JP2019184210A - Coating drying furnace - Google Patents

Coating drying furnace Download PDF

Info

Publication number
JP2019184210A
JP2019184210A JP2018079252A JP2018079252A JP2019184210A JP 2019184210 A JP2019184210 A JP 2019184210A JP 2018079252 A JP2018079252 A JP 2018079252A JP 2018079252 A JP2018079252 A JP 2018079252A JP 2019184210 A JP2019184210 A JP 2019184210A
Authority
JP
Japan
Prior art keywords
furnace
airflow
body opening
furnace body
curtain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018079252A
Other languages
Japanese (ja)
Other versions
JP6745834B2 (en
Inventor
秀久 吉岡
Hidehisa Yoshioka
秀久 吉岡
広志 岩切
Hiroshi Iwakiri
広志 岩切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2018079252A priority Critical patent/JP6745834B2/en
Publication of JP2019184210A publication Critical patent/JP2019184210A/en
Application granted granted Critical
Publication of JP6745834B2 publication Critical patent/JP6745834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

To provide a coating drying furnace capable of effectively realizing both treatment-quality improvement by preventing dust from floating and heat-loss reduction by preventing furnace gas from leaking and by preventing outside air from entering into the furnace.SOLUTION: The coating drying furnace that prevents high temperature furnace gas from leaking outside the furnace through a furnace body opening part 2 by virtue of an air stream curtain Cb formed across the furnace body opening part 2 by an air stream fb blown out of a blowout port 5 for forming an air stream curtain and prevents normal temperature outside air from entering into the furnace through the furnace body opening part 2, is provided with wind shield dams 12a, 12b functioning as resistance to an air stream flowing on a floor FL of the furnace body opening part 2 in the travelling direction of a treating object, the wind shield dams 12a, 12b disposed on the floor FL of the furnace body opening part 2 on a colliding position t of the air stream curtain Cb on the floor FL of the furnace body opening part 2, or on neighboring positions ta, tb with respect to the colliding position t in the travelling direction of a treating object.SELECTED DRAWING: Figure 11

Description

本発明は、塗装工程を経た自動車ボディなどの処理対象物に塗膜乾燥処理を施す塗装乾燥炉に関し、詳しくは、炉外から炉内へ搬入される処理対象物又は炉内から炉外へ搬出される処理済みの処理対象物が通過する炉体開口部の天井部に、気流カーテン形成用の吹出口が設けられ、この吹出口から吹き出された気流が炉体開口部に形成する気流カーテンにより、炉内高温ガスの炉体開口部を通じた炉外への漏出、及び、炉外常温空気の炉体開口部を通じた炉内への浸入が防止される塗装乾燥炉に関する。   The present invention relates to a coating drying furnace that performs a coating film drying process on an object to be processed such as an automobile body that has undergone a coating process. Specifically, the present invention relates to a processing object to be carried from the outside of the furnace to the inside of the furnace or to the outside of the furnace from the inside of the furnace. A blowout opening for forming an airflow curtain is provided in the ceiling of the furnace body opening through which the processed object to be processed passes, and the airflow blown out from the blowout opening is formed by the airflow curtain formed in the furnace body opening. Further, the present invention relates to a paint drying furnace in which leakage of high-temperature gas in the furnace to the outside of the furnace through the furnace body opening and intrusion of room-temperature air outside the furnace into the furnace through the furnace body opening are prevented.

この種の塗装乾燥炉に関して(図1〜図4参照)、炉体開口部2の天井部3に設けられる気流カーテン形成用の吹出口として、炉体開口部2における対象物通過域2aに気流カーテンCaを形成する中央吹出口4と、炉体開口部2における左右の各側壁6と対象物通過域2aとの間の各間隙域2bに気流カーテンCbを各別に形成する左右の側部吹出口5とが設けられ、そして、左右の側部吹出口5の夫々は、水平に対する傾斜角度θbが大きい斜め下向きで炉内側に向けて、又は、垂直下方に向けて気流カーテン形成用の気流fbを吹き出し、これに対して、中央吹出口4は、水平に対する傾斜角度θaが小さい斜め下向きで炉内側に向けて気流カーテン形成用の気流faを吹き出すようにした塗装乾燥炉を先に提案(特許文献1)した。   With regard to this type of paint drying furnace (see FIGS. 1 to 4), an air current is passed through the object passage area 2 a in the furnace body opening 2 as an air outlet for forming an airflow curtain provided in the ceiling 3 of the furnace body opening 2. The left and right side blows that individually form the air flow curtains Cb in the central air outlet 4 that forms the curtain Ca and the gap areas 2b between the left and right side walls 6 and the object passage area 2a in the furnace body opening 2. An outlet 5 is provided, and each of the left and right side outlets 5 has an airflow fb for forming an airflow curtain obliquely downward with a large inclination angle θb with respect to the horizontal direction toward the inside of the furnace or vertically downward. On the other hand, the central outlet 4 previously proposed a paint drying furnace in which the airflow fa for forming the airflow curtain is blown out toward the inside of the furnace with the inclination angle θa with respect to the horizontal being small and downward (patent) Reference 1).

即ち、この特許文献1で提案した塗装乾燥炉では、中央吹出口4から吹き出される気流faは、図6に示すように、水平に対する傾斜角度θaが小さくて、対象物通過域2aを通過する処理対象物Bの上面部に対する入射角度θinが大きいことから、気流カーテンCaの形成に続き処理対象物Bの上面部に沿って円滑に流れる状態になって、処理対象物Bの上面部への衝突による跳ね返りが効果的に抑止される。   That is, in the paint drying furnace proposed in Patent Document 1, the airflow fa blown from the central outlet 4 has a small inclination angle θa with respect to the horizontal and passes through the object passage area 2a as shown in FIG. Since the incident angle θin with respect to the upper surface of the processing object B is large, the air flow smoothly flows along the upper surface of the processing object B following the formation of the airflow curtain Ca. Bounce due to collision is effectively suppressed.

その結果、中央吹出口4から吹き出された気流faが処理対象物Bの上方において乱れの無い気流カーテンCaを安定的に形成する状態になり、これにより、炉内高温ガスGの炉体開口部2を通じた炉外への漏出が一層効果的に防止されて、炉体開口部2を通じた熱損失の低減が一層効果的に達成される。   As a result, the air flow fa blown out from the central outlet 4 is in a state of stably forming an air flow curtain Ca without turbulence above the processing object B, whereby the furnace body opening of the in-furnace hot gas G Leakage to the outside of the furnace through 2 is further effectively prevented, and reduction of heat loss through the furnace body opening 2 is more effectively achieved.

特願2017−118852号Japanese Patent Application No. 2017-118852 特表2013−519856号公報Special table 2013-519856 gazette

しかし、気流カーテン形成用の吹出口(特に上記した側部吹出口5)における気流fbの吹出風速や吹出風量を大きくすると、気流カーテンCbによる領域遮蔽効果そのものは高くなるが、その反面、図24に示すように、吹き出された気流fbが気流カーテンCbの形成に続き未だ勢いのある状態で炉体開口部2の床FLに衝突して周囲に広く散乱し、このため、炉体開口部2での塵埃の舞い上がりが激しくなって、舞い上がり塵埃が処理対象物Bに付着することによる処理品質の低下が生じ易くなる。   However, if the blowout air velocity and the blowout air amount of the airflow fb at the airflow curtain forming air outlet (especially the side air outlet 5 described above) are increased, the area shielding effect itself by the airflow curtain Cb is increased, but on the other hand, FIG. As shown in FIG. 4, the blown air flow fb collides with the floor FL of the furnace body opening 2 and is scattered widely around the furnace body opening 2 after the formation of the air flow curtain Cb. As the dust soars at the surface of the object, the quality of the process tends to deteriorate due to the dust dust adhering to the processing object B.

また、吹き出された気流fbが気流カーテンCbの形成に続き炉体開口部2の床FLに衝突して周囲に広く散乱することで、その散乱により炉外側へ流出する衝突後気流fb″の風量も増加して、この流出風量の増加により炉外への持ち出し熱量が増加することで、気流カーテンCbの形成による熱損失の低減効果が制限されてしまう問題も生じる。   Further, the blown air flow fb collides with the floor FL of the furnace body opening 2 following the formation of the air flow curtain Cb and is widely scattered around, so that the air volume of the post-impact air flow fb ″ flowing out of the furnace due to the scattering. As a result, the amount of heat taken out to the outside of the furnace increases due to the increase in the amount of outflow air, thereby causing a problem that the effect of reducing the heat loss due to the formation of the airflow curtain Cb is limited.

そして、これらの問題は、特許文献1で提案する塗装乾燥炉に限らず、特許文献2に示されるように(図26参照)、炉体開口部2の左右全幅にわたって一様な傾斜姿勢の気流カーテンCが形成される塗装乾燥炉においても同様に生じ、殊に、このように炉体開口部2の左右全幅にわたって一様な傾斜姿勢の気流カーテンCが形成される場合では、上記した舞い上がり塵埃の問題や衝突後気流の炉外側への流出の問題が炉体開口部2の左右全幅にわたって一様に生じてしまう。   And these problems are not limited to the coating and drying furnace proposed in Patent Document 1, but as shown in Patent Document 2 (see FIG. 26), the airflow has a uniform inclination posture across the entire width of the furnace body opening 2. This also occurs in the coating and drying furnace in which the curtain C is formed. In particular, in the case where the airflow curtain C having a uniform inclination posture is formed over the entire width of the left and right sides of the furnace body opening 2, the above-mentioned rising dust is generated. And the problem of the outflow of the airflow after the collision to the outside of the furnace occur uniformly over the entire left and right width of the furnace body opening 2.

この実情に鑑み、本発明の主たる課題は、合理的な遮風構造を付加することで、上記問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problem by adding a rational wind-shielding structure.

本発明の第1特徴構成は塗装乾燥炉に係り、その特徴は、
炉外から炉内へ搬入される処理対象物又は炉内から炉外へ搬出される処理済みの処理対象物が通過する炉体開口部の天井部に、気流カーテン形成用の吹出口が設けられ、
この吹出口から吹き出された気流が前記炉体開口部に形成する気流カーテンにより、炉内高温ガスの前記炉体開口部を通じた炉外への漏出、及び、炉外常温空気の前記炉体開口部を通じた炉内への浸入が防止される塗装乾燥炉であって、
前記炉体開口部の床上において、処理対象物の通過方向に流れる気流に対して抵抗になる遮風堰が設けられ、
前記遮風堰が、前記炉体開口部の床上における前記気流カーテンの衝突箇所又はその衝突箇所に対する処理対象物通過方向における近傍箇所において、前記炉体開口部の床上に配置されている点にある。
The first characteristic configuration of the present invention relates to a paint drying furnace,
An air outlet for forming an airflow curtain is provided at the ceiling of the furnace body opening through which the processing object to be carried into the furnace from the outside of the furnace or the processed processing object to be carried out of the furnace to the outside of the furnace passes. ,
Due to the airflow curtain formed by the airflow blown from the blowout opening at the furnace body opening, leakage of the high temperature gas in the furnace to the outside of the furnace through the furnace body opening, and the furnace body opening of the outside room temperature air A coating and drying furnace that is prevented from entering the furnace through the section,
On the floor of the furnace body opening, a windbreak weir is provided that resists airflow flowing in the direction of passage of the object to be processed.
The windbreak weir is located on the floor of the furnace body opening in the vicinity of the collision position of the airflow curtain on the floor of the furnace body opening or the processing object passing direction with respect to the collision part. .

この構成によれば、気流カーテン形成用の吹出口から吹き出されて炉体開口部に気流カーテンを形成した気流が炉体開口部の床に衝突して周囲に散乱するにしても、処理対象物の通過方向への気流の散乱(即ち、炉内外方向への気流の散乱)は、上記遮風堰が床衝突後の散乱気流に対して抵抗になることで効果的に抑止され、これにより、塵埃の舞い上がりや衝突後気流の炉外側への流出が抑止される。   According to this configuration, even if the airflow blown out from the airflow curtain forming outlet and formed the airflow curtain at the furnace body opening collides with the floor of the furnace body opening and is scattered around, Scattering of the airflow in the passing direction (that is, scattering of the airflow in and out of the furnace) is effectively suppressed by the windshield weir becoming a resistance against the scattered airflow after the floor collision, Dust soaring and outflow of airflow after collision to the outside of the furnace are suppressed.

そして、このように塵埃の舞い上がりや衝突後気流の炉外側への流出が抑止されることで、その分、舞い上がり塵埃が処理対象物に付着することによる処理品質の低下や衝突後気流の炉外側への流出による炉外への持ち出し熱量の増加を回避しながら、気流カーテン形成用の吹出口における気流の吹出風速や吹出風量を増大させて炉体開口部での気流カーテンによる領域遮蔽効果をさらに高めることができ、これにより、炉内高温ガスの炉体開口部を通した炉外への漏出や炉外常温空気の炉体開口部を通じた炉内への浸入を気流カーテンにより一層確実に防止することができて、炉体開口部を通じた熱損失を一層効果的に低減することができる。   In addition, the dust soaring and the outflow of the airflow after the collision to the outside of the furnace are suppressed in this way, and accordingly, the processing quality deteriorates due to the soaring dust adhering to the processing object and the airflow after the collision is outside the furnace. While avoiding an increase in the amount of heat that is taken out of the furnace due to the outflow to the furnace, the air flow at the outlet for forming the air flow curtain is increased and the air flow at the opening of the furnace body is further shielded by the air flow curtain. This makes it possible to more reliably prevent leakage of hot gas inside the furnace through the furnace opening and intrusion of room temperature air outside the furnace into the furnace through the furnace opening. It is possible to reduce the heat loss through the furnace body opening more effectively.

本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記遮風堰が、前記衝突箇所に対する炉外側の前記近傍箇所と炉内側の前記近傍箇所との夫々において、前記炉体開口部の床上に設けられている点にある。
The second feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
The windbreak weir is provided on the floor of the furnace body opening at each of the vicinity location outside the furnace and the vicinity location inside the furnace with respect to the collision location.

この構成によれば、気流カーテンを形成した気流が炉体開口部の床に衝突することで生じる気流の散乱のうち、炉外側向きの気流の散乱が、衝突箇所に対する炉外側の近傍箇所に設けられた遮風堰による抵抗により確実に抑止され、また、炉内側向きの気流の散乱が、衝突箇所に対する炉内側の近傍箇所に設けられた遮風堰による抵抗により確実に抑止される。   According to this configuration, out of the scattering of the airflow generated when the airflow forming the airflow curtain collides with the floor of the furnace body opening, the scattering of the airflow facing the outside of the furnace is provided at a location near the outside of the furnace with respect to the collision location. The windbreak weir is surely restrained by the resistance of the windbreak weir, and the scattering of the airflow toward the furnace inside is reliably restrained by the resistance of the windbreak weir provided near the inside of the furnace with respect to the collision location.

したがって、これら2つの遮風堰の存在により塵埃の舞い上がりや衝突後気流の炉外側への流出をより一層確実に防止することができ、その分、気流カーテン形成用の吹出口における気流の吹出風速や吹出風量をさらに増大させて、気流カーテンによる領域遮蔽効果を一層高めることができる。   Therefore, the presence of these two windbreak weirs can more reliably prevent the dust from flying up and the flow of the airflow after the collision to the outside of the furnace, and the airflow velocity of the airflow at the outlet for forming the airflow curtain accordingly. Further, the area shielding effect by the airflow curtain can be further increased by further increasing the amount of blown air.

本発明の第3特徴構成は、第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記衝突箇所に対する炉外側の前記近傍箇所と炉内側の前記近傍箇所とに設けられる前記遮風堰どうしの間の間隔寸法が、その間隔寸法と前記炉体開口部を通じた熱損失量との相関において、前記炉体開口部を通じた熱損失量が最小となる間隔寸法である点にある。
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the second feature configuration.
The distance between the wind shield weirs provided at the vicinity of the outside of the furnace with respect to the collision and the vicinity of the inside of the furnace is a correlation between the distance and the amount of heat loss through the furnace body opening. In this case, the distance dimension is such that the amount of heat loss through the furnace body opening is minimized.

つまり、前記衝突箇所に対する炉外側の近傍箇所及び炉内側の近傍箇所の夫々に遮風堰を設ける場合において、同一条件の下で、それら遮風堰どうしの間の間隔寸法eを変化させたところ、それら遮風堰どうしの間の間隔寸法eと炉体開口部を通じた単位時間・単位面積・単位温度当たりの熱損失量(=単位当たり開口損失ΔR)との間には、図14に示すような相関があることが認められた。   That is, when the windbreak weirs are provided in the vicinity of the outside of the furnace and the vicinity of the inside of the furnace with respect to the collision location, the distance dimension e between the windbreak weirs is changed under the same conditions. FIG. 14 shows the distance e between the wind shield weirs and the amount of heat loss per unit time, unit area, and unit temperature (= opening loss ΔR per unit) through the furnace body opening. It was recognized that there was such a correlation.

したがって、衝突箇所に対する炉外側の近傍箇所と炉内側の近傍箇所とに設ける遮風堰どうしの間の間隔寸法eとして、この相関において熱損失量(=単位当たり開口損失ΔR)が最小となる間隔寸法を採用する上記第3特徴構成によれば、前記第2特徴構成の実施において炉体開口部を通じた熱損失の低減を一層確実かつ一層効果的に達成することができる。   Therefore, as the distance dimension e between the wind shield weirs provided at the vicinity of the outside of the furnace and the vicinity of the inside of the furnace with respect to the collision location, the interval at which the heat loss amount (= opening loss ΔR per unit) is minimized in this correlation. According to the third characteristic configuration employing the dimensions, reduction of heat loss through the furnace body opening can be achieved more reliably and more effectively in the implementation of the second characteristic configuration.

本発明の第4特徴構成は、第2又は第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記衝突箇所に対する炉外側の前記近傍箇所と炉内側の前記近傍箇所とに設けられる前記遮風堰どうしの間の中心位置と前記気流カーテンとの処理対象物通過方向における相対的位置関係が、その相対的位置関係と前記炉体開口部を通じた熱損失量との相関において、前記炉体開口部を通じた熱損失量が最小となる相対的位置関係である点にある。
The fourth feature configuration of the present invention specifies an embodiment suitable for the implementation of either the second or third feature configuration, and the feature is:
The relative positional relationship in the processing object passage direction between the airflow curtain and the center position between the wind shield weirs provided at the vicinity location outside the furnace and the vicinity location inside the furnace with respect to the collision location, In the correlation between the relative positional relationship and the amount of heat loss through the furnace body opening, the relative position relationship is such that the amount of heat loss through the furnace body opening is minimized.

つまり、衝突箇所に対する炉外側の近傍箇所及び炉内側の近傍箇所の夫々に遮風堰を設ける場合において、同一条件の下で、それら遮風堰どうしの間の中心位置と気流カーテンとの被塗物通過方向における相対的位置関係を変化させたところ、その相対的位置関係(具体的には図16において示すK1〜K3の相対的位置関係)と炉体開口部を通じた単位時間・単位面積・単位温度当たりの熱損失量(=単位当たり開口損失ΔR)との間には、図15に示すような相関があることが認められた。   In other words, when windbreak weirs are provided in the vicinity of the outside of the furnace and the vicinity of the inside of the furnace with respect to the collision location, the center position between the windbreak weirs and the coating of the airflow curtain are applied under the same conditions. When the relative positional relationship in the object passing direction was changed, the relative positional relationship (specifically, the relative positional relationship of K1 to K3 shown in FIG. 16) and the unit time / unit area / It was recognized that there is a correlation as shown in FIG. 15 between the amount of heat loss per unit temperature (= opening loss ΔR per unit).

したがって、衝突箇所に対する炉外側の近傍箇所と炉内側の近傍箇所とに設ける遮風堰どうしの間の中心位置と気流カーテンとの処理対象物通過方向における相対的位置関係として、この相関において熱損失量(=単位当たり開口損失ΔR)が最小となる相対的位置関係を採用する上記第4特徴構成によれば、前記第2特徴構成や前記第3特徴構成の実施において炉体開口部を通じた熱損失の低減を一層確実かつ一層効果的に達成することができる。   Therefore, the heat loss in this correlation is expressed as the relative positional relationship between the airflow curtain and the center position between the wind shield weirs provided at the vicinity of the outside of the furnace and the vicinity of the inside of the furnace with respect to the collision location. According to the fourth feature configuration adopting a relative positional relationship in which the amount (= opening loss ΔR per unit) is minimized, the heat through the furnace body opening in the implementation of the second feature configuration or the third feature configuration Loss reduction can be achieved more reliably and more effectively.

本発明の第5特徴構成は、第1〜第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記吹出口として、前記炉体開口部における対象物通過域に前記気流カーテンを形成する中央吹出口と、前記炉体開口部における左右の各側壁と前記対象物通過域との間の各間隙域に前記気流カーテンを各別に形成する左右の側部吹出口とが設けられ、
前記中央吹出口からは、水平に対する傾斜角度が小さい斜め下向きで炉内側に向けて気流カーテン形成用の気流が吹き出され、
前記左右の側部吹出口の夫々からは、水平に対する傾斜角度が大きい斜め下向きで炉内側に向けて、又は、垂直下方に向けて気流カーテン形成用の気流が吹き出され、
前記遮風堰が、前記左右の側部吹出口から吹き出された気流により形成される前記気流カーテンの前記床上における衝突箇所又はその衝突箇所に対する処理対象物通過方向における近傍箇所において、前記床上に設けられている点にある。
The fifth characteristic configuration of the present invention specifies an embodiment suitable for implementation of any of the first to fourth characteristic configurations,
As the outlet, a central outlet that forms the airflow curtain in the object passage area in the furnace body opening, and each gap area between the left and right sidewalls in the furnace body opening and the object passage area Left and right side air outlets for forming the air flow curtain separately,
From the central outlet, an airflow for forming an airflow curtain is blown out toward the furnace inside obliquely downward with a small inclination angle with respect to the horizontal,
From each of the left and right side air outlets, an airflow for forming an airflow curtain is blown out toward the furnace inside with a large downward inclination angle with respect to the horizontal, or downward vertically,
The windbreak weir is provided on the floor at a collision location on the floor of the airflow curtain formed by the airflow blown out from the left and right side air outlets or in a vicinity of the collision location in the passing direction of the object to be processed. It is in the point.

この構成では(図6,図7参照)、炉体開口部2における対象物通過域2aに処理対象物Bが有る場合、中央吹出口4から吹き出された気流faは、水平に対する傾斜角度θaが小さくて処理対象物Bの上面部に対する入射角度θinが大きいことから、処理対象物Bの上面部に沿って流れる形態になって、処理対象物Bの上面部への衝突による跳ね返りが抑止され、これにより、処理対象物Bの上方では、中央吹出口4から吹き出された気流faが乱れの無い気流カーテンCaを安定的に形成する状態になる。   In this configuration (see FIGS. 6 and 7), when the processing object B is present in the object passage area 2a in the furnace body opening 2, the airflow fa blown from the central outlet 4 has an inclination angle θa with respect to the horizontal. Since the incident angle θin with respect to the upper surface portion of the processing object B is small and becomes a form that flows along the upper surface portion of the processing object B, the rebound due to the collision with the upper surface portion of the processing object B is suppressed, Thereby, above the processing object B, the airflow fa blown from the central outlet 4 is in a state of stably forming the airflow curtain Ca without any disturbance.

したがって、炉体開口部2の対象物通過域2aに処理対象物Bが有る場合、炉体開口部2の上部域を通じた炉内高温ガスGの炉外への漏出は、中央吹出口4から吹き出された気流faが処理対象物Bの上方に形成する上記気流カーテンCaと、左右の側部吹出口5から吹き出された気流fbが対象物通過域2aと各側壁6との間の各間隙域2bに形成する気流カーテンCbとにより効果的に防止される。   Therefore, when the processing object B is present in the object passage area 2 a of the furnace body opening 2, leakage of the high temperature gas G in the furnace through the upper area of the furnace body opening 2 to the outside of the furnace is caused from the central outlet 4. The airflow curtain Ca formed above the processing object B by the blown airflow fa, and the gaps between the airflow fb blown from the left and right side outlets 5 and the object passage area 2a and the side walls 6 This is effectively prevented by the airflow curtain Cb formed in the region 2b.

また、左右の側部吹出口5から吹き出された気流fbは夫々、水平に対する傾斜角度θbが大きい斜め下向き、又は、垂直下方向きであることから、各間隙域2bに気流カーテンCbを形成して各間隙域2bの床部FLに至った後、その一部が処理対象物Bの下方へ効果的に回り込む形態になり、この対象物下方への回り込み気流fb′により、処理対象物Bの下方を潜る状態での炉外常温空気Oの炉内側への侵入が防止される。   Further, since the air flow fb blown out from the left and right side air outlets 5 is obliquely downward or vertically downward with a large inclination angle θb with respect to the horizontal, an airflow curtain Cb is formed in each gap region 2b. After reaching the floor portion FL of each gap area 2b, a part of the gap portion 2b effectively wraps around the processing object B, and the wrapping air flow fb 'below the processing object causes the lower part of the processing object B to move downward. Intrusion of outside-furnace room-temperature air O into the inside of the furnace in the state of diving is prevented.

したがって、炉体開口部2の対象物通過域2aに処理対象物Bが有る場合、炉体開口部2の下部域を通じた炉外常温空気Oの炉内への侵入は、左右の側部吹出口5から吹き出された気流fbが各間隙域2bに形成する気流カーテンCbと、各間隙域2bの床部から処理対象物Bの下方に回り込む上記回り込み気流fb′とにより効果的に防止される。   Therefore, when the processing object B is present in the object passage area 2a of the furnace body opening 2, the intrusion of the room temperature outside air O through the lower area of the furnace body opening 2 into the furnace is caused by the left and right side blows. The airflow curtain Cb formed in each gap region 2b by the airflow fb blown out from the outlet 5 and the above-described wraparound airflow fb ′ that wraps around the processing object B from the floor of each gap region 2b are effectively prevented. .

一方、炉体開口部2に処理対象物Bが無い場合(図4,図5参照)、水平に対する傾斜角度θaが小さい斜め下向きで炉内側に向けて中央吹出口4から吹き出された気流faが、処理対象物Bの不存により斜め下方に延びて対象物通過域2aに気流カーテンCaを形成するとともに、その気流カーテンCaの形成に伴い、処理対象物Bの不存により、炉体開口部2の横幅方向において各間隙域2bへも拡がり、また、水平に対する傾斜角度θbが大きい斜め下向きで炉内側に向けて、又は、垂直下方に向けて左右の側部吹出口5から吹き出された気流fbが、各間隙域2bに気流カーテンCbを形成するとともに、その気流カーテンCbの形成に伴い、処理対象物Bの不存により、中央吹出口4からの吹き出し気流faが形成する気流カーテンCaより炉外側で、炉体開口部2の横幅方向において対象物通過域2aへも拡がる。   On the other hand, when the processing object B is not present in the furnace body opening 2 (see FIGS. 4 and 5), the air flow fa blown out from the central outlet 4 toward the furnace inner side is inclined downward with a small inclination angle θa with respect to the horizontal. In addition to forming the airflow curtain Ca in the object passing area 2a by the absence of the processing object B and forming the airflow curtain Ca in the object passage area 2a, the furnace opening due to the absence of the processing object B 2 spreads to the respective gap regions 2b in the width direction of the airflow 2, and is blown out from the left and right side outlets 5 toward the furnace inside in a slanting downward direction with a large inclination angle θb with respect to the horizontal, or vertically downward. fb forms an airflow curtain Cb in each gap region 2b, and an airflow curtain formed by the airflow fa from the central outlet 4 due to the absence of the processing object B accompanying the formation of the airflow curtain Cb. It extends to the object passage area 2a in the lateral width direction of the furnace body opening 2 outside the furnace from Ca.

したがって、炉体開口部2に処理対象物Bがない場合、炉体開口部2の全体について気流カーテンCa,Cbが2重に形成されたのに近い状態にすることができ、これにより、炉体開口部2の上部域を通じた炉内高温ガスGの炉外への漏出及び炉体開口部2の下部域を通じた炉外常温空気Oの炉内への侵入が効果的に防止される。   Therefore, when the processing object B is not present in the furnace body opening 2, the airflow curtains Ca and Cb can be nearly doubled with respect to the entire furnace body opening 2. Leakage of the in-furnace hot gas G to the outside of the furnace through the upper area of the body opening 2 and intrusion of the out-of-furnace room temperature air O through the lower area of the furnace body opening 2 into the furnace are effectively prevented.

さらにまた、上記第5特徴構成では(図11参照)、床FL上を処理対象物通過方向に流れる気流に対して抵抗になる遮風堰12a,12bが、左右の側部吹出口5からの吹き出し気流fbにより各間隙域2bに形成される気流カーテンCbの床FL上における衝突箇所t又はその衝突箇所tに対する処理対象物通過方向の近傍箇所ta,tbにおいて床FLに設けられているから、左右の側部吹出口5から吹き出されて気流カーテンCbを形成した気流fbが床FLに衝突して周囲に散乱するにしても、処理対象物Bの通過方向への気流の散乱(即ち、炉内外方向への気流の散乱)は、上記遮風堰12a,12bが床衝突後の散乱気流に対して抵抗になることで効果的に抑止され、これにより、床FLからの塵埃の舞い上がり(特に、処理対象物通過方向での舞い上がり)や衝突後気流の炉外側への流出が抑止される。   Furthermore, in the fifth feature configuration (see FIG. 11), the windbreak weirs 12a and 12b that are resistant to the airflow flowing in the processing object passage direction on the floor FL are provided from the left and right side air outlets 5. Since the airflow curtain Cb formed in each gap region 2b by the blown airflow fb is provided on the floor FL at the collision point t on the floor FL or in the vicinity of the processing object passage direction ta and tb with respect to the collision point t. Even if the air flow fb blown out from the left and right side outlets 5 and formed the air flow curtain Cb collides with the floor FL and scatters to the surroundings, scattering of the air flow in the passing direction of the processing object B (that is, the furnace Scattering of the airflow in and out) is effectively suppressed by the resistance of the windbreak weirs 12a and 12b to the scattered airflow after the floor collision, and thereby, the rising of dust from the floor FL (particularly, ,processing Elephant product passes soar in the direction) and the outflow of the furnace outside of the post-collision air flow is suppressed.

そして、このように塵埃の舞い上がりや衝突後気流の炉外側への流出が抑止されることで、その分、舞い上がり塵埃が処理対象物に付着することによる処理品質の低下や衝突後気流の炉外側への流出による炉外への持ち出し熱量の増加を回避しながら、気流カーテン形成用の吹出口(特に側部吹出口5)における気流fbの吹出風速や吹出風量を増大させて気流カーテンCbによる領域遮蔽効果をさらに高めることができる。   In addition, the dust soaring and the outflow of the airflow after the collision to the outside of the furnace are suppressed in this way, and accordingly, the processing quality deteriorates due to the soaring dust adhering to the processing object and the airflow after the collision is outside the furnace. The area by the air flow curtain Cb by increasing the blown air velocity and the air flow rate of the air flow fb at the air outlet for forming the air flow curtain (particularly the side air outlet 5) while avoiding an increase in the amount of heat taken out of the furnace due to the outflow to the furnace The shielding effect can be further enhanced.

これらのことから、上記第5特徴構成によれば、炉内高温ガスの炉体開口部を通じた炉外への漏出及び炉外常温空気の炉体開口部を通じた炉内への侵入を一層確実に防止することができ、これにより、炉体開口部を通じた熱損失を一層効果的に低減することができる。   For these reasons, according to the fifth feature, the high temperature gas in the furnace is leaked out of the furnace through the furnace body opening, and the room temperature air outside the furnace enters the furnace through the furnace body opening. Thus, heat loss through the furnace body opening can be more effectively reduced.

本発明の第6特徴構成は、第5特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記遮風堰が、前記炉体開口部における処理対象物の通過移動に支障の無い範囲で前記間隙域から前記対象物通過域に張り出す状態に設けられている点にある。
The sixth feature configuration of the present invention specifies an embodiment suitable for the implementation of the fifth feature configuration.
The windbreak weir is provided in a state of projecting from the gap area to the object passage area within a range that does not hinder the movement of the object to be processed at the opening of the furnace body.

この構成によれば(図12参照)、左右の側部吹出口5の夫々から吹き出された気流fbのうち、炉体開口部2における各間隙域2bの床FLに衝突する気流部分のみならず、流れ過程での拡がりにより炉体開口部2における対象物通過域2aの床FLに衝突する気流部分に対しても遮風堰12a,12bを機能させることができ、これにより、炉体開口部2を通じた熱損失をさらに効果的に低減することができる。   According to this structure (refer FIG. 12), not only the airflow part which collides with the floor | bed FL of each gap | interval area | region 2b in the furnace body opening part 2 among the airflow fb blown out from each of the right and left side blower outlets 5. The windbreak weirs 12a and 12b can be made to function on the airflow portion that collides with the floor FL of the object passage area 2a in the furnace body opening 2 due to the expansion in the flow process. The heat loss through 2 can be further effectively reduced.

本発明の第7特徴構成は、第1〜第6特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記遮風堰が、処理対象物通過方向に流れる気流に対して抵抗になる遮風姿勢と、その遮風姿勢から退避した退避姿勢とに切り換え操作が可能な可動堰である点にある。
The seventh characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to sixth characteristic configurations,
The wind shield weir is a movable weir that can be switched between a wind shield posture that resists airflow flowing in the direction of the object to be processed and a retracted posture that is retracted from the wind shield posture.

つまり、遮風堰は、処理対象物通過方向に流れる気流に対して抵抗になる姿勢で炉体開口部の床上に設けられることから、処理対象物通過方向(即ち、炉内外方向)への作業者やメンテナンス機器の移動を要する乾燥炉メンテナンス作業などにとって遮風堰は支障になり易い。   That is, since the windbreak weir is provided on the floor of the furnace body opening in a posture that is resistant to the airflow flowing in the process object passing direction, the work in the process object passing direction (that is, the inside / outside direction of the furnace) is performed. Windbreak weirs are likely to be a hindrance for drying furnace maintenance work and the like that require movement of a person or maintenance equipment.

これに対し、上記構成によれば、可動堰である遮風堰を遮風姿勢から退避姿勢へ切り換え移動させることで、遮風堰が乾燥炉メンテナンス作業などの支障になることを回避することができる。   On the other hand, according to the above configuration, the windbreak weir, which is a movable weir, can be switched from the windbreak posture to the retracted posture to prevent the windbreak weir from hindering the drying furnace maintenance work and the like. it can.

塗装乾燥炉における炉体開口部の側面視断面図Side view cross-sectional view of furnace body opening in paint drying furnace 図1におけるII−II線矢視図II-II arrow view in FIG. 図1におけるIII−III線矢視図III-III arrow view in FIG. 対象物不存時における気流状態を示す側面図Side view showing airflow condition when object is absent 対象物不存時における気流状態を示す正面図Front view showing the air flow when the object is absent 対象物存在時における気流状態を示す側面図Side view showing the airflow state when an object is present 対象物存在時における気流状態を示す正面図Front view showing the airflow state when an object is present 中央吹出口の気流吹出角度と熱損失量との相関を示すグラフGraph showing the correlation between the air outlet angle at the central outlet and the amount of heat loss 側部吹出口の気流吹出角度と熱損失量との相関を示すグラフA graph showing the correlation between the air outlet angle at the side outlet and the amount of heat loss 吹出口離間距離と熱損失量との相関を示すグラフGraph showing the correlation between the air outlet separation distance and the amount of heat loss 間隙域の床上における気流カーテンの衝突箇所を示す拡大側面図Enlarged side view showing the collision point of the airflow curtain on the floor in the gap area 遮風堰の正面図Front view of windbreak weir 遮風堰の平面図Top view of windbreak weir 遮風堰間隔寸法と熱損失量との相関を示すグラフGraph showing correlation between windbreak weir spacing and heat loss 気流カーテンに対する遮風堰の相対的位置関係と熱損失量との相関を示すグラフGraph showing the correlation between the relative position of the windbreak weir relative to the airflow curtain and the amount of heat loss 気流カーテンに対する遮風堰の相対的位置関係を変化させた状態を説明する側面図Side view explaining a state in which the relative positional relationship of the windbreak weir to the airflow curtain is changed 所定床上風速に対する吹出風速と吹出風量との関係を示すグラフA graph showing the relationship between the blown wind speed and the blown air volume for a given floor wind speed 遮蔽堰による熱損失の低減効果を示すグラフGraph showing heat loss reduction effect by shielding weir 加熱方式の第1例を示す回路図Circuit diagram showing first example of heating method 加熱方式の第2例を示す回路図Circuit diagram showing second example of heating method 加熱方式の第3例を示す回路図Circuit diagram showing third example of heating method 別実施形態を示す炉体開口部の正面図Front view of furnace body opening showing another embodiment 図22におけるX−X線矢視図XX arrow view in FIG. 床への衝突による気流の散乱を説明する側面図Side view explaining scattering of airflow by collision with floor 炉内高温ガスの漏出形態及び炉外常温空気の侵入形態を示す側面図Side view showing leakage of hot gas inside the furnace and penetration of ambient air outside the furnace 他形式の塗装乾燥炉を示す斜視図Perspective view showing another type of paint drying furnace

図1〜図3は、塗装乾燥炉においてトンネル状の炉体1の長手方向における端部に位置する炉体開口部2を示し、この炉体開口部2は、トンネル状の炉体1における入口側端部及び出口側端部の夫々に設けられる。   1 to 3 show a furnace body opening 2 located at an end portion in the longitudinal direction of a tunnel-shaped furnace body 1 in a paint drying furnace, and this furnace body opening 2 is an entrance to the tunnel-shaped furnace body 1. It is provided at each of the side end and the outlet side end.

即ち、塗装工程を経た処理対象物B(本例では自動車ボディ)は、入口側の炉体開口部2を通じ炉内に搬入されて炉内の高温雰囲気により塗膜乾燥処理が施され、また、炉内で塗膜乾燥処理された処理済みの処理対象物Bは、出口側の炉体開口部2を通じて炉外へ搬出される。   That is, the processing object B (the automobile body in this example) that has undergone the coating process is carried into the furnace through the furnace body opening 2 on the inlet side and subjected to a coating film drying process in a high temperature atmosphere in the furnace, The processed object B that has been subjected to the coating film drying process in the furnace is carried out of the furnace through the furnace body opening 2 on the outlet side.

なお、入口側及び出口側の炉体開口部2は、いずれも炉内高温ガスGの漏出及び炉外常温空気Oの侵入を防止するのに同様の構造を採用していることから、以下では、特段に区別する場合を除いて入口側と出口側との区別なく炉体開口部2を説明する。   In addition, since both the inlet-side and outlet-side furnace body openings 2 adopt the same structure to prevent leakage of the in-furnace hot gas G and intrusion of the outside room temperature air O, in the following, The furnace opening 2 will be described without any distinction between the inlet side and the outlet side, unless otherwise specified.

ところで、炉体開口部2では、図25に模式的に示すように、炉内の高温ガスGがドラフト作用により炉体開口部2における上部域を通じて炉外に漏出し、また、この漏出に併行して、炉外の常温空気Oが炉体開口部2における下部域を通じて炉内に侵入する。   By the way, in the furnace body opening 2, as schematically shown in FIG. 25, the high temperature gas G in the furnace leaks out of the furnace through the upper region in the furnace body opening 2 by the drafting action, and is accompanied by this leakage. Then, the room temperature air O outside the furnace enters the furnace through the lower area of the furnace body opening 2.

そして、これら炉体開口部2を通じた炉内高温ガスGの漏出及び炉外常温空気Oの侵入は、塗装乾燥炉において大きな熱損失を招く。   The leakage of the in-furnace high temperature gas G and the penetration of the outside room temperature air O through these furnace body openings 2 cause a large heat loss in the paint drying furnace.

これに対し、炉体開口部2の天井部3における炉外側の縁部には、気流カーテン形成用の吹出口として、炉体開口部2の横幅方向において左右中央部に配置された中央吹出口4と、中央吹出口4の左右両横隣に配置された側部吹出口5とが設けられている。   On the other hand, at the edge outside the furnace in the ceiling portion 3 of the furnace body opening 2, a central air outlet arranged at the left and right central part in the lateral width direction of the furnace body opening 2 as an air outlet for forming an airflow curtain 4 and the side blower outlet 5 arrange | positioned on both right and left sides of the central blower outlet 4 are provided.

中央吹出口4から吹き出された気流faは、炉体開口部2における左右中央の対象物通過域2aに気流カーテンCaを形成し、左右の側部吹出口5の夫々から吹き出された気流fbは、炉体開口部2における各側壁6と対象物通過域2aとの間の各間隙域2bに気流カーテンCbを各別に形成する。   The airflow fa blown out from the central outlet 4 forms an airflow curtain Ca in the left and right center object passage area 2a in the furnace body opening 2, and the airflow fb blown out from each of the left and right side outlets 5 is The airflow curtain Cb is formed separately in each gap area 2b between each side wall 6 and the object passage area 2a in the furnace body opening 2.

即ち、これら対象物通過域2aに形成される気流カーテンCaと、各間隙域2bに形成される気流カーテンCbとにより、炉体開口部2を通じた炉内高温ガスGの炉外への漏出及び炉外常温空気Oの炉内への侵入が防止される。   That is, by the airflow curtain Ca formed in these object passage areas 2a and the airflow curtain Cb formed in each gap area 2b, leakage of the in-furnace hot gas G to the outside of the furnace through the furnace body opening 2 and Intrusion of the outside room air O into the furnace is prevented.

中央吹出口4は、水平に対する傾斜角度θaが小さい(例えば、θa<40°)斜め下向きで炉内側に向けて気流faを吹き出すように形成され、一方、左右の側部吹出口5は夫々、水平に対する傾斜角度θbが大きい(例えば、θb>60°)斜め下向きで炉内側に向けて気流fbを吹き出すように形成されている。   The central outlet 4 is formed so as to blow the air current fa toward the furnace inside with a small inclination angle θa with respect to the horizontal (for example, θa <40 °) toward the inside of the furnace, while the left and right side outlets 5 are respectively The inclination angle θb with respect to the horizontal is large (for example, θb> 60 °), and the airflow fb is blown out obliquely downward toward the inside of the furnace.

つまり、このような吹出口構造にすることで、炉体開口部2の対象物通過域2aに処理対象物Bが有る状況では、図6及び図7に示すように、中央吹出口4から吹き出された気流faは、水平に対する傾斜角度θaが小さくて、処理対象物Bの上面部(本例では、自動車ボディの屋根部)に対する入射角度θin(=90−θa)が大きいことから、処理対象物Bの上面部に沿って滑らかに流れる状態になって、処理対象物Bの上面部への衝突による跳ね返りが抑止され、これにより、処理対象物Bの上方では、中央吹出口4から吹き出された気流faにより乱れの無い気流カーテンCaが安定的に形成される。   That is, by using such a blower outlet structure, in a situation where the processing object B is present in the object passage area 2a of the furnace body opening 2, the blowout from the central blower outlet 4 as shown in FIGS. The airflow fa thus produced has a small inclination angle θa with respect to the horizontal and a large incident angle θin (= 90−θa) with respect to the upper surface portion of the processing object B (in this example, the roof portion of the automobile body). The object B is in a state of flowing smoothly along the upper surface part, and rebounding due to the collision of the processing object B with the upper surface part is suppressed, so that the processing object B is blown out from the central outlet 4 above the processing object B. The airflow curtain Ca without turbulence is stably formed by the airflow fa.

したがって、炉体開口部2の対象物通過域2aに処理対象物Bが有る場合、炉体開口部2の上部域を通じた炉内高温ガスGの炉外への漏出は、中央吹出口4から吹き出された気流faが処理対象物Bの上方に形成する気流カーテンCaと、左右の側部吹出口5から吹き出された気流fbが左右の各間隙域2bに形成する気流カーテンCbとにより効果的に防止される。   Therefore, when the processing object B is present in the object passage area 2 a of the furnace body opening 2, leakage of the high temperature gas G in the furnace through the upper area of the furnace body opening 2 to the outside of the furnace is caused from the central outlet 4. The airflow curtain Ca formed above the processing object B by the blown airflow fa and the airflow curtain Cb formed by the airflow fb blown from the left and right side air outlets 5 in the left and right gap regions 2b are more effective. To be prevented.

また、左右の側部吹出口5から吹き出された気流fbは夫々、水平に対する傾斜角度θbが大きい斜め下向きであることから、各間隙域2bに気流カーテンCbを形成して各間隙域2bの床FLに至った後、その一部が処理対象物Bの下方へ効果的に回り込む状態になり、この処理対象物Bの下方への回り込み気流fb′により、処理対象物Bの下方を潜る状態での炉外常温空気Oの炉内側への侵入が防止される。   Further, since the airflow fb blown out from the left and right side air outlets 5 is inclined downward with a large inclination angle θb with respect to the horizontal, an airflow curtain Cb is formed in each gap area 2b to form a floor in each gap area 2b. After reaching FL, a part thereof is effectively sneak down below the object to be processed B. Under the condition that the object sneaks below the object to be processed B by the sneak current fb ′ below the object to be processed B. Intrusion of room temperature outside air O outside the furnace into the inside of the furnace is prevented.

したがって、炉体開口部2の対象物通過域2aに処理対象物Bが有る場合、炉体開口部2の下部域を通じた炉外常温空気Oの炉内への侵入は、左右の側部吹出口5から吹き出された気流fbが各間隙域2bに形成する気流カーテンCbと、各間隙域2bの床FLに至った後に処理対象物Bの下方に回り込む上記回り込み気流fb′とにより効果的に防止される。   Therefore, when the processing object B is present in the object passage area 2a of the furnace body opening 2, the intrusion of the room temperature outside air O through the lower area of the furnace body opening 2 into the furnace is caused by the left and right side blows. The airflow curtain Cb formed by the airflow fb blown out from the outlet 5 in each gap area 2b and the wraparound airflow fb 'that wraps below the processing object B after reaching the floor FL of each gap area 2b are more effective. Is prevented.

一方、炉体開口部2における対象物通過域2aに処理対象物Bが無い状況では、図4及び図5に示すように、水平に対する傾斜角度θaが小さい斜め下向きで炉内側に向けて中央吹出口4から吹き出された気流faは、処理対象物Bの不存により斜め下方に延びて対象物通過域2aに気流カーテンCaを形成するとともに、その気流カーテンCaの形成に伴い、処理対象物Bの不存により、炉体開口部2の横幅方向において各間隙域2bへも拡がる。   On the other hand, in the situation where there is no processing object B in the object passage area 2a in the furnace body opening 2, as shown in FIG. 4 and FIG. The air flow fa blown from the outlet 4 extends obliquely downward due to the absence of the processing object B to form the air flow curtain Ca in the object passing area 2a, and the processing object B is formed along with the formation of the air flow curtain Ca. Due to the absence of the above, it also extends to each gap region 2b in the lateral width direction of the furnace body opening 2.

また、水平に対する傾斜角度θbが大きい斜め下向きで炉内側に向けて左右の側部吹出口5から吹き出された気流fbは、各間隙域2bに気流カーテンCbを形成するとともに、その気流カーテンCbの形成に伴い、処理対象物Bの不存により、中央吹出口4からの吹き出し気流faが形成する気流カーテンCaより炉外側で、炉体開口部2の横幅方向において対象物通過域2aへも拡がる。   Further, the airflow fb blown from the left and right side outlets 5 toward the inside of the furnace obliquely downward with a large inclination angle θb with respect to the horizontal forms an airflow curtain Cb in each gap region 2b, and the airflow curtain Cb Along with the formation, due to the absence of the processing object B, the airflow curtain fa formed by the blowout airflow fa from the central air outlet 4 extends outside the airflow curtain Ca and extends to the object passage area 2a in the lateral width direction of the furnace body opening 2. .

したがって、炉体開口部2における対象物通過域2aに処理対象物Bが無い場合、炉体開口部2において気流カーテンCa,Cbを2重に形成したのに近い状態にすることができ、これにより、炉体開口部2の上部域を通じた炉内高温ガスGの漏出及び炉体開口部2の下部域を通じた炉外常温空気Oの侵入が効果的に防止される。   Therefore, when the processing object B is not present in the object passage area 2a in the furnace body opening 2, the airflow curtains Ca and Cb can be made nearly double in the furnace body opening 2, and this can be achieved. This effectively prevents leakage of the in-furnace high temperature gas G through the upper region of the furnace body opening 2 and intrusion of the outside room temperature air O through the lower region of the furnace body opening 2.

図8〜図10は夫々、横幅W=2700mm,高さH=2750mm、長さL=5000mmの炉体開口部2において、中央吹出口4が横辺長w=1800mm,縦辺長d=50mmのスリット状開口に形成され、各側部吹出口5が横辺長w=450mm,縦辺長d=50mmのスリット状開口に形成された場合に得られたシミュレーション結果を示す。   8 to 10, respectively, in the furnace body opening 2 having a lateral width W = 2700 mm, a height H = 2750 mm, and a length L = 5000 mm, the central outlet 4 has a lateral side length w = 1800 mm and a longitudinal side length d = 50 mm. The simulation result obtained when each side blower outlet 5 is formed in a slit-like opening having a lateral side length w = 450 mm and a longitudinal side length d = 50 mm is shown.

そして、図8のグラフは、傾斜角度θbが固定された状態での、傾斜角度θaと単位当たり開口損失ΔR(炉体開口部2を通じた単位時間・単位面積・単位温度当たりの熱損失量)との相関を示し、図9のグラフは、傾斜角度θaが固定された状態での、傾斜角度θbと単位当たり開口損失ΔRとの相関を示し、図10のグラフは、中央吹出口4が側部吹出口5より炉内側に配置された場合における、処理対象物通過方向での両吹出口4,5の離間距離xと単位当たり開口損失ΔRとの相関を示す。   The graph of FIG. 8 shows the inclination angle θa and the opening loss ΔR per unit (the amount of heat loss per unit time, unit area, and unit temperature through the furnace body opening 2) when the inclination angle θb is fixed. 9 shows the correlation between the inclination angle θb and the opening loss ΔR per unit in the state where the inclination angle θa is fixed, and the graph of FIG. The correlation with the separation distance x of both the blower outlets 4 and 5 and the opening loss (DELTA) R per unit in the to-be-processed object passage direction at the time of arrange | positioning inside a furnace from the partial blower outlet 5 is shown.

つまり、これらのシミュレーション結果から、横幅W=2700mm,高さH=2750mm、長さL=5000mmの炉体開口部2において、中央吹出口4が横辺長w=1800mm,縦辺長d=50mmのスリット状開口に形成され、また、各側部吹出口5が横辺長w=450mm,縦辺長d=50mmのスリット状開口に形成される場合では、熱損失を極力低減するのに、中央吹出口4及び側部吹出口5の夫々について以下の仕様を採用するのが望ましい。   That is, from these simulation results, in the furnace body opening 2 having a lateral width W = 2700 mm, a height H = 2750 mm, and a length L = 5000 mm, the central outlet 4 has a lateral side length w = 1800 mm and a longitudinal side length d = 50 mm. In addition, in the case where each side outlet 5 is formed in a slit-like opening having a lateral side length w = 450 mm and a longitudinal side length d = 50 mm, in order to reduce heat loss as much as possible, It is desirable to adopt the following specifications for each of the central outlet 4 and the side outlet 5.

傾斜角度θa≒35°、傾斜角度θb≒80°、離間距離x≒250mm     Inclination angle θa ≒ 35 °, Inclination angle θb ≒ 80 °, Separation distance x ≒ 250mm

なお、中央吹出口4や各側部吹出口5の夫々は、非分割の単一開口からなるものに限らず、複数の分割開口の集合からなるものにしてもよい。   In addition, each of the center blower outlet 4 and each side part blower outlet 5 is not restricted to what consists of a non-divided single opening, You may make it consist of a collection of a some division | segmentation opening.

一方、炉体開口部2の各側壁6のうち、炉体開口部2における上記気流カーテンCa,Cbの形成箇所より炉内側の領域2c(略言すれば、炉体開口部2における炉内寄り領域)に臨む部分には、その炉内寄り領域2cにおける気体を外部に排出する排気口7が設けられている。   On the other hand, among the side walls 6 of the furnace body opening 2, the region 2c inside the furnace from the location where the airflow curtains Ca and Cb are formed in the furnace body opening 2 (in short, the inside of the furnace in the furnace body opening 2). An exhaust port 7 for discharging the gas in the in-furnace region 2c to the outside is provided at a portion facing the region.

つまり、中央吹出口4及び側部吹出口5から吹き出された気流fa,fbが上記炉内寄り領域2cに吹き込まれることが原因で、その炉内寄り領域2cにおける気体が炉内側に拡散して炉内高温ガスGと混ざり合うことを、これら排気口7からの気体排出により防止し、これにより、炉内温度が塗膜乾燥処理に適した温度に一層安定的に保たれるようにしてある。   That is, because the air flows fa and fb blown from the central outlet 4 and the side outlet 5 are blown into the furnace inner area 2c, the gas in the furnace inner area 2c diffuses into the furnace inside. Mixing with the high-temperature gas G in the furnace is prevented by discharging the gas from these exhaust ports 7, so that the temperature in the furnace is more stably maintained at a temperature suitable for the coating film drying process. .

また、炉体開口部2における左右の間隙域2b夫々の床FL上には(図1,図4,図6参照)、その床FL上において処理対象物Bの通過方向(即ち、炉内外方向)に流れる気流に対して抵抗になる縦板状の遮風堰12a,12bが設けられている。   In addition, on the floor FL of each of the left and right gap areas 2b in the furnace body opening 2 (see FIGS. 1, 4 and 6), the passing direction of the processing object B on the floor FL (that is, the inside / outside direction of the furnace) ) Is provided with vertical plate-like windbreak weirs 12a and 12b that resist the airflow flowing through

この遮風堰12a,12bは、図11に示すように、各間隙域2bの床FL上における気流カーテンCbの衝突箇所t(即ち、側部吹出口5から吹き出された気流fbの衝突箇所)に対する炉外側の近傍箇所taと炉内側の近傍箇所tbとに振り分けて配置されており、各間隙域2bに形成される気流カーテンCbは、これら炉外側の遮風堰12aと炉内側の遮風堰12bとの間において床FLに衝突させる。   As shown in FIG. 11, the windbreak weirs 12a and 12b are colliding points t of the airflow curtain Cb on the floor FL in each gap region 2b (that is, the colliding points of the airflow fb blown out from the side outlet 5). The airflow curtain Cb formed in each gap region 2b is arranged in a portion ta adjacent to the outside of the furnace ta and a portion tb near the inside of the furnace, and the windbreak weir 12a outside the furnace and the windbreak inside the furnace The floor FL is caused to collide with the weir 12b.

つまり、側部吹出口5における気流fbの吹出風速や吹出風量を大きくすると、気流カーテンCbによる領域遮蔽効果そのものは高くなるが、その反面、図24に示すように、吹き出された気流fbが気流カーテンCbの形成に続き未だ勢いのある状態で間隙域2bの床FLに衝突して周囲に広く散乱する。   That is, when the blowout air speed and the blowout airflow amount of the airflow fb at the side air outlet 5 are increased, the area shielding effect itself by the airflow curtain Cb is increased. However, as shown in FIG. Following the formation of the curtain Cb, it collides with the floor FL in the gap area 2b in a vigorous state and is scattered widely around.

そして、この衝突気流fbの散乱により、炉体開口部2での塵埃の舞い上がりが激しくなることで、舞い上がり塵埃が処理対象物Bに付着することによる処理品質の低下が生じ易くなり、また、炉外側へ流出する衝突後気流fb″の風量も増加して、この流出風量の増加により炉外への持ち出し熱量が増加することで、気流カーテンCa,Cbの形成による熱損失の低減効果も制限されてしまう。   The scattering of the impinging airflow fb makes the dust soar at the furnace body opening 2 violently, so that the processing quality is likely to deteriorate due to the soaring dust adhering to the processing object B, and the furnace The amount of airflow fb ″ after the collision that flows out to the outside also increases, and the amount of heat taken out to the outside of the furnace increases due to the increase in the amount of outflow air, thereby limiting the effect of reducing heat loss due to the formation of the airflow curtains Ca and Cb. End up.

これに対し、上記の炉外側及び炉内側の遮風堰12a,12bを設けることで、図11に示すように、床FLに対する気流カーテンCbの衝突で生じる気流fbの散乱のうち、処理対象物通過方向への気流fbの散乱は各遮風堰12a,12bによる抵抗(即ち、遮風)により効果的に抑止される。   On the other hand, by providing the above-described windbreak weirs 12a and 12b on the furnace outer side and the furnace inner side, as shown in FIG. 11, out of the scattering of the airflow fb generated by the collision of the airflow curtain Cb with the floor FL, the processing object Scattering of the airflow fb in the passing direction is effectively suppressed by the resistance (that is, windbreak) by the windbreak weirs 12a and 12b.

したがって、その気流散乱の抑止分だけ、舞い上がり塵埃が処理対象物Bに付着することによる処理品質の低下や、衝突後気流fb″の炉外側への流出による炉外への持ち出し熱量の増加を回避しながら、側部吹出口5における気流fbの吹出風速や吹出風量を増大させて気流カーテンCbによる領域遮蔽効果をさらに高めることができ、これにより、炉内高温ガスGの炉体開口部2を通じた炉外への漏出及び炉外常温空気Oの炉体開口部2を通じた炉内への浸入をより一層確実に防止することができる。   Therefore, as much as the airflow scattering is suppressed, the processing quality is prevented from deteriorating due to the flying dust adhering to the processing object B, and the amount of heat taken out outside the furnace due to the outflow of the airflow fb ″ after the collision to the outside of the furnace is avoided. However, it is possible to further increase the area shielding effect by the airflow curtain Cb by increasing the blowout air velocity and the blowout airflow of the airflow fb at the side air outlet 5, and thereby, through the furnace body opening 2 of the high-temperature gas G in the furnace. In addition, it is possible to more reliably prevent leakage to the outside of the furnace and intrusion of the outside room temperature air O into the furnace through the furnace body opening 2.

図12に示すように、各遮風堰12a,12bは、対象物通過域2aにおける処理対象物Bの通過移動に支障の無い範囲で、各間隙域2bから対象物通過域2aに張り出す状態に設けられており、これにより、左右の側部吹出口5の夫々から吹き出された気流fbのうち、各間隙域2bの床FLに衝突する気流部分のみならず、流れ過程での拡がりにより対象物通過域2aの床FLに衝突する気流部分に対しても、各遮風堰12a,12bは上記と同様に気流の散乱を抑止する。   As shown in FIG. 12, each of the windbreak weirs 12a and 12b protrudes from each gap area 2b to the object passage area 2a within a range that does not hinder the movement of the treatment object B in the object passage area 2a. As a result, of the air flow fb blown out from the left and right side air outlets 5, not only the air flow portion that collides with the floor FL of each gap area 2 b but also the spread in the flow process. The windbreak weirs 12a and 12b also suppress the scattering of the airflow in the same manner as described above for the airflow portion that collides with the floor FL of the object passage area 2a.

そしてまた、各遮風堰12a,12bは、処理対象物通過方向に対して垂直な縦姿勢であるから、間隙域2bに形成された気流カーテンCbが各間隙域2bの床FLに至った後、処理対象物Bの下方へ回り込むことで形成される前述の回り込み気流fb′も促進され、これにより、処理対象物Bの下方を潜る状態での炉外常温空気Oの炉内側への侵入も一層効果的に防止される。   And since each wind-shielding weir 12a, 12b is a vertical attitude | position perpendicular | vertical with respect to the to-be-processed object passage direction, after the airflow curtain Cb formed in the gap area 2b reaches the floor FL of each gap area 2b Further, the above-described sneak current fb ′ formed by wrapping under the processing object B is also promoted, and thereby, the in-furnace room-temperature air O entering the furnace inside in a state of diving under the processing object B can be prevented. More effectively prevented.

また、図13に示すように、縦板状の各遮風堰12a,12bは、各側壁6の側の縦軸芯p周りでの回動により、床FL上を処理対象物通過方向に流れる気流に対して抵抗になる遮風姿勢ssと、その遮風姿勢ssから退避して各側壁6に沿う状態となる退避姿勢osとに切り換え可能な可動堰になっている。   Further, as shown in FIG. 13, each of the vertical plate-like windbreak weirs 12 a and 12 b flows on the floor FL in the direction to pass the processing object by rotating around the vertical axis p on the side wall 6 side. The movable weir is switchable between a wind-shielding posture ss that resists airflow and a retracted posture os that retreats from the wind-shielding posture ss and is in a state along each side wall 6.

したがって、メンテナンス作業などを行う場合には、各遮風堰12a,12bを遮風姿勢ssから退避姿勢osに切り換えておくことで、各遮風堰12a,12bを支障とすること無く所要の作業を行うことができる。   Therefore, when performing maintenance work or the like, the necessary work can be performed without interfering with each wind shield weir 12a, 12b by switching each wind shield weir 12a, 12b from the wind shield posture ss to the retracted posture os. It can be performed.

図14は、中央吹出口4及び各側部吹出口5の夫々における気流fa,fbの吹出条件を固定した状態において、炉外側の遮風堰12aと炉内側の遮風堰12bとの間の間隔寸法eを変化させた場合における単位当たり開口損失ΔRの変化を示し、このシミュレーション結果から分かるように、炉体開口部2及び各吹出口4,5の前述仕様の場合、単位当たり開口損失ΔRを低減するには、上記間隔寸法eとして900mm程度(e=900mm)を採用するのが望ましい。   FIG. 14 shows a state between the windbreak weir 12a outside the furnace and the windbreak weir 12b inside the furnace in a state where the blowout conditions of the air flows fa and fb in the central blowout port 4 and the side blowout ports 5 are fixed. The change in the opening loss ΔR per unit when the interval dimension e is changed is shown. As can be seen from the simulation results, the opening loss ΔR per unit in the case of the above specifications of the furnace body opening 2 and the outlets 4 and 5. Is preferably about 900 mm (e = 900 mm) as the gap dimension e.

また、図15は、同じく中央吹出口4及び各側部吹出口5の夫々における気流fa,fbの吹出条件を固定した状態において、炉外側の遮風堰12aと炉内側の遮風堰12bとの間の中央位置と間隙域2bにおける気流カーテンCbとの処理対象物通過方向における相対的な位置関係を、図16に示す3種の位置関係K1〜K3に変化させた場合における単位当たり開口損失ΔRの変化を示し、このシミュレーション結果から分かるように、単位当たり開口損失ΔRを低減するには、各遮風堰12a,12bの上端どうしの間の対象物通過方向における中央位置t´を気流カーテンCbの形成気流fbが通過する状態となる位置関係に各遮風堰12a,12bを配置するのが望ましい。   Further, FIG. 15 shows that the windbreak weir 12a outside the furnace and the windbreak weir 12b inside the furnace are in a state where the blowout conditions of the air flows fa and fb at the central blowout 4 and the side blowouts 5 are fixed. Opening loss per unit when the relative positional relationship in the processing object passing direction between the central position between the two and the airflow curtain Cb in the gap region 2b is changed to the three types of positional relationships K1 to K3 shown in FIG. In order to reduce the opening loss ΔR per unit as shown by the change of ΔR and the simulation result, the central position t ′ in the object passing direction between the upper ends of the windbreak weirs 12a and 12b is set to the airflow curtain. Desirably, the windbreak weirs 12a and 12b are arranged in a positional relationship where the formed airflow fb of Cb passes.

さらにまた、図17において、点Nは図24に示すように遮風堰12a,12bを設けない場合において、間隙域2bにおける炉外側端部の近傍での処理対象物通過方向における床上風速vFを所定の風速(本例ではvF=1.8m/s)に保つことができる、側部吹出口5における気流fbの吹出風速vb及び吹出風量qbを示し、これに対し、点Mは、各遮風堰12a,12bを間隔寸法e=900mmで上記位置関係K1の状態に配置した場合において、間隙域2bにおける炉外側端部の近傍での処理対象物通過方向における床上風速vFを同様の所定風速(vF=1.8m/s)に保つことができる、側部吹出口5における気流fbの吹出風速vb及び吹出風量qbを示す。   Furthermore, in FIG. 17, the point N is the floor wind speed vF in the direction of the object to be processed in the vicinity of the furnace outer end in the gap region 2b when the windbreak weirs 12a and 12b are not provided as shown in FIG. The blown air velocity vb and the blown air flow rate qb of the air flow fb at the side air outlet 5 that can be maintained at a predetermined wind speed (vF = 1.8 m / s in this example) are shown. When the wind weirs 12a and 12b are arranged in the positional relationship K1 with the spacing dimension e = 900 mm, the floor wind speed vF in the direction of the object to be processed in the vicinity of the outer end of the furnace in the gap region 2b is set to the same predetermined wind speed. The blown air velocity vb and the blown air amount qb of the air flow fb at the side air outlet 5 that can be maintained at (vF = 1.8 m / s) are shown.

この図17における点Nと点Mとの対比から分かるように、各遮風堰12a,12bを設けることにより、処理対象物通過方向における床上風速vF(即ち、床FLへの気流衝突が原因で増大する処理対象物通過方向に流れる気流の風速)を効果的に抑止でき、その分、間隙域2bにおける炉外側端部の近傍での処理対象物通過方向における床上風速vFを同等の風速に抑えながらも、側部吹出口5における気流fbの吹出風速vb及び吹出風量qbを大きくして、各間隙域2bに形成する気流カーテンCbの領域遮蔽効果を高めることができる。   As can be seen from the comparison between the point N and the point M in FIG. 17, by providing the windbreak weirs 12a and 12b, the wind speed vF on the floor in the direction of the object to be treated (that is, due to the airflow collision with the floor FL) The wind speed of the airflow flowing in the direction to pass the object to be processed) can be effectively suppressed, and the floor wind speed vF in the direction to pass the object to be processed in the vicinity of the outer end of the furnace in the gap region 2b is reduced to the same extent. However, the area | region shielding effect of the airflow curtain Cb formed in each gap | interval area | region 2b can be heightened by enlarging the blowing air speed vb and the blowing air quantity qb of the airflow fb in the side part outlet 5.

そして、このことで、遮風堰12a,12bを設けない場合に比べ、遮風堰12a,12bを設けることで、図18に示すように単位当たり開口損失ΔRをさらに効果的に低減することができる。   And by this, compared with the case where the windbreak weirs 12a and 12b are not provided, the opening loss ΔR per unit can be more effectively reduced by providing the windbreak weirs 12a and 12b as shown in FIG. it can.

一方、中央吹出口4及び側部吹出口5の夫々から吹き出される気流fa,fbについては、適当な加熱手段により設定温度に加熱された気流fa,fbが中央吹出口4及び側部吹出口5から吹き出されるようにしてあり、これにより、炉体開口部2でのヤニ成分の凝縮が防止される。   On the other hand, for the air flows fa and fb blown from the central blower outlet 4 and the side blower outlet 5, respectively, the air flows fa and fb heated to a set temperature by appropriate heating means are the central blower outlet 4 and the side blower outlet. 5, so that condensation of the spear component at the furnace body opening 2 is prevented.

図19〜図21は、気流加熱方式の第1例〜第3例を示し、各図において、2Aは入口側の炉体開口部、2Bは出口側の炉体開口部、1Aは炉内における入口側の昇温ゾーン、1Bは炉内における出口側の保温ゾーンである。   19 to 21 show first to third examples of the airflow heating method. In each figure, 2A is a furnace body opening on the inlet side, 2B is a furnace body opening on the outlet side, and 1A is in the furnace. A temperature raising zone on the inlet side, 1B is a heat retaining zone on the outlet side in the furnace.

なお、昇温ゾーン1Aでは、炉内に搬入された処理対象物Bがゾーン内加熱により塗膜乾燥処理に適した温度まで昇温され、一方、保温ゾーン1Bでは、昇温ゾーン1Aで昇温された処理対象物Bがゾーン内加熱により塗膜乾燥処理に適した温度に保持される。   In the temperature raising zone 1A, the processing object B carried into the furnace is heated to a temperature suitable for the coating film drying process by heating in the zone, while in the heat retaining zone 1B, the temperature is raised in the temperature raising zone 1A. The treated object B is maintained at a temperature suitable for the coating film drying process by heating in the zone.

図19〜図21に示す第1例〜第3例では、いずれも基本的に、排気ファンFeにより炉内から排出された高温排ガスGeが蓄熱式ガス処理装置RTOにより浄化処理され、そして、蓄熱式ガス処理装置RTOで浄化処理された高温排ガスGeは、排ガス熱交換器Exでの新鮮外気OAとの熱交換により熱回収された上で外部に排出される。   In any of the first to third examples shown in FIGS. 19 to 21, basically, the high-temperature exhaust gas Ge discharged from the furnace by the exhaust fan Fe is purified by the regenerative gas processing device RTO, and the heat storage The high-temperature exhaust gas Ge purified by the gas type gas processing apparatus RTO is exhausted to the outside after being recovered by heat exchange with the fresh outside air OA in the exhaust gas heat exchanger Ex.

また、昇温ゾーン1A及び保温ゾーン1Bの各々について、循環ファンFa,Fbの運転によりゾーン内の高温ガスGa,Gbは循環路8a,8bを通じ循環させ、そして、それら循環高温ガスGa,Gbが循環路8a,8b途中の加熱炉9a,9bにより加熱されることで、昇温ゾーン1A及び保温ゾーン1Bの夫々についてゾーン内温度が所定の温度に保たれる。   Further, for each of the temperature raising zone 1A and the heat retaining zone 1B, the high-temperature gases Ga and Gb in the zone are circulated through the circulation paths 8a and 8b by the operation of the circulation fans Fa and Fb. By being heated by the heating furnaces 9a and 9b in the middle of the circulation paths 8a and 8b, the in-zone temperatures are maintained at predetermined temperatures for each of the temperature raising zone 1A and the temperature keeping zone 1B.

そしてまた、入口側の炉体開口部2Aにおける炉内寄り領域2cに設けられた排気口7からの排出気体は、昇温ゾーン1Aから循環路8aへ取り出された高温ガスGaと合流させて加熱炉9aに導き、同様に、出口側の炉体開口部2Bにおける炉内寄り領域2cに設けられた排気口7からの排出気体は、保温ゾーン1Bから循環路8bへ取り出された高温ガスGbと合流させて加熱炉9bに導く。   Further, the exhaust gas from the exhaust port 7 provided in the in-furnace region 2c in the furnace opening 2A on the inlet side is combined with the high-temperature gas Ga taken out from the temperature raising zone 1A to the circulation path 8a and heated. Similarly, the exhaust gas from the exhaust port 7 provided in the in-furnace region 2c in the furnace opening 2B on the outlet side is introduced into the furnace 9a, and the high temperature gas Gb taken out from the heat retention zone 1B to the circulation path 8b. Combine and guide to heating furnace 9b.

これら共通の基本構成に対し、図19に示す第1例では、昇温ゾーン1A側の循環路8aにおいて加熱炉9a及び循環ファンFaを通過した循環高温ガスGa(即ち、昇温ゾーン1Aに戻す段階にある循環高温ガスGa)の一部が、入口側の炉体開口部2Aにおける中央吹出口4及び側部吹出口5に対し、それら吹出口4,5から吹き出す加熱気流fa,fbとして供給される。   In contrast to these common basic configurations, in the first example shown in FIG. 19, the circulating hot gas Ga that has passed through the heating furnace 9a and the circulation fan Fa in the circulation path 8a on the temperature raising zone 1A side (that is, returned to the temperature raising zone 1A). A part of the circulating high-temperature gas Ga) in the stage is supplied to the central outlet 4 and the side outlet 5 in the furnace opening 2A on the inlet side as heated airflows fa and fb blown out from the outlets 4 and 5. Is done.

また同様に、保温ゾーン1B側の循環路8bにおいて加熱炉9b及び循環ファンFbを通過した循環高温ガスGb(即ち、保温ゾーン1Bに戻す段階にある循環高温ガスGb)の一部が、出口側の炉体開口部2Bにおける中央吹出口4及び側部吹出口5に対し、それら吹出口4,5から吹き出す加熱気流fa,fbとして供給される。   Similarly, a part of the circulating hot gas Gb that has passed through the heating furnace 9b and the circulating fan Fb in the circulation path 8b on the heat retaining zone 1B side (that is, the circulating hot gas Gb in the stage of returning to the heat retaining zone 1B) is The heated airflow fa and fb blown out from the blowout ports 4 and 5 are supplied to the central blowout port 4 and the side blowout port 5 in the furnace body opening 2B.

なお、この第1例では、排ガス熱交換器Exにおいて高温排ガスGeと熱交換させて熱回収させた新鮮外気OAが、バーナ10でさらに加熱された上で、保温ゾーン1B側の加熱炉9bにおける加熱用バーナの燃焼用空気として保温ゾーン1B側の加熱炉9bに供給される。   In this first example, fresh outside air OA that has been heat-recovered by heat exchange with the high-temperature exhaust gas Ge in the exhaust gas heat exchanger Ex is further heated by the burner 10, and then in the heating furnace 9b on the heat retention zone 1B side. It is supplied to the heating furnace 9b on the heat retaining zone 1B side as combustion air for the heating burner.

一方、図20に示す第2例では、排ガス熱交換器Exにおいて高温排ガスGeと熱交換させて熱回収させた新鮮外気OAが、入口側及び出口側の炉体開口部2A,2Bの夫々における中央吹出口4及び側部吹出口5から吹き出す加熱気流fa,fbとして、送給ファンFsにより、それら入口側及び出口側夫々の吹出口4,5に供給される。   On the other hand, in the second example shown in FIG. 20, fresh outside air OA that has been heat-recovered by heat exchange with the high-temperature exhaust gas Ge in the exhaust gas heat exchanger Ex is supplied to the furnace body openings 2A and 2B on the inlet side and the outlet side, respectively. Heated airflow fa and fb blown out from the central blower outlet 4 and the side blower outlet 5 are supplied to the inlets 4 and 5 on the inlet side and the outlet side, respectively, by the feed fan Fs.

また、図21に示す第3例では、第1例と第2例との折衷型として、排ガス熱交換器Exにおいて高温排ガスGeと熱交換させて熱回収させた新鮮外気OAがバーナ10によりさらに加熱され、そして、このバーナ加熱外気OAの一部が、保温ゾーン1B側の加熱炉9bにおける加熱用バーナの燃焼用空気として保温ゾーン1B側の加熱炉9bに供給され、これに対し、バーナ加熱外気OAの残部が、入口側及び出口側の炉体開口部2A,2Bの夫々における中央吹出口4及び側部吹出口5から吹き出す加熱気流fa,fbとして、送給ファンFsにより、それら入口側及び出口側夫々の吹出口4,5に供給される。   Further, in the third example shown in FIG. 21, as a compromise between the first example and the second example, fresh burned air OA that is heat-recovered by heat exchange with the high-temperature exhaust gas Ge in the exhaust gas heat exchanger Ex is further added by the burner 10. A part of the burner heating outside air OA is supplied to the heating furnace 9b on the heat retaining zone 1B as combustion air of the heating burner in the heat furnace 9b on the heat retaining zone 1B, and the burner heating The remainder of the outside air OA is heated by the supply fan Fs as the heated airflows fa and fb blown from the central outlet 4 and the side outlet 5 in the furnace opening 2A and 2B on the inlet side and the outlet side, respectively. And the outlets 4 and 5 on the outlet side.

〔別実施形態〕
次に本発明の別実施形態を列記する。
[Another embodiment]
Next, other embodiments of the present invention will be listed.

上述の実施形態では、床FL上において気流カーテンCbの衝突箇所tに対する炉外側及び炉内側の近傍箇所ta,tbの夫々に遮風堰12a,12bを設ける例を示したが、これに代えて、それら近傍箇所ta,tbのうちのいずれか一方のみに遮風堰を設けたり、気流カーテンCbの衝突箇所tに遮風堰を設けるようにしてもよい。   In the above-described embodiment, the example in which the windbreak weirs 12a and 12b are provided on the outside of the furnace and the neighboring locations ta and tb inside the furnace with respect to the collision point t of the airflow curtain Cb on the floor FL has been described. Alternatively, a windbreak weir may be provided only in one of the neighboring locations ta and tb, or a windbreak weir may be provided at the collision location t of the airflow curtain Cb.

遮風堰12a,12bは、前述の如き縦板状のものに限らず、例えば、横断面形状が台形や長方形の堤防状のものであってもよく、床FL上において処理対象物Bの通過方向に流れる気流に対して抵抗になる構造のものであれば、遮風堰はどのような構造であってもよい。
また、遮風堰12a,12bは、床FL上において処理対象物Bの通過方向に流れる気流に対して抵抗になるのに伴い、その抵抗を受けた気流が上昇気流になることを抑止できる構造であれば更に好ましい。
The windbreak weirs 12a and 12b are not limited to the vertical plate shape as described above. For example, the cross-sectional shape may be a levee shape having a trapezoidal shape or a rectangular shape, and the passage of the processing object B on the floor FL. The windbreak weir may have any structure as long as it has a resistance to the airflow flowing in the direction.
In addition, the windbreak weirs 12a and 12b have a structure that can prevent the airflow that has received the resistance from becoming an ascending airflow as it becomes resistance to the airflow flowing in the passing direction of the processing object B on the floor FL If it is more preferable.

炉体開口部2の炉内寄り領域2cから域内空気を排出する排気口7については、図22及び図23に示すように、炉内配置の排気チャンバ11を形成する壁体のうち炉体開口部2の炉内寄り領域2cに臨む部分に排気口7を設けるようにしてもよい。   As for the exhaust port 7 for discharging the in-region air from the in-furnace region 2c of the furnace body opening 2, as shown in FIGS. 22 and 23, the furnace body opening in the wall forming the exhaust chamber 11 disposed in the furnace is shown. You may make it provide the exhaust port 7 in the part which faces the in-furnace area | region 2c of the part 2. FIG.

なお、上記排気チャンバ11は、前記した循環路8a,8bを通じて循環させるゾーン内高温ガスGa,Gbを炉内の各ゾーン1A,1Bから取り出すためのチャンバである。   The exhaust chamber 11 is a chamber for taking out the in-zone hot gases Ga and Gb circulated through the circulation paths 8a and 8b from the zones 1A and 1B in the furnace.

前述の実施形態では、塗装工程を経た自動車ボディを処理対象物Bとする例を示したが、本発明において処理対象物Bは、自動車ボディに限られるものではなく、バンパーなどの自動車部品、電気器具のケーシング、建築資材、鉄道車両など、塗膜の乾燥処理を要するものであれば、どのようなものであってもよい。   In the above-described embodiment, the example in which the automobile body that has undergone the painting process is the processing object B has been shown. However, in the present invention, the processing object B is not limited to the automobile body, but an automobile part such as a bumper, Any device casing, building material, railway vehicle, etc. may be used as long as the coating film needs to be dried.

また、トンネル状炉体1における入口側の炉体開口部2(2A)と出口側の炉体開口部2(2B)との両方について本発明を適用するのに限らず、いずれか一方の炉体開口部2についてのみ本発明を適用するようにしてもよい。   Further, the present invention is not limited to both the furnace opening 2 (2A) on the inlet side and the furnace opening 2 (2B) on the outlet side in the tunnel-shaped furnace body 1, and either one of the furnaces is used. The present invention may be applied only to the body opening 2.

本発明による塗装乾燥炉は、各種分野における種々の物品の塗膜乾燥処理に利用することができる。   The coating drying furnace according to the present invention can be used for coating film drying treatment of various articles in various fields.

B 処理対象物
2 炉体開口部
3 天井部
5 気流カーテン形成用の吹出口、側部吹出口
fb 気流
Cb 気流カーテン
G 炉内高温ガス
A 炉外常温空気
12a,12b 遮風堰
FL 床
t 衝突箇所
ta 炉外側の近傍箇所
tb 炉内側の近傍箇所
e 間隔寸法
4 中央吹出口
fa 気流
Ca 気流カーテン
2a 対象物通過域
6 側壁
2b 間隙域
θa,θb 傾斜角度
ss 遮風姿勢
os 退避姿勢
B Object to be treated 2 Furnace opening 3 Ceiling 5 Air outlet for forming air curtain, side air outlet fb Air current Cb Air current curtain G High temperature gas in furnace A Outside room temperature air 12a, 12b Wind shield weir FL Floor t Collision Location ta Location near the outside of the furnace tb Location near the inside of the furnace e Interval size 4 Central outlet fa Air flow Ca Air flow curtain 2a Object passage area 6 Side wall 2b Gap area θa, θb Inclination angle ss Wind shielding posture os Retreat posture

Claims (7)

炉外から炉内へ搬入される処理対象物又は炉内から炉外へ搬出される処理済みの処理対象物が通過する炉体開口部の天井部に、気流カーテン形成用の吹出口が設けられ、
この吹出口から吹き出された気流が前記炉体開口部に形成する気流カーテンにより、炉内高温ガスの前記炉体開口部を通じた炉外への漏出、及び、炉外常温空気の前記炉体開口部を通じた炉内への浸入が防止される塗装乾燥炉であって、
前記炉体開口部の床上において、処理対象物の通過方向に流れる気流に対して抵抗になる遮風堰が設けられ、
前記遮風堰が、前記炉体開口部の床上における前記気流カーテンの衝突箇所又はその衝突箇所に対する処理対象物通過方向における近傍箇所において、前記炉体開口部の床上に配置されている塗装乾燥炉。
An air outlet for forming an airflow curtain is provided at the ceiling of the furnace body opening through which the processing object to be carried into the furnace from the outside of the furnace or the processed processing object to be carried out of the furnace to the outside of the furnace passes. ,
Due to the airflow curtain formed by the airflow blown from the blowout opening at the furnace body opening, leakage of the high temperature gas in the furnace to the outside of the furnace through the furnace body opening, and the furnace body opening of the outside room temperature air A coating and drying furnace that is prevented from entering the furnace through the section,
On the floor of the furnace body opening, a windbreak weir is provided that resists airflow flowing in the direction of passage of the object to be processed.
The coating-drying furnace in which the windbreak weir is disposed on the floor of the furnace body opening at the collision location of the airflow curtain on the floor of the furnace body opening or in the vicinity of the collision location in the direction of the object to be processed. .
前記遮風堰が、前記衝突箇所に対する炉外側の前記近傍箇所と炉内側の前記近傍箇所との夫々において、前記炉体開口部の床上に設けられている請求項1記載の塗装乾燥炉。   The paint drying furnace according to claim 1, wherein the windbreak weir is provided on the floor of the furnace body opening at each of the vicinity location outside the furnace with respect to the collision location and the vicinity location inside the furnace. 前記衝突箇所に対する炉外側の前記近傍箇所と炉内側の前記近傍箇所とに設けられる前記遮風堰どうしの間の間隔寸法が、その間隔寸法と前記炉体開口部を通じた熱損失量との相関において、前記炉体開口部を通じた熱損失量が最小となる間隔寸法である請求項2記載の塗装乾燥炉。   The distance between the wind shield weirs provided at the vicinity of the outside of the furnace with respect to the collision and the vicinity of the inside of the furnace is a correlation between the distance and the amount of heat loss through the furnace body opening. The coating drying furnace according to claim 2, wherein the distance is such that the amount of heat loss through the furnace body opening is minimized. 前記衝突箇所に対する炉外側の前記近傍箇所と炉内側の前記近傍箇所とに設けられる前記遮風堰どうしの間の中心位置と前記気流カーテンとの処理対象物通過方向における相対的位置関係が、その相対的位置関係と前記炉体開口部を通じた熱損失量との相関において、前記炉体開口部を通じた熱損失量が最小となる相対的位置関係である請求項2又は3記載の塗装乾燥炉。   The relative positional relationship in the processing object passage direction between the airflow curtain and the center position between the wind shield weirs provided at the vicinity location outside the furnace and the vicinity location inside the furnace with respect to the collision location, The paint drying furnace according to claim 2 or 3, wherein the relative positional relationship is a relative positional relationship in which the amount of heat loss through the furnace body opening is minimized in the correlation between the relative positional relationship and the amount of heat loss through the furnace body opening. . 前記吹出口として、前記炉体開口部における対象物通過域に前記気流カーテンを形成する中央吹出口と、前記炉体開口部における左右の各側壁と前記対象物通過域との間の各間隙域に前記気流カーテンを各別に形成する左右の側部吹出口とが設けられ、
前記中央吹出口からは、水平に対する傾斜角度が小さい斜め下向きで炉内側に向けて気流カーテン形成用の気流が吹き出され、
前記左右の側部吹出口の夫々からは、水平に対する傾斜角度が大きい斜め下向きで炉内側に向けて、又は、垂直下方に向けて気流カーテン形成用の気流が吹き出され、
前記遮風堰が、前記左右の側部吹出口から吹き出された気流により形成される前記気流カーテンの前記床上における衝突箇所又はその衝突箇所に対する処理対象物通過方向における近傍箇所において、前記床上に設けられている請求項1〜4のいずれか1項に記載の塗装乾燥炉。
As the outlet, a central outlet that forms the airflow curtain in the object passage area in the furnace body opening, and each gap area between the left and right sidewalls in the furnace body opening and the object passage area Left and right side air outlets for forming the air flow curtain separately,
From the central outlet, an airflow for forming an airflow curtain is blown out toward the furnace inside obliquely downward with a small inclination angle with respect to the horizontal,
From each of the left and right side air outlets, an airflow for forming an airflow curtain is blown out toward the furnace inside with a large downward inclination angle with respect to the horizontal, or downward vertically,
The windbreak weir is provided on the floor at a collision location on the floor of the airflow curtain formed by the airflow blown out from the left and right side air outlets or in a vicinity of the collision location in the passing direction of the object to be processed. The coating drying furnace according to any one of claims 1 to 4.
前記遮風堰が、前記炉体開口部における処理対象物の通過移動に支障の無い範囲で前記間隙域から前記対象物通過域に張り出す状態に設けられている請求項5記載の塗装乾燥炉。   6. The coating drying furnace according to claim 5, wherein the windbreak weir is provided in a state of projecting from the gap area to the object passage area within a range that does not hinder the movement of the object to be treated at the opening of the furnace body. . 前記遮風堰が、処理対象物通過方向に流れる気流に対して抵抗になる遮風姿勢と、その遮風姿勢から退避した退避姿勢とに切り換え操作が可能な可動堰である請求項1〜6のいずれか1項に記載の塗装乾燥炉。   The windbreak weir is a movable weir capable of switching between a windbreak posture that resists airflow flowing in the direction of passage of a processing object and a retracted posture that is retracted from the windshield posture. The coating drying furnace according to any one of the above.
JP2018079252A 2018-04-17 2018-04-17 Paint drying oven Active JP6745834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079252A JP6745834B2 (en) 2018-04-17 2018-04-17 Paint drying oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079252A JP6745834B2 (en) 2018-04-17 2018-04-17 Paint drying oven

Publications (2)

Publication Number Publication Date
JP2019184210A true JP2019184210A (en) 2019-10-24
JP6745834B2 JP6745834B2 (en) 2020-08-26

Family

ID=68340620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079252A Active JP6745834B2 (en) 2018-04-17 2018-04-17 Paint drying oven

Country Status (1)

Country Link
JP (1) JP6745834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020216427A1 (en) * 2020-12-21 2022-06-23 Dürr Systems Ag Separating device, treatment installation and method for treating workpieces

Also Published As

Publication number Publication date
JP6745834B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2018230180A1 (en) Coating drying furnace
US4696226A (en) Fluid barrier curtain system
EP0068272B1 (en) Apparatus for conveying strip material
US3752056A (en) Laboratory exhaust hood
US11053611B2 (en) Oxidation furnace
US20060199500A1 (en) Air shutter and installation method thereof
JPWO2017115654A1 (en) Airflow control device and method for producing stretched film
JP2019184210A (en) Coating drying furnace
JP2001510548A (en) Dynamic separation method of area by clean air curtain
WO2018180565A1 (en) Airflow control device and method for manufacturing stretched film
JP3897732B2 (en) Air shutter and installation method thereof
KR20200038865A (en) Treatment machine for a flexible material web, in particular plastic film, which can be passed through a treatment furnace
US6517079B1 (en) Gas seal for continuous thermal treatment facilities operated with a protective gas atmosphere
JP6240591B2 (en) Air curtain generator
JP4796467B2 (en) Horizontal flameproof furnace and flameproofing method
JP5261415B2 (en) Transverse stretching apparatus and transverse stretching method
JP6571063B2 (en) Web heat treatment equipment
WO2014156977A1 (en) Tenter oven and method for manufacturing thermoplastic resin film
JPH1128409A (en) Drying oven for coating
JP3546254B2 (en) Web heat treatment equipment
JPH07270072A (en) Dryer
JPH0322709Y2 (en)
SU773101A1 (en) Gas lock for straight through thermal furnaces
US2756980A (en) Lamp making machine and oven therefor
TH1901006488A (en) coating drying oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200804

R150 Certificate of patent or registration of utility model

Ref document number: 6745834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250