JP2019189196A - Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture - Google Patents

Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture Download PDF

Info

Publication number
JP2019189196A
JP2019189196A JP2018095761A JP2018095761A JP2019189196A JP 2019189196 A JP2019189196 A JP 2019189196A JP 2018095761 A JP2018095761 A JP 2018095761A JP 2018095761 A JP2018095761 A JP 2018095761A JP 2019189196 A JP2019189196 A JP 2019189196A
Authority
JP
Japan
Prior art keywords
unmanned aircraft
sensor
satellite positioning
antenna
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018095761A
Other languages
Japanese (ja)
Inventor
宏介 津留
Kosuke Tsuru
宏介 津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018095761A priority Critical patent/JP2019189196A/en
Publication of JP2019189196A publication Critical patent/JP2019189196A/en
Pending legal-status Critical Current

Links

Abstract

To solve a problem that although an unmanned aircraft is increasingly used, and a technology to acquire detailed geospatial information from the sky at an ultra-low altitude is developing, a place for mounting an antenna for satellite positioning, and a sensor for investigation and posture observation is limited in an unmanned aircraft, and they are exposed to the vibration of a high speed rotation rotor so that it is difficult to mechanically impart a position on earth to geospatial information acquired from the unmanned aircraft, which inhibits the development of the measurement and investigation from the sky using an unmanned aircraft.SOLUTION: There is provided a universal head for fixing positional relations between an antenna for satellite positioning and various kinds of sensors for investigation and posture observation required for grasping a position on earth of geospatial information and carrying out observation from the sky using an unmanned aircraft, which is equipped with a posture stabilizer for suppressing the vibration from the unmanned aircraft and cushioning the collision of the antenna and the various kinds of sensors with the unmanned aircraft.SELECTED DRAWING: Figure 1

Description

無人航空機を用いて上空から、地理空間情報に地球上での位置を付与できるように観測するために必要となる、衛星測位用のアンテナ、及び調査用や姿勢観測用の各種センサーの位置関係を固定するとともに、無人航空機からの振動を抑制したり、調査用センサーの姿勢を安定させたりする、いずれかひとつ以上の機構を具備した、無人航空機に装着する雲台を提供する。  The positional relationship between the antenna for satellite positioning and various sensors for surveying and attitude observation necessary for observation so that geospatial information can be given a position on the earth from above using an unmanned aerial vehicle Provided is a pan head to be mounted on an unmanned aerial vehicle, which is fixed and includes at least one mechanism that suppresses vibrations from the unmanned aerial vehicle and stabilizes the attitude of a survey sensor.

地球上での位置を付与できる、地理空間情報の広い地域での観測は、航空カメラや航空レーザといったセンサーを、航空機やヘリコプターなどに搭載して実施されてきた。  Observations in areas with large geospatial information that can be given a position on the earth have been carried out by mounting sensors such as aerial cameras and aerial lasers on aircraft and helicopters.

航空機に航空カメラを搭載して行う航空写真測量は、初期には、地上に対空標識と呼ばれる地球上での位置が分かり、航空写真に写る標識を設置し、航空写真が撮影された位置と、撮影された航空写真の姿勢を、空中三角測量によって与えてきた。  The aerial photogrammetry conducted by installing an aerial camera on an aircraft, at the beginning, the position on the earth, known as an anti-aircraft sign, was found on the ground, a sign that was shown in the aerial photograph was installed, the position where the aerial photograph was taken, The attitude of the photographed aerial photograph has been given by aerial triangulation.

2000年頃からは、航空機の屋根にGPSといった衛星測位用のアンテナを、航空カメラに慣性計測装置を、それぞれ装着するとともに、別途、航空カメラと衛星測位用アンテナとの位置関係と、航空カメラと慣性計測装置との向きの較差を、それぞれ求めることで、衛星測位で得たアンテナの位置と慣性計測装置で得られた慣性計測装置の姿勢から、航空写真が撮影された位置と、撮影された航空写真の姿勢が求められる、直接定位と呼ばれる技術が実用化された(非特許文献1参照)。  From around 2000, a satellite positioning antenna such as GPS was installed on the roof of the aircraft, an inertial measurement device was installed on the aerial camera, and the positional relationship between the aerial camera and the satellite positioning antenna, and the aerial camera and inertia By calculating the difference in orientation with the measuring device, the position of the aerial photograph taken from the position of the antenna obtained by satellite positioning and the attitude of the inertial measuring device obtained by the inertial measurement device, and the aerial imaged A technique called direct localization, which requires a photo orientation, has been put into practical use (see Non-Patent Document 1).

調査用センサーで取得した地理空間情報に、地球上での位置を、衛星測位と慣性計測装置との組み合わせで与える直接定位技術の実用化は、一発一発に照射位置と照射方向を、機器側で完全に観測する必要がある航空レーザ測量による標高取得をはじめ、多くの種類の地理空間情報に、地球上での位置を与えられるようにし、地理空間情報を上空から観測する技術を発展させた。  Practical use of direct localization technology that gives geospatial information acquired by survey sensors to the position on the earth by a combination of satellite positioning and inertial measurement equipment. Development of technology for observing geospatial information from the sky, such as obtaining altitudes for many types of geospatial information, including altitude acquisition by aerial laser surveying, which requires complete observation on the side It was.

『−公共測量−作業規程の準則(平成23年3月31日改正版)解説と運用』 平成24年10月29日 社団法人日本測量協会“-Public Surveying-Rules of Work Regulations (revised March 31, 2011) Explanation and Operation” October 29, 2012 Japan Surveying Association

詳細な地理空間情報は、現地測量や航空写真測量、航空レーザ測量などで作成されるのが、一般的である。
それぞれの測量は、次のような特徴を有する。
Detailed geospatial information is generally created by field surveys, aerial photogrammetry, aerial laser surveys, or the like.
Each survey has the following characteristics.

現地測量では、民地への立ち入りが難しいため、主に道路からの測量となる。そのため、道路から見通せない地理空間情報は、作成することができず、網羅的に地理空間情報を作成したい場合の手法としては適していない。  In field surveys, it is difficult to enter private areas, so surveys are mainly from roads. For this reason, geospatial information that cannot be seen from the road cannot be created, and is not suitable as a method for comprehensively creating geospatial information.

航空写真測量では、低高度から航空写真を撮影すれば、地理空間情報を、詳細かつ網羅的に作成することができるが、航空機をはじめ大掛かりな機材を使用するため、地理空間情報の作成費用が高額になってしまう。  In aerial photogrammetry, you can create detailed and comprehensive geospatial information by taking an aerial photograph from a low altitude, but because of the use of large aircraft and other equipment, the cost of creating geospatial information is low. It becomes expensive.

航空レーザ測量では、計測高度を低くしていけば、計測できる標高の間隔は短くできるが、計測位置が離散的であるため、詳細かつ網羅的な計測が求められるところに多く存在しがちな人工的な形状の変化を捉えることは困難である。また、航空機をはじめ大掛かりな機材を使用するため、地理空間情報の作成費用が高額になってしまう。  In aerial laser surveying, if the measurement altitude is lowered, the altitude intervals that can be measured can be shortened, but the measurement positions are discrete, so there are many artificial objects that tend to exist where detailed and comprehensive measurements are required. It is difficult to capture the change in shape. Moreover, since large-scale equipment such as an aircraft is used, the cost of creating geospatial information becomes high.

ドローン、あるいはUAV(Unmanned Aerial Vehicle)とも呼ばれる無人航空機の普及に伴い、無人航空機に、数万円から数十万円程度の民生用カメラや、百万円程度の近距離観測用のレーザスキャナを搭載することで、詳細な地理空間情報が、網羅的かつ安価に作成できる可能性が高まってきた。  With the spread of unmanned aerial vehicles, also called drones or UAVs (Unmanned Aero Vehicles), consumer cameras ranging from tens of thousands to hundreds of thousands of yen and laser scanners for short-range observations of about millions of yen have been added to unmanned aircraft. By installing it, the possibility that detailed geospatial information can be created comprehensively and inexpensively has increased.

しかしながら普及が進む無人航空機は、空中を飛行することから、機体1が大きく傾くことがあるとともに、ロータの高速回転によって激しい振動が発生する。  However, unmanned aerial vehicles, which are becoming popular, fly in the air, so that the fuselage 1 may be greatly tilted and intense vibrations are generated by the high-speed rotation of the rotor.

そのため、カメラを搭載して写真測量を行う場合には、防振機構11を具備したジンバルに、カメラを装着することにより、カメラを鉛直方向に向けるとともに、機体1の振動の影響を抑えた撮影を実現する。
しかしながら、この方法を採用すると、衛星測位用アンテナとの位置関係、慣性計測装置をはじめとする姿勢観測用センサーとの姿勢の較差が常に変わってしまい、写真が撮影された位置と、撮影された写真の姿勢を、直接定位では観測することができず、効率化が図れない。
Therefore, when carrying out photogrammetry with a camera mounted, the camera is mounted on a gimbal equipped with a vibration isolation mechanism 11 so that the camera is directed in the vertical direction and the influence of vibration of the airframe 1 is suppressed. To realize.
However, when this method is adopted, the positional relationship with the satellite positioning antenna and the attitude difference with the attitude measurement sensor and other attitude observation sensors always change, and the position where the photograph was taken and The orientation of the photograph cannot be observed directly, and efficiency cannot be achieved.

レーザスキャナを搭載してレーザ測量を行う場合は、照射されるレーザ光線の一発一発の照射した位置と方向を、機械的に把握しなければならないため、衛星測位用アンテナや姿勢観測用センサー、及びレーザスキャナが、無人航空機の機体1に装着され、直接定位装置が機能することになる。
しかしながら、1秒間に30万発といった数で照射されるレーザ光線の照射位置と照射方向は、回転翼型の無人航空機の機体1が発する振動に、常に晒され、品質の確保が困難となる。
When laser surveying is performed with a laser scanner, it is necessary to mechanically grasp the position and direction of each emitted laser beam, so a satellite positioning antenna or attitude observation sensor And the laser scanner are mounted on the body 1 of the unmanned aerial vehicle, and the localization device functions directly.
However, the irradiation position and irradiation direction of the laser beam irradiated at a number of 300,000 shots per second are constantly exposed to vibrations generated by the airfoil 1 of the rotary wing unmanned aircraft, making it difficult to ensure quality.

無人航空機の機体1の、上部に台座5、下部にセンサー駕籠7を装着でき、上部の台座5と下部のセンサー駕籠7とを、無人航空機に接触しないように繋げることができる、軽量で高剛性の構造体を用意する。
構造体の形状は、機体1を囲むロの字や、機体1の片面のみを囲むコの字、機体1の中心に、進行方向に構造体が揺動できる充分な空間が備わっているなら、この空間を通るIの字でも、空間内に収まるロの字でもよい。
センサー駕籠7は、鉤留めで、各種センサーを構造体に固定するものでもよい。
The unmanned aerial vehicle body 1 can be equipped with a pedestal 5 at the top and a sensor rod 7 at the bottom, and the upper pedestal 5 and the lower sensor rod 7 can be connected without touching the unmanned aircraft. Prepare a highly rigid structure.
The shape of the structure is a square shape surrounding the body 1, a U shape surrounding only one side of the body 1, and a sufficient space in the center of the body 1 that allows the structure to swing in the direction of travel. The letter I that passes through this space or the letter B that fits in the space may be used.
The sensor rod 7 may be clamped to fix various sensors to the structure.

ロの字やコの字といった形状の構造体には、下弦材4にセンサー駕籠7を装着するとともに、根元に防振機構11を、先端に軸受機構12を、具備した姿勢安定器を、無人航空機の機体1の床下に吊り具10で固定するとともに、軸受機構12の中に構造体の下弦材4を通すことで、無人航空機の機体1から構造体への振動を抑制するとともに、軸受機構12を中心として構造体が、センサー駕籠7と一体となって、自由回転できるようにする。
Iの字による無人航空機の機体1の中心を抜ける構造体、あるいはロの字による無人航空機の機体1内の空間に収まる構造体は、構造体の柱2の途中に軸受機構12を設け、梁を通し、梁の両端の根元に防振機構11を具備した姿勢安定器を装着し、防振機構11を無人航空機の機体1に吊り具10で固定することで、無人航空機の機体1から構造体への振動が抑制され、軸受機構12を中心として構造体が、センサー駕籠7と一体となって、自由に回転できるようにする。
構造体は、無人航空機の機体1の大きさや形状、構造体の安定度によって、固定する箇所数や配置を設定する。
The structure of the shape such as B or U has a posture stabilizer equipped with a sensor rod 7 on the lower chord 4 and a vibration isolation mechanism 11 at the base and a bearing mechanism 12 at the tip. While fixing with the hanging tool 10 under the floor of the unmanned aircraft body 1 and passing the lower chord 4 of the structure through the bearing mechanism 12, vibration from the unmanned aircraft body 1 to the structure is suppressed and the bearing The structure around the mechanism 12 is integrated with the sensor rod 7 so that it can freely rotate.
A structure that passes through the center of the unmanned aerial vehicle body 1 by the letter I or a structure that fits in the space in the unmanned aircraft body 1 by the letter B is provided with a bearing mechanism 12 in the middle of the pillar 2 of the structure, The attitude stabilizer having the vibration isolating mechanism 11 is attached to the base of both ends of the beam, and the anti-vibration mechanism 11 is fixed to the airframe 1 of the unmanned aerial vehicle with the lifting tool 10 to construct the structure from the airframe 1 of the unmanned aerial vehicle. Vibrations to the body are suppressed, and the structure is integrated with the sensor rod 7 around the bearing mechanism 12 so as to be freely rotatable.
The number of locations and arrangement of the structures are set according to the size and shape of the unmanned aerial vehicle body 1 and the stability of the structure.

構造体の上弦材3には、衛星測位用アンテナの台座5を設ける。
無人航空機の機体1から衛星測位用アンテナへの影響、あるいは衛星測位用アンテナによる無人航空機の機体1への影響がある場合には、構造体の上弦材3に架台6を立て、架台6の上に衛星測位用アンテナを設置してもよい。
上弦材3には、衛星測位用アンテナに加え、必要に応じて各種センサーを設置してもよい。
A pedestal 5 for a satellite positioning antenna is provided on the upper chord member 3 of the structure.
If there is an influence on the satellite positioning antenna from the unmanned aerial vehicle body 1 or an influence on the unmanned aircraft body 1 by the satellite positioning antenna, the frame 6 is set up on the upper chord 3 of the structure, A satellite positioning antenna may be installed in the.
In addition to the satellite positioning antenna, various sensors may be installed on the upper chord member 3 as necessary.

構造体の適当な場所に、調査用や姿勢観測用の各種センサーを装備するためのセンサー駕籠7を設ける。
センサー駕籠7は、使用するセンサーの数に応じた階層構造にするとともに、調査方向に向け、各種調査用センサーを装着できるようにしてもよい。
A sensor rod 7 for installing various sensors for investigation and attitude observation is provided at an appropriate location of the structure.
The sensor rod 7 may have a hierarchical structure corresponding to the number of sensors to be used, and may allow various survey sensors to be mounted in the survey direction.

構造体の上弦材3に装着した台座5と、構造体に装着したセンサー駕籠7は、衛星測位用アンテナ、各種調査用センサー、姿勢観測用センサーが設置された際に、それらの重心が構造体の中央に来るように、設置位置を調整する。
また、センサー駕籠7の一部に重しを取り付け、重しの量や重しの配置によって、重心を構造体の中央にくるように調整してもよい。
The pedestal 5 attached to the upper chord material 3 of the structure and the sensor rod 7 attached to the structure have a center of gravity when a satellite positioning antenna, various survey sensors, and attitude observation sensors are installed. Adjust the installation position so that it is in the center of the body.
Further, a weight may be attached to a part of the sensor rod 7, and the center of gravity may be adjusted to be at the center of the structure by the amount of weight and the arrangement of the weight.

無人航空機の飛行中、機体1の激しい揺れによって、構造体が機体1に衝突することを防ぐため、機体1と構造体との間に、衝突緩衝具13を装着する。
衝突緩衝具13としては、構造体の上弦材3が無人航空機の機体1の屋上に衝突する、機体1の屋上の前方と後方に、それぞれ装着してもよい。
あるいは、下弦材4に吊り下げたセンサー駕籠7と無人航空機の機体1の床下との間をバネで留め、バネの伸縮によって、構造体の下弦材4に装着したセンサー駕籠7が、無人航空機の機体1にぶつからないようにしてもよい。
In order to prevent the structural body from colliding with the airframe 1 due to severe shaking of the airframe 1 during the flight of the unmanned aircraft, a collision buffer 13 is mounted between the airframe 1 and the structural body.
As the collision shock absorber 13, the upper chord material 3 of the structure may collide with the roof of the airframe 1 of the unmanned aircraft, and may be mounted on the front and rear of the airframe 1.
Alternatively, the sensor rod 7 hung on the lower chord material 4 and the floor of the unmanned aircraft body 1 are fixed with a spring, and the sensor rod 7 attached to the lower chord material 4 of the structure is unmanned by the expansion and contraction of the spring. You may make it not collide with the airframe 1 of an aircraft.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

無人航空機の機体1の上部に台座5を、機体1の下部にセンサー駕籠7を、それぞれ装着でき、上部の台座5と下部のセンサー駕籠7を、無人航空機の機体1に接触しないように繋げることができる、無人航空機の機体1の周囲を囲う、軽量で高剛性の、柱2と上弦材3及び下弦材4で構成される、構造体を用意する。  The pedestal 5 can be mounted on the upper part of the unmanned aircraft body 1 and the sensor cage 7 can be mounted on the lower part of the aircraft 1 so that the upper pedestal 5 and the lower sensor cage 7 do not contact the aircraft 1 of the unmanned aircraft. There is prepared a light-weight, high-rigidity structure composed of a pillar 2, an upper chord member 3 and a lower chord member 4 that surrounds the body 1 of an unmanned aerial vehicle that can be connected.

無人航空機の機体1を囲う構造体には、根元に防振機構11を、先端に軸受機構12を、それぞれ具備した姿勢安定器を用意し、防振機構11を無人航空機の機体1の床下に吊り具10で固定するとともに、軸受機構12に構造体の下弦材4を通すことで、無人航空機の機体1から構造体への振動が抑制されるとともに、軸受機構12を中心として構造体が、センサー駕籠7と一体となって、自由に回転できるようにする。  The structure surrounding the fuselage 1 of the unmanned aircraft is provided with a posture stabilizer having a vibration isolation mechanism 11 at the base and a bearing mechanism 12 at the tip, and the vibration isolation mechanism 11 is placed under the floor of the aircraft 1 of the unmanned aircraft. While fixing with the lifting tool 10 and passing the lower chord member 4 of the structure through the bearing mechanism 12, vibration from the airframe 1 of the unmanned aerial vehicle to the structure is suppressed, and the structure around the bearing mechanism 12 is Integrate with sensor rod 7 so that it can rotate freely.

構造体の上弦材3に架台6を立て、架台6の上に衛星測位用アンテナを装着できるようにする。  A gantry 6 is set up on the upper chord material 3 of the structure so that a satellite positioning antenna can be mounted on the gantry 6.

構造体の下部には、調査用や姿勢観測用の各種センサーを吊り下げるためのセンサー駕籠7を装着する。センサー駕籠7は二層構造とし、上層には収納棚9を設けて姿勢観測用センサーを、下層には固定機構8を設けて調査用センサーを、それぞれ固定できるようにする。  A sensor rod 7 for suspending various sensors for investigation and posture observation is attached to the lower part of the structure. The sensor rod 7 has a two-layer structure, and a storage shelf 9 is provided in the upper layer and a posture observation sensor is provided, and a fixing mechanism 8 is provided in the lower layer so that the investigation sensor can be fixed.

構造体の上弦材3に装着した台座5と構造体の下弦材4に装着したセンサー駕籠7は、衛星測位用アンテナや各種センサーが設置された際に、それらの重心が構造体の中央に来るように、設置位置を調整する。
また、センサー駕籠7の一部に重しを取り付け、重しの量や重しの配置によって、重心を構造体の中央に調整できるようにしてもよい。
The base 5 attached to the upper chord member 3 of the structure and the sensor rod 7 attached to the lower chord member 4 of the structure have their center of gravity at the center of the structure when a satellite positioning antenna and various sensors are installed. Adjust the installation position to come.
Further, a weight may be attached to a part of the sensor rod 7 so that the center of gravity can be adjusted to the center of the structure by the amount of the weight and the arrangement of the weight.

無人航空機の飛行中、機体1の激しい揺れによって、構造体が機体1に衝突することを防ぐため、機体1の屋上と構造体との間に、衝突緩衝具13を装着する。  In order to prevent the structure from colliding with the airframe 1 due to severe shaking of the airframe 1 during the flight of the unmanned aerial vehicle, a collision buffer 13 is mounted between the roof of the airframe 1 and the structure.

発明の効果The invention's effect

上空からの、地理空間情報の取得に必要となる衛星測位用アンテナ、調査用や姿勢観測用の各種センサーを設置するセンサー駕籠7を装着した、構造体を提供し、無人航空機の機体1自体に、個々に、測位用アンテナや各種センサーを設置する場所を用意する必要がなくなる。  An unmanned aerial vehicle body 1 itself is provided by providing a structure equipped with a satellite positioning antenna necessary for obtaining geospatial information from the sky and a sensor rod 7 for installing various sensors for survey and attitude observation. In addition, it is not necessary to prepare a place for installing a positioning antenna and various sensors individually.

構造体の下弦材4をセンサー駕籠7の先端に設けて軸受機構12で支えるとともに、各種センサーの重みや重しの量や重しの配置によって、各種センサーの向きを観測に必要となる向きとすることができる。  The lower chord material 4 of the structure is provided at the tip of the sensor rod 7 and supported by the bearing mechanism 12, and the direction required for observation of the direction of the various sensors is determined by the weight of the various sensors, the amount of weight, and the arrangement of the weights. It can be.

構造体の下弦材4に姿勢安定器を固定し、吊り具10で、無人航空機の機体1に吊り下げることで、無人航空機の機体1が発する振動を抑制できる。  By fixing the posture stabilizer to the lower chord member 4 of the structure and suspending it from the fuselage 1 of the unmanned aerial vehicle with the hanger 10, vibration generated by the unmanned aircraft fuselage 1 can be suppressed.

衛星測位用アンテナが無人航空機の機体1の屋上に、調査用や姿勢観測用の各種センサーが無人航空機の機体1に、所定の位置と方向で、それぞれ装着できるとともに、衛星測位用アンテナと各種センサーの関係が固定され、機体1からの振動が抑制され、雲台の施肥性が安定することで、衛星測位や姿勢観測による、調査用センサーが取得した地理空間情報に対し、地球上での位置を精度よく与えることができる。  The satellite positioning antenna can be mounted on the roof of the unmanned aerial vehicle body 1 and various sensors for surveying and attitude observation can be mounted on the unmanned aircraft body 1 at predetermined positions and directions. Is fixed, the vibration from the fuselage 1 is suppressed, and the fertilizer application of the pan head is stabilized, so that the geospatial information acquired by the survey sensor by satellite positioning and attitude observation can be Can be given with high accuracy.

正面図  Front view 側面図  Side view センサー駕籠7の斜視図  Perspective view of sensor rod 7

1 無人航空機の機体
2 柱(構造体)
3 上弦材(構造体)
4 下弦材(構造体)
5 台座(測位用アンテナ用)
6 架台
7 センサー駕籠7
8 固定機構(センサー駕籠7のセンサー用)
9 収納棚(センサー駕籠7のセンサー用)
10 吊り具(センサー駕籠7用)
11 防振機構(センサー駕籠7用)
12 軸受機構
13 衝突緩衝具
1 Unmanned aerial vehicle body 2 Pillar (structure)
3 Upper chord material (structure)
4 Lower chord material (structure)
5 pedestal (for positioning antenna)
6 Base 7 Sensor 駕 籠 7
8 Fixing mechanism (for sensor 駕 籠 7 sensor)
9 Storage shelf (for sensor of sensor 駕 籠 7)
10 Hanger (for sensor 駕 籠 7)
11 Anti-vibration mechanism (for sensor 駕 籠 7)
12 Bearing mechanism 13 Impact buffer

Claims (3)

無人航空機に装着する器具であって、
無人航空機の上方と下方を繋ぐ構造体の
上部に衛星測位用アンテナを、
適当な場所に調査用や姿勢観測用の各種センサーを搭載するセンサー駕籠7を、
装着できる、
衛星測位用アンテナや各種センサーの位置関係固定具。
An appliance to be installed on an unmanned aircraft,
A satellite positioning antenna is placed on the upper part of the structure that connects the upper and lower parts of the unmanned aircraft.
Sensor す る 7 equipped with various sensors for investigation and attitude observation in appropriate places,
Can be installed,
Positioning fixtures for satellite positioning antennas and sensors.
請求項1の位置関係固定具を、無人航空機に装着する、次の特徴を有する機構の、いずれかひとつ以上を具備した姿勢安定器。
(1)調査用センサーの姿勢を安定させる機構であって、
位置関係固定具の重みや
適当な場所に装着した調査用や姿勢観測用のセンサーの重み、
位置関係固定具に装着した重しの量で、
位置関係固定具を所定の方向に向かせる。
(2)無人航空機からの振動を抑制する機構であって、
無人航空機の振動を、
防振バネや防振ゴムなどによって抑制する。
An attitude stabilizer comprising any one or more of the following features for mounting the positional relationship fixture of claim 1 on an unmanned aerial vehicle.
(1) A mechanism for stabilizing the attitude of the survey sensor,
The weight of the positional fixture, the weight of the sensor for investigation and posture observation installed in an appropriate place,
The amount of weight attached to the positional fixture,
The positional relationship fixture is directed in a predetermined direction.
(2) A mechanism for suppressing vibration from an unmanned aerial vehicle,
The vibration of unmanned aircraft
Suppressed by anti-vibration springs or anti-vibration rubber.
請求項1の位置関係固定具に、請求項2の姿勢安定器を固定し、衛星測位用アンテナや各種センサーの位置関係を固定するとともに、衛星測位用アンテナや各種センサーの姿勢を安定させる、無人航空機に装着する、衛星測位用アンテナや各種センサーの雲台。  The posture stabilizer of claim 2 is fixed to the positional relationship fixture of claim 1 to fix the positional relationship of the satellite positioning antenna and various sensors and to stabilize the posture of the satellite positioning antenna and various sensors. A pan head for satellite positioning antennas and various sensors to be installed on aircraft.
JP2018095761A 2018-04-26 2018-04-26 Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture Pending JP2019189196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018095761A JP2019189196A (en) 2018-04-26 2018-04-26 Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018095761A JP2019189196A (en) 2018-04-26 2018-04-26 Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture

Publications (1)

Publication Number Publication Date
JP2019189196A true JP2019189196A (en) 2019-10-31

Family

ID=68388928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018095761A Pending JP2019189196A (en) 2018-04-26 2018-04-26 Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture

Country Status (1)

Country Link
JP (1) JP2019189196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270324B2 (en) 2021-01-27 2023-05-10 株式会社レールテック unmanned aerial vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167413A (en) * 2013-02-28 2014-09-11 Topcon Corp Aerial photograph system
US20150021429A1 (en) * 2013-07-18 2015-01-22 OIC-GmbH Remote-Controlled Aerial Device Platform
WO2016185572A1 (en) * 2015-05-19 2016-11-24 株式会社0 Rotorcraft
JP2017193208A (en) * 2016-04-18 2017-10-26 株式会社自律制御システム研究所 Small-sized unmanned aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167413A (en) * 2013-02-28 2014-09-11 Topcon Corp Aerial photograph system
US20150021429A1 (en) * 2013-07-18 2015-01-22 OIC-GmbH Remote-Controlled Aerial Device Platform
WO2016185572A1 (en) * 2015-05-19 2016-11-24 株式会社0 Rotorcraft
JP2017193208A (en) * 2016-04-18 2017-10-26 株式会社自律制御システム研究所 Small-sized unmanned aircraft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270324B2 (en) 2021-01-27 2023-05-10 株式会社レールテック unmanned aerial vehicle

Similar Documents

Publication Publication Date Title
US10563985B2 (en) Inertial sensing device
EP2772725B1 (en) Aerial Photographing System
JP6290735B2 (en) Survey method
EA022224B1 (en) Stabilization system for sensors on moving platforms
KR101103846B1 (en) Floating on the unmanned aerial vehicles and their systems of information collection and transmit methods
US20230126449A1 (en) Rotary wing aircraft
CN102829779B (en) Aircraft multi-optical flow sensor and inertia navigation combination method
CN110312913A (en) Method and system for adaptive holder
CN101044416A (en) Unmanned airborne vehicle for geophysical surveying
US20130215433A1 (en) Hover cmm
KR102174827B1 (en) Photoflight system for acquiring precise image using gps and ins
CN109597133B (en) Apparatus and method for vector component data acquisition
CN106081173A (en) Three-dimensional actively suspension spacecraft microgravity analog
JP2017193208A (en) Small-sized unmanned aircraft
JP2019026244A (en) Ceiling travel type unmanned flight body
KR102111778B1 (en) Level maintaining apparatus
JP2019189196A (en) Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture
JP2019191888A (en) Unmanned flying object, unmanned flying method and unmanned flying program
RU2697474C1 (en) Method for gravimetric survey using unmanned aerial vehicle
JP2020029256A (en) Rotorcraft
CN106443705A (en) Airborne laser radar measurement system and method
RU2771749C2 (en) Data collection device and method
JP6629771B2 (en) Unmanned aerial vehicle
Negru et al. Aspects Regarding the Transverse Vibrations Eigenmodes of a Cantilever Beam Used for Clamping the Electric Motor on Unmanned Aerial Vehicle
Jones et al. Photogrammetric technique for center of gravity determination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221011