JP2019184565A - Displacement measuring method and displacement measuring device - Google Patents

Displacement measuring method and displacement measuring device Download PDF

Info

Publication number
JP2019184565A
JP2019184565A JP2018194570A JP2018194570A JP2019184565A JP 2019184565 A JP2019184565 A JP 2019184565A JP 2018194570 A JP2018194570 A JP 2018194570A JP 2018194570 A JP2018194570 A JP 2018194570A JP 2019184565 A JP2019184565 A JP 2019184565A
Authority
JP
Japan
Prior art keywords
displacement
frequency
phase change
change amount
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018194570A
Other languages
Japanese (ja)
Other versions
JP7074013B2 (en
Inventor
貴博 木下
Takahiro Kinoshita
貴博 木下
杉橋 敦史
Atsushi Sugibashi
敦史 杉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2019184565A publication Critical patent/JP2019184565A/en
Application granted granted Critical
Publication of JP7074013B2 publication Critical patent/JP7074013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

To provide a displacement measuring method and a displacement measuring device with which it is possible to suppress a measurement error and accurately measure the displacement of a measurement surface when measuring the displacement of a measurement surface utilizing a phase variation obtained from a 6-port circuit.SOLUTION: With a displacement measuring device 1, since a 6-port circuit 11 is used and a phase delay amount at each frequency in the 6-port circuit 11 is predefined, even when measuring a displacement D using a transmit signal whose frequency is changed in relation to time, it is possible to suppress a measurement error in the 6-port circuit 11 and accurately measure the displacement D of a measurement surface 10. Furthermore, with the displacement measuring device 1, as 2π uncertainty is removable, it is possible to suppress a measurement error and accurately measure the displacement D of the measurement surface 10 to that extent.SELECTED DRAWING: Figure 1

Description

本発明は、マイクロ波を用いて測定面の変位を測定する変位測定方法及び変位測定装置に関する。   The present invention relates to a displacement measuring method and a displacement measuring apparatus for measuring the displacement of a measurement surface using a microwave.

マイクロ波は、粉塵やミスト等の粒子の透過性に優れるという特徴をもち、高温粉塵環境である製鉄プロセスにおける距離計測等に用いられている。マイクロ波を用いた距離計測方式としては、FMCWやパルスを用いる方法が知られているが、これらの方法では距離分解能が周波数帯域幅によって制限される。   Microwaves have a feature that they are excellent in permeability of particles such as dust and mist, and are used for distance measurement in an iron making process that is a high-temperature dust environment. As distance measurement methods using microwaves, methods using FMCW and pulses are known, but in these methods, distance resolution is limited by the frequency bandwidth.

例えば、周波数帯域幅が1GHzの場合、距離分解能は150mmとなる。mm以下の高い距離分解能を実現するためには、非常に広い周波数帯域幅を使用する必要がある。しかしながら、広い周波数帯域幅を有するマイクロ波を用いた場合、他の電波を使用する装置と干渉する等の問題が発生する可能性があるため、実現が困難である。   For example, when the frequency bandwidth is 1 GHz, the distance resolution is 150 mm. In order to realize a high distance resolution of mm or less, it is necessary to use a very wide frequency bandwidth. However, when microwaves having a wide frequency bandwidth are used, problems such as interference with devices using other radio waves may occur, which is difficult to realize.

そこで、特許文献1に示すように、参照信号と、物体からの受信信号との間に生じる位相変化量から物体の変位を求める方法が考えられている。特許文献1には、2つの入力ポートと4つの出力ポートを備えた6ポート回路(非特許文献1参照)を用いて、位相変化量を測定することが提案されている。   Therefore, as shown in Patent Document 1, a method of obtaining the displacement of an object from a phase change amount generated between a reference signal and a received signal from the object is considered. Patent Document 1 proposes measuring a phase change amount using a 6-port circuit (see Non-Patent Document 1) having two input ports and four output ports.

特開2007−316066号公報JP 2007-316066 A

IEEE microwave magazine 11(7),35−43,2010 「The Six−Port in Modern Society」IEEE microwave magazine 11 (7), 35-43, 2010 "The Six-Port in Modern Society"

しかしながら、特許文献1に示す方法は、発振器の周波数が単一に固定されており、測定される位相変化量が0〜2πの範囲に限られている。そのため、波長を超えた大きさの変位は、同じ位相変化量を与える変位と区別できないという不定性が生じ、正しく測定が行えないという問題がある。   However, in the method shown in Patent Document 1, the frequency of the oscillator is fixed to a single value, and the measured phase change amount is limited to the range of 0 to 2π. For this reason, a displacement exceeding the wavelength causes indefiniteness that cannot be distinguished from a displacement that gives the same amount of phase change, and there is a problem that measurement cannot be performed correctly.

また、このような位相の2πの不定性を取り除くにあたっては、送信信号の周波数を時間に対して変化させる周波数掃引を使う方法もあるが、6ポート回路で付与される位相遅延量は周波数によって異なるため、測定誤差が生じるという問題がある。   Further, in order to remove the 2π indefiniteness of the phase, there is a method of using a frequency sweep in which the frequency of the transmission signal is changed with respect to time. However, the phase delay amount given by the 6-port circuit differs depending on the frequency. Therefore, there is a problem that a measurement error occurs.

本発明は、上記のような問題に鑑みてなされたものであり、6ポート回路から得られた位相変化量を利用して測定面の変位を測定するにあたり、測定誤差を抑制して測定面の変位を正確に測定できる変位測定方法及び変位測定装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in measuring the displacement of the measurement surface using the phase change amount obtained from the 6-port circuit, the measurement error is suppressed and the measurement error is suppressed. An object of the present invention is to provide a displacement measuring method and a displacement measuring apparatus capable of accurately measuring a displacement.

本発明の変位測定方法は、マイクロ波を送信信号として用いて測定面の変位を測定する変位測定方法において、周波数を時間に対して変化させた前記送信信号を前記測定面に送信し、前記測定面からの反射マイクロ波を受信信号として受信する送受信工程と、6ポート回路に対し、前記送信信号を参照信号として入力するとともに、前記測定面の変位を測定する際に得られた前記受信信号を入力する実測値入力工程と、前記実測値入力工程により前記6ポート回路から出力される4つの信号の電力値と、前記送信信号の各前記周波数における前記6ポート回路での位相遅延量θと、に基づいて、各前記周波数で位相変化量△φを算出する位相演算工程と、前記位相変化量△φの前記周波数に対する傾きを基に前記測定面の粗変位D´を算出する粗変位算出工程と、前記粗変位D´と前記位相変化量△φとを用いて、位相特性である2πの不定性を解消する整数nを算出する位相不定性解消工程と、前記整数nを規定して2πの不定性を解消した所定の演算式により、前記位相変化量△φを用いて前記測定面の変位Dを算出する変位算出工程と、を備えるものである。   The displacement measuring method of the present invention is a displacement measuring method for measuring the displacement of a measurement surface using a microwave as a transmission signal, wherein the transmission signal whose frequency is changed with respect to time is transmitted to the measurement surface, and the measurement is performed. A transmission / reception step of receiving a reflected microwave from a surface as a reception signal, and inputting the transmission signal as a reference signal to a 6-port circuit, and receiving the reception signal obtained when measuring the displacement of the measurement surface An actual measurement value input step to be input; power values of four signals output from the 6-port circuit by the actual measurement value input step; and a phase delay amount θ in the 6-port circuit at each frequency of the transmission signal; Based on the phase calculation step of calculating the phase change amount Δφ at each frequency, and the coarse displacement D ′ of the measurement surface is calculated based on the inclination of the phase change amount Δφ with respect to the frequency. Using a displacement calculating step, a phase indeterminacy eliminating step for calculating an integer n that eliminates an indefiniteness of 2π, which is a phase characteristic, using the rough displacement D ′ and the phase change Δφ, the integer n is defined. And a displacement calculating step of calculating the displacement D of the measurement surface using the phase change amount Δφ according to a predetermined arithmetic expression in which the indefiniteness of 2π is eliminated.

本発明の変位測定装置は、マイクロ波を送信信号として用いて測定面の変位を測定する変位測定装置において、周波数を時間に対して変化させた前記送信信号を前記測定面に送信し、前記測定面からの反射マイクロ波を受信信号として受信する送受信部と、前記送信信号が参照信号として入力され、前記受信信号が入力される6ポート回路と、前記6ポート回路から出力される4つの電力値と、前記送信信号の各前記周波数における前記6ポート回路での位相遅延量θと、に基づいて、各前記周波数で位相変化量△φを算出する位相演算部と、前記位相変化量△φの前記周波数に対する傾きを基に前記測定面の粗変位D´を算出する粗変位算出部と、前記粗変位D´と前記位相変化量△φとを用いて、位相特性である2πの不定性を解消する整数nを算出する位相不定性解消部と、前記整数nを規定して2πの不定性を解消した所定の演算式により、前記位相変化量△φを用いて前記測定面の変位Dを算出する変位算出部と、を備えるものである。   The displacement measuring device of the present invention is a displacement measuring device that measures the displacement of a measurement surface using a microwave as a transmission signal, and transmits the transmission signal whose frequency is changed with respect to time to the measurement surface. A transmitting / receiving unit that receives a reflected microwave from the surface as a received signal; a 6-port circuit in which the transmitted signal is input as a reference signal; and the received signal is input; and four power values output from the 6-port circuit And a phase calculation unit that calculates a phase change amount Δφ at each frequency based on the phase delay amount θ in the 6-port circuit at each frequency of the transmission signal, and the phase change amount Δφ Using the coarse displacement calculation unit for calculating the coarse displacement D ′ of the measurement surface based on the inclination with respect to the frequency, the coarse displacement D ′ and the phase change amount Δφ, the indefiniteness of 2π which is a phase characteristic is obtained. Integer to resolve Displacement calculation for calculating the displacement D of the measurement surface using the phase change amount Δφ by a phase indeterminacy eliminating unit for calculating the phase n and a predetermined arithmetic expression in which the integer n is defined and the indefiniteness of 2π is eliminated A section.

本発明によれば、6ポート回路を用いるとともに、周波数を時間に対して変化させた送信信号を用いて変位Dを測定しても、各周波数における6ポート回路での位相遅延量θを予め規定していることから、6ポート回路での測定誤差を抑制して測定面の変位Dを正確に測定できる。また、本発明によれば、位相の2πの不定性を取り除くことができるので、波長を超えた大きさの変位を正確に測定できる。   According to the present invention, a 6-port circuit is used, and even if the displacement D is measured using a transmission signal whose frequency is changed with respect to time, the phase delay amount θ in the 6-port circuit at each frequency is specified in advance. Therefore, it is possible to accurately measure the displacement D of the measurement surface while suppressing measurement errors in the 6-port circuit. In addition, according to the present invention, the indefiniteness of 2π of the phase can be removed, so that a displacement exceeding the wavelength can be accurately measured.

本発明の変位測定装置の構成を示す概略図である。It is the schematic which shows the structure of the displacement measuring apparatus of this invention. 計算機の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of a computer. 位相遅延量演算処理を示すフローチャートである。It is a flowchart which shows a phase delay amount calculation process. 周波数fと位相変化量△φとの関係を示したグラフである。6 is a graph showing a relationship between a frequency f and a phase change amount Δφ. 図4に示した周波数・位相変化量データに対して位相アンラッピング処理を行った結果を示すグラフである。It is a graph which shows the result of having performed the phase unwrapping process with respect to the frequency and phase variation | change_quantity data shown in FIG. 変位算出処理を示すフローチャートである。It is a flowchart which shows a displacement calculation process. 実際に与えた変位と、本発明の変位測定装置により算出した変位Dとを比較したグラフである。It is the graph which compared the displacement actually given and the displacement D computed by the displacement measuring apparatus of this invention. 非線形の成分を含んだ位相変化量△φを説明するためのグラフである。It is a graph for demonstrating phase variation amount (DELTA) (phi) containing a nonlinear component. 第2実施形態における計算機の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the computer in 2nd Embodiment. 位相演算部の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of a phase calculating part. 図11Aは周波数fと振幅Aとの関係を示したグラフであり、図11Bは周波数fと処理前位相変化量△φ´´との関係を示したグラフであり、図11Cは振幅A及び処理前位相変化量△φ´´に基づいて生成した複素信号を示したグラフである。11A is a graph showing the relationship between the frequency f and the amplitude A, FIG. 11B is a graph showing the relationship between the frequency f and the pre-processing phase change Δφ ″, and FIG. 11C shows the amplitude A and the processing. It is the graph which showed the complex signal produced | generated based on front phase variation | change_quantity (DELTA) phi ''. 図12Aは図11Cの複素信号を示したグラフであり、図12Bは第1フィルタ処理で用いる窓関数を示したグラフであり、図12Cは、第1フィルタ処理により得られた複素信号を示したグラフである。12A is a graph showing the complex signal of FIG. 11C, FIG. 12B is a graph showing the window function used in the first filter processing, and FIG. 12C shows the complex signal obtained by the first filter processing. It is a graph. 図13Aは図12Cの複素信号を示したグラフであり、図13Bは図13Aの複素信号を逆フーリエ変換することで得られた時間領域波形を示したグラフである。13A is a graph showing the complex signal of FIG. 12C, and FIG. 13B is a graph showing a time-domain waveform obtained by performing inverse Fourier transform on the complex signal of FIG. 13A. 図14Aは図13Cの時間領域波形を示したグラフであり、図14Bは第2フィルタ処理で用いる窓関数を示したグラフであり、図14Cは図14Bの窓関数により切り出された時間領域波形を示したグラフである。14A is a graph showing the time domain waveform of FIG. 13C, FIG. 14B is a graph showing the window function used in the second filter processing, and FIG. 14C shows the time domain waveform cut out by the window function of FIG. 14B. It is the shown graph. 図15Aは図14Cの時間領域波形を示したグラフであり、図15Bは図15Aの時間領域波形をフーリエ変換することで得られた周波数領域波形を示したグラフである。15A is a graph showing the time domain waveform of FIG. 14C, and FIG. 15B is a graph showing the frequency domain waveform obtained by Fourier transforming the time domain waveform of FIG. 15A. 図16Aは図15Bの周波数領域波形を示したグラフであり、図16Bは図16Aの時間領域波形を割り戻す窓関数を示したグラフであり、図16Cは図16Bの窓関数により割り戻された不要波抑制信号を示したグラフである。16A is a graph showing the frequency domain waveform of FIG. 15B, FIG. 16B is a graph showing a window function for reverting the time domain waveform of FIG. 16A, and FIG. 16C is rebated by the window function of FIG. 16B. It is the graph which showed the unnecessary wave suppression signal. 図17Aは図16Cの不要波抑制信号を示したグラフであり、図17Bは図17Aの不要波抑制信号から算出した振幅A´を示したグラフであり、図17Cは図17Aの不要波抑制信号から算出した位相変化量△φ´´を示したグラフである。17A is a graph showing the unwanted wave suppression signal of FIG. 16C, FIG. 17B is a graph showing the amplitude A ′ calculated from the unwanted wave suppression signal of FIG. 17A, and FIG. 17C is the unwanted wave suppression signal of FIG. 5 is a graph showing the phase change amount Δφ ″ calculated from 第2実施形態における変位算出処理を示すフローチャートである。It is a flowchart which shows the displacement calculation process in 2nd Embodiment. 検証試験により得られた処理前位相変化量△φ´´を示すグラフである。It is a graph which shows phase change amount (DELTA) phi '' before processing obtained by the verification test. 不要波成分を抑制する前の時間領域波形を示したグラフである。It is the graph which showed the time domain waveform before suppressing an unnecessary wave component. 図20の時間領域波形からハニング窓を用いて所望信号を切り出した時間領域波形を示したグラフである。It is the graph which showed the time domain waveform which cut out the desired signal from the time domain waveform of FIG. 20 using the Hanning window. 図21の時間領域波形をフーリエ変換して得られた複素信号から算出した位相変化量△φを示すグラフである。FIG. 22 is a graph showing a phase change amount Δφ calculated from a complex signal obtained by Fourier transforming the time domain waveform of FIG. 21. 図22の位相変化量△φを基に算出した測定面の変位Dの測定結果を示したグラフである。FIG. 23 is a graph showing the measurement result of the displacement D of the measurement surface calculated based on the phase change amount Δφ in FIG. 22. 図24Aは、掃引周波数帯域幅が250[MHz]のときの変位Dの測定結果を示したグラフであり、図24Bは、掃引周波数帯域幅が500[MHz]のときの変位Dの測定結果を示したグラフであり、図24Cは、掃引周波数帯域幅が1[GHz]のときの変位Dの測定結果を示したグラフであり、図24Dは、掃引周波数帯域幅が2[GHz]のときの変位Dの測定結果を示したグラフであり、図24Eは、掃引周波数帯域幅が4[GHz]のときの変位Dの測定結果を示したグラフであり、図24Fは、掃引周波数帯域幅が8[GHz]のときの変位Dの測定結果を示したグラフである。FIG. 24A is a graph showing the measurement result of the displacement D when the sweep frequency bandwidth is 250 [MHz], and FIG. 24B shows the measurement result of the displacement D when the sweep frequency bandwidth is 500 [MHz]. FIG. 24C is a graph showing a measurement result of the displacement D when the sweep frequency bandwidth is 1 [GHz], and FIG. 24D is a graph when the sweep frequency bandwidth is 2 [GHz]. FIG. 24E is a graph showing the measurement result of the displacement D when the sweep frequency bandwidth is 4 [GHz], and FIG. 24F is a graph showing the measurement result of the displacement D. FIG. It is the graph which showed the measurement result of displacement D at the time of [GHz].

(1)第1実施形態
(1−1)本発明の変位測定装置の構成
始めに、本発明の変位測定装置の概略について説明する。図1は、本発明の変位測定装置1の構成を示した概略図である。本発明の変位測定装置1は、送受信部としての送受信アンテナ4に対して、測定対象物の測定面10の位置が変わり、その測定面10の変位Dを測定するものである。
(1) First Embodiment (1-1) Configuration of Displacement Measuring Device of the Present Invention First, an outline of the displacement measuring device of the present invention will be described. FIG. 1 is a schematic view showing the configuration of a displacement measuring apparatus 1 of the present invention. The displacement measuring apparatus 1 of the present invention measures the displacement D of the measurement surface 10 by changing the position of the measurement surface 10 of the measurement object with respect to the transmission / reception antenna 4 as a transmission / reception unit.

本実施形態の場合、測定面10は、送受信アンテナ4に近づく方向及び遠ざかる方向であるx方向に沿って移動する。本実施形態の場合、測定面10の変位Dは、x方向において、送受信アンテナ4から所定距離離れた位置にある基準位置Oからの移動量である。本発明による変位測定装置1は、このような測定面10の変位Dを測定できる。   In the case of this embodiment, the measurement surface 10 moves along the x direction, which is a direction approaching and away from the transmission / reception antenna 4. In the case of this embodiment, the displacement D of the measurement surface 10 is the amount of movement from the reference position O located at a predetermined distance from the transmitting / receiving antenna 4 in the x direction. The displacement measuring apparatus 1 according to the present invention can measure such a displacement D of the measurement surface 10.

変位測定装置1は、発振器2から送出された送信信号を、サーキュレータ3を介して送受信アンテナ4に送出し、当該送受信アンテナ4から測定面10に向けてマイクロ波を照射する。測定面10に照射するマイクロ波の周波数変調の幅と、当該マイクロ波の掃引周期は、予め所定の値に設定されている。送受信アンテナ4から測定面10に向けて照射されるマイクロ波の周波数は、時間の経過とともに変化する。   The displacement measuring device 1 sends the transmission signal sent from the oscillator 2 to the transmission / reception antenna 4 via the circulator 3 and irradiates the microwave from the transmission / reception antenna 4 toward the measurement surface 10. The width of the frequency modulation of the microwave applied to the measurement surface 10 and the sweep period of the microwave are set in advance to predetermined values. The frequency of the microwave irradiated from the transmission / reception antenna 4 toward the measurement surface 10 changes with time.

変位測定装置1は、測定面10からの反射マイクロ波を送受信アンテナ4で受信すると、受信信号としてサーキュレータ3を介して6ポート回路11に入力する。また、変位測定装置1は、発振器2の送信信号を参照信号として6ポート回路11に入力する。   When the displacement measurement apparatus 1 receives the reflected microwave from the measurement surface 10 by the transmission / reception antenna 4, the displacement measurement apparatus 1 inputs the received signal to the 6-port circuit 11 via the circulator 3. Further, the displacement measuring apparatus 1 inputs the transmission signal of the oscillator 2 to the 6-port circuit 11 as a reference signal.

6ポート回路11は、2つの入力ポートP1,P2と、4つの出力ポートP3,P4,P5,P6とを備えた回路である。なお、6ポート回路11は、特許文献1や非特許文献1において説明されているように周知回路であるため、ここでは詳細な説明は省略する。   The 6-port circuit 11 is a circuit provided with two input ports P1, P2 and four output ports P3, P4, P5, P6. Since the 6-port circuit 11 is a well-known circuit as described in Patent Document 1 and Non-Patent Document 1, detailed description thereof is omitted here.

電力測定機12は、6ポート回路11の各出力ポートP3,P4,P5,P6から出力された信号を受け、各信号毎にそれぞれ電力値B3,B4,B5,B6を測定し、これらをAD変換機13に出力する。AD変換機13は、電力値B3,B4,B5,B6に対してアナログデジタル変換処理を施し、デジタル信号に変換された電力値B3,B4,B5,B6を計算機14に出力する。   The power measuring machine 12 receives signals output from the output ports P3, P4, P5, and P6 of the 6-port circuit 11, measures the power values B3, B4, B5, and B6 for each signal, and converts them to AD. Output to the converter 13. The AD converter 13 performs analog-digital conversion processing on the power values B3, B4, B5, and B6, and outputs the power values B3, B4, B5, and B6 converted into digital signals to the computer 14.

計算機14は、6ポート回路から得られた信号の電力値B3,B4,B5,B6を利用して、位相遅延量演算処理や、変位算出処理を行うものであり、その詳細については後述する。なお、表示装置16は、計算機14の各種演算結果や、測定結果である変位Dを表示し、作業者に対して各種情報を提示する。また、記憶装置15は、計算機14の各種演算結果を記憶する。   The computer 14 performs phase delay amount calculation processing and displacement calculation processing using the power values B3, B4, B5, and B6 of the signal obtained from the 6-port circuit, and details thereof will be described later. The display device 16 displays various calculation results of the computer 14 and the displacement D that is a measurement result, and presents various information to the operator. The storage device 15 stores various calculation results of the computer 14.

(1−2)本発明における変位の測定原理について
本発明は、上述したように、6ポート回路11を備えた変位測定装置1において、測定面10の変位Dを測定可能であるが、ここで、変位Dの測定原理について以下説明する。
(1-2) Measurement principle of displacement in the present invention As described above, the present invention can measure the displacement D of the measurement surface 10 in the displacement measuring apparatus 1 including the 6-port circuit 11. The measurement principle of the displacement D will be described below.

マイクロ波帯の電磁波は、可視光や赤外光に比べて波長が長いために、粉塵透過性が高いという特長を有し、悪環境下での測定に有効な手段である。その一方で、波長が長いことから、例えば、FMCWを用いる場合には距離測定の分解能が低く、周波数帯域幅をF[Hz]、光速をc[m/s]とすれば、距離分解能はc/2Fに制限される。そのため、例えば、周波数帯域幅を1[GHz]とすれば、分解能は150[mm]となる。   Microwave electromagnetic waves have a feature of high dust permeability because they have longer wavelengths than visible light and infrared light, and are effective means for measurement in adverse environments. On the other hand, since the wavelength is long, for example, when using FMCW, the resolution of distance measurement is low, and if the frequency bandwidth is F [Hz] and the speed of light is c [m / s], the distance resolution is c Limited to / 2F. Therefore, for example, if the frequency bandwidth is 1 [GHz], the resolution is 150 [mm].

そのため、本発明の変位測定装置1では、変位測定の高分解能化を行う方法として、周波数の値を測定して変位測定を行うFMCWではなく、参照信号と受信信号から得られる位相変化量△φを測定する方法を適用しており、波長以下の微小な変位を高い分解能で求めることができる。しかしながら、測定面10までの距離が波長の2分の1以上変化すると、位相特性として、位相変化量△φと、位相変化量(△φ+2πn)(nは整数)との間で区別がつかないという、2πの不定性が生じる。   Therefore, in the displacement measuring apparatus 1 of the present invention, as a method for increasing the resolution of the displacement measurement, the phase change amount Δφ obtained from the reference signal and the received signal, not the FMCW that measures the displacement by measuring the frequency value. Is used, and a minute displacement below the wavelength can be obtained with high resolution. However, if the distance to the measurement surface 10 changes by more than one half of the wavelength, the phase characteristic cannot be distinguished between the phase change amount Δφ and the phase change amount (Δφ + 2πn) (n is an integer). That is, an indefiniteness of 2π occurs.

そこで、本実施形態においては、2πの不定性を取り除く1つの方法として、送信信号の周波数を掃引して周波数に対する位相変化量△φの傾きから粗変位D´を求め、この粗変位D´を利用して2πの不定性を取り除くこととした。以下にその方法について述べる。   Therefore, in this embodiment, as one method of removing the indefiniteness of 2π, the frequency of the transmission signal is swept to obtain the coarse displacement D ′ from the slope of the phase change amount Δφ with respect to the frequency, and this coarse displacement D ′ is obtained. It was decided to remove the indefiniteness of 2π by using. The method is described below.

図1に示すように、送受信アンテナ4の前方に基準位置Oを設定して測定面10を置くと、測定面10からの反射マイクロ波は、再び送受信アンテナ4に戻る。送受信アンテナ4の先端と、測定面10との間の距離を、基準位置Oから動かすと、基準位置Oに対して反射マイクロ波の位相が変化する。このとき、変位をD[μm]とすると、位相変化量△φ[rad]は、下記の式(3)で表すことができる。   As shown in FIG. 1, when the reference surface O is set in front of the transmission / reception antenna 4 and the measurement surface 10 is placed, the reflected microwave from the measurement surface 10 returns to the transmission / reception antenna 4 again. When the distance between the tip of the transmitting / receiving antenna 4 and the measurement surface 10 is moved from the reference position O, the phase of the reflected microwave changes with respect to the reference position O. At this time, if the displacement is D [μm], the phase change amount Δφ [rad] can be expressed by the following equation (3).

Figure 2019184565

Figure 2019184565

但し、fは送信信号(マイクロ波)の周波数[Hz]、λは送信信号の波長[m]、cは光速[m/s]である。よって、変位Dは下記の式(4)で表すことができる。   Here, f is the frequency [Hz] of the transmission signal (microwave), λ is the wavelength [m] of the transmission signal, and c is the speed of light [m / s]. Therefore, the displacement D can be expressed by the following formula (4).

Figure 2019184565
Figure 2019184565

しかしながら、位相変化量△φには、上述した2πの不定性を伴うため、実際の変位Dは下記の式(5)のようになる。   However, since the phase change amount Δφ is accompanied by the above-described indefiniteness of 2π, the actual displacement D is expressed by the following equation (5).

Figure 2019184565
Figure 2019184565

但し、nは任意の整数である。従って、位相変化量△φが2πを超える変位Dを測定する場合には、整数nを一意に決める必要がある。   However, n is an arbitrary integer. Therefore, when measuring the displacement D in which the phase change amount Δφ exceeds 2π, it is necessary to uniquely determine the integer n.

次に、上記の式(5)において、周波数を示すfを両辺に乗じた後、両辺をfで微分する。このとき、周波数fに依存するのは位相変化量△φのみであるため、下記の式(6)が求まる。   Next, in the above equation (5), both sides are multiplied by f indicating frequency, and then both sides are differentiated by f. At this time, since only the phase change amount Δφ depends on the frequency f, the following equation (6) is obtained.

Figure 2019184565
Figure 2019184565

従って、周波数fを掃引して、周波数fに対する位相変化量△φの傾きd△φ/dfを求めれば、式(6)より、2πの不定性がない変位(以下、粗変位D´と称する)を定めることができる。   Therefore, by sweeping the frequency f and obtaining the slope dΔφ / df of the phase change amount Δφ with respect to the frequency f, a displacement having no indefinite 2π (hereinafter referred to as a coarse displacement D ′) is obtained from the equation (6). ).

なお、周波数fを掃引して、周波数fに対する位相変化量△φの傾きd△φ/dfを求める具体的な方法については、図4及び図5を用いて後述する。   A specific method for obtaining the slope dΔφ / df of the phase change amount Δφ with respect to the frequency f by sweeping the frequency f will be described later with reference to FIGS.

これに加えて、本実施形態では、さらに高精度に変位Dを求めるために、式(5)と式(6)を組み合わせた変位測定を行う。すなわち、周波数fを掃引した際の位相変化量△φの傾きd△φ/dfを利用して、式(6)から粗変位D´を求めた後に、この粗変位D´と、周波数fと、位相変化量△φとを利用して、式(5)から整数nを決定する。   In addition to this, in this embodiment, in order to obtain the displacement D with higher accuracy, the displacement measurement is performed by combining the equations (5) and (6). That is, after obtaining the coarse displacement D ′ from the equation (6) using the slope dΔφ / df of the phase change amount Δφ when sweeping the frequency f, the coarse displacement D ′, the frequency f, The integer n is determined from the equation (5) using the phase change amount Δφ.

さらに、中心周波数(掃引周波数幅の中心の周波数fであり、例えば、掃引する周波数範囲が38〜42[GHz]であれば中心の40[GHz])における位相変化量△φそのものを測定し、整数nを決定した式(5)に代入すれば、波長以下の変位Dを求めることができる。このように、2πの不定性を取り除くことと、位相変化量△φの測定することとが両立でき、波長以上のダイナミックレンジで、かつ波長以下の高い分解能により、変位Dの測定が可能となる。   Furthermore, the phase change amount Δφ itself at the center frequency (the center frequency f of the sweep frequency width, for example, 40 [GHz] if the frequency range to be swept is 38 to 42 [GHz]) is measured, If the integer n is substituted into the determined equation (5), the displacement D below the wavelength can be obtained. In this way, the removal of 2π indefiniteness and the measurement of the phase change amount Δφ can both be achieved, and the displacement D can be measured with a dynamic range that is greater than or equal to the wavelength and high resolution that is less than or equal to the wavelength. .

<6ポート回路の位相遅延量について>
本実施形態では、上述した位相変化量△φの算出に6ポート回路11を用いている。6ポート回路11を用いることで、電力測定と、逆正接関数(atan、arctangent)の計算のみにより簡易、かつ高速に位相変化量△φを求めることができる。
<About the phase delay of the 6-port circuit>
In the present embodiment, the 6-port circuit 11 is used for calculating the phase change amount Δφ described above. By using the 6-port circuit 11, the phase change amount Δφ can be obtained simply and at high speed only by power measurement and calculation of an arctangent function (atan, arctangent).

ここで、先ずは、単一の周波数の場合について考える。この場合、6ポート回路11には、入力ポートP1に参照信号が入力され、入力ポートP2に受信信号が入力される。出力ポートP3,P4,P5,P6からは、入力ポートP1に入力された参照信号と、入力ポートP2に入力された受信信号とに対して、下記の表1に示すような位相遅延量を与えた信号を足し合わせた信号が出力される。

Figure 2019184565
Here, first, consider the case of a single frequency. In this case, in the 6-port circuit 11, a reference signal is input to the input port P1, and a reception signal is input to the input port P2. From the output ports P3, P4, P5, and P6, a phase delay amount as shown in Table 1 below is given to the reference signal input to the input port P1 and the received signal input to the input port P2. A signal obtained by adding the received signals is output.
Figure 2019184565

6ポート回路11は、非特許文献1に示されているように、ウィルキンソンディバイダーと、90度ハイブリッドカプラーとを備えており、これらの構成により位相遅延量を与えている。出力ポートP3,P4,P5,P6から出力される信号の電力値B3,B4,B5,B6を測定し、下記の式(7)を基に単一周波数において、位相変化量△φを求めることができる。   As shown in Non-Patent Document 1, the 6-port circuit 11 includes a Wilkinson divider and a 90-degree hybrid coupler, and these configurations give a phase delay amount. Measure power values B3, B4, B5, and B6 of signals output from output ports P3, P4, P5, and P6, and obtain a phase change amount Δφ at a single frequency based on the following equation (7). Can do.

△φ=atan((B3−B4)/(B5−B6)) …(7)   Δφ = atan ((B3-B4) / (B5-B6)) (7)

このように、増幅や整流を行わない受動素子のみを用いて、かつ、逆正接関数の簡単な計算のみで位相変化量△φを求めることができる。しかしながら、先に述べたような周波数を掃引する構成を組み合わせるにあたっては新たな課題が発生する。   In this way, the phase change amount Δφ can be obtained by using only passive elements that are not amplified or rectified and only by simple calculation of the arctangent function. However, a new problem arises in combining the configuration for sweeping the frequency as described above.

すなわち、90度ハイブリッドカプラーによる位相遅延量は、回路の物理的な長さを用いて与えられているため、単一の動作周波数以外では、90度ハイブリッドカプラーを1回通過する毎に与えられる位相遅延量がπ/2と異なる値となる。従って、所定の動作周波数以外で周波数掃引を行った場合には、上記の式(7)により位相変化量△φを算出しても、この際の位相遅延量はπ/2ではないため、求めたい位相変化量△φの周波数依存性は正しく得られない。   That is, since the phase delay amount by the 90-degree hybrid coupler is given using the physical length of the circuit, the phase given every time it passes through the 90-degree hybrid coupler except for a single operating frequency. The delay amount is a value different from π / 2. Therefore, when a frequency sweep is performed at a frequency other than the predetermined operating frequency, the phase delay amount at this time is not π / 2 even if the phase change amount Δφ is calculated by the above equation (7). The frequency dependence of the desired phase change Δφ cannot be obtained correctly.

そこで、周波数掃引を行う際の各周波数f毎に、90度ハイブリッドカプラーで与えられる位相遅延量θを求めることが望ましい。ここで、出力ポートP3,P4,P5,P6からそれぞれ出力される各信号は、入力ポートP1,P2に対して、下記の表2に示すような位相遅延量θが与えられた信号を足し合わせた信号となる。

Figure 2019184565
Therefore, it is desirable to obtain the phase delay amount θ given by the 90-degree hybrid coupler for each frequency f when performing the frequency sweep. Here, the signals output from the output ports P3, P4, P5, and P6 are added to the input ports P1 and P2 that are given signals having a phase delay amount θ as shown in Table 2 below. Signal.
Figure 2019184565

従って、出力ポートP3,P4,P5,P6から出力される信号の電力値B3,B4,B5,B6より、位相変化量△φを求めるためには、下記の式(8)を計算する必要がある。   Therefore, in order to obtain the phase change amount Δφ from the power values B3, B4, B5, B6 of the signals output from the output ports P3, P4, P5, P6, it is necessary to calculate the following equation (8). is there.

Figure 2019184565
Figure 2019184565

上記の式(8)において、各周波数fにおける位相遅延量θが未知数となる。そこで、事前の較正によって、各周波数fのときの位相遅延量θを求める必要がある。   In the above equation (8), the phase delay amount θ at each frequency f is an unknown number. Therefore, it is necessary to obtain the phase delay amount θ at each frequency f by prior calibration.

<6ポート回路における位相遅延量の較正の概要>
以上より、事前の較正によって、各周波数fのときの位相遅延量θを求める必要があるため、ここでは、その概要について以下説明する。この場合、事前の較正によって、ある周波数fで既知の位相変化量(以下、既知位相変化量と称する)△φ´をもつ信号を、各周波数f毎に6ポート回路11の入力ポートP1,P2に入力する。
<Outline of calibration of phase delay amount in 6-port circuit>
As described above, since it is necessary to obtain the phase delay amount θ at each frequency f by prior calibration, an outline thereof will be described below. In this case, a signal having a known phase change amount (hereinafter referred to as a known phase change amount) Δφ ′ at a certain frequency f is converted into input ports P1 and P2 of the 6-port circuit 11 for each frequency f. To enter.

そして、6ポート回路11の出力ポートP3,P4,P5,P6から出力される信号の電力値B3,B4,B5,B6を測定し、上記の式(8)の△φを既知位相変化量△φ´とすることで、各周波数fでの位相遅延量θを算出することが可能となる。   Then, the power values B3, B4, B5, and B6 of the signals output from the output ports P3, P4, P5, and P6 of the 6-port circuit 11 are measured, and Δφ in the above equation (8) is determined as the known phase change amount Δ By setting φ ′, the phase delay amount θ at each frequency f can be calculated.

但し、上記の式(8)より明らかなように、位相遅延量θを求める際には、式(8)の両辺の正接(tan、tangent)をとる必要がある。式(8)の両辺の正接をとると、下記の式(9)となる。   However, as is clear from the above equation (8), when obtaining the phase delay amount θ, it is necessary to take the tangent (tan, tangent) of both sides of the equation (8). Taking the tangent of both sides of Equation (8), the following Equation (9) is obtained.

Figure 2019184565
Figure 2019184565

さらに、上記の式(9)を変形すると、下記の式(10)が得られる。   Further, when the above equation (9) is modified, the following equation (10) is obtained.

Figure 2019184565
Figure 2019184565

よって、上記の式(9)から明らかなように、較正時に△φに与える既知位相変化量△φ´は、△φ´=π/2、3π/2となるとtan△φ´が発散(±∞)してしまうため、△φ´≠π/2と、△φ´≠3π/2とを満たす必要がある。また、位相遅延量θについて自明な解を得るためには、tan△φ´≠0とならないように、△φ´≠0と、△φ´≠πとを満たす必要がある。   Therefore, as is apparent from the above equation (9), the known phase change amount Δφ ′ given to Δφ at the time of calibration is such that tan Δφ ′ diverges when ± φ ′ = π / 2, 3π / 2 (± ∞), it is necessary to satisfy Δφ ′ ≠ π / 2 and Δφ ′ ≠ 3π / 2. In order to obtain a trivial solution for the phase delay amount θ, it is necessary to satisfy Δφ ′ ≠ 0 and Δφ ′ ≠ π so that tanΔφ ′ ≠ 0 does not occur.

0、π/2、π、3π/2以外で、例えば、同じ周波数fで得た任意の2つの既知位相変化量△φ´,△φ´を与える。そして、所定周波数fで既知位相変化量△φ´のときに得た電力値B3,B4,B5,B6を上記の式(10)のB3〜B6に代入するとともに、既知位相変化量△φ´を上記の式(10)の△φに代入した第1式を得る。 0, [pi / 2, [pi, except 3 [pi] / 2, for example, any two known phase change amount obtained at the same frequency f 1 △ φ 1 ', △ φ 2' give. Then, the power values B3 1 , B4 1 , B5 1 , B6 1 obtained when the known phase change amount Δφ 1 ′ is obtained at the predetermined frequency f 1 are substituted into B3 to B6 of the above equation (10) and known. A first equation is obtained by substituting the phase change amount Δφ 1 ′ into Δφ in the above equation (10).

同様にして、同じ所定周波数fで既知位相変化量△φ´のときに得た電力値B3,B4,B5,B6を上記の式(10)のB3〜B6に代入するとともに、既知位相変化量△φ´を上記の式(10)の△φに代入した第2式を得る。 Similarly, substituting the same predetermined frequency f 1 with a known amount of phase change △ phi 2 'power value obtained when the B3 2, B4 2, B5 2 , B6 2 to B3~B6 of formula (10) At the same time, the second equation is obtained by substituting the known phase change amount Δφ 2 ′ into Δφ in the above equation (10).

そして、上記の式(10)から同じ所定周波数fで得られた第1式と第2式の2つの式より連立方程式を解けば、位相遅延量θを算出することができる。このようにして、各周波数fについて、それぞれ位相遅延量θを算出する。 Then, the phase delay amount θ can be calculated by solving simultaneous equations from the two formulas of the first formula and the second formula obtained from the formula (10) at the same predetermined frequency f 1 . In this way, the phase delay amount θ is calculated for each frequency f.

なお、位相遅延量θを算出するために、連立方程式を解く第1式及び第2式を得る際は、例えば、同じ周波数fで測定面10の変位をD,Dと変え、このときの実測値の変位D,Dを利用すれば、上記の式(3)から各既知位相変化量△φ´,△φ´を算出することができる。 In order to calculate the phase delay amount θ, when obtaining the first and second equations for solving the simultaneous equations, for example, the displacement of the measurement surface 10 is changed to D 1 and D 2 at the same frequency f 1 , If the displacements D 1 and D 2 of the actually measured values are used, the known phase change amounts Δφ 1 ′ and Δφ 2 ′ can be calculated from the above equation (3).

<較正により得られた6ポート回路の位相遅延量を利用した変位測定の概要>
実際に測定面10の変位Dを測定する変位測定時には、上記のような較正により予め得た、各周波数fにおける位相遅延量θを用いる。これにより、上記の式(8)から、未知の位相変化量△φを求めることができる。そして、未知の位相変化量△φにおける周波数依存性(周波数fを掃引した際の、周波数fに対する位相変化量△φの依存性)を求め、上記の式(5)、式(6)を利用した演算処理を行うことで、測定面10の変位Dを求めることができる。
<Outline of displacement measurement using phase delay of 6-port circuit obtained by calibration>
When actually measuring the displacement D of the measurement surface 10, the phase delay amount θ at each frequency f obtained in advance by the calibration as described above is used. Thus, the unknown phase change amount Δφ can be obtained from the above equation (8). Then, the frequency dependency of the unknown phase change amount Δφ (the dependency of the phase change amount Δφ on the frequency f when the frequency f is swept) is obtained, and the above formulas (5) and (6) are used. The displacement D of the measurement surface 10 can be obtained by performing the calculated processing.

<較正時における既知及び未知の変数と、変位測定時における既知及び未知の変数について>
ここで、上記の式(8)〜(10)にある△φ、B3〜B6、θについて、(i)6ポート回路11における各周波数fでの位相遅延量θを求める較正時と、(ii)較正を行った後に変位Dを測定する変位測定時とで、いずれが既知か未知かを表3にまとめた。

Figure 2019184565
<Known and unknown variables at the time of calibration and known and unknown variables at the time of displacement measurement>
Here, with respect to Δφ, B3 to B6, θ in the above formulas (8) to (10), (i) at the time of calibration for obtaining the phase delay amount θ at each frequency f in the 6-port circuit 11, and (ii) Table 3 summarizes which is known or unknown when measuring displacement D after calibration.
Figure 2019184565

表3に示すように、較正時、△φには既知位相変化量△φ´が与えられることから、△φは既知となる。較正時、B3〜B6は、既知位相変化量△φ´となる参照信号及び受信信号が6ポート回路11に入力されたときに出力ポートP3,P4,P5,P6から出力される信号の電力値であるため被測定量となる。また、較正時、6ポート回路11における各周波数fでの位相遅延量θは未知となる。   As shown in Table 3, during calibration, Δφ is known because Δφ is given a known phase change amount Δφ ′. At the time of calibration, B3 to B6 are the power values of signals output from the output ports P3, P4, P5, and P6 when the reference signal and the received signal having the known phase change amount Δφ ′ are input to the 6-port circuit 11. Therefore, it becomes a measured amount. At the time of calibration, the phase delay amount θ at each frequency f in the 6-port circuit 11 is unknown.

一方、変位測定時、6ポート回路11における各周波数fでの位相遅延量θは、較正によって予め求めたものとなるため既知となる。変位測定時、B3〜B6は、参照信号及び受信信号が6ポート回路11に入力されたときに出力ポートP3,P4,P5,P6から出力される信号の電力値であるため被測定量となる。また、変位測定時、位相変化量△φは未知となる。   On the other hand, at the time of displacement measurement, the phase delay amount θ at each frequency f in the 6-port circuit 11 is known because it is obtained in advance by calibration. At the time of displacement measurement, B3 to B6 are measured values because they are the power values of signals output from the output ports P3, P4, P5, and P6 when the reference signal and the reception signal are input to the 6-port circuit 11. . Further, the phase change amount Δφ is unknown when measuring the displacement.

(1−3)本発明における変位測定装置の計算機について
以上、本発明における変位の測定原理の概略について説明したが、次に、本発明の変位測定装置1における計算機14の回路構成に着目して、上述した、較正時における位相遅延量演算処理と、変位測定時における変位測定処理とについて順に説明する。
(1-3) About Computer of Displacement Measuring Device in Present Invention Although the outline of the principle of measuring displacement in the present invention has been described above, next, paying attention to the circuit configuration of the computer 14 in the displacement measuring device 1 of the present invention. The phase delay amount calculation process at the time of calibration and the displacement measurement process at the time of displacement measurement will be described in order.

図2に示すように、計算機14は、入力部21、位相遅延量演算部22、位相演算部23、位相アンラッピング処理部24、傾き算出部25、粗変位算出部26、位相不定性解消部27及び変位算出部28を備えている。計算機14は、これら各回路を利用して、位相遅延量演算処理と、変位測定処理とを実行する。   As shown in FIG. 2, the calculator 14 includes an input unit 21, a phase delay amount calculation unit 22, a phase calculation unit 23, a phase unwrapping processing unit 24, an inclination calculation unit 25, a coarse displacement calculation unit 26, and a phase ambiguity elimination unit. 27 and a displacement calculator 28. The computer 14 executes a phase delay amount calculation process and a displacement measurement process using these circuits.

<較正時における位相遅延量演算処理>
較正を行う前、6ポート回路11における各周波数fでの位相遅延量θは未知である。そのため、変位測定に先立って、計算機14は、始めに、位相遅延量演算処理を実行して、周波数fを掃引する際における各周波数fでの位相遅延量θをそれぞれ算出する必要がある。
<Phase delay amount calculation process during calibration>
Prior to calibration, the phase delay amount θ at each frequency f in the 6-port circuit 11 is unknown. Therefore, prior to the displacement measurement, the computer 14 first needs to calculate the phase delay amount θ at each frequency f when the frequency f is swept by executing the phase delay amount calculation process.

この場合、位相遅延量演算部22は、π/2、π、3π/2以外で、例えば、同じ周波数fで得た任意の2つの既知位相変化量△φ´,△φ´を、記憶装置15から取得する。そして、位相遅延量演算部22は、周波数fで既知位相変化量△φ´のときに6ポート回路11から出力された信号の電力値B3,B4,B5,B6を入力部21又は記憶装置15から取得する。 In this case, the phase delay amount calculation unit 22 uses, for example, any two known phase change amounts Δφ 1 ′ and Δφ 2 ′ obtained at the same frequency f 1 other than π / 2, π, and 3π / 2. , Obtained from the storage device 15. Then, the phase delay amount calculation unit 22 inputs the power values B3 1 , B4 1 , B5 1 , B6 1 of the signals output from the 6-port circuit 11 at the frequency f 1 and the known phase change amount Δφ 1 ′. Acquired from the unit 21 or the storage device 15.

また、位相遅延量演算部22は、同じ周波数fで既知位相変化量△φ´のときに6ポート回路11から出力された信号の電力値B3,B4,B5,B6を入力部21又は記憶装置15から取得する。 In addition, the phase delay amount calculation unit 22 calculates the power values B3 2 , B4 2 , B5 2 , B6 2 of the signals output from the 6-port circuit 11 at the same frequency f 1 and the known phase change amount Δφ 2 ′. Obtained from the input unit 21 or the storage device 15.

位相遅延量演算部22は、所定周波数fのときの既知位相変化量△φ´と、そのときの電力値B3,B4,B5,B6とを、上記の式(10)の△φと、B3〜B6とにそれぞれ代入した第1式を算出する。また、位相遅延量演算部22は、同じく所定周波数fのときの既知位相変化量△φ´と、そのときの電力値B3,B4,B5,B6とを、上記の式(10)の△φと、B3〜B6とにそれぞれ代入した第2式を算出する。位相遅延量演算部22は、これら第1式及び第2式について連立方程式を解き、周波数fにおける位相遅延量θを算出する。 The phase delay amount calculation unit 22 calculates the known phase change amount Δφ 1 ′ at the predetermined frequency f 1 and the power values B3 1 , B4 1 , B5 1 , B6 1 at that time from the above equation (10). The first equation assigned to Δφ and B3 to B6, respectively, is calculated. Similarly, the phase delay amount calculation unit 22 calculates the known phase change amount Δφ 2 ′ at the predetermined frequency f 1 and the power values B3 2 , B4 2 , B5 2 , and B6 2 at that time using the above formula. The second equation substituted for Δφ of (10) and B3 to B6 is calculated. The phase delay amount calculation unit 22 solves the simultaneous equations for the first and second equations, and calculates the phase delay amount θ at the frequency f 1 .

このようにして、位相遅延量演算部22は、周波数掃引時の各周波数f毎に、2つの式より連立方程式を解き、各周波数fでの位相遅延量θを算出する。位相遅延量演算部22は、このようにして算出した、各周波数fでの位相遅延量θを、記憶装置15に出力して記憶させる。   In this manner, the phase delay amount calculation unit 22 solves the simultaneous equations from the two equations for each frequency f at the time of the frequency sweep, and calculates the phase delay amount θ at each frequency f. The phase delay amount calculation unit 22 outputs the phase delay amount θ at each frequency f calculated in this way to the storage device 15 for storage.

次に、図3のフローチャートを用いて、上述した位相遅延量演算処理の時系列な流れについて以下簡単に説明する。図3に示すように、計算機14は、ステップS1において、所定周波数fでの既知位相変化量△φ´と、そのときに6ポート回路11から出力された信号の電力値B3,B4,B5,B6とを取得し(既知位相変化量取得工程、較正用電力値取得工程)、これらを上記の式(10)に代入した第1式を算出し、次のステップS2に移る。 Next, a time-series flow of the above-described phase delay amount calculation processing will be briefly described below using the flowchart of FIG. As shown in FIG. 3, in step S <b> 1 , the calculator 14 determines the known phase change amount Δφ 1 ′ at the predetermined frequency f 1 and the power values B3 1 and B4 of the signal output from the 6-port circuit 11 at that time. 1 , B5 1 , and B6 1 (known phase change amount acquisition step, calibration power value acquisition step), calculate the first equation obtained by substituting them into the above equation (10), and go to the next step S2 Move.

ステップS2において、計算機14は、ステップS1と同じ周波数fでの他の既知位相変化量△φ´と、そのときに6ポート回路11から出力された信号の電力値B3,B4,B5,B6とを取得し(既知位相変化量取得工程、較正用電力値取得工程)、これらを上記の式(10)に代入した第2式を算出し、次のステップS3に移る。 In step S2, the computer 14 calculates another known phase change amount Δφ 2 ′ at the same frequency f 1 as in step S1 and the power values B3 2 , B4 2 , B4 2 of the signal output from the 6-port circuit 11 at that time. B5 2 and B62 2 are acquired (known phase change amount acquisition step, calibration power value acquisition step), the second equation obtained by substituting them into the above equation (10) is calculated, and the process proceeds to the next step S3.

ステップS3において、計算機14は、ステップS1で得られた第1式と、ステップS2で得られた第2式とについて連立方程式を解き、所定周波数fでの位相遅延量θを算出し(位相遅延量演算工程)、次のステップS4に移る。 In step S3, the computer 14 solves the simultaneous equations for the first equation obtained in step S1 and the second equation obtained in step S2, and calculates the phase delay amount θ at the predetermined frequency f 1 (phase (Delay amount calculation step), the process proceeds to the next step S4.

ステップS4において、計算機14は、周波数掃引に用いる全ての周波数(例えば、周波数掃引幅において所定間隔で得られる周波数)fに対して位相遅延量θを算出したか否かを判断する。ステップS4に否定結果が得られると、このことは、周波数掃引に用いる全ての周波数fに対して位相遅延量θを算出していないことを表しており、このとき計算機14は、ステップS4で肯定結果が得られるまで、上述したステップS1〜S4を繰り返す。   In step S <b> 4, the calculator 14 determines whether or not the phase delay amount θ has been calculated for all frequencies (for example, frequencies obtained at predetermined intervals in the frequency sweep width) f used for the frequency sweep. If a negative result is obtained in step S4, this indicates that the phase delay amount θ has not been calculated for all the frequencies f used for the frequency sweep. At this time, the calculator 14 affirms in step S4. Steps S1 to S4 described above are repeated until a result is obtained.

一方、ステップS4において、肯定結果が得られると、このことは、周波数掃引に用いる全ての周波数fに対して位相遅延量θを算出し終えたことを表しており、このとき計算機14は、位相遅延量演算処理を終了する。   On the other hand, if an affirmative result is obtained in step S4, this indicates that the phase delay amount θ has been calculated for all the frequencies f used for the frequency sweep. The delay amount calculation process ends.

<変位測定時における変位測定処理>
変位測定装置1は、上述した較正が終了すると、測定面10の変位Dを測定可能な状態となる。変位測定時、変位測定装置1は、周波数fを時間に対して変化させたマイクロ波を送信信号として測定面10に送信し、測定面10からの反射マイクロ波を受信信号として受信する。変位測定装置1は、送信信号を参照信号として6ポート回路11の入力ポートP1に入力するとともに、測定面10から得られた受信信号を6ポート回路11の入力ポートP2に入力する。
<Displacement measurement process during displacement measurement>
When the above-described calibration is completed, the displacement measuring apparatus 1 is in a state where the displacement D of the measurement surface 10 can be measured. At the time of displacement measurement, the displacement measuring apparatus 1 transmits a microwave whose frequency f is changed with respect to time as a transmission signal to the measurement surface 10 and receives a reflected microwave from the measurement surface 10 as a reception signal. The displacement measuring apparatus 1 inputs a transmission signal as a reference signal to the input port P1 of the 6-port circuit 11 and inputs a reception signal obtained from the measurement surface 10 to the input port P2 of the 6-port circuit 11.

これにより、図2に示す入力部21は、各周波数f毎に、6ポート回路11から出力された信号の電力値B3,B4,B5,B6を取得し、これらを位相演算部23に出力する。この際、位相演算部23は、較正時に得た、周波数掃引における各周波数fでの位相遅延量θを、記憶装置15から読み出す。   2 acquires the power values B3, B4, B5, and B6 of the signal output from the 6-port circuit 11 for each frequency f, and outputs these to the phase calculation unit 23. . At this time, the phase calculator 23 reads out the phase delay amount θ at each frequency f in the frequency sweep obtained from the calibration from the storage device 15.

位相演算部23は、6ポート回路11から出力された信号の電力値B3,B4,B5,B6と、位相遅延量θと用いて、各周波数f毎に、上記の式(8)に基づき、位相変化量△φを算出する。   The phase calculation unit 23 uses the power values B3, B4, B5, and B6 of the signal output from the 6-port circuit 11 and the phase delay amount θ based on the above equation (8) for each frequency f. A phase change amount Δφ is calculated.

ここで、図4を用いて、各周波数f毎に算出した位相変化量△φについて説明する。図4は、検証試験によって各周波数f毎に位相変化量△φを算出したときの算出結果を示したグラフである。図4では、測定対象物としてアルミ平板を用い、38〜42[GHz]の範囲で周波数を掃引しながらマイクロ波をアルミ平板に向けて照射した。   Here, the phase change amount Δφ calculated for each frequency f will be described with reference to FIG. FIG. 4 is a graph showing a calculation result when the phase change amount Δφ is calculated for each frequency f by the verification test. In FIG. 4, an aluminum flat plate was used as a measurement object, and microwaves were irradiated toward the aluminum flat plate while sweeping the frequency in the range of 38 to 42 [GHz].

また、38〜42[GHz]の範囲で周波数掃引を行った際の6ポート回路11の位相遅延量θを、上述した手順に従い較正によって事前に求めた。図4では、基準位置Oからの変位Dを1000[μm]として、そのときに6ポート回路11から出力された4つの信号の電力値B3,B4,B5,B6と、事前に求めた位相遅延量θとを用いて、上記の式(8)から位相変化量△φを各周波数f毎に求めた結果を示す。   Further, the phase delay amount θ of the 6-port circuit 11 when the frequency sweep was performed in the range of 38 to 42 [GHz] was obtained in advance by calibration according to the above-described procedure. In FIG. 4, the displacement D from the reference position O is set to 1000 [μm], the power values B3, B4, B5, B6 of the four signals output from the 6-port circuit 11 at that time, and the phase delay obtained in advance. The result of obtaining the phase change amount Δφ for each frequency f from the above equation (8) using the amount θ is shown.

位相演算部23は、図4に示すように、各周波数fで位相変化量△φを算出すると、これを周波数・位相変化量データとして、位相アンラッピング処理部24と記憶装置15(図1)に出力する。位相アンラッピング処理部24は、周波数・位相変化量データに対して、位相アンラッピング処理を行い、図5に示すように、位相変化量△φの不連続点を周波数fに沿って位相接続させ、位相変化量△φを連続的に表した位相アンラッピングデータを生成する。   As shown in FIG. 4, the phase calculation unit 23 calculates the phase change amount Δφ at each frequency f, and uses this as the frequency / phase change amount data as the phase unwrapping processing unit 24 and the storage device 15 (FIG. 1). Output to. The phase unwrapping processing unit 24 performs phase unwrapping processing on the frequency / phase change amount data, and connects the discontinuous points of the phase change amount Δφ along the frequency f as shown in FIG. Then, phase unwrapping data continuously representing the phase change amount Δφ is generated.

なお、図5では、図4に示すノコギリ歯状の信号のうち、正に増加する信号を接続してゆき、位相変化量△φを連続的に表した位相アンラッピングデータを生成している。   In FIG. 5, among the sawtooth signals shown in FIG. 4, positively increasing signals are connected to generate phase unwrapping data continuously representing the phase change amount Δφ.

位相アンラッピング処理部24は、得られた位相アンラッピングデータを、傾き算出部25に出力する。傾き算出部25は、周波数fに沿って位相変化量△φを連続的に表した位相アンラッピングデータから近似直線を算出し、この近似直線の傾きd△φ/dfを算出する。傾き算出部25は、周波数fに対する位相変化量△φの傾きd△φ/dfを算出すると、これを粗変位算出部26に出力する。   The phase unwrapping processing unit 24 outputs the obtained phase unwrapping data to the inclination calculating unit 25. The slope calculation unit 25 calculates an approximate line from phase unwrapping data that continuously represents the phase change amount Δφ along the frequency f, and calculates the slope dΔφ / df of the approximate line. When the slope calculating unit 25 calculates the slope dΔφ / df of the phase change amount Δφ with respect to the frequency f, the slope calculating unit 25 outputs this to the coarse displacement calculating unit 26.

粗変位算出部26は、周波数掃引した際の位相変化量△φの傾きd△φ/dfを利用して上記の式(6)から粗変位D´を算出し、得られた算出結果を位相不定性解消部27に出力する。位相不定性解消部27は、周波数・位相変化量データを記憶装置15から読み出し、例えば、掃引する周波数範囲の中心周波数における位相変化量△φを求めた後、この位相変化量△φの絶対値を算出する。そして、位相不定性解消部27は、これら中心周波数と、位相変化量△φの絶対値と、粗変位D´を利用して、上記の式(5)から、2πの不定性を取り除く整数nを算出する。   The coarse displacement calculator 26 calculates the coarse displacement D ′ from the above equation (6) using the slope dΔφ / df of the phase change amount Δφ when the frequency is swept, and the obtained calculation result is the phase. The result is output to the indeterminacy eliminating unit 27. The phase ambiguity eliminating unit 27 reads out the frequency / phase change amount data from the storage device 15 and obtains the phase change amount Δφ at the center frequency of the frequency range to be swept, for example, and then the absolute value of the phase change amount Δφ. Is calculated. Then, the phase indeterminacy canceling unit 27 uses the center frequency, the absolute value of the phase change amount Δφ, and the coarse displacement D ′ to remove the indefiniteness of 2π from the above equation (5). Is calculated.

位相不定性解消部27は、算出した整数nの情報を変位算出部28及び記憶装置15に出力する。変位算出部28は、位相不定性解消部27から受け取った整数nを用いて、上記の式(5)における整数nを規定し、2πの不定性を取り除く。また、変位算出部28は、位相演算部23から受け取った周波数・位相変化量データから、掃引する周波数範囲の中心周波数における位相変化量△φを求めた後、この位相変化量△φの絶対値を算出する。   The phase ambiguity elimination unit 27 outputs the calculated integer n information to the displacement calculation unit 28 and the storage device 15. The displacement calculating unit 28 uses the integer n received from the phase indeterminacy eliminating unit 27 to define the integer n in the above equation (5) and remove the indefiniteness of 2π. Further, the displacement calculating unit 28 obtains the phase change amount Δφ at the center frequency of the frequency range to be swept from the frequency / phase change amount data received from the phase calculating unit 23, and then the absolute value of the phase change amount Δφ. Is calculated.

変位算出部28は、この絶対値を、2πの不定性を取り除いた上記の式(5)の位相変化量△φとして用い、当該式(5)に基づいて変位Dを算出する。これにより、変位測定装置1では、位相変化量△φの2πの不定性を取り除き、変位Dを測定できるので、変位測定時のダイナミックレンジを拡大できるとともに、波長以下の高い分解能により変位Dを測定することが可能となる。   The displacement calculator 28 uses this absolute value as the phase change amount Δφ in the above equation (5) with the 2π indeterminacy removed, and calculates the displacement D based on the equation (5). As a result, the displacement measuring device 1 can remove the 2π indefiniteness of the phase change Δφ and measure the displacement D, so that the dynamic range during displacement measurement can be expanded and the displacement D can be measured with a high resolution below the wavelength. It becomes possible to do.

次に、図6のフローチャートを用いて、上述した変位測定処理の時系列な流れについて以下簡単に説明する。計算機14は、ステップS11において、周波数fを時間に対して変化させたマイクロ波を送信信号として測定面10に送信し、測定面10からの反射マイクロ波を受信信号として受信することで、6ポート回路11から出力された信号の電力値B3,B4,B5,B6を取得する。   Next, the time-series flow of the displacement measurement process described above will be briefly described below using the flowchart of FIG. In step S11, the computer 14 transmits a microwave whose frequency f is changed with respect to time to the measurement surface 10 as a transmission signal, and receives a reflected microwave from the measurement surface 10 as a reception signal. The power values B3, B4, B5, and B6 of the signal output from the circuit 11 are acquired.

次いで、ステップS11において計算機14は、所定の周波数fにおいて、6ポート回路11から出力された信号の電力値B3,B4,B5,B6と、当該周波数fのときの位相遅延量θとを用いて、上記の式(8)から、当該周波数fでの位相変化量△φを求めて、次にステップS12に移る。   Next, in step S11, the computer 14 uses the power values B3, B4, B5, and B6 of the signal output from the 6-port circuit 11 at the predetermined frequency f and the phase delay amount θ at the frequency f. From the above equation (8), the phase change amount Δφ at the frequency f is obtained, and the process proceeds to step S12.

ステップS12において、計算機14は、掃引する周波数範囲の各周波数fで、それぞれ位相変化量△φを算出したか否かを判断する。ここで、否定結果が得られると、各周波数fで位相変化量△φを算出していないことを表しており、このとき計算機14は、ステップS11に戻り、他の周波数fでの位相変化量△φを算出する。   In step S12, the calculator 14 determines whether or not the phase change amount Δφ has been calculated for each frequency f in the frequency range to be swept. Here, if a negative result is obtained, it indicates that the phase change amount Δφ is not calculated at each frequency f. At this time, the computer 14 returns to step S11 and the phase change amount at another frequency f. Δφ is calculated.

一方、ステップS12において肯定結果が得られると、このことは全ての周波数fで位相変化量△φを算出し終えたことを表しており、このとき計算機14は、ステップS13に移る。ステップS13において、計算機14は、図4に示すような周波数と位相変化量△φとの関係を示した周波数・位相変化量データに対して、位相アンラッピング処理を行い、図5に示すように、周波数に沿って位相変化量△φを連続的に接続した位相アンラッピングデータを生成し、次のステップS14に移る。   On the other hand, if a positive result is obtained in step S12, this indicates that the phase change amount Δφ has been calculated for all the frequencies f, and at this time, the computer 14 proceeds to step S13. In step S13, the computer 14 performs a phase unwrapping process on the frequency / phase change amount data indicating the relationship between the frequency and the phase change amount Δφ as shown in FIG. 4, and as shown in FIG. Then, phase unwrapping data in which the phase change amount Δφ is continuously connected along the frequency is generated, and the process proceeds to the next step S14.

ステップS14において、計算機14は、位相アンラッピングデータから、掃引する周波数fに対する位相変化量△φの傾きd△φ/dfを算出し、次のステップS15に移る。ステップS15において、計算機14は、傾きd△φ/dfを用いて、上記の式(6)から粗変位D´を算出し、次のステップS16に移る。   In step S14, the computer 14 calculates the slope dΔφ / df of the phase change amount Δφ with respect to the frequency f to be swept from the phase unwrapping data, and proceeds to the next step S15. In step S15, the calculator 14 calculates the coarse displacement D ′ from the above equation (6) using the inclination dΔφ / df, and proceeds to the next step S16.

ステップS16において、計算機14は、粗変位D´と、掃引する周波数範囲における中心周波数と、中心周波数における位相変化量△φの絶対値とを用い、上記の式(5)から、2πの不定性を取り除く整数nを算出し、次のステップS17に移る。   In step S16, the computer 14 uses the coarse displacement D ′, the center frequency in the frequency range to be swept, and the absolute value of the phase change amount Δφ at the center frequency, and the indefiniteness of 2π from the above equation (5). Then, an integer n is calculated, and the process proceeds to the next step S17.

ステップS17において、計算機14は、掃引する周波数範囲における中心周波数と、中心周波数における位相変化量△φの絶対値とを用い、2πの不定性を取り除いた上記の式(5)(すなわち、整数nを規定した式(5))から、変位Dを算出し、上述した変位測定処理を終了する。   In step S17, the calculator 14 uses the center frequency in the frequency range to be swept and the absolute value of the phase change amount Δφ at the center frequency, and removes the indefiniteness of 2π (ie, the integer n). The displacement D is calculated from the equation (5) defining the above, and the above-described displacement measurement process is terminated.

<本発明の変位測定装置により算出した変位と、実際に与えた変位との測定誤差について>
次に、本発明による変位測定装置1により算出した変位Dと、実際に与えた変位との測定誤差を確認する検証試験を行った。ここで、先ず、上述した検証試験によって得られた図4及び図5に示すデータを用いて変位Dを算出した。
<Measurement error between the displacement calculated by the displacement measuring apparatus of the present invention and the displacement actually applied>
Next, a verification test for confirming a measurement error between the displacement D calculated by the displacement measuring apparatus 1 according to the present invention and the displacement actually applied was performed. Here, first, the displacement D was calculated using the data shown in FIGS. 4 and 5 obtained by the verification test described above.

具体的には、図4に示す周波数・位相変化量データから位相アンラッピング処理により得られた図5の位相アンラッピングデータから、近似直線を算出した。そして、算出した近似直線から、周波数に対する位相変化量△φの傾きd△φ/dfを算出した。   Specifically, an approximate straight line was calculated from the phase unwrapping data of FIG. 5 obtained by the phase unwrapping process from the frequency / phase variation data shown in FIG. Then, the slope dΔφ / df of the phase change amount Δφ with respect to the frequency was calculated from the calculated approximate straight line.

この傾きd△φ/dfを利用し、上記の式(6)から粗変位D´を算出したところ、粗変位D´は、691.8[μm]であった。また、38〜42[GHz]の範囲で周波数掃引を行ったときの中心周波数は40[GHz]であり、この中心周波数ときの位相変化量△φの絶対値を、図4に基づいて特定したところ、3[rad]であった。   Using this slope dΔφ / df, the coarse displacement D ′ was calculated from the above equation (6). As a result, the coarse displacement D ′ was 691.8 [μm]. Further, the center frequency when the frequency sweep is performed in the range of 38 to 42 [GHz] is 40 [GHz], and the absolute value of the phase change amount Δφ at this center frequency is specified based on FIG. However, it was 3 [rad].

次に、この中心周波数と、このときの位相変化量△φの絶対値と、粗変位D´とを利用し、上記の式(5)から整数nを求めたところ、nは0となることが分かった。   Next, using this center frequency, the absolute value of the phase change Δφ at this time, and the coarse displacement D ′, the integer n is obtained from the above equation (5). As a result, n becomes 0. I understood.

次に、中心周波数である40[GHz]と、図4から特定した、中心周波数での位相変化量△φの絶対値である3[rad]とを利用し、nを0とした上記の式(5)から変位Dを算出したところ、最終的な変位Dとして、981.4[μm]となった。   Next, using the center frequency of 40 [GHz] and 3 [rad] which is the absolute value of the phase change amount Δφ at the center frequency specified from FIG. When the displacement D was calculated from (5), the final displacement D was 981.4 [μm].

図4に示す周波数・位相変化量データを得る際に、実際に与えた変位は、1000[μm]であることから、算出した変位Dとの測定誤差は20[μm]と微小であることが確認できた。   When the frequency / phase variation data shown in FIG. 4 is obtained, the displacement actually applied is 1000 [μm], and therefore the measurement error from the calculated displacement D may be as small as 20 [μm]. It could be confirmed.

また、実際の変位を、0[μm]から8500[μm]まで変えてゆき、上述した演算処理と同様に変位Dを算出したところ、図7に示すような結果が得られた。なお、3750[μm]以下の変位を与えたときは、整数nは0となり、3750[μm]超7500[μm]以下の変位を与えたときは、整数nは1となり、7500[μm]超の変位を与えたときは、整数nは2となった。   Further, when the actual displacement was changed from 0 [μm] to 8500 [μm] and the displacement D was calculated in the same manner as the above-described calculation processing, the result shown in FIG. 7 was obtained. When a displacement of 3750 [μm] or less is given, the integer n becomes 0, and when a displacement of 3750 [μm] or more and 7500 [μm] or less is given, the integer n becomes 1 and exceeds 7500 [μm]. When the displacement was given, the integer n was 2.

図7から、0[μm]から8500[μm]まで、実際に与えた実測値の変位と、上述した演算処理により算出した変位Dとでは、測定誤差が20[μm]以下となり、高精度で測定面10の変位Dを測定できることが確認できた。   From FIG. 7, the measurement error is 20 [μm] or less between the displacement of the actually measured value from 0 [μm] to 8500 [μm] and the displacement D calculated by the above-described arithmetic processing, and with high accuracy. It was confirmed that the displacement D of the measurement surface 10 can be measured.

(1−4)作用及び効果
以上の構成において、変位測定装置1では、周波数fを時間に対して変化させた送信信号を測定面10に送信し、測定面10からの反射マイクロ波を受信信号として受信する(送受信工程)。また、6ポート回路11に対し、送信信号を参照信号として入力するとともに、測定面10の変位を測定する際に得られた受信信号を入力する(実測値入力工程)。
(1-4) Operation and Effect In the above configuration, the displacement measuring apparatus 1 transmits a transmission signal in which the frequency f is changed with respect to time to the measurement surface 10 and receives a reflected microwave from the measurement surface 10 as a reception signal. Is received (transmission / reception process). In addition, a transmission signal is input as a reference signal to the 6-port circuit 11 and a reception signal obtained when measuring the displacement of the measurement surface 10 is input (actual value input step).

そして、実測値入力工程により6ポート回路11から出力される4つの信号の電力値B3,B4,B5,B6と、送信信号の各周波数fにおける6ポート回路11での位相遅延量θと、に基づいて、各周波数fで位相変化量△φを算出する(位相演算工程)。   Then, the power values B3, B4, B5, and B6 of the four signals output from the 6-port circuit 11 in the actually measured value input process, and the phase delay amount θ in the 6-port circuit 11 at each frequency f of the transmission signal Based on this, the phase change amount Δφ is calculated at each frequency f (phase calculation step).

これにより、変位測定装置1では、位相変化量△φの周波数fに対する傾きd△φ1/dfを基に、測定面10の粗変位D´を算出する(粗変位算出工程)。   Thereby, the displacement measuring apparatus 1 calculates the rough displacement D ′ of the measurement surface 10 based on the slope dΔφ1 / df of the phase change amount Δφ with respect to the frequency f (coarse displacement calculation step).

また、変位測定装置1では、粗変位D´と、周波数fと、そのときの位相変化量△φとを用いて、下記の式(11)から位相特性である2πの不定性を解消する整数nを算出する(位相不定性解消工程)。   Further, in the displacement measuring apparatus 1, using the coarse displacement D ′, the frequency f, and the phase change amount Δφ at that time, an integer that eliminates the indefiniteness of 2π that is the phase characteristic from the following equation (11): n is calculated (phase ambiguity elimination step).

D´=c/4πf・(△φ+2πn) … (11)
D´は粗変位[μm]、cは光速[m/s]、fは周波数[Hz]、△φは位相変化量[rad]、nは整数を示す。
D ′ = c / 4πf · (Δφ + 2πn) (11)
D ′ is the coarse displacement [μm], c is the speed of light [m / s], f is the frequency [Hz], Δφ is the phase change amount [rad], and n is an integer.

これにより、変位測定装置1では、整数nを規定して2πの不定性を解消した、上記の式(5)(すなわち、D=c/4πf・(△φ+2πn))から、周波数fと、そのときの位相変化量△φとを用いて、測定面10の変位Dを算出することができる(変位算出工程)。   As a result, the displacement measuring apparatus 1 defines the integer n and eliminates the indefiniteness of 2π from the above equation (5) (ie, D = c / 4πf · (Δφ + 2πn)), and the frequency f and its The displacement D of the measurement surface 10 can be calculated using the phase change amount Δφ at the time (displacement calculating step).

以上より、変位測定装置1では、6ポート回路11を用いるとともに、周波数fを時間に対して変化させた送信信号を用いて変位Dを測定しても、各周波数fにおける6ポート回路11での位相遅延量θを予め規定していることから、6ポート回路11での測定誤差を抑制して測定面10の変位Dを正確に測定できる。また、変位測定装置1では、2πの不定性を取り除くことができるので、波長を超えた大きさの変位Dを正確に測定できる。   As described above, the displacement measuring apparatus 1 uses the 6-port circuit 11, and even if the displacement D is measured using a transmission signal in which the frequency f is changed with respect to time, the 6-port circuit 11 at each frequency f Since the phase delay amount θ is defined in advance, the measurement error in the 6-port circuit 11 can be suppressed and the displacement D of the measurement surface 10 can be accurately measured. In addition, since the displacement measuring apparatus 1 can remove the indefiniteness of 2π, the displacement D having a magnitude exceeding the wavelength can be accurately measured.

(1−5)他の実施形態
なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、送受信部として、送受信アンテナ4を適用したが、送信アンテナと受信アンテナとを別体に設けた送受信部を適用してもよい。
(1-5) Other Embodiments The present invention is not limited to this embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, although the transmission / reception antenna 4 is applied as the transmission / reception unit, a transmission / reception unit in which a transmission antenna and a reception antenna are provided separately may be applied.

また、上述した実施形態においては、2πの不定性を取り除く整数nを、上記の式(5)から算出する際、中心周波数における位相変化量△φの絶対値を、式(5)の△φに適用した場合について述べたが、本発明はこれに限らない。例えば、掃引する周波数範囲内の任意の周波数fと、そのときの位相変化量△φを用いて、式(5)から整数nを算出してもよい。   In the above-described embodiment, when the integer n that removes the indefiniteness of 2π is calculated from the above equation (5), the absolute value of the phase change amount Δφ at the center frequency is calculated as Δφ in the equation (5). However, the present invention is not limited to this. For example, the integer n may be calculated from Expression (5) using an arbitrary frequency f within the frequency range to be swept and the phase change amount Δφ at that time.

また、上述した実施形態においては、変位測定時、2πの不定性を取り除いた上記の式(5)から変位Dを算出する際、中心周波数における位相変化量△φの絶対値を、式(5)の△φに適用した場合について述べたが、本発明はこれに限らない。例えば、掃引する周波数範囲内の任意の周波数fと、そのときの位相変化量△φを用いて、式(5)から変位Dを算出してもよい。   In the above-described embodiment, when the displacement D is calculated from the above equation (5) from which the 2π indeterminacy is removed during the displacement measurement, the absolute value of the phase change amount Δφ at the center frequency is expressed by the equation (5). )), The present invention is not limited to this. For example, the displacement D may be calculated from the equation (5) using an arbitrary frequency f within the frequency range to be swept and the phase change amount Δφ at that time.

(2)第2実施形態
(2−1)不要波成分の発生について
図1に示す変位測定装置1では、送受信アンテナ4から測定面10に向けてマイクロ波を照射することにより、測定面10からの反射マイクロ波を送受信アンテナ4で受信するが、この際、反射マイクロ波の中には、送受信アンテナ4の端面で反射する反射波や、測定面10以外の箇所(例えば、測定面10以遠にある障害物等)に当たって戻ってくる反射波等のマルチパス波(以下、不要波とも称する)が存在している恐れがある。
(2) Second Embodiment (2-1) Generation of Unwanted Wave Component In the displacement measuring apparatus 1 shown in FIG. 1, by irradiating the microwave from the transmission / reception antenna 4 toward the measurement surface 10, the measurement surface 10 The reflected microwave is received by the transmission / reception antenna 4. At this time, the reflected microwave includes a reflected wave reflected by the end face of the transmission / reception antenna 4 and a portion other than the measurement surface 10 (for example, beyond the measurement surface 10. There may be a multipath wave (hereinafter also referred to as an unnecessary wave) such as a reflected wave that hits an obstacle).

このような不要波が存在する場合、測定面10からの反射マイクロ波と不要波とが干渉してしまう。その結果、図8に示すように、周波数を掃引して位相変化量△φを求めると、領域ER1内のように、反射マイクロ波と不要波との干渉により位相変化量△φが歪み、非線形な成分が現れてしまう。位相変化量△φに非線形な成分が存在すると、位相変化量△φの周波数に対する傾きから、測定面10の粗変位D´を求める際、粗変位D´に誤差が生じてしまい、整数nを正しく決めることができず、2πの不定性を正しく取り除くことができない場合がある。   When such an unnecessary wave exists, the reflected microwave from the measurement surface 10 interferes with the unnecessary wave. As a result, as shown in FIG. 8, when the phase change amount Δφ is obtained by sweeping the frequency, the phase change amount Δφ is distorted and nonlinearly caused by the interference between the reflected microwave and the unnecessary wave as in the region ER1. Will appear. If a non-linear component exists in the phase change amount Δφ, an error occurs in the coarse displacement D ′ when the coarse displacement D ′ of the measurement surface 10 is obtained from the inclination of the phase change amount Δφ with respect to the frequency, and the integer n is set to n. In some cases, it cannot be determined correctly, and the indefiniteness of 2π cannot be removed correctly.

このような場合には、周波数を掃引する際の帯域幅を広げることで、広い帯域で傾きを求め、非線形性の影響を抑制(平均化)すれば、整数nを正しく求めることができ、2πの不定性を取り除くことができる。   In such a case, by increasing the bandwidth when sweeping the frequency, if the inclination is obtained in a wide band and the influence of nonlinearity is suppressed (averaged), the integer n can be obtained correctly. Can be removed.

しかしながら、広い帯域で周波数を掃引すると、その分、周波数の掃引に時間を要し、測定面10の変位の測定周期が長くなってしまう。また、使用する周波数によっては、電波法によって掃引する周波数幅に制約があったり、他の無線設備との電波干渉の恐れもあるため、広い帯域で周波数を掃引することは難しい。   However, if the frequency is swept in a wide band, it takes time to sweep the frequency, and the measurement cycle of the displacement of the measurement surface 10 becomes longer. In addition, depending on the frequency used, there are restrictions on the frequency width to be swept by the radio wave method, and there is a risk of radio wave interference with other radio equipment, so it is difficult to sweep the frequency in a wide band.

そこで、第2実施形態では、変位測定時、6ポート回路11の各出力ポートP3,P4,P5,P6から出力される信号の電力値B3,B4,B5,B6を測定し、これら電力値B3,B4,B5,B6と、位相遅延量θとを用いて生成される複素信号から不要波成分を取り除き、非線形性を抑制した位相変化量△φを算出するようにした。これにより、第2実施形態では、周波数を掃引する際の帯域幅を狭くしても、整数nを正しく求めることができ、2πの不定性を正しく取り除くことができる。   Therefore, in the second embodiment, at the time of displacement measurement, the power values B3, B4, B5, and B6 of the signals output from the output ports P3, P4, P5, and P6 of the 6-port circuit 11 are measured, and these power values B3 are measured. , B4, B5, B6 and the phase delay amount θ, the unnecessary wave component is removed from the complex signal, and the phase change amount Δφ with the nonlinearity suppressed is calculated. Thereby, in 2nd Embodiment, even if it narrows the bandwidth at the time of sweeping a frequency, the integer n can be calculated | required correctly and the indefiniteness of 2 (pi) can be removed correctly.

(2−2)第2実施形態における変位測定装置の計算機について
第2実施形態は、上述した実施形態(以下、第1実施形態と称する)と変位の測定原理は同じであるものの、変位測定時、6ポート回路11の各出力ポートP3,P4,P5,P6から出力される信号の電力値B3,B4,B5,B6と、事前の較正により求めた位相遅延量θとに基づいて位相変化量△φを算出する計算機14の構成が、第1実施形態とは異なるものである。ここでは、上述した第1実施形態と同一内容については説明を省略し、第1実施形態と異なる計算機に着目して以下説明する。
(2-2) Computer of Displacement Measuring Device in Second Embodiment Although the second embodiment has the same displacement measurement principle as that of the above-described embodiment (hereinafter referred to as the first embodiment), at the time of displacement measurement The phase change amount based on the power values B3, B4, B5, and B6 of the signals output from the output ports P3, P4, P5, and P6 of the 6-port circuit 11 and the phase delay amount θ obtained by the previous calibration. The configuration of the computer 14 for calculating Δφ is different from that of the first embodiment. Here, description of the same contents as those of the first embodiment described above will be omitted, and the following description will be given focusing on a computer different from that of the first embodiment.

図2との対応部分に同一符号を付して示す図9は、第2実施形態の変位測定装置に設けられる計算機31の回路構成を示している。図9に示すように、計算機31は、第1実施形態とは位相演算部32の構成が異なるだけであり、その他の入力部21、位相遅延量演算部22、位相アンラッピング処理部24、傾き算出部25、粗変位算出部26、位相不定性解消部27及び変位算出部28は、第1実施形態と同一構成となる。   9 in which the same reference numerals are assigned to the parts corresponding to those in FIG. 2 shows the circuit configuration of the computer 31 provided in the displacement measuring apparatus of the second embodiment. As shown in FIG. 9, the computer 31 is different from the first embodiment only in the configuration of the phase calculation unit 32, the other input unit 21, phase delay amount calculation unit 22, phase unwrapping processing unit 24, inclination The calculation unit 25, the coarse displacement calculation unit 26, the phase ambiguity elimination unit 27, and the displacement calculation unit 28 have the same configuration as that of the first embodiment.

図10に示すように、位相演算部32は、第1位相変化量算出部33、振幅算出部34、複素信号生成部35、不要波抑制部36及び第2位相変化量算出部37を備えている。第1位相変化量算出部33及び振幅算出部34は、各周波数f毎に、6ポート回路11から出力された4つの信号の電力値B3,B4,B5,B6を、入力部21(図9)から取得する。また、第1位相変化量算出部33及び振幅算出部34は、較正時に得た、周波数掃引における各周波数fでの位相遅延量θを、記憶装置15又は位相遅延量演算部22から読み出す。   As shown in FIG. 10, the phase calculation unit 32 includes a first phase change amount calculation unit 33, an amplitude calculation unit 34, a complex signal generation unit 35, an unnecessary wave suppression unit 36, and a second phase change amount calculation unit 37. Yes. The first phase change amount calculation unit 33 and the amplitude calculation unit 34 input the power values B3, B4, B5, and B6 of the four signals output from the 6-port circuit 11 for each frequency f to the input unit 21 (FIG. 9). ) Further, the first phase change amount calculating unit 33 and the amplitude calculating unit 34 read out the phase delay amount θ at each frequency f in the frequency sweep obtained from the calibration from the storage device 15 or the phase delay amount calculating unit 22.

第1位相変化量算出部33は、6ポート回路11から出力された信号の電力値B3,B4,B5,B6と、位相遅延量θと用いて、各周波数f毎に、上記の式(8)に基づき位相変化量△φを処理前位相変化量△φ´´として算出する。第1位相変化量算出部33は、各周波数fで処理前位相変化量△φ´´を算出すると、これを周波数・位相変化量データとして、複素信号生成部35に出力する。   The first phase change amount calculation unit 33 uses the power values B3, B4, B5, and B6 of the signal output from the 6-port circuit 11 and the phase delay amount θ, for each frequency f, the above equation (8 ) To calculate the phase change amount Δφ as a pre-process phase change amount Δφ ″. When the first phase change amount calculation unit 33 calculates the pre-process phase change amount Δφ ″ at each frequency f, the first phase change amount calculation unit 33 outputs this to the complex signal generation unit 35 as frequency / phase change amount data.

この際、振幅算出部34は、6ポート回路11から出力された信号の電力値B3,B4,B5,B6と、位相遅延量θと用いて、下記の式(12)に基づき、6ポート回路11から出力される信号の振幅Aを各周波数f毎に算出する。振幅算出部34は、各周波数fで振幅Aを算出すると、これを周波数・振幅データとして、複素信号生成部35に出力する。   At this time, the amplitude calculation unit 34 uses the power values B3, B4, B5, and B6 of the signal output from the 6-port circuit 11 and the phase delay amount θ based on the following equation (12), and the 6-port circuit: 11 is calculated for each frequency f. After calculating the amplitude A at each frequency f, the amplitude calculation unit 34 outputs this to the complex signal generation unit 35 as frequency / amplitude data.

Figure 2019184565
Figure 2019184565

ここで、図11Aは、振幅算出部34で算出される振幅Aの波形の一例を示し、図11Bは、第1位相変化量算出部33で算出される処理前位相変化量△φ´´の波形の一例を示しており、不要波成分により非線形の成分を含んだ処理前位相変化量△φ´´を示している。複素信号生成部35は、周波数fに沿って取得した図11Aのような振幅Aと、同じく周波数fに沿って取得した図11Bのような処理前位相変化量△φ´´とを用いて、周波数fを変化させながら、下記の式(13)を計算し、図11Cに示すような複素信号を生成する。なお、下記の式(13)中、iは虚数単位を示す。   11A shows an example of the waveform of the amplitude A calculated by the amplitude calculator 34, and FIG. 11B shows the pre-processing phase change amount Δφ ″ calculated by the first phase change amount calculator 33. An example of a waveform is shown, and a pre-processing phase change amount Δφ ″ including a non-linear component due to an unnecessary wave component is shown. The complex signal generation unit 35 uses the amplitude A as shown in FIG. 11A acquired along the frequency f and the pre-process phase change amount Δφ ″ as shown in FIG. 11B acquired along the frequency f. While changing the frequency f, the following equation (13) is calculated to generate a complex signal as shown in FIG. 11C. In the following formula (13), i represents an imaginary unit.

Acos△φ´´+iAsin△φ´´ … (13)   Acos Δφ ″ + iAsin Δφ ″ (13)

このようにして、複素信号生成部35は、6ポート回路11から出力される信号を、実部と虚部とが周波数fに対して正弦的に振動する複素信号として再構築し、得られた複素信号を不要波抑制部36(図10)に出力する。   In this way, the complex signal generation unit 35 reconstructs the signal output from the 6-port circuit 11 as a complex signal in which the real part and the imaginary part vibrate sinusoidally with respect to the frequency f. The complex signal is output to the unnecessary wave suppression unit 36 (FIG. 10).

不要波抑制部36には、第1フィルタ処理部41、逆フーリエ変換部42、第2フィルタ処理部43、フーリエ変換部44及び不要波抑制信号生成部45が設けられている。第1フィルタ処理部41は、図12Aに示すような複素信号を複素信号生成部35から受け取ると、例えば、図12Bに示すような所定の窓関数を複素信号に掛ける第1フィルタ処理を行う。これにより、第1フィルタ処理部41は、図12Cに示すように、窓関数により重み付けされた複素信号を生成する。   The unnecessary wave suppression unit 36 includes a first filter processing unit 41, an inverse Fourier transform unit 42, a second filter processing unit 43, a Fourier transform unit 44, and an unnecessary wave suppression signal generation unit 45. When the first filter processing unit 41 receives the complex signal as shown in FIG. 12A from the complex signal generation unit 35, the first filter processing unit 41 performs, for example, a first filter process for multiplying the complex signal by a predetermined window function as shown in FIG. 12B. Thereby, the first filter processing unit 41 generates a complex signal weighted by the window function as shown in FIG. 12C.

このように複素信号に所定の窓関数を掛けることで、複素信号の振幅の両端をなだらかに0に近づけることができるので、後述する逆フーリエ変換によって複素信号を周波数領域から時間領域に変換した際に、時間領域上で不要なサイドローブが発生することを防止できる。   By multiplying the complex signal by a predetermined window function in this way, both ends of the amplitude of the complex signal can be brought close to zero. Therefore, when the complex signal is converted from the frequency domain to the time domain by inverse Fourier transform described later. In addition, unnecessary side lobes can be prevented from occurring in the time domain.

ここで、窓関数としては、任意の窓関数を用いることができるが、測定に用いる周波数幅や複素信号の振幅の大きさから、窓関数の振幅の中心位置や半値全幅、有限区間を決めることができる。すなわち、複素信号に対して窓関数を作用させた際に、測定に用いる周波数の両端で振幅がなだらかに0となるようにする。第1フィルタ処理部41で用いる窓関数としては、例えば、カイザー・ベッセル窓を用いることが望ましい。   Here, any window function can be used as the window function, but the center position, full width at half maximum, and finite interval of the window function are determined from the frequency width used for measurement and the amplitude of the complex signal. Can do. That is, when a window function is applied to a complex signal, the amplitude is gently reduced to 0 at both ends of the frequency used for measurement. As the window function used in the first filter processing unit 41, for example, it is desirable to use a Kaiser-Bessel window.

第1フィルタ処理部41は、窓関数を掛けた複素信号を、逆フーリエ変換部42に出力する。逆フーリエ変換部42は、図13Aのような有限区間の複素信号に対して逆フーリエ変換を行い、周波数領域の複素信号を時間領域に変換し、図13Bに示すような時間領域波形を生成する。逆フーリエ変換部42は、得られた時間領域波形を第2フィルタ処理部43に出力する。   The first filter processing unit 41 outputs the complex signal multiplied by the window function to the inverse Fourier transform unit 42. The inverse Fourier transform unit 42 performs inverse Fourier transform on a complex signal in a finite interval as shown in FIG. 13A, converts the complex signal in the frequency domain into the time domain, and generates a time domain waveform as shown in FIG. 13B. . The inverse Fourier transform unit 42 outputs the obtained time domain waveform to the second filter processing unit 43.

ここで、時間領域波形において、時刻0付近に現れる最初の第1ピークPK1は、送受信アンテナ4及び測定面10の位置や距離から判断すると、送受信アンテナ4から測定面10に向けてマイクロ波を照射する際に、送受信アンテナ4の端面でマイクロ波が反射することで生じる不要波により現れたピークである。   Here, in the time domain waveform, the first peak PK1 appearing near time 0 is irradiated from the transmission / reception antenna 4 toward the measurement plane 10 when judged from the positions and distances of the transmission / reception antenna 4 and the measurement plane 10. In this case, the peak appears due to an unnecessary wave generated by the reflection of the microwave on the end face of the transmission / reception antenna 4.

時間領域波形において、第1ピークPK1の次に現れる第2ピークPK2は、測定面10でマイクロ波が反射することで生じる反射マイクロ波による所望信号である。測定面10以遠の障害物でマイクロ波が反射することで生じる不要波は、時間領域波形では、第2ピークPK2よりも遅れた第3ピークPK3として現れる。   In the time domain waveform, the second peak PK2 appearing next to the first peak PK1 is a desired signal by the reflected microwave generated by the reflection of the microwave on the measurement surface 10. The unnecessary wave generated by the reflection of the microwave from the obstacle beyond the measurement surface 10 appears as the third peak PK3 delayed from the second peak PK2 in the time domain waveform.

第2フィルタ処理部43は、例えば、図14Aのような時間領域波形に、図14Bに示すような所定の窓関数を掛ける第2フィルタ処理を行う。これにより、第2フィルタ処理部43は、図14Cに示すように、所望信号である第2ピークPK2を時間領域波形から切り出して、不要波により現れた第1ピークPK1及び第3ピークPK3を抑制した時間領域波形を生成する。第2フィルタ処理部43は、時間領域波形から所望信号が存在する領域を切り出した時間領域波形をフーリエ変換部44に出力する。   For example, the second filter processing unit 43 performs a second filter process of multiplying a time domain waveform as shown in FIG. 14A by a predetermined window function as shown in FIG. 14B. Thereby, as shown in FIG. 14C, the second filter processing unit 43 cuts out the second peak PK2 that is a desired signal from the time domain waveform, and suppresses the first peak PK1 and the third peak PK3 that appear due to unnecessary waves. Generate a time domain waveform. The second filter processing unit 43 outputs a time domain waveform obtained by cutting out a region where a desired signal exists from the time domain waveform to the Fourier transform unit 44.

ここで、窓関数としては、任意の窓関数を用いることができるが、時間領域波形で所望信号となる第2ピークPK2付近に振幅のピークを持ち、かつ不要波による第1ピークPK1及び第3ピークPK3付近で振幅が0近くになる窓関数を使用すればよい。これら窓関数の振幅の中心位置や半値全幅、有限区間は、過去の操業データから決めることができる。第2フィルタ処理部43で用いる窓関数としては、例えば、ハニング窓を用いることができる。   Here, although an arbitrary window function can be used as the window function, the first peak PK1 and the third peak having an amplitude peak in the vicinity of the second peak PK2 that is a desired signal in the time domain waveform and unnecessary waves are used. A window function whose amplitude is close to zero near the peak PK3 may be used. The center position, full width at half maximum, and finite interval of the amplitude of these window functions can be determined from past operation data. As the window function used in the second filter processing unit 43, for example, a Hanning window can be used.

フーリエ変換部44は、図15Aに示すように、所望信号が存在する領域を切り出して不要波成分を抑制した時間領域波形に、フーリエ変換を行い、当該時間領域波形を時間領域から周波数領域へと変換し、図15Bに示すように、実部及び虚部を有する周波数領域波形を生成する。フーリエ変換部44は、得られた周波数領域波形を不要波抑制信号生成部45に出力する。   As shown in FIG. 15A, the Fourier transform unit 44 performs Fourier transform on a time domain waveform in which a region where a desired signal exists is cut out and suppresses an unnecessary wave component, and the time domain waveform is changed from the time domain to the frequency domain. A frequency domain waveform having a real part and an imaginary part is generated as shown in FIG. 15B. The Fourier transform unit 44 outputs the obtained frequency domain waveform to the unnecessary wave suppression signal generation unit 45.

不要波抑制信号生成部45は、図16Aのような周波数領域波形を、第1フィルタ処理部41で使用した図16Bに示す窓関数で割り戻し、図16Cのように、周波数fに沿って連続的に変化する不要波抑制信号を生成する。このようにして得られた不要波抑制信号は、実部と虚部を有する複素信号であり、不要波抑制信号生成部45は、生成した不要波抑制信号を第2位相変化量算出部37に出力する。   The unnecessary wave suppression signal generation unit 45 divides the frequency domain waveform as shown in FIG. 16A by the window function shown in FIG. 16B used in the first filter processing unit 41, and continues along the frequency f as shown in FIG. 16C. An unnecessary wave suppression signal that changes periodically is generated. The unnecessary wave suppression signal thus obtained is a complex signal having a real part and an imaginary part, and the unnecessary wave suppression signal generation unit 45 sends the generated unnecessary wave suppression signal to the second phase change amount calculation unit 37. Output.

第2位相変化量算出部37は、図17Aのような不要波抑制信号から、図17Cに示すように、各周波数f毎に位相変化量△φを算出する。第2位相変化量算出部37は、不要波抑制信号から各周波数f毎に位相変化量△φを算出すると、これを周波数・位相変化量データとして位相アンラッピング処理部24(図9)に出力する。   The second phase change amount calculation unit 37 calculates the phase change amount Δφ for each frequency f as shown in FIG. 17C from the unnecessary wave suppression signal as shown in FIG. 17A. After calculating the phase change amount Δφ for each frequency f from the unnecessary wave suppression signal, the second phase change amount calculating unit 37 outputs this to the phase unwrapping processing unit 24 (FIG. 9) as frequency / phase change amount data. To do.

ここで、図17Aに示す不要波抑制信号は、下記の式(14)で表すことができる。式(14)中、iは虚数単位を示し、A´は不要波抑制信号の振幅を示し、△φは不要波抑制信号の位相変化量を示す。なお、図17Bは、不要波抑制信号の振幅A´の波形を示したものである。   Here, the unnecessary wave suppression signal shown in FIG. 17A can be expressed by the following equation (14). In Expression (14), i represents an imaginary unit, A ′ represents the amplitude of the unwanted wave suppression signal, and Δφ represents the phase change amount of the unwanted wave suppression signal. FIG. 17B shows a waveform of the amplitude A ′ of the unnecessary wave suppression signal.

A´cos△φ+iA´sin△φ … (14)   A ′ cos Δφ + iA ′ sin Δφ (14)

不要波成分が抑制された不要波抑制信号から算出された、周波数fに沿った位相変化量△φは、反射マイクロ波と不要波とが干渉することにより生じる非線形な成分が抑制され、周波数fに沿って線形的に変化する。よって、第2実施形態では、位相変化量△φで非線形な成分を抑制できる分、位相変化量△φの周波数に対する傾きから測定面10の粗変位D´を求める際、粗変位D´に誤差が生じ難くなり、整数nを正しく決めることができる。   The phase change amount Δφ along the frequency f calculated from the unnecessary wave suppression signal in which the unnecessary wave component is suppressed suppresses a non-linear component generated by interference between the reflected microwave and the unnecessary wave, and the frequency f. It varies linearly along. Therefore, in the second embodiment, when a nonlinear component can be suppressed by the phase change amount Δφ, when the coarse displacement D ′ of the measurement surface 10 is obtained from the inclination of the phase change amount Δφ with respect to the frequency, an error is caused in the coarse displacement D ′. Is less likely to occur, and the integer n can be determined correctly.

なお、周波数・位相変化量データに対して位相アンラッピング処理を行う位相アンラッピング処理部24と、位相アンラッピングデータから近似直線の傾きd△φ/dfを算出する傾き算出部25と、上記の式(6)から粗変位D´を算出する粗変位算出部26と、2πの不定性を取り除く整数nを算出する位相不定性解消部27と、変位Dを算出する変位算出部28は、それぞれ上述した第1実施形態と同様であるため、ここではその説明は省略する。   The phase unwrapping processing unit 24 that performs phase unwrapping processing on the frequency / phase variation data, the slope calculating unit 25 that calculates the slope dΔφ / df of the approximate line from the phase unwrapping data, The coarse displacement calculation unit 26 that calculates the coarse displacement D ′ from the equation (6), the phase indeterminacy elimination unit 27 that calculates the integer n that removes the indefiniteness of 2π, and the displacement calculation unit 28 that calculates the displacement D are respectively Since it is the same as that of 1st Embodiment mentioned above, the description is abbreviate | omitted here.

(2−3)第2実施形態における変位測定時における変位測定処理
次に、第2実施形態における変位測定処理の時系列な流れについて、図18のフローチャートを用いて以下簡単に説明する。計算機31は、変位測定時、開始ステップからステップS11及びステップS21に移行する。計算機31は、ステップS11において、周波数fを時間に対して変化させたマイクロ波を送信信号として測定面10に送信し、測定面10からの反射マイクロ波を受信信号として受信することで、6ポート回路11から出力された信号の電力値B3,B4,B5,B6を取得する。
(2-3) Displacement Measurement Processing at the Time of Displacement Measurement in the Second Embodiment Next, the time series flow of the displacement measurement processing in the second embodiment will be briefly described below using the flowchart of FIG. The computer 31 shifts from the start step to step S11 and step S21 during displacement measurement. In step S11, the computer 31 transmits a microwave whose frequency f is changed with time to the measurement surface 10 as a transmission signal, and receives a reflected microwave from the measurement surface 10 as a reception signal, thereby obtaining 6 ports. The power values B3, B4, B5, and B6 of the signal output from the circuit 11 are acquired.

次いで、ステップS11において、計算機31は、所定の周波数fで6ポート回路11から出力された信号の電力値B3,B4,B5,B6と、当該周波数fのときの位相遅延量θとを用いて、上記の式(8)から、当該周波数fでの位相変化量△φを処理前位相変化量△φ´´(図11B)として算出し(処理前位相変化量算出工程)、次にステップS22に移る。   Next, in step S11, the computer 31 uses the power values B3, B4, B5, B6 of the signal output from the 6-port circuit 11 at the predetermined frequency f and the phase delay amount θ at the frequency f. From the above equation (8), the phase change amount Δφ at the frequency f is calculated as the pre-process phase change amount Δφ ″ (FIG. 11B) (pre-process phase change amount calculating step), and then step S22. Move on.

このときステップS21において、計算機31は、所定の周波数fにおいて、6ポート回路11から出力された信号の電力値B3,B4,B5,B6と、当該周波数fのときの位相遅延量θとを用いて、上記の式(12)から、当該周波数fでの振幅A(図11A)を求め(振幅算出工程)、次にステップS22に移る。   At this time, in step S21, the computer 31 uses the power values B3, B4, B5, and B6 of the signal output from the 6-port circuit 11 at the predetermined frequency f and the phase delay amount θ at the frequency f. Thus, the amplitude A (FIG. 11A) at the frequency f is obtained from the above equation (12) (amplitude calculation step), and then the process proceeds to step S22.

ステップS22において、計算機31は、掃引する周波数範囲の各周波数fで、それぞれ処理前位相変化量△φ´´及び振幅Aを算出したか否かを判断する。ここで、否定結果が得られると、各周波数fで処理前位相変化量△φ´´及び振幅Aを算出していないことを表しており、このとき計算機31は、ステップS11及びステップS21に戻り、他の周波数fでの処理前位相変化量△φ´´及び振幅Aを算出する。   In step S <b> 22, the calculator 31 determines whether or not the pre-processing phase change amount Δφ ″ and the amplitude A are calculated for each frequency f in the frequency range to be swept. Here, if a negative result is obtained, it indicates that the pre-processing phase change Δφ ″ and the amplitude A are not calculated at each frequency f. At this time, the calculator 31 returns to step S11 and step S21. The phase change amount Δφ ″ and the amplitude A before processing at other frequencies f are calculated.

一方、ステップS22において肯定結果が得られると、このことは全ての周波数fで処理前位相変化量△φ´´及び振幅Aを算出し終えたことを表しており、このとき計算機31は、ステップS23に移る。ステップS23において、計算機31は、上記の式(13)を基に、図11Cに示すような周波数領域の複素信号を生成し(複素信号生成工程)、次のステップS24に移る。   On the other hand, if an affirmative result is obtained in step S22, this means that the calculation of the pre-processing phase change amount Δφ ″ and the amplitude A has been completed for all the frequencies f. The process moves to S23. In step S23, the computer 31 generates a complex signal in the frequency domain as shown in FIG. 11C based on the above equation (13) (complex signal generation step), and proceeds to the next step S24.

ステップS24において、計算機31は、複素信号に窓関数(図12B)を掛ける第1フィルタ処理を行い、両端をなだらかに0に近づけた複素信号(図12C)を生成し(第1フィルタ処理工程)、次のステップS25に移る。ステップS25において、計算機31は、逆フーリエ変換により複素信号を周波数領域から時間領域に変換して時間領域波形(図13B)を生成し(時間領域変換工程)、次のステップS26に移る。   In step S24, the computer 31 performs a first filter process that multiplies the complex signal by a window function (FIG. 12B), and generates a complex signal (FIG. 12C) with both ends gently approaching 0 (first filter processing step). Then, the process proceeds to the next step S25. In step S25, the computer 31 converts the complex signal from the frequency domain to the time domain by inverse Fourier transform to generate a time domain waveform (FIG. 13B) (time domain conversion step), and proceeds to the next step S26.

ステップS26において、計算機31は、時間領域波形に窓関数(図14B)を掛ける第2フィルタ処理を行い、所望信号を切り出して不要波成分を抑制した時間領域波形(図14C)を生成し(第2フィルタ処理工程)、次のステップS27に移る。ステップS27において、計算機31は、フーリエ変換により時間領域波形を時間領域から周波数領域に変換して周波数領域波形(図15B)を生成し(周波数領域変換工程)、次のステップS28に移る。   In step S26, the computer 31 performs a second filter process that multiplies the time domain waveform by a window function (FIG. 14B), generates a time domain waveform (FIG. 14C) in which a desired signal is cut out and unnecessary wave components are suppressed (first waveform). 2 filter processing step), the process proceeds to the next step S27. In step S27, the calculator 31 converts the time domain waveform from the time domain to the frequency domain by Fourier transform to generate a frequency domain waveform (FIG. 15B) (frequency domain conversion process), and proceeds to the next step S28.

ステップS28において、計算機31は、ステップS24の第1フィルタ処理で用いた窓関数(図16B)で周波数領域波形を割り戻して、実部及び虚部を有する不要波抑制信号(図16C)を生成し(不要波抑制信号生成工程)、次のステップS29に移る。ステップS29において、計算機31は、上記の式(14)で表される不要波抑制信号から位相変化量△φを算出し(位相変化量算出工程)、第1実施形態で説明した図6のステップS13に移行する。   In step S28, the computer 31 divides the frequency domain waveform by the window function (FIG. 16B) used in the first filter processing in step S24, and generates an unnecessary wave suppression signal (FIG. 16C) having a real part and an imaginary part. Then (unnecessary wave suppression signal generation step), the process proceeds to the next step S29. In step S29, the computer 31 calculates the phase change amount Δφ from the unnecessary wave suppression signal expressed by the above formula (14) (phase change amount calculating step), and the step of FIG. 6 described in the first embodiment. The process proceeds to S13.

その後、第2実施形態でも、上述した第1実施形態と同様に、図6に示したステップS13〜ステップS17を順に実行する。なお、ここでは、ステップS29以降のステップS13〜ステップS17は、第1実施形態と同様であるため、その説明は省略する。   Thereafter, also in the second embodiment, the steps S13 to S17 shown in FIG. 6 are executed in order as in the first embodiment described above. In addition, since step S13-step S17 after step S29 are the same as that of 1st Embodiment, the description is abbreviate | omitted.

(2−4)検証試験
次に検証試験について説明する。図19は、検証試験によって各周波数f毎に処理前位相変化量△φ´´を算出したときの算出結果を示したグラフである。図19では、測定対象物としてアルミ平板(アルミ板とも称する)を用い、48〜52[GHz](掃引周波数帯域幅は4[GHz])の範囲で周波数を掃引しながらマイクロ波をアルミ板に向けて照射した。なお、この検証試験では、アルミ板からの反射マイクロ波を受信する際に不要波が発生している。
(2-4) Verification Test Next, the verification test will be described. FIG. 19 is a graph showing a calculation result when the pre-processing phase change amount Δφ ″ is calculated for each frequency f by the verification test. In FIG. 19, an aluminum flat plate (also referred to as an aluminum plate) is used as an object to be measured, and microwaves are applied to the aluminum plate while sweeping the frequency in the range of 48 to 52 [GHz] (sweep frequency bandwidth is 4 [GHz]). Irradiated towards. In this verification test, an unnecessary wave is generated when the reflected microwave from the aluminum plate is received.

なお、48〜52[GHz]の範囲で周波数掃引を行った際の6ポート回路11の位相遅延量θを、上述した手順に従い、較正によって事前に求めた。図19では、基準位置Oからの変位Dを1000[μm]として、そのときに6ポート回路11から出力された4つの信号の電力値B3,B4,B5,B6と、事前に求めた位相遅延量θとを用いて、上記の式(8)から各周波数f毎に求めた位相変化量△φを処理前位相変化量△φ´´として示す。図19では、本来、線形的なノコギリ歯状となるはずの信号が、不要波の影響によって歪んでいることが確認できた。   The phase delay amount θ of the 6-port circuit 11 when the frequency sweep was performed in the range of 48 to 52 [GHz] was obtained in advance by calibration according to the above-described procedure. In FIG. 19, the displacement D from the reference position O is set to 1000 [μm], and the power values B3, B4, B5, B6 of the four signals output from the 6-port circuit 11 at that time, and the phase delay obtained in advance. Using the amount θ, the phase change amount Δφ obtained for each frequency f from the above equation (8) is shown as a pre-processing phase change amount Δφ ″. In FIG. 19, it was confirmed that the signal that should have a linear sawtooth shape is distorted by the influence of unnecessary waves.

次に、6ポート回路11から出力された4つの信号の電力値B3,B4,B5,B6と、事前に求めた位相遅延量θとを用いて、上記の式(12)から各周波数f毎に振幅Aを求めた。そして、周波数fに沿って取得した振幅Aと、同じく周波数fに沿って取得した処理前位相変化量△φ´´とを用いて、周波数fを変化させながら、上記の式(13)を計算して複素信号を生成した。   Next, the power values B3, B4, B5, B6 of the four signals output from the 6-port circuit 11 and the phase delay amount θ obtained in advance are used for each frequency f from the above equation (12). The amplitude A was obtained. Then, using the amplitude A acquired along the frequency f and the pre-processing phase change Δφ ″ acquired along the frequency f, the above equation (13) is calculated while changing the frequency f. To generate a complex signal.

次に、第1フィルタ処理として、β=6のカイザー・ベッセル窓を窓関数として複素信号に掛けた後、得られた複素信号を逆フーリエ変換し、当該複素信号を周波数領域から時間領域に変換して時間領域波形を生成した。その結果、図20に示すような結果が得られた。測定面10の位置から本来必要な信号は、2[ns]付近の信号であるが、図20から、その他の箇所(例えば、0.5[ns]付近及び4[ns]付近)にも、不要波によりピークが存在することが確認できた。   Next, as the first filter processing, a complex signal is multiplied by a Kaiser-Bessel window with β = 6 as a window function, and the obtained complex signal is subjected to inverse Fourier transform to convert the complex signal from the frequency domain to the time domain. A time domain waveform was generated. As a result, a result as shown in FIG. 20 was obtained. The signal originally necessary from the position of the measurement surface 10 is a signal in the vicinity of 2 [ns], but from FIG. 20, other locations (for example, in the vicinity of 0.5 [ns] and 4 [ns]) It was confirmed that there was a peak due to unnecessary waves.

次に、第2フィルタ処理として、中心2[ns]、半値全幅1.5[ns]のハニング窓を窓関数として用いて、図20に示した時間領域波形のうち、2[ns]付近の信号を所望信号として切り出した。その結果、図21に示すような時間領域波形が得られた。そして、図21に示した時間領域波形をフーリエ変換し、当該時間領域波形を時間領域から周波数領域に変換して周波数領域波形を生成した。   Next, as a second filter process, a Hanning window having a center of 2 [ns] and a full width at half maximum of 1.5 [ns] is used as a window function, and the vicinity of 2 [ns] in the time domain waveform shown in FIG. The signal was cut out as a desired signal. As a result, a time domain waveform as shown in FIG. 21 was obtained. Then, the time domain waveform shown in FIG. 21 was Fourier transformed, and the time domain waveform was converted from the time domain to the frequency domain to generate a frequency domain waveform.

次いで、この周波数領域波形を、第1フィルタ処理で窓関数として使用したβ=6のカイザー・ベッセル窓で割り戻して不要波抑制信号を生成した。このようにして得られた不要波抑制信号は実部及び虚部を有するものであり、上記の式(14)で表される。次いで、この不要波抑制信号から、各周波数fに沿って位相変化量△φを算出したところ、図22に示すような結果が得られた。図22の結果から、処理前位相変化量△φ´´に存在していた非線形の成分が抑制され、線形的なノコギリ歯状の信号が得られることが確認できた。   Next, this frequency domain waveform was divided back by a Kaiser-Bessel window with β = 6 used as a window function in the first filter processing to generate an unnecessary wave suppression signal. The unnecessary wave suppression signal obtained in this way has a real part and an imaginary part, and is represented by the above equation (14). Next, when the amount of phase change Δφ was calculated along each frequency f from this unnecessary wave suppression signal, the result shown in FIG. 22 was obtained. From the result of FIG. 22, it was confirmed that the nonlinear component existing in the pre-processing phase change amount Δφ ″ was suppressed and a linear sawtooth signal was obtained.

次に、図19に示した処理前位相変化量△φ´´と、図22に示した位相変化量△φとを用いて、それぞれ変位Dを算出した結果を図23に示す。不要波成分を抑制する処理を行っていない場合、アルミ板に与えた変位量が3000[μm]のときに変位が正しく測定されなかった。しかしながら、不要波成分を抑制する処理を行うと、測定範囲全域で変位Dを正しく求めることができた。   Next, FIG. 23 shows the result of calculating the displacement D using the pre-processing phase change amount Δφ ″ shown in FIG. 19 and the phase change amount Δφ shown in FIG. When the treatment for suppressing the unwanted wave component was not performed, the displacement was not correctly measured when the displacement applied to the aluminum plate was 3000 [μm]. However, when the process for suppressing the unwanted wave component is performed, the displacement D can be correctly obtained over the entire measurement range.

次に、中心周波数を50[GHz]として、掃引周波数帯域幅(帯域幅)を250[MHz]、500[MHz]、1[GHz]、2[GHz]、4[GHz]及び8[GHz]と変え、不要波成分を抑制する処理を行い、変位Dの測定を行った。そして、得られた変位Dの測定結果を、図24に示す。なお、不要波成分を抑制する処理は、上述した検証試験と同じようにして第1フィルタ処理や第2フィルタ処理等の一連の処理を行い、そのとき用いる窓関数も上述した検証試験と同じカイザー・ベッセル窓及びハニング窓を用いた。   Next, the center frequency is 50 [GHz], and the sweep frequency bandwidth (bandwidth) is 250 [MHz], 500 [MHz], 1 [GHz], 2 [GHz], 4 [GHz], and 8 [GHz]. In other words, the process of suppressing the unwanted wave component was performed, and the displacement D was measured. And the measurement result of the obtained displacement D is shown in FIG. The processing for suppressing unnecessary wave components is performed by performing a series of processes such as the first filter process and the second filter process in the same manner as in the verification test described above, and the window function used at that time is also the same Kaiser as in the verification test described above.・ Bessel window and Hanning window were used.

図24Aは、掃引周波数帯域幅が250[MHz]のときの変位Dの測定結果を示し、図24Bは、掃引周波数帯域幅が500[MHz]のときの変位Dの測定結果を示し、図24Cは、掃引周波数帯域幅が1[GHz]のときの変位Dの測定結果を示す。また、図24Dは、掃引周波数帯域幅が2[GHz]のときの変位Dの測定結果を示し、図24Eは、掃引周波数帯域幅が4[GHz]のときの変位Dの測定結果を示し、図24Fは、掃引周波数帯域幅が8[GHz]のときの変位Dの測定結果を示す。   24A shows the measurement result of the displacement D when the sweep frequency bandwidth is 250 [MHz], FIG. 24B shows the measurement result of the displacement D when the sweep frequency bandwidth is 500 [MHz], and FIG. Indicates a measurement result of the displacement D when the sweep frequency bandwidth is 1 [GHz]. FIG. 24D shows the measurement result of the displacement D when the sweep frequency bandwidth is 2 [GHz], and FIG. 24E shows the measurement result of the displacement D when the sweep frequency bandwidth is 4 [GHz]. FIG. 24F shows the measurement result of the displacement D when the sweep frequency bandwidth is 8 [GHz].

掃引周波数帯域幅を1[GHz]〜8[GHz]とした場合、変位Dが正しく測定されることが確認できた。一方、掃引周波数帯域幅を250[MHz]、500[MHz]とした場合には、図24A及び図24Bに示すように、アルミ板の移動量が1[μm]、5[μm]及び9.5[μm]のとき、測定値が実際の移動量に対して大きく外れた。これらは、位相変化量△φの傾きから整数nを決定する際に、整数nが正しく求められないために生じた誤差である。   It was confirmed that the displacement D was correctly measured when the sweep frequency bandwidth was 1 [GHz] to 8 [GHz]. On the other hand, when the sweep frequency bandwidth is 250 [MHz] and 500 [MHz], as shown in FIGS. 24A and 24B, the movement amount of the aluminum plate is 1 [μm], 5 [μm] and 9. At 5 [μm], the measured value greatly deviated from the actual movement amount. These are errors that occur because the integer n cannot be obtained correctly when determining the integer n from the slope of the phase change amount Δφ.

よって、不要波成分を抑制する処理により非線形成分が抑制された位相変化量△φを用いると、変位Dを求めるのに必要な掃引周波数帯域幅を1[GHz]まで狭めることが可能になった。以上より、測定面10の変位Dを測定する際の掃引周波数帯域幅を狭めても、測定誤差を抑制して測定面10の変位を正確に測定できることが確認できた。   Therefore, when the phase change amount Δφ in which the nonlinear component is suppressed by the processing for suppressing the unnecessary wave component, the sweep frequency bandwidth necessary for obtaining the displacement D can be narrowed to 1 [GHz]. . From the above, it was confirmed that even when the sweep frequency bandwidth when measuring the displacement D of the measurement surface 10 is narrowed, the measurement error can be suppressed and the displacement of the measurement surface 10 can be measured accurately.

(2−5)作用及び効果
以上の構成において、第2実施形態の変位測定装置でも、上述した第1実施形態と同様に、送受信工程、実測値入力工程、位相演算工程、粗変位算出工程、位相不定性解消工程及び変位算出工程を実行することで、6ポート回路11での測定誤差を抑制して測定面10の変位Dを正確に測定できる。また、この変位測定装置でも、2πの不定性を取り除くことができるので、波長を超えた大きさの変位Dを正確に測定できる。
(2-5) Operation and effect In the above configuration, the displacement measuring apparatus according to the second embodiment is similar to the first embodiment described above, in the transmission / reception process, the actual value input process, the phase calculation process, the coarse displacement calculation process, By executing the phase ambiguity elimination step and the displacement calculation step, the measurement error in the 6-port circuit 11 can be suppressed and the displacement D of the measurement surface 10 can be accurately measured. In addition, since this displacement measuring apparatus can remove the indefiniteness of 2π, the displacement D exceeding the wavelength can be accurately measured.

これに加えて、第2実施形態の変位測定装置では、位相演算工程を実行する際、6ポート回路11から出力される各信号の電力値B3,B4,B5,B6と、較正時に得た周波数掃引における各周波数fでの位相遅延量θとを用いて処理前位相変化量△φ´´及び振幅Aを算出し、これら処理前位相変化量△φ´´及び振幅Aに基づいて複素信号を生成するにようにした(複素信号生成工程)。次いで、この変位測定装置では、複素信号に含まれる所望信号を切り出して不要波成分を抑制した不要波抑制信号を生成し(不要波抑制工程)、この不要波抑制信号から各周波数fでの位相変化量△φを算出するようにした(位相変化量算出工程)。   In addition, in the displacement measuring apparatus of the second embodiment, when the phase calculation process is executed, the power values B3, B4, B5, B6 of each signal output from the 6-port circuit 11 and the frequency obtained during calibration are obtained. The phase change amount Δφ ″ and the amplitude A before processing are calculated using the phase delay amount θ at each frequency f in the sweep, and a complex signal is calculated based on the phase amount Δφ ″ and amplitude A before the processing. It was made to generate (complex signal generation process). Next, in this displacement measuring apparatus, a desired signal included in the complex signal is cut out to generate an unnecessary wave suppression signal in which the unnecessary wave component is suppressed (unnecessary wave suppression step), and the phase at each frequency f is generated from this unnecessary wave suppression signal. The amount of change Δφ was calculated (phase change amount calculating step).

このように、第2実施形態による変位測定装置では、不要波成分が抑制された不要波抑制信号から、周波数fに沿った位相変化量△φを算出するようにしたことにより、反射マイクロ波と不要波との干渉がなく非線形な成分が抑制された位相変化量△φを得ることができる。したがって、位相変化量△φの周波数に対する傾きから測定面10の粗変位D´を求める際、粗変位D´に誤差が生じ難くなり、整数nを正しく決めることができるため、2πの不定性を正しく取り除くことができる。   As described above, in the displacement measuring apparatus according to the second embodiment, the phase change amount Δφ along the frequency f is calculated from the unnecessary wave suppression signal in which the unnecessary wave component is suppressed. It is possible to obtain a phase change amount Δφ in which non-linear components are suppressed without interference with unnecessary waves. Therefore, when the coarse displacement D ′ of the measurement surface 10 is obtained from the inclination of the phase change amount Δφ with respect to the frequency, an error hardly occurs in the coarse displacement D ′, and the integer n can be correctly determined. Can be removed correctly.

また、変位測定装置では、位相変化量△φの周波数に対する傾きから測定面10の粗変位D´を求める際、不要波成分が抑制されて線形的に変化する位相変化量△φを用いるようにしたことにより、掃引周波数帯域幅を狭くしても、整数nを正しく決めることができる。よって、掃引周波数帯域幅を狭くしても、2πの不定性を正しく取り除け、測定面10の変位Dを正確に測定できる。   Further, in the displacement measuring apparatus, when the coarse displacement D ′ of the measurement surface 10 is obtained from the inclination of the phase change amount Δφ with respect to the frequency, the phase change amount Δφ that linearly changes while suppressing the unnecessary wave component is used. As a result, even if the sweep frequency bandwidth is narrowed, the integer n can be determined correctly. Therefore, even if the sweep frequency bandwidth is narrowed, the 2π indefiniteness can be correctly removed, and the displacement D of the measurement surface 10 can be accurately measured.

(2−6)第2実施形態における他の実施形態
なお、上述した第2実施形態においては、第2フィルタ処理工程で用いる第2フィルタとして、図14Bに示すように、ピークから両端に向けてなだらかに振幅が小さくなってゆき端部で振幅が0の正弦波状の窓関数を適用したが、本発明はこれに限らない。例えば、急峻な立ち上がり及び立ち下がりを有するパルス状の信号を、第2フィルタ処理工程で用いる第2フィルタとして適用してもよい。なお、パルス状の信号を用いる場合も、時間領域波形で所望信号となる第2ピークPK2付近に立ち上がり領域を持ち、かつ不要波による第1ピークPK1及び第3ピークPK3付近で振幅が0の立ち下がり領域を有していればよい。
(2-6) Other Embodiments in Second Embodiment In the second embodiment described above, as shown in FIG. 14B, the second filter used in the second filter processing step is directed from the peak toward both ends. Although a sinusoidal window function having a gradually decreasing amplitude and having an amplitude of 0 at the end is applied, the present invention is not limited to this. For example, a pulse-like signal having steep rising and falling edges may be applied as the second filter used in the second filter processing step. Even in the case of using a pulsed signal, a rising region is present in the vicinity of the second peak PK2, which is a desired signal in the time domain waveform, and the amplitude is 0 in the vicinity of the first peak PK1 and the third peak PK3 due to unnecessary waves. What is necessary is just to have a falling area.

また、上述した第2実施形態において、第2フィルタ処理工程で用いる第2フィルタとして、正弦波状の窓関数を用い、送受信アンテナ4の端面でマイクロ波が反射することで生じる不要波と、測定面10以遠の障害物でマイクロ波が反射することで生じる不要波との両方を抑制するようにした場合について述べたが、本発明はこれに限らない。   Further, in the second embodiment described above, a sine wave window function is used as the second filter used in the second filter processing step, unnecessary waves generated by reflection of microwaves at the end face of the transmission / reception antenna 4, and measurement surface Although the case where both the unwanted wave generated by the reflection of the microwave by the obstacle of 10 or more is suppressed has been described, the present invention is not limited to this.

例えば、測定面10以遠で生じる不要波による影響が小さい場合には、第2フィルタとして、送受信アンテナ4の端面でマイクロ波が反射することで生じる不要波による第1ピークPK1のみを抑制し、第3ピークPK3をそのままとする第2フィルタを用いるようにしてもよい。具体的には、第2フィルタ処理時、遅延時間が0〜0.5[ns]付近で振幅が0で、それ以外の領域で振幅が1のステップ状の信号を第2フィルタとして用いてもよい。なお、このステップ状の信号は、急峻に立ち上がる信号であってもよく、また、なだらかに立ち上がる信号でもよい。   For example, when the influence of unnecessary waves generated beyond the measurement surface 10 is small, as the second filter, only the first peak PK1 due to unnecessary waves caused by the reflection of microwaves at the end face of the transmission / reception antenna 4 is suppressed. You may make it use the 2nd filter which leaves 3 peak PK3 as it is. Specifically, at the time of the second filter processing, a stepped signal having an amplitude of 0 when the delay time is around 0 to 0.5 [ns] and an amplitude of 1 in other regions may be used as the second filter. Good. The step-like signal may be a signal that rises steeply, or may be a signal that rises gently.

また、送受信アンテナ4の端面で生じる不要波による影響が小さい場合には、測定面10以遠に位置する箇所で発生する、時間領域波形内の不要波成分のみを、第2フィルタで抑制するようにしてもよい。この場合、第2フィルタとしては、測定面10以遠で反射することで生じる不要波による第3ピークPK3付近のみで振幅が0となり、その他の箇所では振幅が1となる第2フィルタを用いればよい。   In addition, when the influence of the unnecessary wave generated at the end face of the transmission / reception antenna 4 is small, only the unnecessary wave component in the time domain waveform that is generated at a position located beyond the measurement plane 10 is suppressed by the second filter. May be. In this case, as the second filter, a second filter having an amplitude of 0 only near the third peak PK3 due to an unnecessary wave generated by reflection beyond the measurement surface 10 and an amplitude of 1 at other locations may be used. .

1 変位測定装置
4 送受信アンテナ(送受信部)
11 6ポート回路
23、32 位相演算部
26 粗変位算出部
27 位相不定性解消部
28 変位算出部
35 複素信号生成部
36 不要波抑制部
37 第2位相変化量算出部
41 第1フィルタ処理部
42 逆フーリエ変換部
43 第2フィルタ処理部
44 フーリエ変換部
45 不要波抑制信号生成部
1 Displacement measuring device 4 Transmission / reception antenna (transmission / reception unit)
11 6-port circuit 23, 32 Phase calculation unit 26 Coarse displacement calculation unit 27 Phase indefiniteness cancellation unit 28 Displacement calculation unit 35 Complex signal generation unit 36 Unwanted wave suppression unit 37 Second phase change amount calculation unit 41 First filter processing unit 42 Inverse Fourier transform unit 43 Second filter processing unit 44 Fourier transform unit 45 Unwanted wave suppression signal generation unit

Claims (11)

マイクロ波を送信信号として用いて測定面の変位を測定する変位測定方法において、
周波数を時間に対して変化させた前記送信信号を前記測定面に送信し、前記測定面からの反射マイクロ波を受信信号として受信する送受信工程と、
6ポート回路に対し、前記送信信号を参照信号として入力するとともに、前記測定面の変位を測定する際に得られた前記受信信号を入力する実測値入力工程と、
前記実測値入力工程により前記6ポート回路から出力される4つの信号の電力値と、前記送信信号の各前記周波数における前記6ポート回路での位相遅延量θと、に基づいて、各前記周波数で位相変化量△φを算出する位相演算工程と、
前記位相変化量△φの前記周波数に対する傾きを基に前記測定面の粗変位D´を算出する粗変位算出工程と、
前記粗変位D´と前記位相変化量△φとを用いて、位相特性である2πの不定性を解消する整数nを算出する位相不定性解消工程と、
前記整数nを規定して2πの不定性を解消した所定の演算式により、前記位相変化量△φを用いて前記測定面の変位Dを算出する変位算出工程と、を備える、変位測定方法。
In a displacement measurement method for measuring the displacement of a measurement surface using a microwave as a transmission signal,
A transmission / reception step of transmitting the transmission signal whose frequency is changed with respect to time to the measurement surface, and receiving a reflected microwave from the measurement surface as a reception signal;
An actual value input step of inputting the transmission signal as a reference signal to the 6-port circuit and inputting the reception signal obtained when measuring the displacement of the measurement surface;
Based on the power values of the four signals output from the 6-port circuit in the measured value input step and the phase delay amount θ in the 6-port circuit at each frequency of the transmission signal, at each frequency. A phase calculation step of calculating a phase change amount Δφ;
A coarse displacement calculating step of calculating a coarse displacement D ′ of the measurement surface based on an inclination of the phase change amount Δφ with respect to the frequency;
A phase ambiguity eliminating step of calculating an integer n that eliminates the indefiniteness of 2π, which is a phase characteristic, using the coarse displacement D ′ and the phase change amount Δφ;
A displacement calculating step of calculating a displacement D of the measurement surface using the phase change amount Δφ by a predetermined arithmetic expression in which the integer n is defined and the indefiniteness of 2π is eliminated.
前記実測値入力工程の前に、較正工程を備えており、
前記較正工程は、
前記測定面の変位に応じて変化する既知位相変化量△φ´を、前記送信信号の各前記周波数毎に取得する既知位相変化量取得工程と、
前記既知位相変化量△φ´のときに前記6ポート回路から出力される4つの信号の電力値を取得する較正用電力値取得工程と、
前記既知位相変化量△φ´と、前記較正用電力値取得工程で取得した前記電力値と、に基づいて、前記送信信号の各前記周波数における前記6ポート回路での前記位相遅延量θを算出する位相遅延量演算工程と、を備える、請求項1に記載の変位測定方法。
A calibration step is provided before the actual value input step,
The calibration step includes
A known phase change amount obtaining step for obtaining a known phase change amount Δφ ′ that changes according to the displacement of the measurement surface for each of the frequencies of the transmission signal;
A calibration power value acquisition step of acquiring power values of four signals output from the 6-port circuit when the known phase change amount Δφ ′;
Based on the known phase change amount Δφ ′ and the power value obtained in the calibration power value obtaining step, the phase delay amount θ in the 6-port circuit at each frequency of the transmission signal is calculated. The displacement measuring method according to claim 1, further comprising: a phase delay amount calculating step.
前記既知位相変化量△φ´は、0、π/2、π、3π/2以外である、請求項2に記載の変位測定方法。   The displacement measuring method according to claim 2, wherein the known phase change amount Δφ ′ is other than 0, π / 2, π, and 3π / 2. 前記位相不定性解消工程にて2πの不定性を解消する前記整数nを算出する際の演算式が、下記の式(1)である、請求項1〜3のいずれか1項に記載の変位測定方法。
D´=c/4πf・(△φ+2πn) … (1)
D´は前記粗変位[μm]、cは光速[m/s]、fは前記周波数[Hz]、△φは前記位相変化量[rad]、nは前記整数を示す。
The displacement according to any one of claims 1 to 3, wherein an arithmetic expression for calculating the integer n that eliminates 2π indefiniteness in the phase indefiniteness elimination step is the following expression (1). Measuring method.
D ′ = c / 4πf · (Δφ + 2πn) (1)
D ′ is the coarse displacement [μm], c is the speed of light [m / s], f is the frequency [Hz], Δφ is the phase change amount [rad], and n is the integer.
前記変位算出工程にて前記変位Dを算出する際の演算式が、下記の式(2)である、請求項1〜4のいずれか1項に記載の変位測定方法。
D=c/4πf・(△φ+2πn) … (2)
Dは前記変位[μm]、cは光速[m/s]、fは前記周波数[Hz]、△φは前記位相変化量[rad]、nは前記整数を示す。
The displacement measuring method according to any one of claims 1 to 4, wherein an arithmetic expression for calculating the displacement D in the displacement calculating step is the following expression (2).
D = c / 4πf · (Δφ + 2πn) (2)
D is the displacement [μm], c is the speed of light [m / s], f is the frequency [Hz], Δφ is the phase change [rad], and n is the integer.
前記位相演算工程は、
前記6ポート回路から出力される4つの信号の前記電力値と、前記位相遅延量θとを用いて算出した、処理前位相変化量△φ´´及び振幅Aに基づいて、複素信号を生成する複素信号生成工程と、
前記複素信号に含まれる所望信号を切り出して不要波成分を抑制した不要波抑制信号を生成する不要波抑制工程と、
前記不要波抑制信号から各前記周波数での前記位相変化量△φを算出する位相変化量算出工程と、を有する、請求項1〜5のいずれか1項に記載の変位測定方法。
The phase calculation step includes
A complex signal is generated based on the pre-processing phase change amount Δφ ″ and the amplitude A calculated using the power values of the four signals output from the 6-port circuit and the phase delay amount θ. Complex signal generation process;
An unnecessary wave suppression step of generating an unnecessary wave suppression signal by cutting out a desired signal included in the complex signal and suppressing an unnecessary wave component;
The displacement measurement method according to claim 1, further comprising: a phase change amount calculation step of calculating the phase change amount Δφ at each frequency from the unnecessary wave suppression signal.
前記不要波抑制工程は、
前記複素信号に対して第1フィルタ処理を行い、両端をなだらかに0に近づけた有限区間の複素信号を生成する第1フィルタ処理工程と、
前記第1フィルタ処理工程で生成した前記複素信号を周波数領域から時間領域に変換して時間領域波形を生成する時間領域変換工程と、
前記時間領域波形に対して第2フィルタ処理を行い、所定の前記不要波成分を抑制した時間領域波形を生成する第2フィルタ処理工程と、
前記不要波成分を抑制した前記時間領域波形を時間領域から周波数領域に変換して周波数領域波形を生成する周波数領域変換工程と、
前記周波数領域波形を、前記第1フィルタ処理工程で用いた第1フィルタで割り戻し、前記不要波抑制信号を生成する不要波抑制信号生成工程と、
を有する、請求項6に記載の変位測定方法。
The unnecessary wave suppressing step includes
A first filter processing step of performing a first filter process on the complex signal and generating a complex signal of a finite interval in which both ends gently approach 0;
A time domain conversion step of converting the complex signal generated in the first filter processing step from a frequency domain to a time domain to generate a time domain waveform;
Performing a second filter process on the time domain waveform to generate a time domain waveform in which the predetermined unnecessary wave component is suppressed; and
A frequency domain conversion step of generating a frequency domain waveform by converting the time domain waveform suppressing the unnecessary wave component from the time domain to the frequency domain;
Reducing the frequency domain waveform by the first filter used in the first filter processing step, and generating the unnecessary wave suppression signal,
The displacement measuring method according to claim 6, comprising:
前記第2フィルタ処理工程は、
前記送信信号を前記測定面に送信し、前記反射マイクロ波を前記受信信号として受信する送受信部に位置する箇所で発生する、前記時間領域波形内の前記不要波成分を、第2フィルタで抑制する、請求項7に記載の変位測定方法。
The second filter processing step includes
The unnecessary signal component in the time-domain waveform generated at a location located in a transmission / reception unit that transmits the transmission signal to the measurement surface and receives the reflected microwave as the reception signal is suppressed by a second filter. The displacement measuring method according to claim 7.
前記第2フィルタ処理工程は、
前記測定面以遠に位置する箇所で発生する、前記時間領域波形内の前記不要波成分を、第2フィルタで抑制する、請求項7に記載の変位測定方法。
The second filter processing step includes
The displacement measurement method according to claim 7, wherein the unnecessary wave component in the time-domain waveform generated at a location located farther from the measurement surface is suppressed by a second filter.
前記第2フィルタはハニング窓である、請求項8又は9に記載の変位測定方法。   The displacement measuring method according to claim 8 or 9, wherein the second filter is a Hanning window. マイクロ波を送信信号として用いて測定面の変位を測定する変位測定装置において、
周波数を時間に対して変化させた前記送信信号を前記測定面に送信し、前記測定面からの反射マイクロ波を受信信号として受信する送受信部と、
前記送信信号が参照信号として入力され、前記受信信号が入力される6ポート回路と、
前記6ポート回路から出力される4つの電力値と、前記送信信号の各前記周波数における前記6ポート回路での位相遅延量θと、に基づいて、各前記周波数で位相変化量△φを算出する位相演算部と、
前記位相変化量△φの前記周波数に対する傾きを基に前記測定面の粗変位D´を算出する粗変位算出部と、
前記粗変位D´と前記位相変化量△φとを用いて、位相特性である2πの不定性を解消する整数nを算出する位相不定性解消部と、
前記整数nを規定して2πの不定性を解消した所定の演算式により、前記位相変化量△φを用いて前記測定面の変位Dを算出する変位算出部と、を備える、変位測定装置。
In a displacement measuring device that measures the displacement of a measurement surface using a microwave as a transmission signal,
A transmission / reception unit that transmits the transmission signal having a frequency changed with respect to time to the measurement surface, and receives a reflected microwave from the measurement surface as a reception signal;
A 6-port circuit to which the transmission signal is input as a reference signal and the reception signal is input;
Based on the four power values output from the 6-port circuit and the phase delay amount θ in the 6-port circuit at each frequency of the transmission signal, the phase change amount Δφ is calculated at each frequency. A phase calculation unit;
A coarse displacement calculator for calculating a coarse displacement D ′ of the measurement surface based on an inclination of the phase change amount Δφ with respect to the frequency;
A phase indeterminacy eliminating unit that calculates an integer n that eliminates the indeterminacy of 2π, which is a phase characteristic, using the coarse displacement D ′ and the phase change amount Δφ;
A displacement measuring device comprising: a displacement calculating unit that calculates the displacement D of the measurement surface using the phase change amount Δφ by a predetermined arithmetic expression that defines the integer n and eliminates the indefiniteness of 2π.
JP2018194570A 2018-04-11 2018-10-15 Displacement measuring method and displacement measuring device Active JP7074013B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076291 2018-04-11
JP2018076291 2018-04-11

Publications (2)

Publication Number Publication Date
JP2019184565A true JP2019184565A (en) 2019-10-24
JP7074013B2 JP7074013B2 (en) 2022-05-24

Family

ID=68340874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194570A Active JP7074013B2 (en) 2018-04-11 2018-10-15 Displacement measuring method and displacement measuring device

Country Status (1)

Country Link
JP (1) JP7074013B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119409A (en) * 1983-11-30 1985-06-26 Sumitomo Metal Ind Ltd Displacement measuring method
JP2001056371A (en) * 1999-08-18 2001-02-27 Mitsubishi Heavy Ind Ltd Radio-wave ranging system
US20030013954A1 (en) * 1999-12-13 2003-01-16 Holmes Wayne Stephen Tissue sensor
US20050234662A1 (en) * 2004-01-15 2005-10-20 Niedzwiecki Joshua D Method and apparatus for calibrating a frequency domain reflectometer
JP2007316066A (en) * 2006-05-23 2007-12-06 Korea Advanced Inst Of Science & Technology Distance measurement sensor and method of measuring distance using the same
JP2015143619A (en) * 2014-01-31 2015-08-06 株式会社デンソーウェーブ Distance measuring apparatus
JP2017142104A (en) * 2016-02-09 2017-08-17 新日鐵住金株式会社 Level gauge and level measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119409A (en) * 1983-11-30 1985-06-26 Sumitomo Metal Ind Ltd Displacement measuring method
JP2001056371A (en) * 1999-08-18 2001-02-27 Mitsubishi Heavy Ind Ltd Radio-wave ranging system
US20030013954A1 (en) * 1999-12-13 2003-01-16 Holmes Wayne Stephen Tissue sensor
US20050234662A1 (en) * 2004-01-15 2005-10-20 Niedzwiecki Joshua D Method and apparatus for calibrating a frequency domain reflectometer
JP2007316066A (en) * 2006-05-23 2007-12-06 Korea Advanced Inst Of Science & Technology Distance measurement sensor and method of measuring distance using the same
JP2015143619A (en) * 2014-01-31 2015-08-06 株式会社デンソーウェーブ Distance measuring apparatus
JP2017142104A (en) * 2016-02-09 2017-08-17 新日鐵住金株式会社 Level gauge and level measurement method

Also Published As

Publication number Publication date
JP7074013B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
Piotrowsky et al. Enabling high accuracy distance measurements with FMCW radar sensors
KR100779811B1 (en) Distance Measuring Device, Distance Measuring Method and Recording Medium for Distance Measuring Program
Scherr et al. An efficient frequency and phase estimation algorithm with CRB performance for FMCW radar applications
JP7074311B2 (en) Optical distance measuring device and measuring method
JP6806347B2 (en) Optical distance measuring device and measuring method
EP3540401B1 (en) High resolution interferometric optical frequency domain reflectometry (ofdr)
TWI676044B (en) Laser phase estimation and correction
CA2583337C (en) Electro-optical method for measuring distance and detecting a non-ideal chirp profile
US20040196177A1 (en) Method and system for calibration of a phase-based sensing system
EP2738514A1 (en) Error reducing method in heterodyne interferometry
JP2008516213A5 (en)
Piotrowsky et al. Spatially resolved fast-time vibrometry using ultrawideband FMCW radar systems
JP7058321B2 (en) Methods and equipment for measuring the thickness of a layer of an object
KR101110025B1 (en) Method for processing signal in fmcw radar
JP2019184565A (en) Displacement measuring method and displacement measuring device
JP7396630B2 (en) Distance measuring device and method
US20160054166A1 (en) Echo curve determination at a resolution that differs on area-by-area basis
RU2611333C1 (en) Contactless radiowave method of measuring liquid level in reservoir
JP7069993B2 (en) Optical spectrum line width calculation method, device and program
KR101347000B1 (en) Method for estimating frequency of a digital input signal
KR102288866B1 (en) Method for increasing range resolution using existing radar information
JP2019015699A (en) Distance measuring device, water level measuring system, and distance measurement method
JP2024043992A (en) OFDR System
JP2006177979A (en) Pulse radar device
JP4011601B2 (en) Pulse radar equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R151 Written notification of patent or utility model registration

Ref document number: 7074013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151