examples of the chain hydrocarbon group include an alkylene group, an alkenylene group, and an alkynylene group. Examples of the cyclic hydrocarbon group include a cycloalkylene group and a phenylene group. The divalent hydrocarbon group may have a substituent. Examples of the substituent include a hydroxy group and an alkoxy group having 1 to 6 carbon atoms. In the imino group, a hydrogen atom may be substituted with a linear or branched alkyl group having 1 to 10 carbon atoms.

2価の有機基を組合せた基の例としては、オキシアルキレン基(−O−アルキレン基−)、イミノアルキレン基(−NH−アルキレン基−)、エステル結合(−O−C(=O)−)、アミド結合(−C(=O)−NH−)、スルホンアミド結合(−S(=O)−NH−)、ウレタン結合(−O−C(=O)−NH−)、ウレア結合(−NH−C(=O)−NH−)及びこれらを組合せた基を挙げることができる。 Examples of the group in which a divalent organic group is combined include an oxyalkylene group (—O-alkylene group—), an iminoalkylene group (—NH-alkylene group—), an ester bond (—O—C (═O) — ), Amide bond (—C (═O) —NH—), sulfonamide bond (—S (═O) 2 —NH—), urethane bond (—O—C (═O) —NH—), urea bond (-NH-C (= O) -NH-) and the group which combined these can be mentioned.

Xは、下記の一般式(2)で表される2価の有機基であることが好ましい。   X is preferably a divalent organic group represented by the following general formula (2).

Figure 2019189545
Figure 2019189545

ただし、上記の一般式(2)において、*は、Siとの接合手を表す。   However, in said general formula (2), * represents a joint with Si.

は、アルカリ金属イオンまたはオニウムカチオンを表す。アルカリ金属イオン及びオニウムカチオンの例は上記と同じである。Aは、アルカリ金属イオンであることが好ましく、リチウムイオンであることが特に好ましい。 A + represents an alkali metal ion or an onium cation. Examples of alkali metal ions and onium cations are the same as above. A + is preferably an alkali metal ion, particularly preferably a lithium ion.

次に、本実施形態の反応性含フッ素スルホニルイミドの製造方法について、Rがメチル基であり、Xが上記一般式(2)で表される2価の有機基であって、Aがリチウムイオンである反応性含フッ素スルホニルイミドを例にとって説明する。この反応性含フッ素スルホニルイミドは、下記の反応式1ie〜4ie、1eに示す反応により製造することができる。なお、下記の反応式1ie〜4ie、1eにおいて、R、Rf、Rf、は、上記の一般式(1)と同じである。 Next, regarding the method for producing the reactive fluorine-containing sulfonylimide of the present embodiment, R 1 is a methyl group, X is a divalent organic group represented by the general formula (2), and A + is Description will be made by taking a reactive fluorine-containing sulfonylimide which is a lithium ion as an example. This reactive fluorine-containing sulfonylimide can be produced by the reactions shown in the following reaction formulas 1ie to 4ie and 1e. In the following reaction formulas 1ie to 4ie and 1e, R 2 , Rf 1 and Rf 2 are the same as those in the general formula (1).

先ず、下記の反応式1ieに示すように、パーフルオロアルカンジスルホニルジフロライド(F−S(=O)−Rf−S(=O)−F)と、パーフルオロアルカンスルホンアミドカリウム塩(Rf−S(=O)−NHK)とを反応させて、中間体1ieを合成する。この反応は、例えば、脱水アセトニトリル(dry−CHCN)中、フッ化カリウムの存在下で行うことができる。 First, as shown in Scheme 1ie below, perfluoro alkane sulfonyl difluoride and (F-S (= O) 2 -Rf 2 -S (= O) 2 -F), perfluoroalkane sulfonamide potassium The intermediate (1ie) is synthesized by reacting with a salt (Rf 1 —S (═O) 2 —N HK + ). This reaction can be performed, for example, in dehydrated acetonitrile (dry-CH 3 CN) in the presence of potassium fluoride.

Figure 2019189545
Figure 2019189545

次に、下記の反応式2ieに示すように、中間体1ieとメチルアミンとをフッ化カリウムの存在下で反応させて、中間体1ieの末端のフッ素原子を、メチルアミノカリウム塩基(−NCH+)で置換して、中間体2ieを合成する。この反応は、例えば、脱水テトラヒドロフラン(dry−THF)中で行うことができる。 Next, as shown in the following reaction formula 2ie, the intermediate 1ie is reacted with methylamine in the presence of potassium fluoride, and the fluorine atom at the terminal of the intermediate 1ie is converted to a methylaminopotassium base (—N Substitute CH 3 K + ) to synthesize intermediate 2ie. This reaction can be performed, for example, in dehydrated tetrahydrofuran (dry-THF).

Figure 2019189545
Figure 2019189545

次に、下記の反応式3ieに示すように、中間体2ieと2−クロロエタノールとを反応させて、中間体2ieのメチルアミノカリウム塩基のカリウムをヒドロキシエチル基(−CHCHOH)で置換して、中間体3ieを生成させる。この反応は、例えば、脱水アセトニトリル(dry−CHCN)中、炭酸カリウムの存在下で行うことができる。 Next, as shown in the following reaction formula 3ie, the intermediate 2ie is reacted with 2-chloroethanol, and the methylamino potassium base potassium of the intermediate 2ie is replaced with a hydroxyethyl group (—CH 2 CH 2 OH). Substitution yields intermediate 3ie. This reaction can be performed, for example, in dehydrated acetonitrile (dry-CH 3 CN) in the presence of potassium carbonate.

Figure 2019189545
Figure 2019189545

次に、下記の反応式4ieに示すように、上記中間体3ieと硫酸とを反応させて、イミドカリウムをイミド酸にした後、水酸化リチウムと反応させて、中間体4ieを得る。この反応は、例えば、中間体3ieの酢酸エチル溶液を硫酸水溶液で洗浄した後、水酸化リチウムを加えることによって行うことができる。   Next, as shown in the following reaction formula 4ie, the intermediate 3ie and sulfuric acid are reacted to convert imide potassium to imidic acid, and then reacted with lithium hydroxide to obtain the intermediate 4ie. This reaction can be performed, for example, by washing an ethyl acetate solution of intermediate 3ie with an aqueous sulfuric acid solution and then adding lithium hydroxide.

Figure 2019189545
Figure 2019189545

そして、最後に、下記の反応式1eに示すように、中間体4ieのヒドロキシエチル基のヒドロキシ基と、イソシアン酸3−(トリアルコキシシリル)プロピルのイソシアネート基とを反応させて、ウレタン結合を形成させる。これによって、反応性含フッ素スルホニルイミド1eが生成する。この反応は、例えば、脱水アセトニトリル(dry−CHCN)を含む混合溶媒中、ジラウリン酸ジブチルすず(DBTL)存在下で行うことができる。 Finally, as shown in the following reaction formula 1e, the hydroxy group of the intermediate 4ie is reacted with the isocyanate group of 3- (trialkoxysilyl) propyl isocyanate to form a urethane bond. Let Thereby, the reactive fluorine-containing sulfonylimide 1e is produced. This reaction can be performed, for example, in a mixed solvent containing dehydrated acetonitrile (dry-CH 3 CN) in the presence of dibutyltin dilaurate (DBTL).

Figure 2019189545
Figure 2019189545

が、オニウムカチオンである反応性含フッ素スルホニルイミドは、例えば、上記の中間体3ieとオニウムカチオン溶液とを混合して、中間体3ieのカリウムイオンとオニウムカチオンとを置換させてオニウム塩を得る。次いで、オニウム塩のヒドロキシ基と、イソシアン酸3−(トリアルコキシシリル)プロピルのイソシアネート基とを反応させて、ウレタン結合を形成させることによって、合成することができる。 The reactive fluorine-containing sulfonylimide in which A + is an onium cation is obtained by, for example, mixing the intermediate 3ie and the onium cation solution to replace the potassium ion and the onium cation of the intermediate 3ie to form an onium salt. obtain. Subsequently, it can synthesize | combine by making the hydroxyl group of onium salt and the isocyanate group of 3- (trialkoxysilyl) propyl isocyanate react, and forming a urethane bond.

さらに、Xが、イミノアルキレン基を含む反応性含フッ素スルホニルイミドは、例えば、中間体1ieとアルキレンジアミンとを反応させ、末端にアミノ基を有する中間体を生成させ、次いで、その中間体と塩化リチウムを反応させて、リチウム塩を得る。その後、アミノ基と3−グリシドキシプロピルトリメトキシシラン等を反応させることによって合成することができる。アルキレンジアミンの例としては、エチレンジアミン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタンを挙げることができる。   Further, X is a reactive fluorine-containing sulfonylimide containing an iminoalkylene group, for example, by reacting intermediate 1ie with alkylenediamine to form an intermediate having an amino group at the terminal, and then the intermediate and chloride. Lithium is reacted to obtain a lithium salt. Thereafter, it can be synthesized by reacting an amino group with 3-glycidoxypropyltrimethoxysilane or the like. Examples of the alkylene diamine include ethylene diamine, 1,4-diaminobutane, 1,6-diaminohexane, and 1,7-diaminoheptane.

本実施形態の反応性含フッ素スルホニルイミドは、アニオン成分である含フッ素スルホニルイミド塩が反応性官能基であるトリアルコキシシリル基を有するので、樹脂に固定化したり、重合体として樹脂に混合することが可能になるため、ブリードアウトを防止できる。また、含フッ素スルホニルイミド塩はフルオロアルキル基を有するため、反応性含フッ素スルホニルイミドを樹脂に添加すると、含フッ素スルホニルイミド塩が樹脂組成物の表面に移行しやすい。さらに、樹脂に添加された含フッ素スルホニルイミドのカチオン成分(アルカリ金属イオン、オニウムカチオン)は、アニオン成分から離脱して樹脂内を移動するので、含フッ素スルホニルイミド塩が添加された樹脂は、導電性が向上し、帯電しにくくなる。これらの効果によって、本実施形態の反応性含フッ素スルホニルイミドは帯電防止剤として有利に利用することができる。   The reactive fluorine-containing sulfonylimide of the present embodiment has a trialkoxysilyl group that is a reactive functional group, and the fluorine-containing sulfonylimide salt that is an anion component is fixed to the resin or mixed with the resin as a polymer. Therefore, bleed out can be prevented. Moreover, since the fluorine-containing sulfonylimide salt has a fluoroalkyl group, when a reactive fluorine-containing sulfonylimide salt is added to the resin, the fluorine-containing sulfonylimide salt easily moves to the surface of the resin composition. Furthermore, since the cation component (alkali metal ion, onium cation) of the fluorine-containing sulfonylimide added to the resin leaves the anion component and moves within the resin, the resin to which the fluorine-containing sulfonylimide salt is added is conductive. Improves and becomes difficult to be charged. Due to these effects, the reactive fluorine-containing sulfonylimide of the present embodiment can be advantageously used as an antistatic agent.

<反応性含フッ素スルホニルイミドの重合体>
本実施形態の反応性含フッ素スルホニルイミド重合体は、上述の反応性含フッ素スルホニルイミドに基づく繰り返し単位を有する。反応性含フッ素スルホニルイミド重合体は、反応性含フッ素スルホニルイミドの単独重合体であってもよいし、反応性含フッ素スルホニルイミド重合体と、反応性含フッ素スルホニルイミド以外の他のモノマーとの共重合体であってもよい。
<Reactive fluorine-containing sulfonylimide polymer>
The reactive fluorine-containing sulfonylimide polymer of this embodiment has a repeating unit based on the above-mentioned reactive fluorine-containing sulfonylimide. The reactive fluorine-containing sulfonylimide polymer may be a homopolymer of a reactive fluorine-containing sulfonylimide, or a reactive fluorine-containing sulfonylimide polymer and a monomer other than the reactive fluorine-containing sulfonylimide. A copolymer may also be used.

他のモノマーは、反応性含フッ素スルホニルイミドの反応性官能基(アルコキシシリル基)と反応可能な反応性官能基を有するものであることが好ましい。アルコキシシリル基と反応可能な反応性官能基の例としては、アルコキシシリル基、シラノール基、クロロシリル基などを挙げることができる。   The other monomer preferably has a reactive functional group capable of reacting with the reactive functional group (alkoxysilyl group) of the reactive fluorine-containing sulfonylimide. Examples of the reactive functional group capable of reacting with the alkoxysilyl group include an alkoxysilyl group, a silanol group, and a chlorosilyl group.

反応性含フッ素スルホニルイミドの重合体の合成方法には、特に制限なく、例えば、乳化重合法、懸濁重合法、塊状重合法、溶液重合法などの公知の重合法を用いることができる。   The method for synthesizing the reactive fluorine-containing sulfonylimide polymer is not particularly limited, and for example, a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, or a solution polymerization method can be used.

本実施形態の反応性含フッ素スルホニルイミド重合体は、上述の反応性含フッ素スルホニルイミドと同様に樹脂に添加すると、含フッ素スルホニルイミドに基づく繰り返し単位から離脱したカチオン成分(アルカリ金属イオン、オニウムカチオン)が樹脂内を移動する。このため、本実施形態の反応性含フッ素スルホニルイミド重合体が添加された樹脂は、導電性が向上し、帯電しにくくなる。また、本実施形態の反応性含フッ素スルホニルイミド重合体は、上述の反応性含フッ素スルホニルイミドと比較して分子量が大きいので、樹脂に添加した場合に、よりブリードアウトを防止できる。このため、反応性含フッ素スルホニルイミド共重合体を帯電防止剤として樹脂に添加することによって、長期間にわたって安定して優れた帯電防止効果を発揮することができる。   When the reactive fluorine-containing sulfonylimide polymer of the present embodiment is added to the resin in the same manner as the above-mentioned reactive fluorine-containing sulfonylimide, the cation component (alkali metal ion, onium cation) desorbed from the repeating unit based on the fluorine-containing sulfonylimide. ) Moves through the resin. For this reason, the resin to which the reactive fluorine-containing sulfonylimide polymer of the present embodiment is added has improved conductivity and is difficult to be charged. Moreover, since the reactive fluorine-containing sulfonylimide polymer of this embodiment has a large molecular weight compared with the above-mentioned reactive fluorine-containing sulfonylimide, when it adds to resin, it can prevent a bleed out more. For this reason, by adding a reactive fluorine-containing sulfonylimide copolymer to the resin as an antistatic agent, an excellent antistatic effect can be exhibited stably over a long period of time.

[帯電防止剤]
本実施形態の帯電防止剤は、上述の反応性含フッ素スルホニルイミドあるいは反応性含フッ素スルホニルイミドに基づく繰り返し単位を有する重合体を含む。本実施形態の帯電防止剤は、例えば、電子機器のケースや保護フィルムなどの樹脂成形品の帯電防止剤として有利に用いることができる。帯電防止剤は、樹脂成形品に含有させてもよいし、樹脂成形品の表面に塗布してもよい。
[Antistatic agent]
The antistatic agent of this embodiment contains the polymer which has a repeating unit based on the above-mentioned reactive fluorine-containing sulfonylimide or reactive fluorine-containing sulfonylimide. The antistatic agent of this embodiment can be advantageously used as an antistatic agent for resin molded products such as cases of electronic devices and protective films. The antistatic agent may be contained in the resin molded product, or may be applied to the surface of the resin molded product.

帯電防止剤を含有する樹脂成形品は、樹脂成形品の母材となるマトリックス樹脂と帯電防止剤とを混合して、得られた混合物を成形する方法により製造することができる。マトリックス樹脂としては、例えば、シリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリオレフィン樹脂を用いることができる。樹脂成形品に含まれる反応性含フッ素スルホニルイミドもしくは反応性含フッ素スルホニルイミドに基づく繰り返し単位の量は、好ましくは0.01質量%以上30質量%以下の範囲内、特に好ましくは0.1質量%以上10質量%以下の範囲内である。   A resin molded product containing an antistatic agent can be produced by a method in which a matrix resin serving as a base material of a resin molded product is mixed with an antistatic agent, and the resulting mixture is molded. As the matrix resin, for example, silicone resin, acrylic resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, fluorine resin, and polyolefin resin can be used. The amount of the repeating unit based on the reactive fluorine-containing sulfonylimide or the reactive fluorine-containing sulfonylimide contained in the resin molded article is preferably in the range of 0.01% by mass to 30% by mass, particularly preferably 0.1% by mass. % Or more and 10% by mass or less.

また、帯電防止剤として反応性含フッ素スルホニルイミドを用いる場合は、反応性含フッ素スルホニルイミドとマトリックス樹脂の原料モノマーとを混合し、得られた混合物中の原料モノマーを重合させてマトリックス樹脂を生成させた後、混合物を成形する方法を用いて、樹脂成形品を製造してもよい。原料モノマーは、反応性含フッ素スルホニルイミドが有する反応性官能基(アルコキシシリル基)と反応可能な反応性官能基を有していてもよい。原料モノマーがアルコキシシリル基と反応可能な反応性官能基を有する場合は、反応性含フッ素スルホニルイミドとマトリックス樹脂とが結合した樹脂成形品を得ることができる。一方、原料モノマーがアルコキシシリル基と反応可能な反応性官能基を有しない場合は、マトリックス樹脂中に反応性含フッ素スルホニルイミドが分散した樹脂成形品を得ることができる。   In addition, when reactive fluorine-containing sulfonylimide is used as an antistatic agent, the reactive fluorine-containing sulfonylimide and the raw material monomer of the matrix resin are mixed, and the raw material monomer in the obtained mixture is polymerized to form a matrix resin. Then, a resin molded product may be produced using a method of molding the mixture. The raw material monomer may have a reactive functional group capable of reacting with the reactive functional group (alkoxysilyl group) of the reactive fluorine-containing sulfonylimide. When the raw material monomer has a reactive functional group capable of reacting with an alkoxysilyl group, a resin molded product in which a reactive fluorine-containing sulfonylimide and a matrix resin are bonded can be obtained. On the other hand, when the raw material monomer does not have a reactive functional group capable of reacting with an alkoxysilyl group, a resin molded product in which a reactive fluorine-containing sulfonylimide is dispersed in a matrix resin can be obtained.

帯電防止剤を樹脂成形品の表面に塗布する場合は、帯電防止剤を溶媒に溶解させた帯電防止剤溶液を、樹脂成形品の表面に塗布する。帯電防止剤溶液の溶媒は、反応性含フッ素スルホニルイミドあるいは反応性含フッ素スルホニルイミドに基づく繰り返し単位を有する重合体を溶解するものであれば、特に制限なく使用することができる。反応性含フッ素スルホニルイミドの溶媒としては、例えば、エステル系溶媒、エーテル系溶媒、ニトリル系溶媒、ケトン系溶媒を用いることができる。エステル系溶媒の例としては、酢酸エチル、酢酸イソプロピル、酢酸ブチル等を挙げることができる。エーテル系溶媒は、鎖状であってもよいし、環状であってもよい。鎖状エーテル系溶媒の例としては、ジエチルエーテル、ジイソプロピルエーテル、t−ブチルメチルエーテル、シクロペンチルメチルエーテル、ジメトキシメタン、1,2−ジメトキシエタンを挙げることができる。環状エーテル系溶媒の例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキサン、4−メチル−1,3−ジオキソランを挙げることができる。ニトリル系溶媒の例としては、アセトニトリル、イソブチロニトリル、バレロニトリル、ベンゾニトリルを挙げることができる。ケトン系溶媒の例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンを挙げることができる。反応性含フッ素スルホニルイミドあるいは反応性含フッ素スルホニルイミドに基づく繰り返し単位を有する重合体の溶媒としては、例えば、炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒、エーテル系溶媒、ニトリル系溶媒、ケトン系溶媒を用いることができる。炭化水素系溶媒は、ノルマルヘキサン、シクロヘキサン、トルエン、キシレン等を挙げることができる。ハロゲン化炭化水素系溶媒は、ジクロロメタン、クロロホルム、ジクロロペンタフルオロプロパン等を挙げることができる。エステル系溶媒、エーテル系溶媒、ニトリル系溶媒およびケトン系溶媒の例は、上述の反応性含フッ素スルホニルイミドの場合と同じである。   When applying the antistatic agent to the surface of the resin molded product, an antistatic agent solution in which the antistatic agent is dissolved in a solvent is applied to the surface of the resin molded product. The solvent of the antistatic agent solution can be used without particular limitation as long as it dissolves a polymer having a repeating unit based on reactive fluorine-containing sulfonylimide or reactive fluorine-containing sulfonylimide. As the solvent for the reactive fluorine-containing sulfonylimide, for example, an ester solvent, an ether solvent, a nitrile solvent, or a ketone solvent can be used. Examples of ester solvents include ethyl acetate, isopropyl acetate, butyl acetate and the like. The ether solvent may be chain-like or cyclic. Examples of chain ether solvents include diethyl ether, diisopropyl ether, t-butyl methyl ether, cyclopentyl methyl ether, dimethoxymethane, and 1,2-dimethoxyethane. Examples of the cyclic ether solvent include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxane, 4-methyl-1,3-dioxolane. Examples of nitrile solvents include acetonitrile, isobutyronitrile, valeronitrile, and benzonitrile. Examples of ketone solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and diisobutyl ketone. Examples of the solvent for the polymer having a repeating unit based on reactive fluorine-containing sulfonylimide or reactive fluorine-containing sulfonylimide include, for example, hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents, ether solvents, nitrile solvents A solvent and a ketone solvent can be used. Examples of the hydrocarbon solvent include normal hexane, cyclohexane, toluene, xylene and the like. Examples of the halogenated hydrocarbon solvent include dichloromethane, chloroform, dichloropentafluoropropane, and the like. Examples of the ester solvent, the ether solvent, the nitrile solvent, and the ketone solvent are the same as in the case of the reactive fluorine-containing sulfonylimide described above.

帯電防止剤溶液は、さらに、必要に応じて、他の添加剤を含んでいてもよい。他の添加剤の例としては、架橋剤、粘度調整剤、消泡剤、酸化防止剤、可塑剤、難燃剤、赤外線吸収剤、紫外線吸収剤、pH調整剤、キレート化剤、着色剤を挙げることができる。また、帯電防止剤として反応性含フッ素スルホニルイミド溶液を用いる場合は、反応性含フッ素スルホニルイミドが有する反応性官能基(アルコキシシリル基)と反応可能な反応性官能基を有するモノマーを含んでいてもよく、さらに、重合触媒を含んでいてもよい。   The antistatic agent solution may further contain other additives as required. Examples of other additives include crosslinking agents, viscosity modifiers, antifoaming agents, antioxidants, plasticizers, flame retardants, infrared absorbers, ultraviolet absorbers, pH adjusters, chelating agents, and colorants. be able to. In addition, when a reactive fluorine-containing sulfonylimide solution is used as an antistatic agent, it contains a monomer having a reactive functional group capable of reacting with the reactive functional group (alkoxysilyl group) of the reactive fluorine-containing sulfonylimide. Further, a polymerization catalyst may be included.

本実施形態の帯電防止剤は、上述の反応性含フッ素スルホニルイミドあるいは反応性含フッ素スルホニルイミドに基づく繰り返し単位を有する重合体を含むので、これを樹脂組成物に含有させる、もしくは樹脂成形品の表面に塗布することによって、樹脂組成物の表面抵抗率を低減させることができ、静電気を帯電しにくくすることができる。また、本実施形態の帯電防止剤は、ブリードアウトしにくいため、長期間にわたって安定して優れた帯電防止効果を発揮することができる。   Since the antistatic agent of the present embodiment includes a polymer having a repeating unit based on the above-mentioned reactive fluorine-containing sulfonylimide or reactive fluorine-containing sulfonylimide, the resin composition contains the polymer or a resin molded product. By applying to the surface, the surface resistivity of the resin composition can be reduced, and static electricity can be hardly charged. Moreover, since the antistatic agent of this embodiment is hard to bleed out, it can exhibit the excellent antistatic effect stably over a long period of time.

以上、本発明の実施形態について説明したが、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   While the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

次に、本発明の作用効果を実施例により説明する。なお、本実施例で得られた化合物の構造は、プロトン核磁気共鳴スペクトル(H−NMR)とフッ素の核磁気共鳴スペクトル(19F−NMR)により確認した。 Next, the function and effect of the present invention will be described with reference to examples. The structure of the compound obtained in this example was confirmed by proton nuclear magnetic resonance spectrum ( 1 H-NMR) and fluorine nuclear magnetic resonance spectrum ( 19 F-NMR).

[合成例1]反応性含フッ素スルホニルイミド1の合成
(中間体1iの合成)
温度計と還流管を備えたフラスコに、1,1,2,2,3,3−ヘキサフルオロプロパン−1,3−ジスルホニルジフロライドを152g(0.48mol)、フッ化カリウムを36g(0.63mol)、脱水アセトニトリルを480gの割合で仕込み、窒素雰囲気下で60℃に加熱した。次いで、トリフルオロメタンスルホンアミドカリウム84gを数回に分けて添加した後、さらに60℃で2時間加熱して、下記の反応式1iの反応により中間体1iを生成させた。反応終了後、不溶物を吸引濾過により濾別し、濾液を濃縮乾固して、粗生成物213gを得た。得られた粗生成物にエタノール109gを加えて60℃で加熱溶解した後、不溶物を3μmのメンブレンフィルターで濾別し、濾液をクロロホルム2004gに加え、生成物を晶析させた。晶析した生成物を吸引濾過により回収し、乾燥して、白色固体の中間体1iを得た。得られた中間体1iの量は、192g(収率:89%)であった。
[Synthesis Example 1] Synthesis of reactive fluorine-containing sulfonylimide 1 (synthesis of intermediate 1i)
In a flask equipped with a thermometer and a reflux tube, 152 g (0.48 mol) of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonyldifluoride and 36 g of potassium fluoride ( 0.63 mol), dehydrated acetonitrile was charged at a rate of 480 g, and heated to 60 ° C. in a nitrogen atmosphere. Subsequently, 84 g of potassium trifluoromethanesulfonamide was added in several portions, and further heated at 60 ° C. for 2 hours to generate an intermediate 1i by the reaction of the following reaction scheme 1i. After completion of the reaction, insoluble matters were filtered off by suction filtration, and the filtrate was concentrated to dryness to obtain 213 g of a crude product. After adding 109 g of ethanol to the obtained crude product and heating and dissolving at 60 ° C., the insoluble material was filtered off with a 3 μm membrane filter, and the filtrate was added to 2004 g of chloroform to crystallize the product. The crystallized product was collected by suction filtration and dried to obtain a white solid intermediate 1i. The amount of intermediate 1i obtained was 192 g (yield: 89%).

Figure 2019189545
Figure 2019189545

(中間体1iの19F−NMR測定結果)
19F−NMR(376MHz,CDCN):δ45.0(m,1F),−80.2(s,3F),−107.4(m,2F),−113.6(t,2F),−119.0(t,2F)
( 19 F-NMR measurement result of intermediate 1i)
19 F-NMR (376 MHz, CD 3 CN): δ 45.0 (m, 1F), −80.2 (s, 3F), −107.4 (m, 2F), −113.6 (t, 2F) , -119.0 (t, 2F)

(中間体2iの合成)
温度計と還流管を備えたフラスコに、中間体1iを180g(0.37mol)、フッ化カリウムを69g(3.2mol)、脱水テトラヒドロフランを360gの割合で仕込み、窒素雰囲気下で60℃に加熱した。そこに、濃度2mol/Lのメチルアミン・テトラヒドロフラン溶液201g(CHNH14g、0.45mol)を滴下した後、60℃で2.5時間加熱して、下記の反応式2iの反応により中間体2iを生成させた。反応終了後、濃縮乾固し、残渣に酢酸エチル1498gとイオン交換水220gとを加えて混合した後、分液して酢酸エチル相を回収した。回収した酢酸エチル相を、さらに濃度20質量%の水酸化カリウム水溶液100gで3回、濃度20質量%の塩化カリウム水溶液100gで3回洗浄した後、再度、濃縮乾固した。得られた残渣に同質量のアセトニトリルを加えて溶解させ、淡黄色透明で、濃度50質量%の中間体2iのアセトニトリル溶液199g(固形分99g、収率:100%)を得た。
(Synthesis of Intermediate 2i)
A flask equipped with a thermometer and a reflux tube was charged with 180 g (0.37 mol) of intermediate 1i, 69 g (3.2 mol) of potassium fluoride and 360 g of dehydrated tetrahydrofuran, and heated to 60 ° C. in a nitrogen atmosphere. did. Then, 201 g (CH 3 NH 2 14 g, 0.45 mol) having a concentration of 2 mol / L of methylamine / tetrahydrofuran solution was dropped, and then heated at 60 ° C. for 2.5 hours. Body 2i was generated. After completion of the reaction, the mixture was concentrated to dryness, and 1498 g of ethyl acetate and 220 g of ion exchange water were added to the residue and mixed, followed by liquid separation to recover the ethyl acetate phase. The recovered ethyl acetate phase was further washed three times with 100 g of a 20% strength by weight aqueous potassium hydroxide solution and three times with 100 g of a 20% strength by weight aqueous potassium chloride solution, and then concentrated to dryness again. The resulting residue was dissolved by adding the same mass of acetonitrile to obtain 199 g of an intermediate 2i acetonitrile solution (solid content 99 g, yield: 100%) that was light yellow and transparent.

Figure 2019189545
Figure 2019189545

(中間体2iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,DO):δ2.8(s,3H)
19F−NMR(376MHz,DO):δ−79.1(s,3F),−112.1(t,2F),−112.4(t,2F),−119.1(t,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 2i)
1 H-NMR (400 MHz, D 2 O): δ2.8 (s, 3H)
19 F-NMR (376 MHz, D 2 O): δ-79.1 (s, 3F), -112.1 (t, 2F), -112.4 (t, 2F), -119.1 (t, 2F)

(中間体3iの合成)
温度計と還流管を備えたフラスコに、濃度50質量%の中間体2iのアセトニトリル溶液を180g(固形分90g、0.17mol)、2−クロロエタノールを34g(0.42mol)、炭酸カリウムを21g(0.15mol)、脱水アセトニトリルを180gの割合で仕込み、窒素雰囲気下、80℃で43時間加熱して、下記の反応式3iの反応により中間体3iを生成させた。反応終了後、不溶物を吸引濾過により濾別し、濾液を濃縮乾固して、残渣に酢酸エチル705gと濃度10質量%の塩化カリウム水溶液125gとを加えて混合した後、分液して酢酸エチル相を回収した。回収した酢酸エチル相を、さらにイオン交換水100gで2回洗浄した後、濃縮乾固し、粗生成物を得た。得られた粗生成物にエタノール97gを加えて溶解させ、得られた溶液をクロロホルム1013gに加え、生成物を晶析させた。晶析した生成物を吸引濾過により回収し、乾燥して、白色固体の中間体3iを得た。得られた中間体3iの量は、75g(収率:79%)であった。
(Synthesis of Intermediate 3i)
In a flask equipped with a thermometer and a reflux tube, 180 g (solid content 90 g, 0.17 mol) of an intermediate 2i acetonitrile solution having a concentration of 50% by mass, 34 g (0.42 mol) of 2-chloroethanol, and 21 g of potassium carbonate (0.15 mol) and dehydrated acetonitrile were charged at a rate of 180 g, and heated at 80 ° C. for 43 hours in a nitrogen atmosphere to generate an intermediate 3i by the reaction of the following reaction formula 3i. After completion of the reaction, insoluble matter was filtered off by suction filtration, the filtrate was concentrated to dryness, 705 g of ethyl acetate and 125 g of 10% strength by weight potassium chloride aqueous solution were added to and mixed with the residue, and the mixture was separated to give acetic acid. The ethyl phase was recovered. The recovered ethyl acetate phase was further washed twice with 100 g of ion-exchanged water and then concentrated to dryness to obtain a crude product. The obtained crude product was dissolved by adding 97 g of ethanol, and the resulting solution was added to 1013 g of chloroform to crystallize the product. The crystallized product was collected by suction filtration and dried to obtain a white solid intermediate 3i. The amount of intermediate 3i obtained was 75 g (yield: 79%).

Figure 2019189545
Figure 2019189545

(中間体3iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,DO):δ3.8−3.3(m,4H),3.1(s,3H)
19F−NMR(376MHz,DO):δ−79.2(s,3F),−111.3(m,2F),−112.5(t,2F),−119.1(t,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 3i)
1 H-NMR (400 MHz, D 2 O): δ 3.8-3.3 (m, 4H), 3.1 (s, 3H)
19 F-NMR (376 MHz, D 2 O): δ-79.2 (s, 3F), -111.3 (m, 2F), -112.5 (t, 2F), -119.1 (t, 2F)

(中間体4iの合成)
分液ロートに、中間体3iを20g(38mmol)量り取り、これに濃度40質量%の硫酸水溶液60gと酢酸エチル206gとを加えて混合した後、分液して上相を回収した。回収した上相を、濃度40質量%の硫酸水溶液60gで2回洗浄した。洗浄後、濃度10質量%の水酸化リチウム水溶液30gを加えて混合して、下記の反応式4iの反応により中間体4iを生成させた後、分液して上相を回収した。回収した上相をイオン交換水20gで2回洗浄した後、濃縮し、アセトニトリルを加えて、濃度50質量%の中間体4iのアセトニトリル溶液36g(収率:96%)を得た。
(Synthesis of Intermediate 4i)
In a separatory funnel, 20 g (38 mmol) of Intermediate 3i was weighed, and 60 g of sulfuric acid aqueous solution having a concentration of 40% by mass and 206 g of ethyl acetate were added and mixed, and then separated to recover the upper phase. The recovered upper phase was washed twice with 60 g of a 40% by mass sulfuric acid aqueous solution. After washing, 30 g of a lithium hydroxide aqueous solution having a concentration of 10% by mass was added and mixed to form an intermediate 4i by the reaction of the following reaction formula 4i, followed by liquid separation to recover the upper phase. The recovered upper phase was washed twice with 20 g of ion-exchanged water, concentrated, and acetonitrile was added to obtain 36 g (yield: 96%) of an acetonitrile solution of intermediate 4i having a concentration of 50% by mass.

Figure 2019189545
Figure 2019189545

(中間体4iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,DO):δ4.0−3.3(m,4H),3.2(s,3H)
19F−NMR(376MHz,DO):δ−79.3(s,3F),−111.4(m,2F),−112.6(t,2F),−119.1(t,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 4i)
1 H-NMR (400 MHz, D 2 O): δ 4.0-3.3 (m, 4H), 3.2 (s, 3H)
19 F-NMR (376 MHz, D 2 O): δ-79.3 (s, 3F), -111.4 (m, 2F), -112.6 (t, 2F), -119.1 (t, 2F)

(反応性含フッ素スルホニルイミド1の合成)
温度計と還流管を備えたフラスコに、濃度50質量%の中間体4iのアセトニトリル溶液を10.0g(固形分5.0g、9.9mmol)、ジラウリン酸ジブチルすずを0.09g、脱水アセトニトリルを15gの割合で仕込み、窒素雰囲気下で50℃に加熱した。そこに、イソシアン酸3−(トリエトキシシリル)プロピル4g(0.017mol)を滴下した後、60℃で1時間加熱して、下記の反応式1の反応により反応性含フッ素スルホニルイミド1を生成させた。反応終了後、アセトニトリルを留去し、残渣に脱水エタノール3gとトルエン42gとを加えて混合した後、分液して下相を回収した。回収した下相を、さらにトルエン32gで洗浄し、次いで濃縮した後、脱水酢酸エチルを加えて、反応性官能基としてトリエトキシシリル基を有し、カチオン成分としてリチウムを含む反応性含フッ素スルホニルイミド1が50質量%の濃度で溶解している酢酸エチル溶液9.4g(収率:68%)を得た。
(Synthesis of reactive fluorine-containing sulfonylimide 1)
In a flask equipped with a thermometer and a reflux tube, 10.0 g (50 g, 9.9 mmol) of an acetonitrile solution of 50 mass% intermediate 4i, 0.09 g of dibutyltin dilaurate, and dehydrated acetonitrile were added. The mixture was charged at a rate of 15 g and heated to 50 ° C. in a nitrogen atmosphere. 4 g (0.017 mol) of 3- (triethoxysilyl) propyl isocyanate was added dropwise thereto, and then heated at 60 ° C. for 1 hour to produce a reactive fluorine-containing sulfonylimide 1 by the reaction of the following reaction formula 1. I let you. After completion of the reaction, acetonitrile was distilled off, and 3 g of dehydrated ethanol and 42 g of toluene were added to the residue and mixed, followed by liquid separation to recover the lower phase. The recovered lower phase is further washed with 32 g of toluene, and then concentrated. Then, dehydrated ethyl acetate is added, and a reactive fluorine-containing sulfonylimide having a triethoxysilyl group as a reactive functional group and lithium as a cation component 9.4 g (yield: 68%) of an ethyl acetate solution in which 1 was dissolved at a concentration of 50% by mass was obtained.

Figure 2019189545
Figure 2019189545

(反応性含フッ素スルホニルイミド1のH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ4.4−3.2(m,4H),3.8(q,6H),3.1(s,3H),3.1(q,2H),1.6(m,2H),1.2(t,9H),0.6(m,2H)
19F−NMR(376MHz,CDCN):δ−80.2(s,3F),−111.8(m,2F),−113.4(t,2F),−119.5(q,2F)
( 1 H-NMR measurement result and 19 F-NMR measurement result of reactive fluorine-containing sulfonylimide 1)
1 H-NMR (400 MHz, CD 3 CN): δ 4.4-3.2 (m, 4H), 3.8 (q, 6H), 3.1 (s, 3H), 3.1 (q, 2H) ), 1.6 (m, 2H), 1.2 (t, 9H), 0.6 (m, 2H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.2 (s, 3F), -111.8 (m, 2F), -113.4 (t, 2F), -119.5 (q, 2F)

[合成例2]反応性含フッ素スルホニルイミド2の合成
(中間体5iの合成)
温度計と還流管を備えたフラスコに、1,1−ジフルオロメタン−1,1−ジスルホニルジフロライドを343g(1.59mol)、フッ化カリウムを115g(1.97mol)、脱水アセトニトリルを1627gの割合で仕込み、窒素雰囲気下で60℃に加熱した。次いで、ノナフルオロブタンスルホンアミドカリウム509g(1.51mol)を数回に分けて添加した後、さらに60℃で2時間加熱して、下記の反応式5iの反応により中間体5iを生成させた。反応終了後、不溶物を吸引濾過により濾別し、濾液を濃縮乾固して、粗生成物789gを得た。得られた粗生成物にエタノール397gを加えて60℃で加熱溶解した後、不溶物を3μmのメンブレンフィルターで濾別し、濾液をクロロホルム4032gに加え、生成物を晶析させた。晶析した生成物を吸引濾過により回収し、乾燥して、白色固体の中間体5iを得た。得られた中間体5iの量は、700g(収率:87%)であった。
[Synthesis Example 2] Synthesis of reactive fluorine-containing sulfonylimide 2 (synthesis of intermediate 5i)
In a flask equipped with a thermometer and a reflux tube, 343 g (1.59 mol) of 1,1-difluoromethane-1,1-disulfonyldifluoride, 115 g (1.97 mol) of potassium fluoride, and 1627 g of dehydrated acetonitrile And heated to 60 ° C. in a nitrogen atmosphere. Next, after adding 509 g (1.51 mol) of nonafluorobutanesulfonamide potassium in several portions, the mixture was further heated at 60 ° C. for 2 hours to generate an intermediate 5i by the reaction of the following reaction formula 5i. After completion of the reaction, insoluble matters were filtered off by suction filtration, and the filtrate was concentrated to dryness to obtain 789 g of a crude product. After adding 397 g of ethanol to the obtained crude product and heating and dissolving at 60 ° C., the insoluble matter was filtered off with a 3 μm membrane filter, and the filtrate was added to 4032 g of chloroform to crystallize the product. The crystallized product was collected by suction filtration and dried to obtain a white solid intermediate 5i. The amount of the obtained intermediate 5i was 700 g (yield: 87%).

Figure 2019189545
Figure 2019189545

(中間体5iの19F−NMR測定結果)
19F−NMR(376MHz,CDCN):δ45.0(m.1F),−80.9(t,3F),−101.8(s,2F),−112.6(t,2F),−120.5(m,2F),−125.4(m,2F)
( 19 F-NMR measurement result of intermediate 5i)
19 F-NMR (376 MHz, CD 3 CN): δ 45.0 (m. 1F), −80.9 (t, 3F), −101.8 (s, 2F), −112.6 (t, 2F) , -120.5 (m, 2F), -125.4 (m, 2F)

(中間体6iの合成)
温度計と還流管を備えたフラスコに、中間体5iを443g(0.83mol)、フッ化カリウムを147g(2.53mol)、脱水テトラヒドロフランを802gの割合で仕込み、窒素雰囲気下で60℃に加熱した。そこに、プロピルアミン59.1g(1.00mol)を滴下した後、60℃で2.5時間加熱して、下記の反応式6iの反応により中間体6iを生成させた。反応終了後、濃縮乾固し、残渣に酢酸エチル2417gとイオン交換水360gとを加えて混合した後、分液して酢酸エチル相を回収した。回収した酢酸エチル相を、さらに濃度20質量%の水酸化カリウム水溶液200gで2回、濃度20質量%の塩化カリウム水溶液220gで2回洗浄した後、再度、濃縮乾固した。得られた残渣に同質量のアセトニトリルを加え溶解させ、淡黄色透明で、濃度50質量%の中間体6iのアセトニトリル溶液982g(固形分491g、収率:97%)を得た。
(Synthesis of Intermediate 6i)
A flask equipped with a thermometer and a reflux tube was charged with 443 g (0.83 mol) of intermediate 5i, 147 g (2.53 mol) of potassium fluoride, and 802 g of dehydrated tetrahydrofuran, and heated to 60 ° C. in a nitrogen atmosphere. did. Thereto, 59.1 g (1.00 mol) of propylamine was dropped, and the mixture was heated at 60 ° C. for 2.5 hours to generate an intermediate 6i by the reaction of the following reaction formula 6i. After completion of the reaction, the mixture was concentrated to dryness, 2417 g of ethyl acetate and 360 g of ion-exchanged water were added to and mixed with the residue, and the phases were separated to recover the ethyl acetate phase. The recovered ethyl acetate phase was further washed twice with 200 g of a 20% strength by weight aqueous potassium hydroxide solution and twice with 220 g of a 20% strength by weight aqueous potassium chloride solution, and then concentrated and dried again. The same amount of acetonitrile was added to the resulting residue to dissolve, and 982 g (solid content 491 g, yield: 97%) of an acetonitrile solution of intermediate 6i having a light yellow and transparent concentration of 50% by mass was obtained.

Figure 2019189545
Figure 2019189545

(中間体6iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,DO):δ3.3(t,2H),1.5(m,2H),0.9(t,3H)
19F−NMR(376MHz,DO):δ−80.7(t,3F),−106.5(s,2F),−111.4(t,2F),−120.3(m,2F),−125.0(m,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 6i)
1 H-NMR (400 MHz, D 2 O): δ 3.3 (t, 2H), 1.5 (m, 2H), 0.9 (t, 3H)
19 F-NMR (376 MHz, D 2 O): δ-80.7 (t, 3F), -106.5 (s, 2F), -111.4 (t, 2F), -120.3 (m, 2F), -125.0 (m, 2F)

(中間体7iの合成)
温度計と還流管を備えたフラスコに、濃度50質量%の中間体6iのアセトニトリル溶液を684g(固形分342g、0.56mol)、6−クロロ−1−ヘキサノールを212g(1.55mol)、炭酸カリウムを80g(0.58mol)、脱水アセトニトリルを433gの割合で仕込み、窒素雰囲気下、80℃で48時間加熱して、下記の反応式7iの反応により中間体7iを生成させた。反応終了後、不溶物を吸引濾過により濾別し、濾液を濃縮乾固した。得られた残渣に酢酸エチル1840gを加えて溶解させ、得られた溶液を濃度10質量%の塩化カリウム水溶液300gで2回洗浄した後、分液して酢酸エチル相を回収した。回収した酢酸エチル相を、さらにイオン交換水300gで2回洗浄した後、濃縮乾固し、粗生成物を得た。得られた粗生成物にエタノール203gを加えて溶解させ、得られた容液をクロロホルム2032gに加え、生成物を晶析させた。晶析した生成物を吸引濾過により回収し、乾燥して、白色固体の中間体7iを得た。得られた中間体7iの量は、327g(収率:87%)であった。
(Synthesis of Intermediate 7i)
In a flask equipped with a thermometer and a reflux tube, 684 g (solid content 342 g, 0.56 mol) of acetonitrile solution of intermediate 6i having a concentration of 50 mass%, 6-chloro-1-hexanol 212 g (1.55 mol), carbonic acid 80 g (0.58 mol) of potassium and 433 g of dehydrated acetonitrile were charged and heated in a nitrogen atmosphere at 80 ° C. for 48 hours to produce intermediate 7i by the reaction of the following reaction formula 7i. After completion of the reaction, insoluble matter was filtered off by suction filtration, and the filtrate was concentrated to dryness. 1840 g of ethyl acetate was added to the resulting residue to dissolve it, and the resulting solution was washed twice with 300 g of a 10% strength by weight aqueous potassium chloride solution and then separated to recover the ethyl acetate phase. The recovered ethyl acetate phase was further washed twice with 300 g of ion-exchanged water and then concentrated to dryness to obtain a crude product. The obtained crude product was dissolved by adding 203 g of ethanol, and the obtained solution was added to 2032 g of chloroform to crystallize the product. The crystallized product was collected by suction filtration and dried to obtain a white solid intermediate 7i. The amount of intermediate 7i obtained was 327 g (yield: 87%).

Figure 2019189545
Figure 2019189545

(中間体7iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ3.8−3.3(m,6H),1.8−1.3(m,10H),1.0(t,3H)
19F−NMR(376MHz,CDCN):δ−80.7(t,3F),−107.3(s,2F),−111.5(t,2F),−120.4(m,2F),−125.0(m,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 7i)
1 H-NMR (400 MHz, CD 3 CN): δ 3.8-3.3 (m, 6H), 1.8-1.3 (m, 10H), 1.0 (t, 3H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.7 (t, 3F), -107.3 (s, 2F), -111.5 (t, 2F), -120.4 (m, 2F), -125.0 (m, 2F)

(中間体8iの合成)
分液ロートに、中間体7iを250g(371mmol)量り取り、これに濃度40質量%の硫酸水溶液504gと酢酸エチル2513gとを加えて混合した後、分液して上相を回収した。回収した上相を、濃度40質量%の硫酸水溶液60gで2回洗浄した。洗浄後、濃度10質量%の水酸化リチウム水溶液30gを加えて混合して、下記の反応式8iの反応により中間体8iを生成させた後、分液して上相を回収した。回収した上相をイオン交換水750gで2回洗浄した後、濃縮し、アセトニトリルを加えて、濃度50質量%の中間体8iのアセトニトリル溶液36g(収率:96%)を得た。
(Synthesis of Intermediate 8i)
In a separatory funnel, 250 g (371 mmol) of the intermediate 7i was weighed, and 504 g of sulfuric acid aqueous solution having a concentration of 40% by mass and 2513 g of ethyl acetate were added and mixed, and then separated to recover the upper phase. The recovered upper phase was washed twice with 60 g of a 40% by mass sulfuric acid aqueous solution. After washing, 30 g of a lithium hydroxide aqueous solution having a concentration of 10% by mass was added and mixed to form an intermediate 8i by the reaction of the following reaction formula 8i, followed by liquid separation to recover the upper phase. The recovered upper phase was washed twice with 750 g of ion-exchanged water, concentrated, and acetonitrile was added to obtain 36 g (yield: 96%) of an acetonitrile solution of intermediate 8i having a concentration of 50% by mass.

Figure 2019189545
Figure 2019189545

(中間体8iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ4.0−3.3(m,6H),1.8−1.3(m,10H),1.0(t,3H)
19F−NMR(376MHz,CDCN):δ−80.5(t,3F),−107.7(s,2F),−111.9(t,2F),−120.7(m,2F),−125.2(m,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 8i)
1 H-NMR (400 MHz, CD 3 CN): δ 4.0-3.3 (m, 6H), 1.8-1.3 (m, 10H), 1.0 (t, 3H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.5 (t, 3F), −107.7 (s, 2F), −111.9 (t, 2F), −120.7 (m, 2F), -125.2 (m, 2F)

(反応性含フッ素スルホニルイミド2の合成)
温度計と還流管を備えたフラスコに、濃度50質量%の中間体8iのアセトニトリル溶液を400g(固形分200g、0.31mol)、ジラウリン酸ジブチルすずを0.1g、脱水アセトニトリルを398gの割合で仕込み、窒素雰囲気下で50℃に加熱した。そこに、イソシアン酸3−(トリエトキシシリル)プロピル100g(0.41mol)を滴下した後、60℃で1時間加熱して、下記の反応式2の反応により反応性含フッ素スルホニルイミド2を生成させた。反応終了後、アセトニトリルを留去し、残渣に脱水エタノール143gとトルエン1834gとを加えた混合した後、分液して下相を回収した。回収した下相を、さらにトルエン1368gで洗浄し、次いで濃縮した後、脱水酢酸エチルを加えて、反応性官能基としてトリエトキシシリル基を有し、カチオン成分としてリチウムを含む反応性含フッ素スルホニルイミド2が50質量%の濃度で溶解している酢酸エチル溶液432g(収率:78%)を得た。
(Synthesis of reactive fluorine-containing sulfonylimide 2)
In a flask equipped with a thermometer and a reflux tube, an acetonitrile solution of intermediate 8i having a concentration of 50% by mass (solid content 200 g, 0.31 mol), dibutyltin dilaurate 0.1 g, dehydrated acetonitrile 398 g Charged and heated to 50 ° C. under nitrogen atmosphere. Thereto, 100 g (0.41 mol) of 3- (triethoxysilyl) propyl isocyanate was added dropwise and heated at 60 ° C. for 1 hour to produce a reactive fluorine-containing sulfonylimide 2 by the reaction of the following reaction formula 2. I let you. After completion of the reaction, acetonitrile was distilled off, 143 g of dehydrated ethanol and 1834 g of toluene were added to the residue, and the mixture was separated to recover the lower phase. The recovered lower phase was further washed with 1368 g of toluene and then concentrated, and then dehydrated ethyl acetate was added, and a reactive fluorine-containing sulfonylimide having a triethoxysilyl group as a reactive functional group and lithium as a cation component 432 g (yield: 78%) of an ethyl acetate solution in which 2 was dissolved at a concentration of 50% by mass was obtained.

Figure 2019189545
Figure 2019189545

(反応性含フッ素スルホニルイミド2のH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ4.3−3.3(m,12H),3.1(q,2H),1.8−1.3(m,12H),1.2(t,9H),1.0(t,3H),0.6(m,2H)
19F−NMR(376MHz,CDCN):δ−79.8(t,3F),−106.9(s,2F),−111.0(t,2F),−119.8(m,2F),−124.4(m,2F)
( 1 H-NMR measurement result and 19 F-NMR measurement result of reactive fluorine-containing sulfonylimide 2)
1 H-NMR (400 MHz, CD 3 CN): δ 4.3-3.3 (m, 12H), 3.1 (q, 2H), 1.8-1.3 (m, 12H), 1.2 (T, 9H), 1.0 (t, 3H), 0.6 (m, 2H)
19 F-NMR (376 MHz, CD 3 CN): δ-79.8 (t, 3F), -106.9 (s, 2F), -111.0 (t, 2F), -119.8 (m, 2F), -124.4 (m, 2F)

[合成例3]反応性含フッ素スルホニルイミド3の合成
(中間体9iの合成)
温度計と還流管を備えたフラスコに、エチレンジアミンを37g(0.62mol)、脱水アセトニトリルを203gの割合で仕込み、窒素雰囲気下で60℃に加熱した。そこに、合成例1で合成した中間体1iを同量の脱水アセトニトリルに溶解して調製した溶液200g(中間体1iの量:100g、0.21mol)を滴下した後、60℃で2.5時間加熱することにより、スルホンアミドを生成させた。加熱終了後、濃縮乾固し、残渣に酢酸エチル854gとイオン交換水87gとを加えて混合した後、分液して酢酸エチル相を回収した。回収した酢酸エチル相を、濃度20質量%の水酸化カリウム水溶液100gで3回洗浄することにより、スルホンアミドをカリウム塩化して、下記の反応式9iに示すように中間体9iを生成させた。次いで、中間体9iが生成した酢酸エチル相を濃度20質量%の塩化カリウム水溶液100gで2回、濃度40質量%の硫酸水溶液30gで1回洗浄した後、濃縮乾固した。得られた残渣にテトラヒドロフラン300gと炭酸カリウム88gとを加え60℃で2時間撹拌した後、不溶物を吸引濾過により濾別した。濾液を濃度50質量%の中間体9iのテトラヒドロフラン溶液になるまで濃縮し、淡黄色透明の溶液224g(固形分112g、収率:96%)を得た。
[Synthesis Example 3] Synthesis of reactive fluorine-containing sulfonylimide 3 (synthesis of intermediate 9i)
A flask equipped with a thermometer and a reflux tube was charged with 37 g (0.62 mol) of ethylenediamine and 203 g of dehydrated acetonitrile and heated to 60 ° C. in a nitrogen atmosphere. Thereto was added dropwise 200 g of a solution prepared by dissolving the intermediate 1i synthesized in Synthesis Example 1 in the same amount of dehydrated acetonitrile (amount of intermediate 1i: 100 g, 0.21 mol), and then 2.5 ° C. at 60 ° C. Sulfonamide was produced by heating for a period of time. After completion of the heating, the mixture was concentrated to dryness, 854 g of ethyl acetate and 87 g of ion-exchanged water were added to and mixed with the residue, and the phases were separated to recover the ethyl acetate phase. The recovered ethyl acetate phase was washed three times with 100 g of a 20% strength by weight aqueous potassium hydroxide solution, so that the sulfonamide was potassium chlorided to produce an intermediate 9i as shown in the following reaction formula 9i. Next, the ethyl acetate phase produced by the intermediate 9i was washed twice with 100 g of a 20% strength by weight aqueous potassium chloride solution and once with 30 g of a 40% strength by weight sulfuric acid aqueous solution, and then concentrated to dryness. To the obtained residue, 300 g of tetrahydrofuran and 88 g of potassium carbonate were added and stirred at 60 ° C. for 2 hours, and then insoluble matter was filtered off by suction filtration. The filtrate was concentrated to a tetrahydrofuran solution of intermediate 9i having a concentration of 50% by mass to obtain 224 g of a pale yellow transparent solution (solid content: 112 g, yield: 96%).

Figure 2019189545
Figure 2019189545

(中間体9iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ3.0(m,2H),2.6(t,2H)
19F−NMR(376MHz,CDCN):δ−80.2(s,3F),−111.3(t,2F),−113.4(t,2F),−119.1(t,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 9i)
1 H-NMR (400 MHz, CD 3 CN): δ 3.0 (m, 2H), 2.6 (t, 2H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.2 (s, 3F), -111.3 (t, 2F), -113.4 (t, 2F), -119.1 (t, 2F)

(中間体10iの合成)
温度計と還流管を備えたフラスコに、濃度50質量%の中間体9iのテトラヒドロフラン溶液を200g(固形分100g、0.35mol)、塩化リチウム45g(1.07mol)、脱水テトラヒドロフランを203gの割合で仕込み、窒素雰囲気下、60℃で15時間加熱して、下記の反応式10iの反応により中間体10iを生成させた。反応終了後、不溶物を吸引濾過により濾別し、濾液を濃縮して、中間体10iの濃度が50質量%のテトラヒドロフラン溶液377g(固形分189g、収率:100%)を得た。
(Synthesis of Intermediate 10i)
In a flask equipped with a thermometer and a reflux tube, 200 g (solid content 100 g, 0.35 mol) of a 50 mass% intermediate 9i tetrahydrofuran solution, lithium chloride 45 g (1.07 mol), and dehydrated tetrahydrofuran at a ratio of 203 g. The mixture was heated at 60 ° C. for 15 hours under a nitrogen atmosphere to generate intermediate 10i by the reaction of the following reaction formula 10i. After completion of the reaction, insoluble matters were filtered off by suction filtration, and the filtrate was concentrated to obtain 377 g of tetrahydrofuran solution (solid content: 189 g, yield: 100%) having a concentration of intermediate 10i of 50% by mass.

Figure 2019189545
Figure 2019189545

(中間体10iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ3.0(m,2H),2.6(t,2H)
19F−NMR(376MHz,CDCN):δ−80.3(s,3F),−111.4(t,2F),−113.6(t,2F),−119.3(t,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 10i)
1 H-NMR (400 MHz, CD 3 CN): δ 3.0 (m, 2H), 2.6 (t, 2H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.3 (s, 3F), -111.4 (t, 2F), -113.6 (t, 2F), -119.3 (t, 2F)

(反応性含フッ素スルホニルイミド3の合成)
温度計と還流管を備えたフラスコに、濃度50質量%の中間体10iのテトラヒドロフラン溶液を122g(固形分61g、0.119mmol)、脱水テトラヒドロフランを120gの割合で仕込み、窒素雰囲気下で60℃に加熱した。そこに、3−グリシドキシプロピルトリメトキシシラン29g(0.12mol)を滴下した後、60℃で2時間加熱して、下記の反応式3の反応により反応性含フッ素スルホニルイミド3を生成させた。反応終了後、濃縮乾固し、残渣に脱水エタノール78gとトルエン1230gとを加えて混合した後、分液して下相を回収した。回収した下相を、さらにトルエン935gで洗浄し、次いで濃縮した後、脱水酢酸エチルを加えて、反応性官能基としてトリメトキシシリル基を有し、カチオン成分としてリチウムを含む反応性含フッ素スルホニルイミド3が50質量%の濃度で溶解している酢酸エチル溶液144g(収率:81%)を得た。
(Synthesis of reactive fluorine-containing sulfonylimide 3)
A flask equipped with a thermometer and a reflux tube was charged with 122 g (solid content 61 g, 0.119 mmol) of a 50 mass% intermediate 10i tetrahydrofuran solution and 120 g of dehydrated tetrahydrofuran at 60 ° C. under a nitrogen atmosphere. Heated. Thereto, 29 g (0.12 mol) of 3-glycidoxypropyltrimethoxysilane was added dropwise, and then heated at 60 ° C. for 2 hours to produce reactive fluorine-containing sulfonylimide 3 by the reaction of the following reaction formula 3. It was. After completion of the reaction, the mixture was concentrated to dryness, and 78 g of dehydrated ethanol and 1230 g of toluene were added to and mixed with the residue, followed by liquid separation to recover the lower phase. The recovered lower phase was further washed with 935 g of toluene and then concentrated, and then dehydrated ethyl acetate was added, and a reactive fluorine-containing sulfonylimide having a trimethoxysilyl group as a reactive functional group and lithium as a cation component 144 g (yield: 81%) of an ethyl acetate solution in which 3 was dissolved at a concentration of 50% by mass was obtained.

Figure 2019189545
Figure 2019189545

(反応性含フッ素スルホニルイミド3のH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ4.4−3.2(m,4H),3.9(m,1H),3.6(s,9H),3.6(m,2H),3.6(t,2H),2.7(m,2H),1.7(m,2H),0.6(m,2H)
19F−NMR(376MHz,CDCN):δ−80.3(s,3F),−111.9(t,2F),−113.6(t,2F),−119.6(q,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of the reactive fluorinated sulfonylimide 3)
1 H-NMR (400 MHz, CD 3 CN): δ 4.4-3.2 (m, 4H), 3.9 (m, 1H), 3.6 (s, 9H), 3.6 (m, 2H) ), 3.6 (t, 2H), 2.7 (m, 2H), 1.7 (m, 2H), 0.6 (m, 2H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.3 (s, 3F), -111.9 (t, 2F), -113.6 (t, 2F), -119.6 (q, 2F)

[合成例4]反応性含フッ素スルホニルイミド4の合成
(中間体11iの合成)
イオン交換水10.5gに、合成例1で合成した中間体3iを10.1g(0.0188mol)加えて、中間体3iを溶解させて、中間体3i水溶液を調製した。分液ロートに、調製した中間体3水溶液を投入し、これに濃度50質量%のN−エチル−N−メチルピロリジニウムブロミド水溶液8.7g(固形分4.4g、0.0244mol)とクロロホルム17.8gとを加えて混合して、下記の反応式11iの反応により中間体10iを生成させた後、分液して下相を回収した。回収した下相をイオン交換水10gで4回洗浄した後、不溶物を吸引濾過により濾別した。ろ液を濃縮して、中間体11iを得た。得られた中間体11iの量は、6.7g(収率:58%)であった。
[Synthesis Example 4] Synthesis of reactive fluorine-containing sulfonylimide 4 (synthesis of intermediate 11i)
10.1 g (0.0188 mol) of intermediate 3i synthesized in Synthesis Example 1 was added to 10.5 g of ion-exchanged water, and intermediate 3i was dissolved to prepare an intermediate 3i aqueous solution. The prepared intermediate 3 aqueous solution was put into a separating funnel, and 8.7 g (solid content 4.4 g, 0.0244 mol) of N-ethyl-N-methylpyrrolidinium bromide aqueous solution having a concentration of 50% by mass and chloroform were added thereto. 17.8 g was added and mixed to produce intermediate 10i by the reaction of the following reaction formula 11i, followed by liquid separation to recover the lower phase. The recovered lower phase was washed 4 times with 10 g of ion-exchanged water, and then insoluble matter was filtered off by suction filtration. The filtrate was concentrated to give intermediate 11i. The amount of intermediate 11i obtained was 6.7 g (yield: 58%).

Figure 2019189545
Figure 2019189545

(中間体11iのH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ3.8−3.2(m,4H),3.4(m,4H),3.3(q,2H),3.1(s,3H),2.9(s,3H),2.1(m,4H),1.3(t−t,3H)
19F−NMR(376MHz,CDCN):δ−80.2(s,3F),−111.8(m,2F),−113.4(t,2F),−119.5(t,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of Intermediate 11i)
1 H-NMR (400 MHz, CD 3 CN): δ 3.8-3.2 (m, 4H), 3.4 (m, 4H), 3.3 (q, 2H), 3.1 (s, 3H) ), 2.9 (s, 3H), 2.1 (m, 4H), 1.3 (t-t, 3H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.2 (s, 3F), -111.8 (m, 2F), -113.4 (t, 2F), -119.5 (t, 2F)

(反応性含フッ素スルホニルイミド4の合成)
温度計と還流管を備えたフラスコに、中間体11iを5.1g(9.1mmol)、ジラウリン酸ジブチルすずを0.08g、脱水アセトニトリルを15.1gの割合で仕込み、窒素雰囲気下で50℃に加熱した。そこに、イソシアン酸3−(トリエトキシシリル)プロピル3.9g(15.8mmol)を滴下した後、60℃で1時間加熱して、下記の反応式4の反応により反応性含フッ素スルホニルイミド4を生成させた。反応終了後、アセトニトリルを留去し、残渣に脱水エタノール3gとトルエン54gとを加えて混合した後、分液して下相を回収した。回収した下相を、さらにトルエン38gで洗浄し、次いで濃縮して、反応性官能基としてトリエトキシシリル基を有し、カチオン成分としてN−エチル−N−メチルピロリジニウムを含む反応性含フッ素スルホニルイミド4を得た。得られた反応性含フッ素スルホニルイミド4の量は6.2g(収率:84%)であった。
(Synthesis of reactive fluorine-containing sulfonylimide 4)
A flask equipped with a thermometer and a reflux tube was charged with 5.1 g (9.1 mmol) of intermediate 11i, 0.08 g of dibutyltin dilaurate, and 15.1 g of dehydrated acetonitrile at 50 ° C. in a nitrogen atmosphere. Heated. Thereto, 3.9 g (15.8 mmol) of 3- (triethoxysilyl) propyl isocyanate was added dropwise, and then heated at 60 ° C. for 1 hour. Was generated. After completion of the reaction, acetonitrile was distilled off, and 3 g of dehydrated ethanol and 54 g of toluene were added to the residue and mixed, followed by liquid separation to recover the lower phase. The recovered lower phase is further washed with 38 g of toluene, and then concentrated to have reactive fluorine-containing reactive fluorine containing triethoxysilyl group as a reactive functional group and N-ethyl-N-methylpyrrolidinium as a cation component. The sulfonylimide 4 was obtained. The amount of the obtained reactive fluorine-containing sulfonylimide 4 was 6.2 g (yield: 84%).

Figure 2019189545
Figure 2019189545

(反応性含フッ素スルホニルイミド4のH−NMR測定結果と19F−NMR測定結果)
H−NMR(400MHz,CDCN):δ4.4−3.3(m,16H),3.1(s,3H),3.1(q,2H),2.9(s,3H),2.1(m,4H),1.6(m,2H),1.3(t−t,3H),1.2(t,9H)0.6(m,2H)
19F−NMR(376MHz,CDCN):δ−80.2(s,3F),−111.9(t,2F),−113.5(t,2F),−119.5(q,2F)
(1 H-NMR measurement results and the 19 F-NMR measurement results of the reactive fluorinated sulfonylimide 4)
1 H-NMR (400 MHz, CD 3 CN): δ 4.4-3.3 (m, 16H), 3.1 (s, 3H), 3.1 (q, 2H), 2.9 (s, 3H) ), 2.1 (m, 4H), 1.6 (m, 2H), 1.3 (t-t, 3H), 1.2 (t, 9H) 0.6 (m, 2H)
19 F-NMR (376 MHz, CD 3 CN): δ-80.2 (s, 3F), -111.9 (t, 2F), -113.5 (t, 2F), -119.5 (q, 2F)

[合成例5]共重合体1の合成
温度計と還流管を備えたフラスコに、合成例1で得た濃度50質量%の反応性含フッ素スルホニルイミド1の酢酸エチル溶液40g(固形分20g、27mmol)を投入し、窒素雰囲気下で濃縮した。残渣を1−プロパノール27gに溶解させ、得られた溶液にジエトキシジメチルシラン29g(195mmol)とトリエトキシメチルシラン10g(55mmol)とを加えて混合した。得られた混合液を60℃に昇温した後、その混合液に、濃度0.1mol/Lの塩酸6gを滴下した。その後、さらに60℃で18時間加熱して混合液を反応させた。得られた反応混合液を濃縮し、残渣をn−ヘキサン60gで2回洗浄した後、濃縮して、反応性含フッ素スルホニルイミド1の含有率が34質量%の共重合体1を21g得た。
[Synthesis Example 5] Synthesis of Copolymer 1 In a flask equipped with a thermometer and a reflux tube, 40 g of an ethyl acetate solution of the reactive fluorine-containing sulfonylimide 1 having a concentration of 50% by mass obtained in Synthesis Example 1 (solid content 20 g, 27 mmol) and concentrated under a nitrogen atmosphere. The residue was dissolved in 27 g of 1-propanol, and 29 g (195 mmol) of diethoxydimethylsilane and 10 g (55 mmol) of triethoxymethylsilane were added to the obtained solution and mixed. After heating up the obtained liquid mixture to 60 degreeC, 6 g of hydrochloric acid with a density | concentration of 0.1 mol / L was dripped at the liquid mixture. Thereafter, the mixture was further heated at 60 ° C. for 18 hours to react the mixed solution. The obtained reaction mixture was concentrated, and the residue was washed twice with 60 g of n-hexane and then concentrated to obtain 21 g of copolymer 1 having a reactive fluorine-containing sulfonylimide 1 content of 34% by mass. .

[合成例6]共重合体2の合成
温度計と還流管を備えたフラスコに、合成例2で得た濃度50質量%の反応性含フッ素スルホニルイミド2の酢酸エチル溶液200g(固形分100g、113mmol)を投入し、窒素雰囲気下で濃縮した。残渣を1−プロパノール136gに溶解させ、得られた溶液にジエトキシジメチルシラン122g(826mmol)とトリエトキシメチルシラン42g(233mmol)とを加えて混合した。得られた混合液を60℃に昇温した後、その混合液に濃度0.1mol/Lの塩酸30gを滴下した。その後、さらに60℃で15時間加熱して混合液を反応させた。得られた反応混合液を濃縮し、残渣をn−ヘキサン273gで2回洗浄した後、濃縮して、反応性含フッ素スルホニルイミド2の含有率が38質量%の共重合体2を95g得た。
[Synthesis Example 6] Synthesis of Copolymer 2 In a flask equipped with a thermometer and a reflux tube, 200 g of an ethyl acetate solution of reactive fluorine-containing sulfonylimide 2 having a concentration of 50% by mass obtained in Synthesis Example 2 (solid content: 100 g, 113 mmol) and concentrated under a nitrogen atmosphere. The residue was dissolved in 136 g of 1-propanol, and 122 g (826 mmol) of diethoxydimethylsilane and 42 g (233 mmol) of triethoxymethylsilane were added to the resulting solution and mixed. After heating up the obtained liquid mixture at 60 degreeC, 30 g of hydrochloric acid with a density | concentration of 0.1 mol / L was dripped at the liquid mixture. Thereafter, the mixture was further heated at 60 ° C. for 15 hours to react the mixed solution. The obtained reaction mixture was concentrated, and the residue was washed twice with 273 g of n-hexane and then concentrated to obtain 95 g of copolymer 2 having a reactive fluorine-containing sulfonylimide 2 content of 38% by mass. .

[合成例7]共重合体3の合成
温度計と還流管を備えたフラスコに、合成例3で得た濃度50質量%の反応性含フッ素スルホニルイミド3の酢酸エチル溶液100g(固形分50g、65mmol)を投入し、窒素雰囲気下で濃縮した。残渣を1−プロパノール68gに溶解させ、得られた溶液にジメチルジメトキシシラン58g(479mmol)とメチルトリメトキシシラン18g(135mmol)とを混合した。得られた混合液を40℃に昇温した後、その混合液に濃度0.1mol/Lの塩酸15gを滴下した。その後、さらに40℃で15時間加熱して混合液を反応させた。得られた反応混合液を濃縮し、残渣をn−ヘキサン136gで2回洗浄した後、濃縮して、反応性含フッ素スルホニルイミド3の含有率が40質量%の共重合3を57g得た。
[Synthesis Example 7] Synthesis of Copolymer 3 In a flask equipped with a thermometer and a reflux tube, 100 g of an ethyl acetate solution of the reactive fluorine-containing sulfonylimide 3 having a concentration of 50% by mass obtained in Synthesis Example 3 (solid content 50 g, 65 mmol), and concentrated under a nitrogen atmosphere. The residue was dissolved in 68 g of 1-propanol, and 58 g (479 mmol) of dimethyldimethoxysilane and 18 g (135 mmol) of methyltrimethoxysilane were mixed with the obtained solution. The obtained mixed solution was heated to 40 ° C., and 15 g of hydrochloric acid having a concentration of 0.1 mol / L was added dropwise to the mixed solution. Then, it heated at 40 degreeC for 15 hours, and made the liquid mixture react. The obtained reaction mixture was concentrated, and the residue was washed twice with 136 g of n-hexane and then concentrated to obtain 57 g of copolymer 3 having a reactive fluorine-containing sulfonylimide 3 content of 40% by mass.

[合成例8]共重合体4の合成
温度計と還流管を備えたフラスコに、合成例4で得た反応性含フッ素スルホニルイミド4を5g(6mmol)投入し、窒素雰囲気下、1−プロパノール7gを加えて、反応性含フッ素スルホニルイミド4を溶解させた。次いで、得られた溶液に、ジエトキシジメチルシラン7g(45mmol)とトリエトキシメチルシラン2g(13mmol)とを加えて混合した。得られた混合液を60℃に昇温した後、その混合液に濃度0.1moml/Lの塩酸2gを滴下した、その後、さらに60℃で18時間加熱して混合液を反応させた。得られた反応混合液を濃縮し、残渣をn−ヘキサン15gで2回洗浄後、濃縮し、反応性含フッ素スルホニルイミド4の含有率が36質量%の共重合体4を5g得た。
[Synthesis Example 8] Synthesis of Copolymer 4 5 g (6 mmol) of the reactive fluorine-containing sulfonylimide 4 obtained in Synthesis Example 4 was charged into a flask equipped with a thermometer and a reflux tube, and 1-propanol was added in a nitrogen atmosphere. 7 g was added to dissolve the reactive fluorine-containing sulfonylimide 4. Next, 7 g (45 mmol) of diethoxydimethylsilane and 2 g (13 mmol) of triethoxymethylsilane were added to the obtained solution and mixed. After the temperature of the obtained mixed liquid was raised to 60 ° C., 2 g of hydrochloric acid having a concentration of 0.1 moml / L was added dropwise to the mixed liquid, and then the mixture was further reacted by heating at 60 ° C. for 18 hours. The obtained reaction mixture was concentrated, and the residue was washed twice with 15 g of n-hexane and then concentrated to obtain 5 g of copolymer 4 having a reactive fluorine-containing sulfonylimide 4 content of 36% by mass.

[本発明例1]
合成例5で合成した共重合体1を0.003g、シリコーン樹脂(KE−4897−T、信越化学工業株式会社製)を1gの配合量で、酢酸エチル99gに添加して溶解した。得られた溶液を、PETフィルム(ルミラー 100T60、パナック株式会社製)の表面に、バーコーター(No.16)を用いて塗布した。得られた塗布膜付のPETフィルムを、60℃の環境下で一晩静置して、塗布膜を硬化させて、共重合体1の含有率が0.3質量%(反応性含フッ素スルホニルイミド1の含有率が0.1質量%)のシリコーン樹脂組成物膜を得た。得られたシリコーン樹脂組成物膜の表面抵抗率を、ハイレスター(株式会社三菱ケミカルアナリテック社製)を用いて測定した。その結果を表1に示す。
[Invention Example 1]
The copolymer 1 synthesized in Synthesis Example 5 was dissolved in 0.003 g of a silicone resin (KE-4897-T, manufactured by Shin-Etsu Chemical Co., Ltd.) in an amount of 1 g in 99 g of ethyl acetate. The obtained solution was applied to the surface of a PET film (Lumirror 100T60, manufactured by Panac Co., Ltd.) using a bar coater (No. 16). The obtained PET film with a coating film was allowed to stand overnight in an environment of 60 ° C. to cure the coating film, so that the content of copolymer 1 was 0.3% by mass (reactive fluorine-containing sulfonylsulfonyl). A silicone resin composition film having an imide 1 content of 0.1% by mass was obtained. The surface resistivity of the obtained silicone resin composition film was measured using Hirestar (manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The results are shown in Table 1.

[本発明例2]
共重合体1の添加量を0.029gとしたこと以外は本発明例1と同様にして、共重合体1の含有率が3質量%(反応性含フッ素スルホニルイミド1の含有率が1質量%)のシリコーン樹脂組成物膜を作製し、得られたシリコーン樹脂組成物膜の表面抵抗率を測定した。その結果を表1に示す。
[Invention Example 2]
The content rate of the copolymer 1 is 3 mass% (the content rate of the reactive fluorine-containing sulfonylimide 1 is 1 mass) in the same manner as in Example 1 except that the addition amount of the copolymer 1 is 0.029 g. %) Silicone resin composition film was prepared, and the surface resistivity of the obtained silicone resin composition film was measured. The results are shown in Table 1.

[本発明例3]
共重合体1の添加量を0.147gとしたこと以外は本発明例1と同様にして、共重合体1の含有率が15質量%(反応性含フッ素スルホニルイミド1の含有率が5質量%)のシリコーン樹脂組成物膜を作製し、得られたシリコーン樹脂組成物膜の表面抵抗率を測定した。その結果を表1に示す。
[Invention Example 3]
The content of the copolymer 1 is 15% by mass (the content of the reactive fluorine-containing sulfonylimide 1 is 5% by mass) in the same manner as in Example 1 except that the addition amount of the copolymer 1 is 0.147 g. %) Silicone resin composition film was prepared, and the surface resistivity of the obtained silicone resin composition film was measured. The results are shown in Table 1.

[本発明例4〜12]
共重合体1の代わりに、共重合体2〜4を、下記の表1に示す配合量で加えたこと以外は本発明例1と同様にして、シリコーン樹脂組成物膜を作製し、得られたシリコーン樹脂組成物膜の表面抵抗率を測定した。その結果を表1に示す。
[Invention Examples 4 to 12]
A silicone resin composition film was prepared and obtained in the same manner as in Example 1 except that copolymers 2 to 4 were added in the amounts shown in Table 1 below instead of copolymer 1. The surface resistivity of the silicone resin composition film was measured. The results are shown in Table 1.

[比較例1]
共重合体1を添加しなかったこと以外は本発明例1と同様にして、シリコーン樹脂膜を作製し、得られたシリコーン樹脂膜の表面抵抗率を測定した。その結果を表1に示す。
[Comparative Example 1]
A silicone resin film was produced in the same manner as in Example 1 except that the copolymer 1 was not added, and the surface resistivity of the obtained silicone resin film was measured. The results are shown in Table 1.

Figure 2019189545
Figure 2019189545

表1の結果から、反応性含フッ素スルホニルイミドを含む本発明例1〜12シリコーン樹脂組成物膜は、反応性含フッ素スルホニルイミドを含まない比較例1のシリコーン樹脂膜と比較して表面抵抗率が顕著に低減することが確認された。   From the results in Table 1, Examples 1 to 12 of the present invention containing the reactive fluorine-containing sulfonylimide were compared with the silicone resin film of Comparative Example 1 containing no reactive fluorine-containing sulfonylimide. Was confirmed to be significantly reduced.

Claims (7)

下記の一般式(1)で表される反応性含フッ素スルホニルイミド。
Figure 2019189545
ただし、上記の一般式(1)において、Rは水素原子、炭素数1〜10の直鎖状あるいは分岐状のアルキル基、アルカリ金属イオンまたはオニウムカチオンを表し、Rはメチル基またはエチル基を表し、Rfはフッ素原子または炭素数1〜4の直鎖状あるいは分岐状のパーフルオロアルキル基を表し、Rfは炭素数1〜4の直鎖状あるいは分岐状のパーフルオロアルキレン基を表し、Xは2価の有機基である連結基を表し、Aはアルカリ金属イオンまたはオニウムカチオンを表す。
Reactive fluorine-containing sulfonylimide represented by the following general formula (1).
Figure 2019189545
However, in the above general formula (1), R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an alkali metal ion or an onium cation, and R 2 represents a methyl group or an ethyl group. Rf 1 represents a fluorine atom or a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms, and Rf 2 represents a linear or branched perfluoroalkylene group having 1 to 4 carbon atoms. X represents a linking group which is a divalent organic group, and A + represents an alkali metal ion or an onium cation.
前記Rfが、炭素数3の直鎖状パーフルオロアルキレン基であることを特徴とする請求項1に記載の反応性含フッ素スルホニルイミド。 Wherein Rf 2 is reactive fluorinated sulfonylimide according to claim 1, characterized in that a linear perfluoroalkylene group having 3 carbon atoms. 前記Xが、下記の一般式(2)で表される2価の有機基であることを特徴とする請求項1または2に記載の反応性含フッ素スルホニルイミド。
Figure 2019189545
ただし、上記の一般式(2)において、*は、Siとの接合手を表す。
The reactive fluorine-containing sulfonylimide according to claim 1 or 2, wherein X is a divalent organic group represented by the following general formula (2).
Figure 2019189545
However, in said general formula (2), * represents a joint with Si.
前記Aが、アルカリ金属イオンであることを特徴とする請求項1〜3のいずれか1項に記載の反応性含フッ素スルホニルイミド。 The reactive fluorine-containing sulfonylimide according to any one of claims 1 to 3, wherein the A + is an alkali metal ion. 請求項1〜4のいずれか1項に記載の反応性含フッ素スルホニルイミドを含む帯電防止剤。   The antistatic agent containing the reactive fluorine-containing sulfonylimide of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の反応性含フッ素スルホニルイミドに基づく繰り返し単位を有することを特徴とする重合体。   A polymer comprising a repeating unit based on the reactive fluorine-containing sulfonylimide according to any one of claims 1 to 4. 請求項6に記載の重合体を含む帯電防止剤。   An antistatic agent comprising the polymer according to claim 6.
JP2018081811A 2018-04-20 2018-04-20 Reactive fluorinated sulfonylimide and its polymer and antistatic agent containing it Active JP7088727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018081811A JP7088727B2 (en) 2018-04-20 2018-04-20 Reactive fluorinated sulfonylimide and its polymer and antistatic agent containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018081811A JP7088727B2 (en) 2018-04-20 2018-04-20 Reactive fluorinated sulfonylimide and its polymer and antistatic agent containing it

Publications (2)

Publication Number Publication Date
JP2019189545A true JP2019189545A (en) 2019-10-31
JP7088727B2 JP7088727B2 (en) 2022-06-21

Family

ID=68389265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018081811A Active JP7088727B2 (en) 2018-04-20 2018-04-20 Reactive fluorinated sulfonylimide and its polymer and antistatic agent containing it

Country Status (1)

Country Link
JP (1) JP7088727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442163A (en) * 2020-11-27 2021-03-05 广西漫迪丽生物科技有限公司 Preparation method of high-molecular polyester antistatic agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199509A (en) * 2012-03-23 2013-10-03 Tokai Rubber Ind Ltd Insulating silicone rubber composition
JP2014108993A (en) * 2012-12-03 2014-06-12 Koei Chem Co Ltd Polysiloxane copolymer having quaternary salt structure and antistatic agent containing the same
JP2017075237A (en) * 2015-10-15 2017-04-20 信越化学工業株式会社 Radiation curable silicone composition and method for producing antistatic peeling film using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199509A (en) * 2012-03-23 2013-10-03 Tokai Rubber Ind Ltd Insulating silicone rubber composition
JP2014108993A (en) * 2012-12-03 2014-06-12 Koei Chem Co Ltd Polysiloxane copolymer having quaternary salt structure and antistatic agent containing the same
JP2017075237A (en) * 2015-10-15 2017-04-20 信越化学工業株式会社 Radiation curable silicone composition and method for producing antistatic peeling film using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442163A (en) * 2020-11-27 2021-03-05 广西漫迪丽生物科技有限公司 Preparation method of high-molecular polyester antistatic agent
CN112442163B (en) * 2020-11-27 2021-11-26 上海凯斐服饰有限公司 Preparation method of high-molecular polyester antistatic agent

Also Published As

Publication number Publication date
JP7088727B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
CN107964117B (en) A kind of three phosphonitrile halogen-free flame retardants of silicone-modified ring and its preparation method and application
KR20110055488A (en) Ionic compound, process for producing same, and ion-conductive material comprising same
US8007679B2 (en) Electrolytic solution
US8027148B2 (en) Organosilicon amine-based electrolytes
JP2020125357A5 (en)
JP2017043776A (en) Use of specific polymer as charge storage body
EP2535328A1 (en) Fluoroalkane derivative, gelling agent and gel composition
JP5583899B2 (en) Process for producing ionic compounds
CN107531894A (en) Purposes of some polymer as charge accumulator
JP5356129B2 (en) Organosilicon compound
JP2017043774A (en) Use of specific polymer as charge storage body
JP7088727B2 (en) Reactive fluorinated sulfonylimide and its polymer and antistatic agent containing it
WO2015152265A1 (en) Fluorine-containing silane compound
JPWO2020031836A1 (en) Polymerizable ionic liquids, polymers, curable compositions, materials for electrochemical elements, and antistatic materials
DE69218159T2 (en) Bonding agent compositions
JP5731037B1 (en) Fluorine-containing silane compound
JP2005225843A (en) Method for producing alkoxyalkyl group-containing quaternary ammonium salt
JP5088918B2 (en) Ionic liquid and method for producing the same, and electrolytic capacitor including the ionic liquid
JP7080732B2 (en) Fluorine-containing sulfonylimide base-containing silicone compound and a conductive silicone composition containing the same
JP7074515B2 (en) Reactive fluorine-containing sulfonylimides and copolymers thereof, and solutions containing them.
TWI748642B (en) Silane-modified diallyl bisphenol compound and preparation method thereof
KR20150068962A (en) Ionic liquid
JPS6017798B2 (en) organosilicon compounds
JP2789325B2 (en) New epoxy resin and epoxy resin composition
US20230203237A1 (en) Epoxy amine adduct, curing catalyst, resin composition, sealing material, adhesive and cured article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7088727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150