JP2019184078A - Multiple pipe type cooler - Google Patents

Multiple pipe type cooler Download PDF

Info

Publication number
JP2019184078A
JP2019184078A JP2018070603A JP2018070603A JP2019184078A JP 2019184078 A JP2019184078 A JP 2019184078A JP 2018070603 A JP2018070603 A JP 2018070603A JP 2018070603 A JP2018070603 A JP 2018070603A JP 2019184078 A JP2019184078 A JP 2019184078A
Authority
JP
Japan
Prior art keywords
tube
vertical
space
cooler
spaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018070603A
Other languages
Japanese (ja)
Other versions
JP6959175B2 (en
Inventor
庸平 塚間
Yohei Tsukama
庸平 塚間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAGI REIKI KK
Original Assignee
TAKAGI REIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAGI REIKI KK filed Critical TAKAGI REIKI KK
Priority to JP2018070603A priority Critical patent/JP6959175B2/en
Publication of JP2019184078A publication Critical patent/JP2019184078A/en
Application granted granted Critical
Publication of JP6959175B2 publication Critical patent/JP6959175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To simplify a drawing motion of a pipe connected to a multiple pipe type cooler, save a space for it and at the same time facilitate assurance of a flow passage for external fluid.SOLUTION: Vertical partition parts 5g define several vertical spaces A, B extending in an axial direction within a peripheral space formed between an inner pipe and an outer pipe to define the peripheral space. A first communication port 5h causes the adjoining vertical spaces A, B in the peripheral space to communicate with each other in order to define an internal continuous flow passage while fluid to be heat exchanged between it and external fluid is returned back in an axial direction. Lateral partition parts 5i extend in at least one vertical space B in a peripheral direction to define several lateral spaces b1 to b6 defining the vertical space B. The second communication ports 5j cause the adjoining lateral spaces to communicate with each other in the vertical spaces in order to define continuous internal flow passages where fluid in the vertical space B flows while being folded back in a peripheral direction in the vertical space B.SELECTED DRAWING: Figure 10

Description

本発明は、冷却対象となる外部流体を表面を介して冷却する多重管式冷却器に関する。   The present invention relates to a multi-tube cooler that cools an external fluid to be cooled through a surface.

従来、コイル式熱交換器の代替として、露出した表面が熱交換面として機能し、内部流体と外部流体との間で熱交換を行う多重管式熱交換器が知られている。例えば、特許文献1には、図12に示すように、内管20と外管21との間の内部空間に螺旋状流路22が設けられた二重管式熱交換器が開示されている。内管20と外管21との間を流れる水Wは、螺旋状流路22の形状に沿って螺旋状に旋回しながら熱交換器の一端から他端に向かって一方向に導かれ、内管21内を流れる冷媒Xとの間で熱交換が行われる。   Conventionally, as an alternative to a coil heat exchanger, a multi-tube heat exchanger is known in which an exposed surface functions as a heat exchange surface and performs heat exchange between an internal fluid and an external fluid. For example, Patent Document 1 discloses a double-tube heat exchanger in which a spiral flow path 22 is provided in an internal space between an inner tube 20 and an outer tube 21, as shown in FIG. . The water W flowing between the inner tube 20 and the outer tube 21 is guided in one direction from one end of the heat exchanger to the other end while spirally swirling along the shape of the spiral flow path 22. Heat exchange is performed with the refrigerant X flowing in the pipe 21.

また、特許文献2には、図13に示すように、内管と外管との間の内部空間が仕切体によって仕切られた二重管式熱交換器が開示されている。この仕切体は、内管の外周に嵌め込まれた胴部と、この胴部の一端から径方向に広がった複数のフィンとを有する。それぞれのフィンには、円盤の一部を切り欠いた切除部を備えており、切除部が長手方向に対して千鳥状となるように、換言すれば、切除部が180度周方向にオフセットするように配置されている。これにより、内管および外管の間を流れる水は、フィンが備える切除部の位置に応じて180度旋回しながら熱交換器の一端から他端に向かって一方向に導かれ、内管内を流れる冷媒との間で熱交換が行われる。   Patent Document 2 discloses a double-tube heat exchanger in which an internal space between an inner tube and an outer tube is partitioned by a partition as shown in FIG. The partition includes a body portion fitted on the outer periphery of the inner tube, and a plurality of fins extending in the radial direction from one end of the body portion. Each fin has an excision part in which a part of the disk is cut out. In other words, the excision part is offset 180 degrees in the circumferential direction so that the excision part is staggered with respect to the longitudinal direction. Are arranged as follows. As a result, the water flowing between the inner pipe and the outer pipe is guided in one direction from one end of the heat exchanger to the other end while turning 180 degrees according to the position of the cut portion provided in the fin, Heat exchange is performed with the flowing refrigerant.

特開2001−201275号公報JP 2001-201275 A 特開2005−90926号公報JP-A-2005-90926

上述した従来の技術では、内管と外管との間を流れる流体が冷却器(熱交換器)の一端から他端に向かって一方向に導かれる。そのため、冷却器の一端側に流体を導入する導入管を接続し、その他端側に流体を排出する排出管を接続する必要がある。これらの配管を例えば冷却器の下端側に集約する場合、上端側に接続された配管を下方に引き回す必要があるので、その分だけ配管スペースを確保しなければならない。これは、冷却器を組み込んだ全体システムの簡略化を阻害する。また、冷却器の外部に突出した配管は、冷却器の表面と接する外部流体の流路を確保する上で障害となる。   In the conventional technology described above, the fluid flowing between the inner tube and the outer tube is guided in one direction from one end of the cooler (heat exchanger) to the other end. Therefore, it is necessary to connect an introduction pipe for introducing fluid to one end side of the cooler and to connect a discharge pipe for discharging fluid to the other end side. For example, when these pipes are concentrated on the lower end side of the cooler, it is necessary to route the pipes connected to the upper end side downward, so that it is necessary to secure a pipe space correspondingly. This hinders simplification of the overall system incorporating the cooler. In addition, the pipe protruding to the outside of the cooler becomes an obstacle to securing a flow path of the external fluid that contacts the surface of the cooler.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、多重管式冷却器に接続する配管の引き回しを簡略化して省スペース化を図るとともに、外部流体の流路の確保を容易にすることである。   The present invention has been made in view of such circumstances, and an object thereof is to simplify the routing of piping connected to a multi-tube cooler to save space and to easily secure a flow path for an external fluid. Is to do.

かかる課題を解決すべく、本発明は、内管と、外管と、複数の縦仕切部と、少なくとも一つの第1の連通口とを有し、冷却対象となる外部流体を表面を介して冷却する多重管式冷却器を提供する。外管は、内管の外側に間隔を空けて配置されている。縦仕切部は、内管と外管との間の周空間内を軸方向に延在し、周空間を区分する複数の縦空間を規定する。第1の連通口は、外部流体を冷却する冷媒が軸方向に折り返しながら流れる連続した内部流路を規定するために、周空間内において隣り合った縦空間同士を連通する。   In order to solve this problem, the present invention has an inner tube, an outer tube, a plurality of vertical partition portions, and at least one first communication port, and external fluid to be cooled is passed through the surface. A cooling multi-tube cooler is provided. The outer tube is disposed outside the inner tube with a space therebetween. The vertical partition extends in the circumferential direction between the inner tube and the outer tube in the axial direction, and defines a plurality of vertical spaces that divide the circumferential space. The first communication port communicates the adjacent vertical spaces in the circumferential space in order to define a continuous internal flow path through which the refrigerant that cools the external fluid flows while turning back in the axial direction.

ここで、本発明において、多重管式冷却器における一方の端部側に設けられ、内部流路に冷媒を導入する導入口と、多重管式冷却器における導入口と同一の端部側に設けられ、内部流路を流れた冷媒を排出する排出口とをさらに設けてもよい。この場合、上記導入口および上記排出口は、多重管式冷却器の下端部側に設けられていることが好ましい。   Here, in the present invention, provided on one end side of the multi-tube cooler, provided on the same end side as the inlet of the multi-tube cooler, and an inlet for introducing the refrigerant into the internal flow path And a discharge port for discharging the refrigerant flowing through the internal flow path. In this case, it is preferable that the introduction port and the discharge port are provided on the lower end side of the multi-tube cooler.

本発明において、複数の横仕切部と、少なくとも一つの第2の連通口とをさらに設けてもよい。横仕切部は、少なくとも一つの縦空間内を周方向に延在し、縦空間を区分する複数の横空間を規定する。第2の連通口は、縦空間内において流体が周方向に折り返しながら流れる連続した内部流路を規定するために、縦空間内において隣り合った横空間同士を連通する。   In the present invention, a plurality of horizontal partition portions and at least one second communication port may be further provided. The horizontal partition portion extends in the circumferential direction in at least one vertical space, and defines a plurality of horizontal spaces that divide the vertical space. The second communication port communicates between the adjacent lateral spaces in the vertical space in order to define a continuous internal flow path in which the fluid flows while turning back in the circumferential direction in the vertical space.

本発明において、上記外管および上記内管の少なくとも一方は、縦仕切部および横仕切部の少なくとも一方の取付ラインに沿って分割された複数の部材によって構成されていてもよい。この場合、上記縦仕切部は、内管の外周面に軸方向に沿って取り付けられた縦外管の側部であってもよい。また、上記外管を構成する部材は、縦外管を避けるための逃げ部を備えていてもよい。また、上記横仕切部は、縦外管を避けるための逃げ部を備えた環状形状を有していてもよい。さらに、上記横仕切部は、逃げ部の一端と他端とが交互に縦外管の側部と接するように、周方向にオフセットして配置されていてもよい。   In the present invention, at least one of the outer tube and the inner tube may be constituted by a plurality of members divided along at least one attachment line of the vertical partition and the horizontal partition. In this case, the vertical partition portion may be a side portion of the vertical outer tube attached to the outer peripheral surface of the inner tube along the axial direction. Moreover, the member which comprises the said outer tube | pipe may be provided with the escape part for avoiding a vertical outer tube | pipe. Moreover, the said horizontal partition part may have the cyclic | annular shape provided with the escape part for avoiding a vertical outer tube | pipe. Furthermore, the said horizontal partition part may be arrange | positioned offset in the circumferential direction so that the one end and other end of a relief part may contact the side part of a vertical outer tube | pipe alternately.

本発明によれば、内管と外管との間に形成される周空間内に複数の縦仕切部を設け、外部流体を冷却する冷媒を軸方向に折り返しながら流すことで、多重管式冷却器に接続する配管の引き回しを簡略化できる。その結果、多重管式冷却器を組み込んだ全体システムの省スペース化を図れるほか、多重管式冷却器の外部を流れる外部流体の流路の確保も容易になる。   According to the present invention, a plurality of vertical partition portions are provided in a circumferential space formed between the inner tube and the outer tube, and the multi-tube cooling is performed by flowing the coolant that cools the external fluid in the axial direction. The piping connected to the vessel can be simplified. As a result, the entire system incorporating the multi-tube cooler can be saved in space, and it is easy to secure a flow path for the external fluid that flows outside the multi-tube cooler.

冷却装置の斜視展開図Perspective view of cooling device 冷却装置の内部における流体の流れを示す図The figure which shows the flow of the fluid inside a cooling device 多重管式冷却器の外観斜視図External perspective view of multi-tube cooler 多重管式冷却器の組立手順の説明図Explanatory diagram of assembly procedure for multi-tube cooler 多重管式冷却器の組立手順の説明図Explanatory diagram of assembly procedure for multi-tube cooler 多重管式冷却器の組立手順の説明図Explanatory diagram of assembly procedure for multi-tube cooler 多重管式冷却器の組立手順の説明図Explanatory diagram of assembly procedure for multi-tube cooler 多重管式冷却器の組立手順の説明図Explanatory diagram of assembly procedure for multi-tube cooler 多重管式冷却器の内部流路の説明図Illustration of internal flow path of multi-tube cooler 多重管式冷却器の内部流路の説明図Illustration of internal flow path of multi-tube cooler 変形例に係る多重管式冷却器の内部流路の説明図Explanatory drawing of the internal flow path of the multi-tube cooler according to the modification 従来技術の説明図Illustration of prior art 従来技術の説明図Illustration of prior art

図1は、多重管式冷却器を組み込んだ冷却装置の斜視展開図である。この冷却装置1は、例えば冷却対象となる外部流体(水等)を冷却する用途で用いられる。冷却装置1は、外部流体を貯留する貯留槽内に配置して使用してもよいし、貯留槽内に配置することなく、外部流体が流れる配管と接する形で使用することも可能である。なお、同図は、冷却装置1を構成する部材同士の位置関係が容易に理解できるように、それぞれの部材を軸方向にやや展開した状態を示しているが、実際には、外管4の内部に複数の部材2,3,5が完全に収容されており、上端の開口部は、透明フタ6によって閉塞されている。   FIG. 1 is an exploded perspective view of a cooling device incorporating a multi-tube cooler. This cooling device 1 is used for the purpose of cooling an external fluid (water or the like) to be cooled, for example. The cooling device 1 may be used by being placed in a storage tank that stores an external fluid, or may be used in contact with a pipe through which the external fluid flows without being placed in the storage tank. In addition, although the figure has shown the state which expanded each member a little in the axial direction so that the positional relationship of the members which comprise the cooling device 1 can be understood easily, in fact, The plurality of members 2, 3, 5 are completely accommodated inside, and the opening at the upper end is closed by the transparent lid 6.

冷却装置1は、複数の管2〜4と、多重管式冷却器5とを有し、これらは、径方向の内外に配置されている。本実施形態において、多重管式冷却器5の内側に2本、その外側に1本、合計3本の管が配置されている。具体的には、冷却装置1の軸芯には、第1の内管2が配置されている。この第1の内管2の径方向外側には、その全周を囲むように、所定の間隔を空けて第2の内管3が配置されている。また、この第2の内管3の径方向外側には、その全周を囲むように、所定の間隔を空けて多重管式冷却器5が配置されている。さらに、この多重管式冷却器5の径方向外側には、その全周を囲むように、所定の間隔を空けて外管4が配置されている。このように、3本の管2〜4および多重管式冷却器5が同心円状に配置された状態で、上端の開口部が透明フタ6によって閉塞されている。透明フタ6を用いる理由は、冷却装置1の運転時に、内部状態を外部から目視できるようにするためであり、これによって、例えば、内部流路に流体の凝固が生じているかどうかを、分解することなく判別することができる。   The cooling device 1 has a plurality of tubes 2 to 4 and a multi-tube cooler 5, which are arranged inside and outside in the radial direction. In this embodiment, a total of three tubes are arranged, two inside the multi-tube cooler 5 and one outside. Specifically, the first inner tube 2 is disposed on the axis of the cooling device 1. The second inner pipe 3 is arranged on the outer side in the radial direction of the first inner pipe 2 at a predetermined interval so as to surround the entire circumference. A multi-tube cooler 5 is disposed outside the second inner pipe 3 in the radial direction so as to surround the entire circumference of the second inner pipe 3 at a predetermined interval. Further, an outer tube 4 is arranged on the outer side in the radial direction of the multi-tube cooler 5 with a predetermined interval so as to surround the entire circumference. As described above, the opening at the upper end is closed by the transparent lid 6 in a state where the three tubes 2 to 4 and the multi-tube cooler 5 are arranged concentrically. The reason for using the transparent lid 6 is to make it possible to visually check the internal state from the outside during operation of the cooling device 1, thereby disassembling whether or not fluid coagulation has occurred in the internal flow path. Can be determined without any problem.

図2は、冷却装置1の内部における流体の流れを示す図である。軸芯の入口管9より供給された流体(冷却対象物)は、第1の内管2の内部に形成された流路10aを軸方向上方に向かって流れる。この流路10aを経て上端側に導かれた流体は、上端側の連通口11aを介して、径方向外側に全周に亘って均一に導かれた後、流路10bを軸方向下方に向かって流れる。この流路10bを経て下端側に導かれた流体は、下端側の連通口11bを介して、径方向外側に全周に亘って均一に導かれた後、内側流路10cを軸方向上方に向かって流れる。この内側流路10cは、多重管式冷却器5と接しているので、この熱交換器5内を流れる冷媒(水を冷却するブラインを含む。)と、内側流路10cを流れる流体との間で熱交換が行われ、これによって、外部流体が冷却される。内側流路10cを経て上端側に導かれた流体は、上端側の連通口11cを介して、径方向外側に全周に亘って均一に導かれた後、外側流路10dを軸方向下方に向かって流れる。この外側流路10dは、内側流路10cと同様、多重管式冷却器5と接しているので、外側流路10dを流れる流体はさらに冷却される。そして、外側流路10dを経て下端側に導かれた流体は、下端側の連通口11d(放出口)を介して、径方向外側に全周に亘って均一に放出される。このように、冷却装置1の内側流路10a〜10dにおいて、流体は、軸方向に往復しながら径方向外側に導かれる。   FIG. 2 is a diagram illustrating the flow of the fluid in the cooling device 1. The fluid (cooling target) supplied from the axial inlet pipe 9 flows upward in the axial direction through a flow path 10 a formed in the first inner pipe 2. The fluid guided to the upper end side through the flow path 10a is uniformly guided over the entire circumference radially outward through the communication port 11a on the upper end side, and then moves downward in the axial direction through the flow path 10b. Flowing. The fluid guided to the lower end side through the flow path 10b is uniformly guided over the entire circumference radially outward through the communication port 11b on the lower end side, and then the inner flow path 10c is moved upward in the axial direction. It flows toward. Since the inner flow path 10c is in contact with the multi-tube cooler 5, the space between the refrigerant flowing in the heat exchanger 5 (including brine for cooling water) and the fluid flowing in the inner flow path 10c. The heat exchange takes place at this point, thereby cooling the external fluid. The fluid guided to the upper end side through the inner channel 10c is uniformly guided over the entire circumference radially outward through the communication port 11c on the upper end side, and then the outer channel 10d is moved downward in the axial direction. It flows toward. Since the outer flow path 10d is in contact with the multi-tube cooler 5 similarly to the inner flow path 10c, the fluid flowing through the outer flow path 10d is further cooled. Then, the fluid guided to the lower end side through the outer flow path 10d is uniformly discharged over the entire circumference radially outward through the communication port 11d (release port) on the lower end side. Thus, in the inner flow paths 10a to 10d of the cooling device 1, the fluid is guided radially outward while reciprocating in the axial direction.

図3は、本実施形態に係る多重管式冷却器5の外観斜視図である。この多重管式冷却器5は、熱伝導率の高い金属で形成されており、外部に露出した表面を介して、自己の内部を流れる冷媒と、外部流体である水との間で熱交換を行う。この熱交換器5は、同心円状に配置された内管5aおよび外管5bを有し、外管5bは内管5aの外側に所定の間隔を空けて配置されている。本実施形態に係る熱交換器5の特徴は、第1に、熱交換器5の内部において、冷媒が熱交換器5の軸方向(長手方向)に折り返しながら流れる点になる。第2に、熱交換器5の内部に冷媒を導入するための配管が接続される導入口5cと、熱交換器5の内部から冷媒を排出するための配管が接続される排出口5dとが、熱交換器5の一方の端部側、典型的には、熱交換器の下端側に設けられている点にある。例えば、下端側の導入口5cから導入された冷媒を上端側で1回折り返せば、下端側の排出口5dから冷媒を排出できる。また、上端側、下端側および上端側で合計3回折り返せば、下端側の排出口5dから冷媒を排出できる。すなわち、流体の折り返し回数が奇数であれば、同一の端部側において冷媒の導入および排出を実現できる。   FIG. 3 is an external perspective view of the multi-tube cooler 5 according to the present embodiment. This multi-tube cooler 5 is made of a metal having high thermal conductivity, and exchanges heat between the refrigerant flowing inside itself and water, which is an external fluid, through a surface exposed to the outside. Do. The heat exchanger 5 has an inner tube 5a and an outer tube 5b arranged concentrically, and the outer tube 5b is arranged outside the inner tube 5a with a predetermined interval. The feature of the heat exchanger 5 according to the present embodiment is that, first, the refrigerant flows while turning back in the axial direction (longitudinal direction) of the heat exchanger 5 inside the heat exchanger 5. Secondly, there are an inlet 5c to which a pipe for introducing a refrigerant into the heat exchanger 5 is connected, and an outlet 5d to which a pipe for discharging the refrigerant from the inside of the heat exchanger 5 is connected. The heat exchanger 5 is provided on one end side, typically on the lower end side of the heat exchanger. For example, if the refrigerant introduced from the lower end side introduction port 5c is folded once on the upper end side, the refrigerant can be discharged from the lower end side discharge port 5d. In addition, if the total of the upper end side, the lower end side, and the upper end side is folded three times, the refrigerant can be discharged from the lower end discharge port 5d. That is, if the number of fluid foldings is an odd number, introduction and discharge of the refrigerant can be realized on the same end side.

以下、図4から図10の組立手順に基づき、多重管式冷却器5の内部構造について詳述する。基本的に、以下に述べる部材の取り付けは、冷媒漏れを防止すべく溶接によって行われる。まず、図4に示すように、円盤状の底板5eの上面に、熱交換器5の高さにほぼ相当する円筒状の内管5aが取り付けられる。底板5eの中央部を上下に貫通する開口部は、多重管式冷却器5の内周面、すなわち、内管5aの内周面に外部流体を導き、この内周面も熱交換面として利用するために設けられている。   Hereinafter, the internal structure of the multi-tube cooler 5 will be described in detail based on the assembly procedure of FIGS. Basically, the members described below are attached by welding in order to prevent refrigerant leakage. First, as shown in FIG. 4, a cylindrical inner tube 5a substantially corresponding to the height of the heat exchanger 5 is attached to the upper surface of the disc-shaped bottom plate 5e. The opening that vertically penetrates the center of the bottom plate 5e guides external fluid to the inner peripheral surface of the multi-tube cooler 5, that is, the inner peripheral surface of the inner tube 5a, and this inner peripheral surface is also used as a heat exchange surface Is provided to do.

つぎに、図5に示すように、内管5aの外周面に、軸方向に沿って延在するように縦外管5fが取り付けられる。この縦外管5fは、直線状に延在しており、略U字状または略コ字状の断面を有する。縦外管5fにおける左右の屈曲した側部は、後述する2本の縦仕切部5gとして機能すると共に、これらを繋ぐ主面は、多重管式冷却器5における外管5bの一部をなす。また、縦外管5fの下端側には、流体を内部に導入する導入口5cが設けられていると共に、その上端側には、第1の連通口5hが側方に臨むように設けられている。縦外管5fは、下端側の導入口5cより流入した流体を軸方向(上方)に導き、上端側の連通口5hより放出する内部流路として機能する。   Next, as shown in FIG. 5, the longitudinal outer tube 5f is attached to the outer peripheral surface of the inner tube 5a so as to extend along the axial direction. The vertical outer pipe 5f extends linearly and has a substantially U-shaped or substantially U-shaped cross section. The left and right bent side portions of the vertical outer tube 5f function as two vertical partition portions 5g described later, and the main surface connecting them forms a part of the outer tube 5b in the multi-tube cooler 5. An inlet 5c for introducing fluid into the inside is provided on the lower end side of the vertical outer pipe 5f, and a first communication port 5h is provided on the upper end side so as to face the side. Yes. The vertical outer pipe 5f functions as an internal flow path that guides the fluid flowing in from the lower-end-side introduction port 5c in the axial direction (upward) and discharges it from the upper-end-side communication port 5h.

つぎに、図6に示すように、最下段(1段目)の横仕切部5iを上方より嵌め入れた上で、治具などを用いて、内管5aの外周面に横仕切部5iが周方向に延在するように取り付けられる。この横仕切部5iは、縦外管5fを避けるための逃げ部を備えた環状形状(すなわち、略C字状)の形状を有する。逃げ部の幅W1は、縦外管5fの幅W2よりも大きく設定されている。最下段(奇数段)については、逃げ部の左端が縦外管5fの左側部と接するように、横仕切部5iを反時計回りに寄せて配置する。これにより、逃げ部の右端と縦外管5fの右側部との間に生じた隙間は、上下を連通する第2の連通口5jとして機能する。   Next, as shown in FIG. 6, after the lowermost (first stage) horizontal partition 5i is fitted from above, the horizontal partition 5i is formed on the outer peripheral surface of the inner tube 5a using a jig or the like. It is attached so as to extend in the circumferential direction. The horizontal partitioning portion 5i has an annular shape (that is, a substantially C shape) provided with a relief portion for avoiding the vertical outer tube 5f. A width W1 of the escape portion is set to be larger than a width W2 of the vertical outer tube 5f. For the lowermost stage (odd number stage), the horizontal partition 5i is arranged counterclockwise so that the left end of the escape portion is in contact with the left side of the vertical outer pipe 5f. Thereby, the gap generated between the right end of the escape portion and the right side portion of the vertical outer pipe 5f functions as a second communication port 5j that communicates vertically.

つぎに、図7に示すように、最下段(1段目)の短外管5kを上方より嵌め入れた上で、内管5aの外周面に短外管5kが取り付けられる。この短外管5kは、縦外管5fを避けるための逃げ部を備えた環状形状(すなわち、略C字状の横断面)の形状を有する。ただし、横仕切部5iとは異なり、短外管5kの逃げ部の幅は、縦外管5fの幅W2とほぼ同等に設定されている。短外管5kは、多重管式冷却器5における外管5bの一部をなすと共に、内管5aと短外管5kとの間に形成される周空間は、流体を周方向に旋回させる内部流路として機能する。なお、最下段の短外管5kについては、内部流路を流れた流体を外部に排出する排出口5dが設けられている   Next, as shown in FIG. 7, the lower outer tube 5k is fitted to the outer peripheral surface of the inner tube 5a after the lowermost (first stage) short outer tube 5k is fitted from above. The short outer tube 5k has an annular shape (that is, a substantially C-shaped cross section) provided with a relief portion for avoiding the vertical outer tube 5f. However, unlike the horizontal partitioning portion 5i, the width of the escape portion of the short outer tube 5k is set substantially equal to the width W2 of the vertical outer tube 5f. The short outer tube 5k forms a part of the outer tube 5b in the multi-tube cooler 5, and the circumferential space formed between the inner tube 5a and the short outer tube 5k is an inner portion that turns the fluid in the circumferential direction. Functions as a flow path. The lowermost short outer tube 5k is provided with a discharge port 5d for discharging the fluid flowing through the internal flow path to the outside.

2段目以降についても1段目と同様、横仕切部5iおよび短外管5kの取り付けが行われる(図8参照)。ただし、各段における横仕切部5iは、逃げ部の一端と他端とが交互に縦外管5fの側部と接するように、周方向にオフセットして配置される。すなわち、奇数段については、逃げ部の左端が縦外管5fの左側部と接するように、横仕切部5iを反時計回りに寄せて配置し、偶数段については、逃げ部の右端が縦外管5fの右側部と接するように、横仕切部5iを時計回りに寄せて配置する。これにより、奇数段においては、内管5aと短外管5kとの間に形成される周空間を流体が反時計回りに旋回し、偶数段においては、この周空間を流体が時計回りに旋回することになる。   In the second and subsequent stages, as in the first stage, the horizontal partitioning portion 5i and the short outer tube 5k are attached (see FIG. 8). However, the horizontal partitioning portions 5i in each stage are arranged offset in the circumferential direction so that one end and the other end of the escape portion are alternately in contact with the side portion of the vertical outer tube 5f. That is, for odd-numbered stages, the horizontal partition 5i is arranged counterclockwise so that the left end of the escape part is in contact with the left side of the vertical outer pipe 5f. The horizontal partitioning portion 5i is disposed close to the right side of the tube 5f in a clockwise direction. Thereby, in the odd-numbered stages, the fluid swirls counterclockwise in the circumferential space formed between the inner pipe 5a and the short outer pipe 5k, and in the even-numbered stages, the fluid swirls clockwise in this circumferential space. Will do.

そして、図8に示すように、上端に露出した周空間をリング状の天板5lで塞いだ上で、最上段(6段目)の短外管5kを取り付ける。本実施形態では、多重管式冷却器5の強度を向上させるべく、最上段の短外管5kについては、逃げ部を備えない完全な筒状体を用いている。この場合、縦外管5fは、最上部の短外管5kとの干渉を避けるために、1〜5段目までの部位よりも断面が薄くなるように形成しておくことが好ましい。これにより、図3に示した多重管式冷却器5が完成する。上述した説明から明らかなように、図3に示した外管5bは、縦外管5fと、軸方向に積み重ねられた複数の短外管5kとによって構成されている。換言すると、外管5bは、縦仕切部5gおよび横仕切部5iの双方の取付ライン(溶接ライン)に沿って複数の部材(短外管5k)に分割された構造になっている。   Then, as shown in FIG. 8, after the peripheral space exposed at the upper end is closed with a ring-shaped top plate 5l, the uppermost (sixth stage) short outer tube 5k is attached. In the present embodiment, in order to improve the strength of the multi-tube cooler 5, the uppermost short outer tube 5k uses a complete cylindrical body that does not have an escape portion. In this case, in order to avoid interference with the uppermost short outer tube 5k, the longitudinal outer tube 5f is preferably formed to have a thinner cross section than the first to fifth stages. As a result, the multi-tube cooler 5 shown in FIG. 3 is completed. As is clear from the above description, the outer tube 5b shown in FIG. 3 includes a vertical outer tube 5f and a plurality of short outer tubes 5k stacked in the axial direction. In other words, the outer tube 5b has a structure that is divided into a plurality of members (short outer tubes 5k) along the attachment lines (welding lines) of both the vertical partition portion 5g and the horizontal partition portion 5i.

図9および図10は、多重管式冷却器5の内部流路の説明図である。本明細書において、「縦」とは多重管式冷却器5の軸方向を指し、「横」とは多重管式冷却器5の周方向を指す。なお、同図は、多重管式冷却器5を縦置きで用いる場合を示しているが、横置きで用いてもよい(横置きの場合であっても「縦」および「横」の定義は変わらない。)。2つの縦仕切部5gは、内管5aと外管5bとの間に形成された周空間を軸方向に延在しており、周空間を2つの縦空間A,Bに区分している。縦空間Aは、上述した縦外管5fによって規定され、下端側の導入口5cより導入された流体が上方に向かって流れる。縦空間Bは、短外管5kによって規定され、流体が下方に向かって流れて下端側の排出口5dより排出される。周空間内において隣り合った縦空間A,Bは、第1の連通口5hを介して連通しているため、流体が軸方向に折り返しながら流れる連続した1本の内部流路が形成される。なお、導入口5cおよび排出口5dの入出力を反対にして、多重管式冷却器5において冷媒を逆向きに流してもよい。   FIG. 9 and FIG. 10 are explanatory diagrams of the internal flow path of the multi-tube cooler 5. In this specification, “vertical” refers to the axial direction of the multi-tube cooler 5, and “horizontal” refers to the circumferential direction of the multi-tube cooler 5. The figure shows a case where the multi-tube cooler 5 is used in a vertical position, but it may be used in a horizontal position (the definitions of “vertical” and “horizontal” are also used in the horizontal position). does not change.). The two vertical partition portions 5g extend in the axial direction a circumferential space formed between the inner tube 5a and the outer tube 5b, and divide the circumferential space into two vertical spaces A and B. The vertical space A is defined by the vertical outer pipe 5f described above, and the fluid introduced from the inlet 5c on the lower end side flows upward. The vertical space B is defined by the short outer tube 5k, and the fluid flows downward and is discharged from the discharge port 5d on the lower end side. Since the adjacent vertical spaces A and B in the circumferential space communicate with each other via the first communication port 5h, one continuous internal flow path in which the fluid flows while turning back in the axial direction is formed. Note that the refrigerant may flow in the reverse direction in the multi-tube cooler 5 by reversing the input and output of the inlet 5c and the outlet 5d.

一方、複数の横仕切部5iは、縦空間B内を周方向に延在しており、この縦空間Bを複数段の横空間b1〜b6(上述した各段に相当する空間)に区分している。縦空間B内において隣り合った横空間同士(例えばb5とb6)は、第2の連通口5jを介して連通している。上下で隣り合った第2の連通口5jは約360度(実際には縦外管5fの幅分だけ小さい。)オフセットしているため、縦空間Bの各段b1〜b5において流体が周方向に交互に折り返しながら(すなわち、時計回りの約360度の旋回と、反時計回りの約360度の旋回とを交互に繰り返しながら)流れる連続した1本の内部流路が形成される。縦仕切部5gおよび横仕切部5iの設置数は、多重管式冷却器5に要求される熱交換能力や流路径などに応じて適宜設定すればよい。   On the other hand, the plurality of horizontal partition portions 5i extend in the circumferential direction in the vertical space B, and divide the vertical space B into a plurality of horizontal spaces b1 to b6 (spaces corresponding to the above-described levels). ing. The adjacent horizontal spaces (for example, b5 and b6) in the vertical space B communicate with each other through the second communication port 5j. Since the second communication ports 5j adjacent in the vertical direction are offset by about 360 degrees (actually, it is smaller by the width of the vertical outer tube 5f), the fluid flows in the circumferential direction in each step b1 to b5 of the vertical space B. A continuous internal flow path that flows while alternately turning back (i.e., alternately repeating a clockwise rotation of about 360 degrees and a counterclockwise rotation of about 360 degrees) is formed. The number of installed vertical partitioning portions 5g and horizontal partitioning portions 5i may be set as appropriate according to the heat exchange capacity and flow path diameter required for the multi-tube cooler 5.

このように、本実施形態によれば、内管5aと外管5bとの間に形成される周空間内に複数の縦仕切部5gを設け、多重管式冷却器5の外部を流れる外部流体(水)を冷却する冷媒を軸方向に折り返しながら流すことで、多重管式冷却器5に接続する配管の引き回しを簡略化できる。その結果、多重管式冷却器5を組み込んだ冷却装置1の全体的な省スペース化を図れるほか、外部流体の流路の確保やその設計も容易になる。   As described above, according to the present embodiment, a plurality of vertical partition portions 5g are provided in the peripheral space formed between the inner tube 5a and the outer tube 5b, and the external fluid that flows outside the multi-tube cooler 5 is provided. By flowing the coolant that cools (water) in the axial direction, the piping connected to the multi-tube cooler 5 can be simplified. As a result, the entire space of the cooling device 1 incorporating the multi-tube cooler 5 can be saved, and it is easy to secure and design the external fluid flow path.

また、本実施形態によれば、内管5aの内周面および外管5bの外周面、すなわち、多重管式冷却器5の露出した表面を熱交換面として利用することが可能なので、凹凸を有する冷却コイルと比べて、熱交換効率の向上を図ることができる。   Further, according to the present embodiment, the inner peripheral surface of the inner tube 5a and the outer peripheral surface of the outer tube 5b, that is, the exposed surface of the multi-tube cooler 5 can be used as a heat exchange surface. Compared with the cooling coil which has, the improvement of heat exchange efficiency can be aimed at.

また、導入口5cおよび排出口5dを多重管式冷却器5における同一の端部側、より好ましくは下端側に設けることで、上部の透明フタ6の取り外しを伴う冷却装置1の分解作業が容易になる等の利点が生じるので、メンテナンス性の向上を図ることができる。なお、導入口5cおよび排出口5dは、外管5bではなく内管5aに設けてもよく、あるいは、底板5eに設けてもよい。   Further, by disposing the inlet 5c and the outlet 5d on the same end side of the multi-tube cooler 5, more preferably on the lower end side, it is easy to disassemble the cooling device 1 with the removal of the upper transparent lid 6 Therefore, the maintainability can be improved. The introduction port 5c and the discharge port 5d may be provided in the inner tube 5a instead of the outer tube 5b, or may be provided in the bottom plate 5e.

また、本実施形態によれば、外管5bについて、横仕切部5iの取付ライン(溶接ライン)に沿って分割された複数の部材(短外管5k)によって構成する。「取付ライン」とは、横仕切部5iの縁部や縦仕切部5gの縁部が内管5aや外管5bと接するラインのことである。外管5bを分割構造とすることで、積み重ねる段数を任意に設定できるため設計の自由度が向上するとともに、溶接等における組立作業性を高めることができる。なお、同様の分割構造は内管5aについて採用してもよい。すなわち、内管5aについて、縦仕切部5gの取付ライン(溶接ライン)に沿って分割された複数の部材によって構成してもよい。   Further, according to the present embodiment, the outer tube 5b is configured by a plurality of members (short outer tube 5k) divided along the attachment line (welding line) of the horizontal partition 5i. The “attachment line” is a line in which the edge of the horizontal partition 5i and the edge of the vertical partition 5g are in contact with the inner tube 5a and the outer tube 5b. Since the outer tube 5b has a divided structure, the number of stacked stages can be arbitrarily set, so that the degree of freedom in design can be improved and the assembly workability in welding or the like can be improved. A similar division structure may be adopted for the inner tube 5a. In other words, the inner pipe 5a may be constituted by a plurality of members divided along the attachment line (welding line) of the vertical partition portion 5g.

さらに、本実施形態によれば、少なくとも一つの縦空間B内に複数の横仕切部5iを設け、第2の連通口5jを介してこれらを互いに連通することで、縦空間B内において流体が周方向に折り返しながら流れる連続した内部流路を形成する。これにより、多重管式冷却器5の内部流路における流路長や流路径を任意に設定できるので、多重管式冷却器5の設計の自由度の向上を図ることができる。ただし、縦空間Aのように流路径が小さい場合には、横仕切部5iを設ける必要性は必ずしもない。   Furthermore, according to the present embodiment, a plurality of horizontal partitions 5i are provided in at least one vertical space B, and these are communicated with each other via the second communication port 5j, so that fluid can flow in the vertical space B. A continuous internal flow path that flows while turning back in the circumferential direction is formed. Thereby, since the flow path length and flow path diameter in the internal flow path of the multi-tube cooler 5 can be arbitrarily set, the degree of freedom in designing the multi-tube cooler 5 can be improved. However, when the flow path diameter is small as in the vertical space A, it is not always necessary to provide the horizontal partition portion 5i.

なお、上述した実施形態では、組立作業の効率化や部材点数の低減を図るために、縦仕切部5gおよび外管5bの双方の機能を兼ね備えた縦外管5fを用いているが、本発明はこれに限定されるものではなく、軸方向を仕切るための縦仕切部5gとして、軸方向に延在する直線状の帯材を個別に取り付けてもよい。図11は、変形例に係る多重管式冷却器5の内部流路の説明図である。この例では、内管5aと外管5bとの間の周空間内において、4本の縦仕切部5gを90度間隔で配置し、4つの縦空間A〜Dに分割している。周方向において隣り合った縦空間は、記外部流体を冷却する冷媒が軸方向に折り返しながら流れる連続した内部流路を規定するために、上述した第1の連通口5g(図示せず)によって連通している。この場合、それぞれの縦仕切部4gの取付ライン(溶接ライン)に沿って外管5bを4つに分割し、断面が略90度に湾曲した4つのプレート部材5mを外周に取り付けることが好ましい。これにより、縦仕切部5gの溶接等における組立作業性を高めることができる。周空間の分割数は、多重管式冷却器5に要求される仕様に応じて適宜設定すればよく、周空間をn個(nは2以上)に分割する場合、n本の縦仕切部5gを配置すればよい。   In the above-described embodiment, the vertical outer tube 5f having the functions of both the vertical partition portion 5g and the outer tube 5b is used in order to increase the efficiency of assembly work and reduce the number of members. However, the present invention is not limited to this, and linear strips extending in the axial direction may be individually attached as the vertical partition portions 5g for partitioning the axial direction. FIG. 11 is an explanatory diagram of the internal flow path of the multi-tube cooler 5 according to the modification. In this example, in the circumferential space between the inner tube 5a and the outer tube 5b, four vertical partition portions 5g are arranged at intervals of 90 degrees, and are divided into four vertical spaces A to D. The vertical spaces adjacent to each other in the circumferential direction communicate with each other by the first communication port 5g (not shown) described above in order to define a continuous internal flow path through which the refrigerant that cools the external fluid flows in the axial direction. is doing. In this case, it is preferable to divide the outer tube 5b into four along the attachment lines (welding lines) of the respective vertical partition portions 4g, and attach the four plate members 5m having a cross section of approximately 90 degrees to the outer periphery. Thereby, the assembly workability | operativity in welding etc. of the vertical partition part 5g can be improved. The number of divisions of the circumferential space may be appropriately set according to the specifications required for the multi-tube cooler 5, and when dividing the circumferential space into n pieces (n is 2 or more), n vertical partition portions 5g May be arranged.

1 冷却装置
2 第1の内管
3 第2の内管
4 外管
5 多重管式冷却器
5a 内管
5b 外管
5c 導入口
5d 排出口
5e 底板
5f 縦外管
5g 縦仕切部
5h 第1の連通口
5i 横仕切部
5j 第2の連通口
5k 短外管
5l 天板
5m プレート部材
6 透明フタ
8 仕切り部
9 入口管
10a〜10e 流路
11a〜11d 連通口

DESCRIPTION OF SYMBOLS 1 Cooling device 2 1st inner pipe 3 2nd inner pipe 4 Outer pipe 5 Multiple pipe type cooler 5a Inner pipe 5b Outer pipe 5c Inlet 5d Discharge port 5e Bottom plate 5f Vertical outer pipe 5g Vertical partition 5h First Communication port 5i Horizontal partition 5j Second communication port 5k Short outer tube 5l Top plate 5m Plate member 6 Transparent lid 8 Partition 9 Inlet tube 10a to 10e Flow path 11a to 11d Communication port

Claims (9)

冷却対象となる外部流体を表面を介して冷却する多重管式冷却器において、
内管と、
前記内管の外側に間隔を空けて配置された外管と、
前記内管と前記外管との間の周空間内を軸方向に延在し、前記周空間を区分する複数の縦空間を規定する複数の縦仕切部と、
前記外部流体を冷却する冷媒が軸方向に折り返しながら流れる連続した内部流路を規定するために、前記周空間内において隣り合った前記縦空間同士を連通する少なくとも一つの第1の連通口と
を有することを特徴とする多重管式冷却器。
In a multi-tube cooler that cools the external fluid to be cooled through the surface,
An inner pipe,
An outer tube disposed at an interval outside the inner tube;
A plurality of vertical partitioning portions that extend in the axial direction in a circumferential space between the inner tube and the outer tube, and define a plurality of vertical spaces that divide the circumferential space;
In order to define a continuous internal flow path in which the refrigerant that cools the external fluid flows while being folded back in the axial direction, at least one first communication port that communicates between the adjacent vertical spaces in the peripheral space is provided. A multi-tube type cooler comprising:
前記多重管式冷却器における一方の端部側に設けられ、前記内部流路に冷媒を導入する導入口と、
前記多重管式冷却器における前記導入口と同一の端部側に設けられ、前記内部流路を流れた冷媒を排出する排出口と
を有することを特徴とする請求項1に記載された多重管式冷却器。
An inlet provided on one end side of the multi-tube cooler for introducing a refrigerant into the internal flow path;
2. The multiple pipe according to claim 1, further comprising: a discharge port that is provided on the same end side as the introduction port in the multiple tube cooler and discharges the refrigerant that has flowed through the internal flow path. Type cooler.
前記導入口および前記排出口は、前記多重管式冷却器の下端部側に設けられていることを特徴とする請求項2に記載された多重管式冷却器。   The multi-tube cooler according to claim 2, wherein the introduction port and the discharge port are provided on a lower end side of the multi-tube cooler. 少なくとも一つの前記縦空間内を周方向に延在し、前記縦空間を区分する複数の横空間を規定する複数の横仕切部と、
前記縦空間内において流体が周方向に折り返しながら流れる連続した内部流路を規定するために、前記縦空間内において隣り合った前記横空間同士を連通する少なくとも一つの第2の連通口と
をさらに有することを特徴とする請求項1から3のいずれかに記載された多重管式冷却器。
A plurality of horizontal partition portions extending in the circumferential direction in at least one of the vertical spaces and defining a plurality of horizontal spaces dividing the vertical space;
In order to define a continuous internal flow path in which the fluid flows while turning back in the circumferential direction in the vertical space, at least one second communication port that connects the adjacent horizontal spaces in the vertical space is further provided The multi-tube type cooler according to any one of claims 1 to 3, wherein the multi-tube type cooler is provided.
前記外管および前記内管の少なくとも一方は、前記縦仕切部および横仕切部の少なくとも一方の取付ラインに沿って分割された複数の部材によって構成されていることを特徴とする請求項1から4のいずれかに記載された多重管式冷却器。   The at least one of the outer tube and the inner tube is constituted by a plurality of members divided along an attachment line of at least one of the vertical partition and the horizontal partition. The multi-tube type cooler described in any of the above. 前記縦仕切部は、前記内管の外周面に軸方向に沿って取り付けられた縦外管の側部であることを特徴とする請求項5に記載された多重管式冷却器。   6. The multi-tube cooler according to claim 5, wherein the vertical partition portion is a side portion of a vertical outer tube attached to the outer peripheral surface of the inner tube along the axial direction. 前記外管を構成する前記部材は、前記縦外管を避けるための逃げ部を備えていることを特徴とする請求項6に記載された多重管式冷却器。   The multi-tube type cooler according to claim 6, wherein the member constituting the outer pipe includes an escape portion for avoiding the vertical outer pipe. 前記横仕切部は、前記縦外管を避けるための逃げ部を備えた環状形状を有することを特徴とする請求項6に記載された多重管式冷却器。   The multi-tube type cooler according to claim 6, wherein the horizontal partition has an annular shape having a relief portion for avoiding the vertical outer pipe. 前記横仕切部は、前記逃げ部の一端と他端とが交互に前記縦外管の側部と接するように、周方向にオフセットして配置されていることを特徴とする請求項8に記載された多重管式冷却器。

The said horizontal partition part is offset and arrange | positioned in the circumferential direction so that the one end and the other end of the said escape part may contact the side part of the said vertical outer tube | pipe alternately. Multi-tube cooler.

JP2018070603A 2018-04-02 2018-04-02 Multi-tube cooler Active JP6959175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018070603A JP6959175B2 (en) 2018-04-02 2018-04-02 Multi-tube cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018070603A JP6959175B2 (en) 2018-04-02 2018-04-02 Multi-tube cooler

Publications (2)

Publication Number Publication Date
JP2019184078A true JP2019184078A (en) 2019-10-24
JP6959175B2 JP6959175B2 (en) 2021-11-02

Family

ID=68340534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018070603A Active JP6959175B2 (en) 2018-04-02 2018-04-02 Multi-tube cooler

Country Status (1)

Country Link
JP (1) JP6959175B2 (en)

Also Published As

Publication number Publication date
JP6959175B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US4089370A (en) Compact heat-exchanger for fluids
US20180112935A1 (en) Disk bundle type heat-exchanger
JP2007248047A (en) Layered heat exchanger
EP2981780B1 (en) Plate heat exchanger and method for constructing multiple passes in the plate heat exchanger
CN107664444B (en) Side flow plate-shell type heat exchange plate and multi-flow detachable plate-shell type heat exchanger
JP5967300B2 (en) Heat exchanger
JP2005283095A (en) Efficient heat exchanger, and engine using the same
JP2016528469A (en) Heat transfer plate
US5447195A (en) Heat exchanger
JP7471281B2 (en) Plate heat exchanger structure and module structure
AU2016221799A1 (en) Shell and tube heat exchanger having sequentially arranged shell and tube components
JP2019184078A (en) Multiple pipe type cooler
WO2015020047A1 (en) Heat exchanger
JP2009228916A (en) Heat exchanger
CN211824039U (en) Aluminum heat exchanger
JP7313985B2 (en) Heat exchange core, heat exchanger, and method of manufacturing heat exchange core
WO2016098555A1 (en) Heat exchanger
JP2021038894A5 (en)
WO2015020050A1 (en) Heat exchanger and method for manufacturing heat exchanger
CN110966887A (en) Aluminum heat exchanger
CN116182600A (en) Brayton cycle integrated heat exchanger of submarine aircraft and heat exchange method
JP2023018752A (en) heat exchanger module
JP2017227349A (en) Heat exchanger
JP5938243B2 (en) Tower condenser
JP6161153B2 (en) Shell and tube heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6959175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531