JP2019183281A - Aluminum/boron nitride nanotube composite and manufacturing method therefor - Google Patents

Aluminum/boron nitride nanotube composite and manufacturing method therefor Download PDF

Info

Publication number
JP2019183281A
JP2019183281A JP2019076177A JP2019076177A JP2019183281A JP 2019183281 A JP2019183281 A JP 2019183281A JP 2019076177 A JP2019076177 A JP 2019076177A JP 2019076177 A JP2019076177 A JP 2019076177A JP 2019183281 A JP2019183281 A JP 2019183281A
Authority
JP
Japan
Prior art keywords
boron nitride
aluminum
metal matrix
bnnt
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019076177A
Other languages
Japanese (ja)
Other versions
JP7044092B2 (en
Inventor
岡井 誠
Makoto Okai
誠 岡井
秀樹 山浦
Hideki Yamaura
秀樹 山浦
英也 山根
Hideya Yamane
英也 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2019183281A publication Critical patent/JP2019183281A/en
Application granted granted Critical
Publication of JP7044092B2 publication Critical patent/JP7044092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

To provide an Al/BNNT composite high in shape freedom and shape control property, and capable of reducing cost, and a manufacturing method of the Al/BNNT composite.SOLUTION: The Al/BNNT composite is a composite by composing BNNT in a metal base material, the metal base material consists of aluminum or aluminum alloy, the BNNT is dispersed in the metal base material and the metal base material is solidified.SELECTED DRAWING: Figure 4

Description

本発明は、金属と微小繊維状物質との複合体の技術に関し、特に、アルミニウムまたはアルミニウム合金(以下、単にアルミニウムと称する。)の母相に窒化ホウ素ナノチューブが分散した複合体(以下、アルミニウム/窒化ホウ素ナノチューブ複合体と称する)、およびその製造方法に関するものである。   The present invention relates to a technique of a composite of a metal and a microfibrous material, and in particular, a composite in which boron nitride nanotubes are dispersed in a parent phase of aluminum or an aluminum alloy (hereinafter simply referred to as aluminum) (hereinafter referred to as aluminum / aluminum / aluminum alloy). The present invention relates to a boron nitride nanotube composite) and a method for producing the same.

金属材の機械的特性を向上させることを目的として、金属母材に微小繊維状物質を添加・混合する技術の研究開発が進められている。例えば、特許文献1(特開2010-196098)には、多数の繊維材が三次元空間内で絡まり、該繊維材で囲まれる空間内に、カーボンナノ材料(カーボンナノチューブ、カーボンナノファイバ)が表面に付着もしくは内部に包含された金属粉末が捕捉された状態のプリフォームに、溶融金属が含浸され、固化されて成る金属基複合体が開示され、金属粉末および溶融金属としてアルミニウム合金やマグネシウム合金が開示されている。   For the purpose of improving the mechanical properties of metal materials, research and development of techniques for adding and mixing microfibrous materials to metal base materials is underway. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2010-196098), a large number of fiber materials are entangled in a three-dimensional space, and a carbon nanomaterial (carbon nanotube, carbon nanofiber) is surfaced in a space surrounded by the fiber material. A metal matrix composite formed by impregnating and solidifying a molten metal into a preform in which a metal powder adhering to or contained in the metal is trapped is disclosed. An aluminum alloy or a magnesium alloy is used as the metal powder and the molten metal. It is disclosed.

一方、近年、微小繊維状物質として窒化ホウ素ナノチューブが注目されている。窒化ホウ素ナノチューブ(以下、BNNTと称することがある)とは、窒素(N)原子とホウ素(B)原子とが交互に結合したシートが筒状体を形成したナノチューブ(NT)である。BNNTは、炭素(C)原子が結合したシートの筒状体であるカーボンナノチューブ(CNT)と同等の機械的特性を有し、熱的安定性が高いとされている。   On the other hand, in recent years, boron nitride nanotubes have attracted attention as a microfibrous material. A boron nitride nanotube (hereinafter sometimes referred to as BNNT) is a nanotube (NT) in which a sheet in which nitrogen (N) atoms and boron (B) atoms are alternately bonded to form a cylindrical body. BNNT has mechanical properties equivalent to those of carbon nanotubes (CNTs), which are tubular bodies of carbon (C) atoms bonded, and is said to have high thermal stability.

例えば、非特許文献1(Yanming Xue et al., Materials and Design 88 (2015) 451-460)には、アルミニウム(Al)粉末と窒化ホウ素ナノチューブ(BNNT)とを混合し、5 GPaの高圧力下でねじり加工を加える方法(高圧ねじり加工法)によりアルミニウム/窒化ホウ素ナノチューブ複合体(以下、Al/BNNT複合体と称する)を作製した研究が開示されている。   For example, in Non-Patent Document 1 (Yanming Xue et al., Materials and Design 88 (2015) 451-460), aluminum (Al) powder and boron nitride nanotubes (BNNT) are mixed and subjected to a high pressure of 5 GPa. A study of producing an aluminum / boron nitride nanotube composite (hereinafter referred to as an Al / BNNT composite) by a method of applying a twisting process (high-pressure twisting process) is disclosed.

特開2010−196098号公報JP 2010-196098 A

Yanming Xue et al., “Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique”, Materials and Design, vol. 88 (2015), pp. 451-460。Yanming Xue et al., “Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique”, Materials and Design, vol. 88 (2015), pp. 451-460.

特許文献1(特開2010-196098)によると、潤滑性、耐凝着性、耐摩耗性、熱伝導性に優れた金属基複合体が提供できるとされている。ただし、現段階では、アルミニウム母相とカーボンナノ材料との界面接合性の不十分さや、アルミニウム母相中でのカーボンナノ材料の均一な分散と化学的安定性の不十分さが新たな問題として浮上している。   According to Patent Document 1 (Japanese Patent Laid-Open No. 2010-196098), it is said that a metal matrix composite excellent in lubricity, adhesion resistance, wear resistance, and thermal conductivity can be provided. However, at the present stage, new problems are the insufficient interfacial bonding between the aluminum matrix and the carbon nanomaterial, and the uniform dispersion and chemical stability of the carbon nanomaterial in the aluminum matrix. Has surfaced.

非特許文献1(Yanming Xue et al.)によると、得られたAl/BNNT複合体は、AlとBNNTとの界面領域に非晶質状の極薄Al(BNO)層(厚さ2〜5 nm)が形成され、室温の引張強さが純Al材に比して2倍超(〜420 MPa)に向上したと報告されている。これは、Al/BNNT複合体による機械的特性向上の可能性を示しており、大変魅力的な報告と考えられる。しかしながら、非特許文献1の技術は、高圧ねじり加工法という特殊な製造方法を利用しているため、複合体の形状自由度および形状制御性に弱点を有し、構造体として所望の形状に加工する為の製造コストが高くなり易い。   According to Non-Patent Document 1 (Yanming Xue et al.), The obtained Al / BNNT composite has an amorphous ultrathin Al (BNO) layer (thickness of 2 to 5) in the interface region between Al and BNNT. nm) and the tensile strength at room temperature has been reported to be more than doubled (up to 420 MPa) compared to pure Al material. This shows the possibility of improving the mechanical properties by the Al / BNNT composite and is considered to be a very attractive report. However, since the technique of Non-Patent Document 1 uses a special manufacturing method called a high-pressure torsion processing method, it has a weak point in the shape flexibility and shape controllability of the composite and is processed into a desired shape as a structure. The manufacturing cost for doing so tends to be high.

Al/BNNT複合体のような新規な材料を実用化する(特に、既存の材料からの置き換えを目指す)には、当該新規な材料の低コスト化は、最重要課題のうちの一つである。もしもAl/BNNT複合体を鋳造法で製造できるとしたら、複合体の形状自由度および形状制御性の弱点を克服できるし、製造コストも大きく低減できると考えられる。なお、Al/CNT複合体の鋳造法による製造は、CNTがAl溶湯と化学反応を起こして炭化物などの化合物を生成してしまうため、適していないと考えられる。   In order to put a new material such as an Al / BNNT composite into practical use (especially aiming to replace the existing material), the cost reduction of the new material is one of the most important issues. . If the Al / BNNT composite can be manufactured by a casting method, it is considered that the weakness of the shape freedom and shape controllability of the composite can be overcome and the manufacturing cost can be greatly reduced. The production of Al / CNT composites by a casting method is not considered suitable because CNTs cause a chemical reaction with molten Al to produce compounds such as carbides.

したがって、本発明の目的は、形状自由度および形状制御性が高く、低コスト化が可能なAl/BNNT複合体、およびこのAl/BNNT複合体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an Al / BNNT composite having a high degree of freedom in shape and shape controllability and capable of reducing the cost, and a method for producing the Al / BNNT composite.

(I)本発明の一態様は、上記目的を達成するため、金属母相に窒化ホウ素ナノチューブが複合した複合体であって、
前記金属母相は、アルミニウムまたはアルミニウム合金からなり、
前記複合体は、前記窒化ホウ素ナノチューブが前記金属母相内に分散し、該金属母相が凝固されてなることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体、を提供する。
(I) One embodiment of the present invention is a composite in which boron nitride nanotubes are combined with a metal matrix to achieve the above object,
The metal matrix is made of aluminum or an aluminum alloy,
The composite provides an aluminum / boron nitride nanotube composite characterized in that the boron nitride nanotubes are dispersed in the metal matrix and the metal matrix is solidified.

本発明は、上記のAl/BNNT複合体(I)において、以下のような改良や変更を加えることができる。
(i)前記Al合金は、Alを主成分とし、ケイ素(Si)、銅(Cu)、マグネシウム(Mg)およびニッケル(Ni)のうちの一種以上を含む合金にすることができる。なお、ここで言う主成分とは、最大含有率の成分のことである。
In the present invention, the following improvements and changes can be added to the Al / BNNT composite (I).
(I) The Al alloy may be an alloy containing Al as a main component and including one or more of silicon (Si), copper (Cu), magnesium (Mg), and nickel (Ni). In addition, the main component said here is a component of the maximum content rate.

(II)本発明の他の一態様は、上記目的を達成するため、金属母相に窒化ホウ素ナノチューブが複合した複合体の製造方法であって、
前記金属母相は、アルミニウムまたはアルミニウム合金からなり、
前記製造方法は、前記窒化ホウ素ナノチューブの粉末と前記金属母相の溶湯に溶解可能な元素の粉末とを混合して窒化ホウ素ナノチューブおよび金属母相溶解可能元素の粉末混合体を用意する粉末混合工程と、
前記粉末混合体と前記金属母相の溶湯とを混合して窒化ホウ素ナノチューブ混合金属母相溶湯を用意する合金溶湯混合工程と、
前記窒化ホウ素ナノチューブ混合金属母相溶湯を凝固させて前記複合体を得る鋳造工程と、を有することを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法、を提供する。
なお、本発明において、合金溶湯混合工程における金属母相の溶湯は、純アルミニウムの溶湯であってもよいし、アルミニウム合金の溶湯であってもよい。
(II) Another aspect of the present invention is a method for producing a composite in which boron nitride nanotubes are combined with a metal matrix to achieve the above object,
The metal matrix is made of aluminum or an aluminum alloy,
The manufacturing method comprises a powder mixing step of preparing a powder mixture of boron nitride nanotubes and a metal matrix-dissolvable element by mixing the powder of boron nitride nanotubes and a powder of an element soluble in the molten metal matrix When,
An alloy melt mixing step of preparing a boron nitride nanotube mixed metal matrix melt by mixing the powder mixture and the melt of the metal matrix,
And a casting step of solidifying the boron nitride nanotube mixed metal matrix melt to obtain the composite, and a method for producing an aluminum / boron nitride nanotube composite.
In the present invention, the molten metal matrix in the molten alloy mixing step may be a pure aluminum melt or an aluminum alloy melt.

また、本発明は、上記のAl/BNNT複合体の製造方法(II)において、以下のような改良や変更を加えることができる。
(ii)前記金属母相溶解可能元素の粉末は、Si粉末にすることができる。
(iii)前記BNNTの粉末の比表面積と前記金属母相溶解可能元素の粉末の比表面積との比は、10未満にすることができる。
(iv)前記BNNTの粉末と前記金属母相溶解可能元素の粉末との質量比は、「1:2」以上「2:1」以下にすることができる。
(v)前記Al合金は、Alを主成分とし、Si、Cu、MgおよびNiのうちの一種以上を含む合金にすることができる。
(vi)前記粉末混合工程は、前記BNNTの粉末と有機溶媒とを混合してBNNT懸濁液を用意するBNNT懸濁液用意素工程と、
前記金属母相溶解可能元素の粉末と有機溶媒とを混合して金属母相溶解可能元素懸濁液を用意する金属母相溶解可能元素懸濁液用意素工程と、
前記BNNT懸濁液と前記金属母相溶解可能元素懸濁液とを混合してBNNT/金属母相溶解可能元素懸濁液を用意するBNNT/金属母相溶解可能元素懸濁液用意素工程と、
前記BNNT/金属母相溶解可能元素懸濁液から前記有機溶媒を除去して前記BNNT/金属母相溶解可能元素粉末混合体を用意する有機溶媒除去素工程と、を含む工程にすることができる。
In addition, the present invention can be modified or changed as follows in the above-described Al / BNNT composite production method (II).
(Ii) The metal matrix phase soluble element powder may be Si powder.
(Iii) The ratio of the specific surface area of the BNNT powder to the specific surface area of the powder of the metal matrix phase-dissolvable element can be less than 10.
(Iv) The mass ratio of the BNNT powder and the metal matrix phase-dissolvable element powder may be “1: 2” or more and “2: 1” or less.
(V) The Al alloy may be an alloy containing Al as a main component and including one or more of Si, Cu, Mg, and Ni.
(Vi) The powder mixing step includes a BNNT suspension preparation step of preparing a BNNT suspension by mixing the BNNT powder and an organic solvent,
A metal matrix-dissolvable element suspension preparation element step of preparing a metal matrix-dissolvable element suspension by mixing the metal matrix-dissolvable element powder and an organic solvent;
Preparing a BNNT / metal matrix-dissolvable element suspension by mixing the BNNT suspension and the metal matrix-dissolvable element suspension; ,
And an organic solvent removing element step of preparing the BNNT / metal matrix-soluble element powder mixture by removing the organic solvent from the BNNT / metal matrix-soluble element suspension. .

本発明によれば、形状自由度および形状制御性が高く、低コスト化が可能なAl/BNNT複合体、および該Al/BNNT複合体の製造方法を提供することができる。   According to the present invention, it is possible to provide an Al / BNNT composite having a high degree of freedom in shape and shape controllability and capable of reducing the cost, and a method for producing the Al / BNNT composite.

本発明に係るAl/BNNT複合体の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the Al / BNNT composite_body | complex which concerns on this invention. 実施例1のBNNT/Si粉末混合体の走査型電子顕微鏡(SEM)観察像である。2 is a scanning electron microscope (SEM) observation image of the BNNT / Si powder mixture of Example 1. FIG. 比較例1のAl/BNNT複合鋳造物の表面近傍の断面のSEM観察像である。3 is an SEM observation image of a cross section near the surface of the Al / BNNT composite casting of Comparative Example 1. 実施例1のAl/BNNT複合鋳造物の表面のSEM観察像である。2 is a SEM observation image of the surface of the Al / BNNT composite casting of Example 1. FIG.

[初期検討および本発明の基本思想]
本発明者等は、Al/BNNT複合体の形状自由度および形状制御性の観点から、この複合体を鋳造法で製造する方法について、研究を重ねた。その中で、Al溶湯とBNNTとを単純に混合した後に凝固させた鋳造物を作製し、この鋳造物を調査した。その結果、実験したAl溶湯はBNNTに対して濡れ性が悪く、凝固したAlの母相とBNNTとが容易に分離してしまうことが判った(詳細は後述する)。
[Initial study and basic idea of the present invention]
The present inventors have repeated research on a method of producing this composite by a casting method from the viewpoint of the degree of freedom of shape and shape controllability of the Al / BNNT composite. Among them, a cast was prepared by simply mixing Al molten metal and BNNT and then solidifying, and this cast was investigated. As a result, it was found that the experimental Al melt had poor wettability to BNNT, and the solidified Al matrix and BNNT were easily separated (details will be described later).

なお、本発明において、「濡れる」とは、液相(液相が固化した状態のもの(元液相)を含む)と固相(元々固相であったもの)との接触角が90°以下の状態をいう。さらに、本発明でいう「濡れた状態」では、電子顕微鏡観察(例えば、SEM観察、TEM観察)において、BNNTとAl母相とが接触した界面が確認でき、且つその界面に望まない介在物(例えば、BNNTとAlとの反応化合物、ボイド等)が存在しないことが望ましい。   In the present invention, “wet” means that the contact angle between a liquid phase (including a solidified liquid phase (original liquid phase)) and a solid phase (originally a solid phase) is 90 °. It means the following states. Furthermore, in the “wet state” as used in the present invention, the interface where the BNNT and the Al matrix contact each other can be confirmed in electron microscope observation (for example, SEM observation, TEM observation), and unwanted inclusions ( For example, it is desirable that no reaction compound, void, etc. of BNNT and Al exist.

以下、鋳造物を例にして本発明の複合体を説明する。   Hereinafter, the composite of the present invention will be described by taking a cast as an example.

本発明者等は、Al溶湯とBNNTとの濡れ性を改善することを目指して、次のような仮説を立てた。Al溶湯とBNNTとの濡れ性を改善するためには、その両方もしくは少なくともAl溶湯に対して親和性の高い成分を添加するのがよいと考えた。   The present inventors made the following hypothesis with the aim of improving the wettability between the molten Al and BNNT. In order to improve the wettability between the molten Al and BNNT, it was thought that it was better to add both or at least components having a high affinity for the molten Al.

具体的には、Al溶湯に対しては、Al溶湯に容易に溶解する成分が好ましいと考えた。Al溶湯に容易に溶解する元素(以下、金属母相溶解可能元素と称す、例えば、Si、Cu、Mg、Ni)の粒子をBNNT粒子の近傍に存在させると、該元素の粒子の溶解の進行とともにAl溶湯とBNNT粒子とが直接接触する機会が増え、その結果、Al溶湯内へのBNNT粒子の分散性を改善する可能性があると考えた。   Specifically, it was considered that a component that easily dissolves in the molten Al is preferable for the molten Al. When particles of an element that dissolves easily in molten Al (hereinafter referred to as a metal matrix soluble element, eg, Si, Cu, Mg, Ni) are present in the vicinity of the BNNT particle, the dissolution of the element particle progresses. At the same time, the chance of direct contact between the molten Al and the BNNT particles increased, and as a result, the dispersibility of the BNNT particles in the molten Al could be improved.

また、窒化ホウ素(BN)に対しては、BNはIII-V族化合物であり化学的性質がIV族の炭素(C)と似ている点が多いと言われているため、IV族元素ならばBNとの親和性が高い(IV族元素融液とBNとの濡れ性が高い)のではないかと考えた。これらのことから、Al溶湯に容易に溶解する成分としてIV族元素が好ましく、なかでもSiが好ましいと考えた。Si成分を添加することにより、Al溶湯とBNNTとの濡れ性および分散性を改善する可能性があると考えた。   Also, for boron nitride (BN), BN is a III-V group compound and it is said that its chemical properties are similar to those of group IV carbon (C). We thought that the affinity with BN was high (wetness between the Group IV element melt and BN was high). From these facts, it was considered that group IV elements are preferable as components that are easily dissolved in molten Al, and Si is particularly preferable. We thought that the addition of Si component could improve the wettability and dispersibility of molten Al and BNNT.

この仮説を確認するために、BNNTの粉末とSi粉末とを混合した粉末混合体を用意した後に、この粉末混合体をAl溶湯に混合し、これを凝固させて複合体を作製し、この複合体を調査した。その結果、Al母相とBNNTとの濡れ性が改善することが確認された。本発明は、当該知見に基づいて完成されたものである。   In order to confirm this hypothesis, after preparing a powder mixture in which BNNT powder and Si powder were mixed, this powder mixture was mixed with Al molten metal and solidified to produce a composite. I investigated the body. As a result, it was confirmed that the wettability between the Al matrix and BNNT was improved. The present invention has been completed based on this finding.

以下、図面を参照しながら、本発明に係る実施形態を製造手順に沿って説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で、公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。   Hereinafter, an embodiment according to the present invention will be described along a manufacturing procedure with reference to the drawings. However, the present invention is not limited to the embodiments taken up here, and can be appropriately combined with or improved based on known techniques without departing from the technical idea of the invention. .

[Al/BNNT複合体の製造方法]
図1は、本発明に係るAl/BNNT複合体の製造方法の一例を示す工程図である。図1に示したように、本発明の製造方法例は、BNNT粉末とSi粉末とを混合してBNNT/Si粉末混合体を用意する粉末混合工程(S1)と、BNNT/Si粉末混合体とAl溶湯とを混合してBNNT混合Al合金溶湯を用意する合金溶湯混合工程(S2)と、BNNT混合Al合金溶湯を凝固してAl/BNNT複合体を得る鋳造工程(S3)とを有する。
[Production method of Al / BNNT composite]
FIG. 1 is a process diagram showing an example of a method for producing an Al / BNNT composite according to the present invention. As shown in FIG. 1, the manufacturing method of the present invention includes a powder mixing step (S1) in which a BNNT / Si powder mixture is prepared by mixing BNNT powder and Si powder, a BNNT / Si powder mixture, A molten alloy mixing step (S2) for preparing a BNNT mixed Al alloy molten metal by mixing the molten Al alloy and a casting step (S3) for solidifying the BNNT mixed Al alloy molten metal to obtain an Al / BNNT composite.

なお、図1には図示していないが、鋳造工程S3によって得られたAl/BNNT複合体をマスターインゴットとして用い、他のAl合金溶湯に投入し凝固させてAl/BNNT複合体を得る再溶解・鋳造工程(S4)を行ってもよい。また、鋳造工程S3や再溶解・鋳造工程S4の後に、必要に応じてAl/BNNT複合体の外形を調整するための成形工程(S5)を行ってもよい。   Although not shown in FIG. 1, the Al / BNNT composite obtained in the casting step S3 is used as a master ingot, and is poured into another Al alloy molten metal to be solidified to obtain an Al / BNNT composite. -A casting process (S4) may be performed. Further, after the casting step S3 and the remelting / casting step S4, a forming step (S5) for adjusting the outer shape of the Al / BNNT composite may be performed as necessary.

以下、本発明に係るAl/BNNT複合体の製造方法の各工程をより具体的に説明する。   Hereafter, each process of the manufacturing method of the Al / BNNT composite based on this invention is demonstrated more concretely.

(粉末混合工程S1)
上述したように、本工程は、BNNT粉末とSi粉末とを混合してBNNT/Si粉末混合体を用意する工程である。本発明で用いるBNNTに特段の限定はなく、市販のBNNT粉末を利用できる。例えば、平均直径が10 nm以下で平均長さがμmオーダのBNNTを用いることができる。また、このBNNTは、単層構造に限定されるものではなく、多層構造(例えば、2〜10層)のナノチューブを用いることができる。
(Powder mixing step S1)
As described above, this step is a step of preparing a BNNT / Si powder mixture by mixing BNNT powder and Si powder. There is no particular limitation on the BNNT used in the present invention, and commercially available BNNT powder can be used. For example, BNNT having an average diameter of 10 nm or less and an average length on the order of μm can be used. The BNNT is not limited to a single-layer structure, and nanotubes having a multilayer structure (for example, 2 to 10 layers) can be used.

2種類の粉末を均一に混合するためには、一般的にそれぞれの平均サイズが同程度であることが好ましい。ここで、本発明ではBNNT粉末とSi粉末との混合であり、上述したようにBNNT粉末はアスペクト比(長さ/直径)が102〜103程度もある繊維状の形状を有する粉末である。 In order to uniformly mix the two types of powders, it is generally preferable that the average sizes of the powders are approximately the same. Here, in the present invention, BNNT powder and Si powder are mixed. As described above, BNNT powder is a powder having a fibrous shape with an aspect ratio (length / diameter) of about 10 2 to 10 3. .

本発明者等が種々検討したところ、BNNT粉末とSi粉末との混合では、2種類の粉末の大きさ選定基準として、平均サイズの代わりに比表面積(単位:m2/g)を採用し、BNNT粉末とSi粉末との比表面積の比が10未満となるように制御することが好ましいことが判った。各粉末の比表面積は、例えば、ガス吸着法(BET理論、BET式)により測定することができる。 As a result of various studies by the present inventors, in the mixing of BNNT powder and Si powder, the specific surface area (unit: m 2 / g) was adopted instead of the average size as the standard for selecting the size of the two types of powders. It has been found that it is preferable to control the specific surface area ratio of the BNNT powder and the Si powder to be less than 10. The specific surface area of each powder can be measured by, for example, a gas adsorption method (BET theory, BET formula).

本発明で用いるSi粉末は、ナノ粒子が有効であり、その比表面積が混合するBNNT粉末の比表面積の1/10超10倍未満であるものが好ましく、1/3以上3倍以下であるものがより好ましい。また、不定形粒子や鱗片状粒子(例えば、厚み10〜30 nm程度、直径50〜500 nm程度)の粒子形状を有するSi粉末は、BNNT粉末と混合した際に、BNNT粒子の間に介在することによりBNNT粒子同士の絡まりを抑制する効果が期待できる点で好ましい(例えば、後述する図2参照)。その他には特段の限定はなく、市販のSi粉末を利用できる。   For the Si powder used in the present invention, nanoparticles are effective, and the specific surface area is preferably more than 1/10 and less than 10 times the specific surface area of the mixed BNNT powder, and 1/3 or more and 3 times or less Is more preferable. In addition, Si powder having a particle shape of irregularly shaped particles and scale-like particles (for example, about 10 to 30 nm in thickness and about 50 to 500 nm in diameter) intervenes between BNNT particles when mixed with BNNT powder. This is preferable in that an effect of suppressing entanglement between BNNT particles can be expected (see, for example, FIG. 2 described later). Other than that, there is no particular limitation, and commercially available Si powder can be used.

さらに、BNNT粉末とSi粉末との混合量に関しては、BNNT粉末の総表面積とSi粉末の総表面積との比が2以下となるように混合するのが好ましく、1.5以下がより好ましい。例えば、BNNT粉末(平均直径4 nm、平均中空径0.84 nm、比表面積400 m2/g)と、Si粉末(平均直径10 nm、比表面積200 m2/g)とを混合する場合、BNNT粉末の総表面積とSi粉末の総表面積とが同等になるように、BNNT粉末の2倍の質量のSi粉末を混合することが好ましく、そりによりBNNT粉末の凝集をより効果的に防ぐことができる。 Furthermore, regarding the mixing amount of the BNNT powder and the Si powder, it is preferable to mix so that the ratio of the total surface area of the BNNT powder to the total surface area of the Si powder is 2 or less, and more preferably 1.5 or less. For example, when mixing BNNT powder (average diameter 4 nm, average hollow diameter 0.84 nm, specific surface area 400 m 2 / g) and Si powder (average diameter 10 nm, specific surface area 200 m 2 / g), BNNT powder It is preferable to mix Si powder having a mass twice that of the BNNT powder so that the total surface area of the Si powder and the total surface area of the Si powder are equal to each other, and the aggregation of the BNNT powder can be more effectively prevented by warping.

BNNT粉末とSi粉末との混合には種々の混合方法を適用できるが、一例として、次のような素工程(BNNT懸濁液用意素工程(S1a)、Si懸濁液用意素工程(S1b)、BNNT/Si懸濁液用意素工程(S1c)、および有機溶媒除去素工程(S1d))に分けて行うことができる。   Various mixing methods can be applied for mixing BNNT powder and Si powder. For example, the following elementary processes (BNNT suspension preparation process (S1a), Si suspension preparation element process (S1b)) BNNT / Si suspension preparation element process (S1c) and organic solvent removal element process (S1d)).

BNNT懸濁液用意素工程S1aは、BNNT粉末と有機溶媒とを混合してBNNT懸濁液を用意する素工程であり、BNNTの絡まりが解れ易くなる利点がある。BNNT懸濁液用意素工程S1aで用いる有機溶媒に特段の限定はなく、例えば、アルコール類(メタノール、エタノール、1-プロパノール、2-プロパノール等)や、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)を用いることができる。   The BNNT suspension preparation element process S1a is an element process for preparing a BNNT suspension by mixing BNNT powder and an organic solvent, and has an advantage that entanglement of BNNT can be easily solved. There are no particular limitations on the organic solvent used in the BNNT suspension preparation element process S1a. For example, alcohols (methanol, ethanol, 1-propanol, 2-propanol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.) ) Can be used.

同様に、Si懸濁液用意素工程S1bは、Si粉末と有機溶媒とを混合してSi懸濁液を用意する素工程であり、Si粉末の凝集が解れ易くなる利点がある。Si懸濁液用意素工程S1bで用いる有機溶媒にも特段の限定はなく、例えば、アルコール類(メタノール、エタノール、1-プロパノール、2-プロパノール等)や、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)を用いることができる。   Similarly, the Si suspension preparation element step S1b is an elementary process for preparing an Si suspension by mixing Si powder and an organic solvent, and has an advantage that the aggregation of the Si powder is easily broken. The organic solvent used in the Si suspension preparation step S1b is not particularly limited. For example, alcohols (methanol, ethanol, 1-propanol, 2-propanol, etc.) and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone) Etc.) can be used.

BNNT/Si懸濁液用意素工程S1cは、BNNT懸濁液とSi懸濁液とを混合した混合懸濁液(BNNT/Si懸濁液と称する)を用意する素工程である。なお、最終的な均一混合の観点から、BNNT粉末とSi粉末との質量比が「1:2」〜「2:1」となるようにBNNT懸濁液とSi懸濁液とを混合することが好ましく、「1:1.5」〜「1.5:1」となるように混合することがより好ましい。   The BNNT / Si suspension preparation element process S1c is an element process for preparing a mixed suspension (referred to as BNNT / Si suspension) in which the BNNT suspension and the Si suspension are mixed. From the viewpoint of final uniform mixing, the BNNT suspension and the Si suspension should be mixed so that the mass ratio of the BNNT powder to the Si powder is “1: 2” to “2: 1”. It is more preferable to mix so that it may become "1: 1.5"-"1.5: 1".

有機溶媒除去素工程S1dは、BNNT/Si懸濁液から有機溶媒を除去してBNNT粉末とSi粉末との混合体(BNNT/Si粉末混合体と称する)を用意する素工程である。有機溶媒の除去方法に特段の限定はないが、BNNT/Si懸濁液の有機溶媒量が比較的多い場合は、例えば、ろ過などでおおまかに固液分離した後に、固相分のBNNT/Si粉末混合体を乾燥させる方法を好ましく利用できる。   The organic solvent removing element step S1d is an elementary process for preparing a mixture of BNNT powder and Si powder (referred to as BNNT / Si powder mixture) by removing the organic solvent from the BNNT / Si suspension. There is no particular limitation on the method for removing the organic solvent. However, when the amount of organic solvent in the BNNT / Si suspension is relatively large, for example, after roughly solid-liquid separation by filtration or the like, BNNT / Si for the solid phase A method of drying the powder mixture can be preferably used.

なお、上記ではBNNT/Si粉末混合体を例にして説明したが、前述したように、Si以外のAl溶湯に容易に溶解する他の元素(例えば、Cu、Mg、Ni)の粉末でBNNT粉末との混合体としても同様の効果を得ることが期待できる。なぜならば、これらの元素の金属粉末は、Al溶湯に溶ける際にBNNTの近傍にAl溶湯を浸透させる効果があるからである。   In the above description, the BNNT / Si powder mixture has been described as an example. However, as described above, the BNNT powder is a powder of another element (for example, Cu, Mg, Ni) that is easily dissolved in an Al molten metal other than Si. It can be expected that the same effect can be obtained as a mixture of This is because the metal powder of these elements has an effect of infiltrating the Al melt in the vicinity of BNNT when it is melted in the Al melt.

(合金溶湯混合工程S2)
本工程は、BNNT/Si粉末混合体とAl溶湯とを混合してBNNT混合Al合金溶湯を用意する工程である。BNNT/Si粉末混合体とAl溶湯との混合方法に特段の限定はないが、粉末混合体の飛散を防止するため、またBNNTをAl溶湯中に確実に埋没させるために、BNNT/Si粉末混合体をAl箔やAl容器で包装し、このAl包装体をAl溶湯中に投入する方法は好ましい。
(Alloy melt mixing process S2)
This step is a step of preparing a BNNT mixed Al alloy molten metal by mixing a BNNT / Si powder mixture and an Al molten metal. There is no particular limitation on the method of mixing the BNNT / Si powder mixture and the molten Al, but to prevent the powder mixture from scattering and to ensure that the BNNT is buried in the molten Al, the BNNT / Si powder mixture A method in which the body is packaged with an Al foil or an Al container and the Al package is put into the molten Al is preferred.

なお、本発明において、ここで用いるAl溶湯は、純Al溶湯であってもよいし、Al合金溶湯であってもよい。純Alとは、純度99.0%以上のアルミニウムと定義する。   In the present invention, the Al molten metal used here may be a pure Al molten metal or an Al alloy molten metal. Pure Al is defined as aluminum having a purity of 99.0% or higher.

Al合金溶湯の場合、共晶組織を形成しうる化学組成を有するAl合金が好ましい。例えば、JIS H 5202に規定されるような鋳造用アルミニウム合金(AC1A:Al-Cu系合金、AC1B:Al-Cu-Mg系合金、AC2A,AC2B:Al-Cu-Si系合金、AC3A:Al-Si系合金、AC4A,AC4C,AC4CH:Al-Si-Mg系合金、AC4B:Al-Si-Cu系合金、AC4D,AC8C:Al-Si-Cu-Mg系合金、AC5A:Al-Cu-Ni-Mg系合金、AC7A:Al-Mg系合金、AC8A,AC8B:Al-Si-Cu-Ni-Mg系合金、AC9A,AC9B:Al-Si-Cu-Mg-Ni系合金)を好ましく用いることができる。言い換えると、本工程で用いるAl合金溶湯は、Alを主成分とし、Cu、Mg、SiおよびNiのうちの一種以上を含むAl合金の溶湯である。   In the case of an Al alloy molten metal, an Al alloy having a chemical composition capable of forming a eutectic structure is preferable. For example, aluminum alloy for casting as specified in JIS H 5202 (AC1A: Al-Cu alloy, AC1B: Al-Cu-Mg alloy, AC2A, AC2B: Al-Cu-Si alloy, AC3A: Al- Si alloy, AC4A, AC4C, AC4CH: Al-Si-Mg alloy, AC4B: Al-Si-Cu alloy, AC4D, AC8C: Al-Si-Cu-Mg alloy, AC5A: Al-Cu-Ni- Mg based alloys, AC7A: Al-Mg based alloys, AC8A, AC8B: Al-Si-Cu-Ni-Mg based alloys, AC9A, AC9B: Al-Si-Cu-Mg-Ni based alloys) can be preferably used. . In other words, the molten Al alloy used in this step is a molten Al alloy containing Al as a main component and containing one or more of Cu, Mg, Si, and Ni.

なお、JIS H 5202に記載されているように、鋳造用アルミニウム合金は、Cu、Mg、Siおよび/またはNiの他に、微量成分として亜鉛(Zn)、鉄(Fe)、マンガン(Mn)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびクロム(Cr)のうちの一種以上を更に含んでいてもよい。   In addition, as described in JIS H 5202, the aluminum alloy for casting includes, in addition to Cu, Mg, Si and / or Ni, zinc (Zn), iron (Fe), manganese (Mn), One or more of titanium (Ti), lead (Pb), tin (Sn), and chromium (Cr) may further be included.

(鋳造工程S3)
本工程は、BNNT混合Al合金溶湯を凝固してAl/BNNT複合体を得る工程である。凝固させる鋳造方法に特段の限定はなく、従前の方法を利用できる。
(Casting process S3)
This step is a step of solidifying the BNNT mixed Al alloy melt to obtain an Al / BNNT composite. There is no particular limitation on the casting method to be solidified, and a conventional method can be used.

以上の工程により、本発明に係るAl/BNNT複合体を得ることができる。   Through the above steps, the Al / BNNT composite according to the present invention can be obtained.

以下、実施例により本発明の具体例をより詳細に説明する。   Hereinafter, specific examples of the present invention will be described in more detail by way of examples.

[実験1]
(実施例1の作製)
前述した製造方法に沿って、実施例1のAl/BNNT複合体である鋳造物(以下、Al/BNNT複合鋳造物と称する)を作製した。まず、1 gのBNNT粉末(平均直径5 nm、比表面積100 m2/g超)を100 mLのエタノール中に投入し、超音波攪拌を1時間行ってBNNT懸濁液を用意した(BNNT懸濁液用意素工程S1a)。比表面積の測定には、蒸気吸着量測定装置(マイクロトラック・ベル株式会社、BELSORP-maxII)を用いた。
[Experiment 1]
(Production of Example 1)
A casting (hereinafter referred to as an Al / BNNT composite casting) which is an Al / BNNT composite of Example 1 was produced according to the manufacturing method described above. First, 1 g of BNNT powder (average diameter 5 nm, specific surface area> 100 m 2 / g) was put into 100 mL of ethanol and subjected to ultrasonic stirring for 1 hour to prepare a BNNT suspension (BNNT suspension). Suspension preparation process S1a). For measuring the specific surface area, a vapor adsorption amount measuring device (Microtrac Bell, BELSORP-max II) was used.

同様にして、1 gのSi粉末(平均厚さ30 nm、平均直径400 nmの鱗片状粒子、比表面積100 m2/g超、)を100 mLのエタノール中に投入し、超音波攪拌を1時間行ってSi懸濁液を用意した(Si懸濁液用意素工程S1b)。 Similarly, 1 g of Si powder (a flaky particle having an average thickness of 30 nm and an average diameter of 400 nm, a specific surface area of more than 100 m 2 / g) is put into 100 mL of ethanol and subjected to ultrasonic stirring. The Si suspension was prepared after a while (Si suspension preparation element process S1b).

次に、用意したBNNT懸濁液全量とSi懸濁液全量とを混合し、さらに超音波攪拌を1時間行ってBNNT/Si懸濁液(BNNT粉末1 g:Si粉末1 g、合計200 mL)を用意した(BNNT/Si懸濁液用意素工程S1c)。   Next, mix the total amount of the prepared BNNT suspension and the entire amount of the Si suspension, and further carry out ultrasonic stirring for 1 hour to obtain a BNNT / Si suspension (BNNT powder 1 g: Si powder 1 g, total 200 mL). (BNNT / Si suspension preparation element process S1c).

次に、BNNT/Si懸濁液をろ過し、固相分を乾燥させてBNNT/Si粉末混合体を用意した(有機溶媒除去素工程S1d)。図2は、実施例1のBNNT/Si粉末混合体の走査型電子顕微鏡(SEM)観察像である。図2に示したように、BNNT粒子10とSi粒子20とが均一に混合している様子が確認される。また、BNNT粒子10の間にSi粒子20が介在することにより、BNNT粒子同士の絡まりが抑制されている様子が分かる。   Next, the BNNT / Si suspension was filtered, and the solid phase was dried to prepare a BNNT / Si powder mixture (organic solvent removing element step S1d). FIG. 2 is a scanning electron microscope (SEM) observation image of the BNNT / Si powder mixture of Example 1. As shown in FIG. 2, it is confirmed that the BNNT particles 10 and the Si particles 20 are uniformly mixed. Further, it can be seen that the entanglement of the BNNT particles is suppressed by the Si particles 20 being interposed between the BNNT particles 10.

次に、用意したBNNT/Si粉末混合体をAl箔(市販のアルミホイル)で包装してAl包装体を用意した。次に、黒鉛るつぼ内に用意したAl合金溶湯(AC4CH:Al-7質量%Si-0.3質量%Mg合金、1 kg、700℃)の中へAl包装体を投入し、攪拌混合を1時間行った。その後、黒鉛るつぼごと炉外に取り出して、BNNT/Si混合Al合金溶湯を空冷凝固させて実施例1のAl/BNNT複合鋳造物を得た。   Next, the prepared BNNT / Si powder mixture was packaged with Al foil (commercially available aluminum foil) to prepare an Al package. Next, the Al package is put into the molten Al alloy (AC4CH: Al-7 mass% Si-0.3 mass% Mg alloy, 1 kg, 700 ° C) prepared in the graphite crucible, and stirred and mixed for 1 hour. It was. Thereafter, the graphite crucible was taken out of the furnace and the BNNT / Si mixed Al alloy melt was air-cooled and solidified to obtain the Al / BNNT composite casting of Example 1.

(実施例2の作製)
純Al溶湯(A1100、1 kg、700℃)を用いたこと以外は実施例1と同様にして、実施例2のAl/BNNT複合鋳造物を作製した。
(Production of Example 2)
An Al / BNNT composite casting of Example 2 was produced in the same manner as in Example 1 except that pure Al molten metal (A1100, 1 kg, 700 ° C.) was used.

(比較例1の作製)
BNNT粉末に対してSi粉末を混合しないこと以外は実施例1と同様にして、比較例1のAl/BNNT複合鋳造物を作製した。
(Production of Comparative Example 1)
An Al / BNNT composite casting of Comparative Example 1 was produced in the same manner as in Example 1 except that Si powder was not mixed with BNNT powder.

[実験2]
(Al/BNNT複合体の微細組織観察)
実施例1、実施例2および比較例1のAl/BNNT複合鋳造物のそれぞれについて、鋳造物の表面近傍の微細組織を観察した。図3は、比較例1のAl/BNNT複合鋳造物の表面近傍の断面のSEM観察像である。図4は、実施例1のAl/BNNT複合鋳造物の表面のSEM観察像である。
[Experiment 2]
(Microstructure observation of Al / BNNT composite)
For each of the Al / BNNT composite castings of Example 1, Example 2 and Comparative Example 1, the microstructure near the surface of the casting was observed. FIG. 3 is an SEM observation image of a cross section near the surface of the Al / BNNT composite casting of Comparative Example 1. 4 is an SEM observation image of the surface of the Al / BNNT composite casting of Example 1. FIG.

図3に示したように、比較例1においては、BNNT粒子10とAl合金母相30とが剥離している様子が確認される。これは、凝固前の段階でBNNT粒子に対してAl合金溶湯が十分に濡れなかったことを示唆している。これに対し、実施例1では、図4に示したように、BNNT粒子10が一様に分散し、Al合金母相30とよく混合している。特にBNNT粒子10がAl合金母相30の内部に潜り込んで一体化している様子が確認される。また、実施例2についても、実施例1と同様の微細組織が観察された。これは、凝固前の段階でBNNT粒子に対してAl合金溶湯が十分に濡れていたことを示唆している。   As shown in FIG. 3, in Comparative Example 1, it is confirmed that the BNNT particles 10 and the Al alloy matrix 30 are separated. This suggests that the molten Al alloy was not sufficiently wetted with the BNNT particles before solidification. On the other hand, in Example 1, as shown in FIG. 4, the BNNT particles 10 are uniformly dispersed and well mixed with the Al alloy matrix 30. In particular, it is confirmed that the BNNT particles 10 are embedded inside the Al alloy matrix 30 and integrated. In Example 2, the same microstructure as in Example 1 was observed. This suggests that the molten Al alloy was sufficiently wetted with the BNNT particles before solidification.

実施例1および比較例1は、どちらの場合もBNNT粉末を混合するAl合金溶湯として、Si成分を含むAC4CH(Al-Si-Mg合金)を用いている。また、実施例2では、BNNT/Si粉末混合体を投入する前のAl溶湯にはSi成分が含まれていない。これらのことを勘案すると、金属溶湯とBNNTとの濡れ性における上記のような明確な差異が生じた要因をAl/BNNT複合鋳造物中のSi成分の有無だけで論じることはできない。   In both cases, Example 1 and Comparative Example 1 use AC4CH (Al—Si—Mg alloy) containing a Si component as the Al alloy melt in which the BNNT powder is mixed. Moreover, in Example 2, Si component is not contained in Al molten metal before supplying a BNNT / Si powder mixture. Considering these facts, it is not possible to discuss the cause of the clear difference as described above in the wettability between the molten metal and BNNT only by the presence or absence of the Si component in the Al / BNNT composite casting.

詳細なメカニズムは残念ながら現段階で解明できていないが、少なくともBNNT粉末とSi粉末との混合体(BNNT/Si粉末混合体)を用いて金属溶湯に混合することにより、Si粉末の溶解の進行とともにAl溶湯とBNNT粒子とが直接接触する機会が増え、濡れ性や分散性が改善したと考えられる。このように、本発明は極めて興味深い現象を示していると言える。   Unfortunately, the detailed mechanism has not been elucidated at this stage, but at least the mixture of BNNT powder and Si powder (BNNT / Si powder mixture) is mixed into the molten metal to progress the dissolution of Si powder. At the same time, the chances of direct contact between the molten Al and BNNT particles increased, and the wettability and dispersibility are considered to have improved. Thus, it can be said that the present invention shows a very interesting phenomenon.

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。   The above-described embodiments and examples are described in order to facilitate understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, it is possible to replace a part of the configuration of the embodiment with the configuration of common technical knowledge of those skilled in the art, and it is also possible to add the configuration of technical common sense of those skilled in the art to the configuration of the embodiment. That is, according to the present invention, a part of the configurations of the embodiments and examples of the present specification may be deleted, replaced with other configurations, and added with other configurations without departing from the technical idea of the invention. Is possible.

10…BNNT粒子、20…Si粒子、30…Al合金母相。   10 ... BNNT particles, 20 ... Si particles, 30 ... Al alloy matrix.

Claims (8)

金属母相に窒化ホウ素ナノチューブが複合した複合体であって、
前記金属母相は、アルミニウムまたはアルミニウム合金からなり、
前記複合体は、前記窒化ホウ素ナノチューブが前記金属母相内に分散し、該金属母相が凝固されてなることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体。
A composite in which boron nitride nanotubes are combined with a metal matrix,
The metal matrix is made of aluminum or an aluminum alloy,
The composite is an aluminum / boron nitride nanotube composite, wherein the boron nitride nanotubes are dispersed in the metal matrix and the metal matrix is solidified.
請求項1に記載のアルミニウム/窒化ホウ素ナノチューブ複合体において、
前記アルミニウム合金は、アルミニウムを主成分とし、ケイ素、銅、マグネシウムおよびニッケルのうちの一種以上を含む合金であることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体。
The aluminum / boron nitride nanotube composite of claim 1,
The aluminum / boron nitride nanotube composite characterized in that the aluminum alloy is an alloy containing aluminum as a main component and at least one of silicon, copper, magnesium and nickel.
金属母相に窒化ホウ素ナノチューブが複合した複合体の製造方法であって、
前記金属母相は、アルミニウムまたはアルミニウム合金からなり、
前記製造方法は、前記窒化ホウ素ナノチューブの粉末と、前記金属母相の溶湯に溶解可能な元素の粉末とを混合して窒化ホウ素ナノチューブおよび金属母相溶解可能元素の粉末混合体を用意する粉末混合工程と、
前記粉末混合体と前記金属母相の溶湯とを混合して窒化ホウ素ナノチューブ混合金属母相溶湯を用意する合金溶湯混合工程と、
前記窒化ホウ素ナノチューブ混合金属母相溶湯を凝固させて前記複合体を得る鋳造工程と、
を有することを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法。
A method for producing a composite in which boron nitride nanotubes are combined with a metal matrix,
The metal matrix is made of aluminum or an aluminum alloy,
The manufacturing method comprises preparing a powder mixture of boron nitride nanotubes and metal matrix-dissolvable elements by mixing the boron nitride nanotube powders and elemental powders soluble in the metal matrix melt Process,
An alloy melt mixing step of preparing the boron nitride nanotube mixed metal matrix melt by mixing the powder mixture and the melt of the metal matrix,
A casting step of solidifying the boron nitride nanotube mixed metal matrix melt to obtain the composite;
A method for producing an aluminum / boron nitride nanotube composite comprising:
請求項3に記載のアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法において、前記金属母相溶解可能元素の粉末は、ケイ素粉末であることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法。   4. The method for producing an aluminum / boron nitride nanotube composite according to claim 3, wherein the metal matrix phase-dissolvable element powder is a silicon powder. 請求項3又は請求項4に記載のアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法において、
前記窒化ホウ素ナノチューブの粉末の比表面積と前記金属母相溶解可能元素の粉末の比表面積との比が10未満であることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法。
In the manufacturing method of the aluminum / boron nitride nanotube composite according to claim 3 or 4,
A method for producing an aluminum / boron nitride nanotube composite, wherein a ratio of a specific surface area of the boron nitride nanotube powder to a specific surface area of the metal matrix phase soluble element powder is less than 10.
請求項3乃至請求項5のいずれか一項に記載のアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法において、
前記窒化ホウ素ナノチューブの粉末と前記金属母相溶解可能元素の粉末との質量比が「1:2」以上「2:1」以下であることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法。
In the manufacturing method of the aluminum / boron nitride nanotube composite as described in any one of Claims 3 thru | or 5,
A method for producing an aluminum / boron nitride nanotube composite, wherein a mass ratio of the boron nitride nanotube powder to the metal matrix soluble element powder is "1: 2" or more and "2: 1" or less .
請求項3乃至請求項6のいずれか一項に記載のアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法において、
前記アルミニウム合金は、アルミニウムを主成分とし、ケイ素、銅、マグネシウムおよびニッケルのうちの一種以上を含む合金であることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法。
In the manufacturing method of the aluminum / boron nitride nanotube composite as described in any one of Claims 3 thru | or 6,
The method for producing an aluminum / boron nitride nanotube composite, wherein the aluminum alloy is an alloy containing aluminum as a main component and at least one of silicon, copper, magnesium and nickel.
請求項3乃至請求項7のいずれか一項に記載のアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法において、
前記粉末混合工程は、前記窒化ホウ素ナノチューブの粉末と有機溶媒とを混合して窒化ホウ素ナノチューブ懸濁液を用意する窒化ホウ素ナノチューブ懸濁液用意素工程と、
前記金属母相溶解可能元素の粉末と有機溶媒とを混合して金属母相溶解可能元素懸濁液を用意する金属母相溶解可能元素懸濁液用意素工程と、
前記窒化ホウ素ナノチューブ懸濁液と前記金属母相溶解可能元素懸濁液とを混合して窒化ホウ素ナノチューブ/金属母相溶解可能元素懸濁液を用意する窒化ホウ素ナノチューブ/金属母相溶解可能元素懸濁液用意素工程と、
前記窒化ホウ素ナノチューブ/金属母相溶解可能元素懸濁液から前記有機溶媒を除去して前記窒化ホウ素ナノチューブ/金属母相溶解可能元素粉末混合体を用意する有機溶媒除去素工程と、
からなることを特徴とするアルミニウム/窒化ホウ素ナノチューブ複合体の製造方法。
The method for producing an aluminum / boron nitride nanotube composite according to any one of claims 3 to 7,
The powder mixing step comprises preparing a boron nitride nanotube suspension by mixing the boron nitride nanotube powder and an organic solvent;
A metal matrix-dissolvable element suspension preparation element step of preparing a metal matrix-dissolvable element suspension by mixing the metal matrix-dissolvable element powder and an organic solvent;
A boron nitride nanotube / metal matrix soluble element suspension is prepared by mixing the boron nitride nanotube suspension and the metal matrix soluble element suspension to prepare a boron nitride nanotube / metal matrix soluble element suspension. A suspension preparation process,
Removing the organic solvent from the boron nitride nanotube / metal matrix soluble element suspension to prepare the boron nitride nanotube / metal matrix soluble element powder mixture;
A method for producing an aluminum / boron nitride nanotube composite comprising:
JP2019076177A 2018-04-16 2019-04-12 Method for Manufacturing Aluminum / Boron Nitride Nanotube Complex Active JP7044092B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078482 2018-04-16
JP2018078482 2018-04-16

Publications (2)

Publication Number Publication Date
JP2019183281A true JP2019183281A (en) 2019-10-24
JP7044092B2 JP7044092B2 (en) 2022-03-30

Family

ID=68160245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076177A Active JP7044092B2 (en) 2018-04-16 2019-04-12 Method for Manufacturing Aluminum / Boron Nitride Nanotube Complex

Country Status (2)

Country Link
US (1) US20190316233A1 (en)
JP (1) JP7044092B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941464B1 (en) 2020-06-30 2021-03-09 The Florida International University Board Of Trustees Metal nanoparticle composites and manufacturing methods thereof by ultrasonic casting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202202638A (en) * 2020-05-20 2022-01-16 美商Bn奈米公司 Compositions comprising nanoparticles and metallic materials, and methods of making
FR3126148A1 (en) * 2021-08-11 2023-02-17 Max Sardou LINER that is to say: internal envelope of COMPOSITE TANK for HIGH PRESSURE GAS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287036A (en) * 1996-04-19 1997-11-04 Daihatsu Motor Co Ltd Production of metal matrix composite
JPH09287037A (en) * 1996-04-19 1997-11-04 Daihatsu Motor Co Ltd Production of casting
JP2002178130A (en) * 2000-09-12 2002-06-25 Jason Sin Hin Lo Hybrid metal matrix composition and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415440B2 (en) 2010-11-17 2016-08-16 Alcoa Inc. Methods of making a reinforced composite and reinforced composite products
US20170275742A1 (en) 2016-03-11 2017-09-28 A. Jacob Ganor Ceramic and metal boron nitride nanotube composites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287036A (en) * 1996-04-19 1997-11-04 Daihatsu Motor Co Ltd Production of metal matrix composite
JPH09287037A (en) * 1996-04-19 1997-11-04 Daihatsu Motor Co Ltd Production of casting
JP2002178130A (en) * 2000-09-12 2002-06-25 Jason Sin Hin Lo Hybrid metal matrix composition and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANMING XUE ET AL.: "Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high", MATERIALS AND DESIGN, vol. vol.88(2015), JPN6021043323, pages 451 - 460, ISSN: 0004630990 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941464B1 (en) 2020-06-30 2021-03-09 The Florida International University Board Of Trustees Metal nanoparticle composites and manufacturing methods thereof by ultrasonic casting

Also Published As

Publication number Publication date
US20190316233A1 (en) 2019-10-17
JP7044092B2 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
CN109996625B (en) Material and method for producing metal nanocomposites, and metal nanocomposites obtained thereby
Liu et al. Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing
Boostani et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles
Zeng et al. A new technique for dispersion of carbon nanotube in a metal melt
JP7044092B2 (en) Method for Manufacturing Aluminum / Boron Nitride Nanotube Complex
Bakshi et al. Carbon nanotube reinforced metal matrix composites-a review
Kondoh et al. Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites
JP7123400B2 (en) Self-dispersion and self-stabilization of nanostructures in molten metals
Abbasipour et al. Compocasting of A356-CNT composite
CN110546287A (en) aluminum alloys with grain refiners, and methods of making and using the same
JP5296438B2 (en) Method of encapsulating carbon material in aluminum
KR101242529B1 (en) Method of Interface Hardening of Carbon Material Using Nano Silicon Carbarde Coating
KR20110115085A (en) Graphene/metal nanocomposite powder and method of manufacturing thereof
Mirjavadi et al. Effect of hot extrusion and T6 heat treatment on microstructure and mechanical properties of Al-10Zn-3.5 Mg-2.5 Cu nanocomposite reinforced with graphene nanoplatelets
JP2006077306A (en) Composite metallic material and manufacturing method therefor, and caliper body, bracket, disc rotor, drum and knuckle
Hedayatian et al. Microstructural and mechanical behavior of Al6061-graphene oxide nanocomposites
CN113059172A (en) Method for manufacturing special spherical powder for additive manufacturing of nano multiphase reinforced titanium-based composite material
JP2019214073A (en) Method for manufacturing boron-nitride nano-tube reinforced aluminum composite casting, boron-nitride nano-tube reinforced aluminum composite casting, and master-batch for manufacturing boron-nitride nano-tube reinforced aluminum composite casting
Kannan et al. Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review
JP4343915B2 (en) Method for producing composite metal alloy and method for producing composite metal molded product
JP4872314B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
KR101453870B1 (en) Method of manufacturing metal-carbon composite using metal melt
HG et al. Processing of graphene/CNT-metal powder
Marini et al. A review on the fabrication techniques of aluminium matrix nanocomposites
Amosov et al. Effect of alloying on structure and properties of particle–reinforced aluminum matrix composites Al/TiC produced by SHS in aluminum melt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7044092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350