JP2019183045A - Light emission adjustment method of luminescent composition and sensor using the same - Google Patents

Light emission adjustment method of luminescent composition and sensor using the same Download PDF

Info

Publication number
JP2019183045A
JP2019183045A JP2018077347A JP2018077347A JP2019183045A JP 2019183045 A JP2019183045 A JP 2019183045A JP 2018077347 A JP2018077347 A JP 2018077347A JP 2018077347 A JP2018077347 A JP 2018077347A JP 2019183045 A JP2019183045 A JP 2019183045A
Authority
JP
Japan
Prior art keywords
component
group
composition
luminescent composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018077347A
Other languages
Japanese (ja)
Inventor
慎介 高木
Shinsuke Takagi
慎介 高木
嶋田 哲也
Tetsuya Shimada
哲也 嶋田
奈々 工藤
Nana Kudo
奈々 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2018077347A priority Critical patent/JP2019183045A/en
Publication of JP2019183045A publication Critical patent/JP2019183045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

To provide a light emission adjustment method of a luminescent composition and a sensor using the same.SOLUTION: There are provided a light emission adjustment method of a luminescent composition containing (A) a polycyclic aromatic compound, (B) a carrier carrying the polycyclic aromatic compound, and (C) a dispersant or a binder, including a process for changing i) temperature of the composition, ii) kinds of the (C) component, or iii) concentration of the (A) component, and a sensing method having a process for specifying temperature of a sample or a chemical material contained in the sample by measuring light emission intensity of the composition after the luminescent composition is contacted with the sample.SELECTED DRAWING: None

Description

本発明は発光性組成物の発光調節方法およびこれを用いたセンサーに関する。   The present invention relates to a method for controlling luminescence of a luminescent composition and a sensor using the same.

発光性を有する有機色素はセンサー等の応用が期待されている。これまでに粘土などのアニオン性のナノシート上にカチオン性有機色素を担持させた複合体が強い蛍光増感特性を有することが知られている(非特許文献1)。   Organic dyes having luminescent properties are expected to be applied to sensors and the like. It has been known that a complex in which a cationic organic dye is supported on an anionic nanosheet such as clay has strong fluorescence sensitizing properties (Non-patent Document 1).

Daiki Tokieda, Takamasa Tsukamoto, Yohei Ishida, Hiroyuki Ichihara, Tetsuya Shimada, Shinsuke Takagi, J. Photochem. Photobiol. A: Chem. 2017, 339, 67-79.Daiki Tokieda, Takamasa Tsukamoto, Yohei Ishida, Hiroyuki Ichihara, Tetsuya Shimada, Shinsuke Takagi, J. Photochem. Photobiol. A: Chem. 2017, 339, 67-79.

発光性組成物の発光特性を環境変化等によって調節できれば、高感度センサー等としての応用が期待できる。かかる事情を鑑み、本発明は発光性組成物の発光調節方法およびこれを利用したセンサーを提供することを課題とする。   If the luminescent properties of the luminescent composition can be adjusted by changes in the environment or the like, application as a highly sensitive sensor or the like can be expected. In view of such circumstances, it is an object of the present invention to provide a method for controlling luminescence of a luminescent composition and a sensor using the same.

発明者らは、(A)多環芳香族化合物、(B)前記多環芳香族化合物を担持する担体、および(C)分散媒またはバインダーを含む発光性組成物の発光特性を、温度等の環境を変化させることで調節できることを見出した。よって、前記課題は以下の本発明によって解決される。
[1](A)多環芳香族化合物、
(B)前記多環芳香族化合物を担持する担体、および
(C)分散媒またはバインダー、を含む発光性組成物の発光調節方法であって、
i)前記組成物の温度、
ii)前記(C)成分の種類、あるいは
iii)前記(A)成分の濃度、を変化させる工程を含む、
発光調節方法。
[2]前記(A)成分と前記(B)成分が、互いに異なる電荷を有し当該電荷によって(A)成分が(B)成分に担持されている、[1]に記載の方法。
[3]前記(A)成分が正電荷を有し、前記(B)成分が負電荷を有する、[2]に記載の方法。
[4]前記(A)成分が一般式(I)で表される:
Ar−X−Ar (I)
(Ar、Arはそれぞれ独立に、置換または非置換のアリール基またはヘテロアリール基であり、
Xは単結合、後述する式(II)で表される基、アルキレン基、スルホン基、カルボニル基、エーテル基、またはチオエーテル基であり、
、Rはそれぞれ独立に水素、または炭素数が1〜6のアルキル基である)
[1]〜[3]のいずれかに記載の方法。
[5]前記置換基が、アルキル基、アルケニル基、アミノ基、シアノ基、またはニトロ基である、[4]に記載の方法。
[6]前記担体が板状である、[1]〜[5]のいずれかに記載の方法。
[7]前記(C)成分が、水または水溶性有機溶媒を含む、[1]〜[6]のいずれに記載の方法。
[8]前記[1]〜[7]のいずれかに記載の方法を利用したセンシング方法であって、
前記[1]に記載の発光性組成物と検体を接触させて、i)当該組成物の温度、ii)前記(C)成分の種類、あるいはiii)前記(A)成分の濃度、を変化させる工程、
当該組成物の発光強度を測定して前記検体の温度または前記検体中に含まれる化学物質を特定する工程、
を備えるセンシング方法。
[9]前記[1]に記載の発光性組成物、および
前記発光性組成物の発光強度を測定する測定部
を備える温度または化学センサー。
The inventors have determined the luminescent properties of a luminescent composition comprising (A) a polycyclic aromatic compound, (B) a carrier carrying the polycyclic aromatic compound, and (C) a dispersion medium or a binder, such as temperature. We found that it can be adjusted by changing the environment. Therefore, the said subject is solved by the following this invention.
[1] (A) a polycyclic aromatic compound,
(B) A method for controlling light emission of a light-emitting composition comprising a carrier carrying the polycyclic aromatic compound, and (C) a dispersion medium or a binder,
i) the temperature of the composition;
ii) changing the type of the component (C), or iii) the concentration of the component (A),
Light emission adjustment method.
[2] The method according to [1], wherein the component (A) and the component (B) have different charges, and the component (A) is supported on the component (B) by the charges.
[3] The method according to [2], wherein the component (A) has a positive charge and the component (B) has a negative charge.
[4] The component (A) is represented by the general formula (I):
Ar 1 -X-Ar 2 (I )
(Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group or heteroaryl group;
X is a single bond, a group represented by the following formula (II), an alkylene group, a sulfone group, a carbonyl group, an ether group, or a thioether group,
R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms)
The method according to any one of [1] to [3].
[5] The method according to [4], wherein the substituent is an alkyl group, an alkenyl group, an amino group, a cyano group, or a nitro group.
[6] The method according to any one of [1] to [5], wherein the carrier is plate-shaped.
[7] The method according to any one of [1] to [6], wherein the component (C) contains water or a water-soluble organic solvent.
[8] A sensing method using the method according to any one of [1] to [7],
The specimen is brought into contact with the luminescent composition described in [1] to change i) the temperature of the composition, ii) the type of the component (C), or iii) the concentration of the component (A). Process,
Measuring the emission intensity of the composition to identify the temperature of the specimen or a chemical substance contained in the specimen;
A sensing method comprising:
[9] A temperature or chemical sensor comprising the luminescent composition according to [1], and a measurement unit that measures the luminescence intensity of the luminescent composition.

本発明によって発光性組成物の発光調節方法およびこれを利用したセンサーを提供できる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for controlling luminescence of a luminescent composition and a sensor using the same.

実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例2の結果を示す図である。It is a figure which shows the result of Example 2. 実施例2の結果を示す図である。It is a figure which shows the result of Example 2. 実施例3の結果を示す図である。It is a figure which shows the result of Example 3. 実施例3の結果を示す図である。It is a figure which shows the result of Example 3. 実施例4の結果を示す図である。It is a figure which shows the result of Example 4. 実施例4の結果を示す図である。It is a figure which shows the result of Example 4. 発光のメカニズムを説明するための概念図である。It is a conceptual diagram for demonstrating the mechanism of light emission.

以下、本発明を詳細に説明する。本発明において「X〜Y」は端値であるXおよびYを含む。
1.発光性組成物の発光調節方法
本発明の発光調節方法は、特定の発光性組成物の温度、成分の種類、あるいは成分の濃度を変化させる工程を含む。
Hereinafter, the present invention will be described in detail. In the present invention, “X to Y” includes X and Y which are end values.
1. Luminous control method of luminescent composition The luminescent control method of the present invention includes a step of changing the temperature, the type of component, or the concentration of the component of a specific luminescent composition.

(1)発光性組成物
発光性組成物は(A)多環芳香族化合物、(B)前記多環芳香族化合物を担持する担体、および(C)分散媒またはバインダー、を含む。
1)多環芳香族化合物(A成分)
多環芳香族化合物とは複数のアリール基またはヘテロアリール基を有する化合物である。アリール基とは芳香族炭化水素基であり、例えばフェニル基、ビフェニル基、ナフチル基、アントラセニル基が挙げられる。ヘテロアリール基とは複素芳香族炭化水素基であり、例えばピリジル基、ピリミジル基、インドリル基、ベンゾチアゾリル基が挙げられる。
(1) Luminescent composition The luminescent composition contains (A) a polycyclic aromatic compound, (B) a carrier carrying the polycyclic aromatic compound, and (C) a dispersion medium or a binder.
1) Polycyclic aromatic compound (component A)
A polycyclic aromatic compound is a compound having a plurality of aryl groups or heteroaryl groups. The aryl group is an aromatic hydrocarbon group, and examples thereof include a phenyl group, a biphenyl group, a naphthyl group, and an anthracenyl group. The heteroaryl group is a heteroaromatic hydrocarbon group, and examples thereof include a pyridyl group, a pyrimidyl group, an indolyl group, and a benzothiazolyl group.

これらの基は置換基を有していてもよい。置換基としては、アルキル基、アルケニル基、アミノ基、シアノ基、またはニトロ基が挙げられる。アルキル基は直鎖状、分岐状、環状アルキル基を含み、その炭素数は1〜6であることが好ましい。アミノ基は1級または2級であってよく、例えばジアルキルアミノ基等が挙げられる。   These groups may have a substituent. Examples of the substituent include an alkyl group, an alkenyl group, an amino group, a cyano group, and a nitro group. The alkyl group includes a linear, branched, and cyclic alkyl group, and preferably has 1 to 6 carbon atoms. The amino group may be primary or secondary, and examples thereof include a dialkylamino group.

好ましい多環芳香族化合物は一般式(I)で表される。
Ar−X−Ar (I)
Ar、Arはそれぞれ独立に、置換または非置換のアリール基またはヘテロアリール基である。アリール基、ヘテロアリール基、および置換基については前述のとおりである。後述する理由から、多環芳香族化合物は組成物としたときに電荷を帯びることが好ましく、この観点からArまたはArは、窒素含有ヘテロアリール基であることが好ましい。あるいは、ArまたはArの置換基はアミノ基を含むことが好ましい。当該化合物は塩の形態で存在し、組成物とした際に電荷、特に正電荷を帯びることが好ましい。
A preferred polycyclic aromatic compound is represented by the general formula (I).
Ar 1 -X-Ar 2 (I )
Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group or heteroaryl group. The aryl group, heteroaryl group, and substituent are as described above. For the reasons described later, the polycyclic aromatic compound is preferably charged when used as a composition. From this viewpoint, Ar 1 or Ar 2 is preferably a nitrogen-containing heteroaryl group. Alternatively, the substituent of Ar 1 or Ar 2 preferably contains an amino group. The compound is preferably present in the form of a salt and has a charge, particularly a positive charge, when formed into a composition.

Xは単結合、式(II)で表される基、アルキレン基、スルホン基、カルボニル基、エーテル基、またはチオエーテル基である。   X is a single bond, a group represented by the formula (II), an alkylene group, a sulfone group, a carbonyl group, an ether group, or a thioether group.

式(II)中、R、Rはそれぞれ独立に水素、または炭素数が1〜6のアルキル基である。 In formula (II), R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms.

多環芳香族化合物は、一般式(I)で表されるような略平面構造を有することが好ましく、メソゲン基として機能するような剛直な構造を有することが好ましい。以下に多環芳香族化合物の好ましい具体例を挙げる。多環芳香族化合物としては一般に色素として市販されているものを使用してもよい。   The polycyclic aromatic compound preferably has a substantially planar structure as represented by the general formula (I), and preferably has a rigid structure that functions as a mesogenic group. Preferred specific examples of the polycyclic aromatic compound are given below. As the polycyclic aromatic compound, those generally marketed as pigments may be used.

2)担体(B成分)
担体は多環芳香族化合物を担持する。担体は多環芳香族化合物を担持できる機能を有するものであれば限定されないが、後述する理由から板状であるものが好ましい。このような担体としてはカオリン、モンモリロナイト、タルク、バーミキュライト、ディッカイト、ナクライト、ハロイサイト、タルク、バーミキュライト、アンチゴライト、クリソタイル、パイロフィライト、バイデライト、ヘクトライト、サポナイト、スチーブンサイト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、金雲母、ザンソフィライト等の無機層状化合物が挙げられる。これらの中でも、分散媒中で剥離して表面に電荷、特に負電荷を生成できるものが好ましい。
2) Carrier (component B)
The carrier carries a polycyclic aromatic compound. The carrier is not limited as long as it has a function capable of supporting a polycyclic aromatic compound, but a plate-like one is preferable for the reason described later. Such carriers include kaolin, montmorillonite, talc, vermiculite, dickite, naclite, halloysite, talc, vermiculite, antigolite, chrysotile, pyrophyllite, beidellite, hectorite, saponite, stevensite, tetrasilic mica, sodium. Examples thereof include inorganic layered compounds such as teniolite, muscovite, margarite, phlogopite and xanthophyllite. Among these, those that can be peeled off in a dispersion medium to generate a charge, particularly a negative charge, on the surface are preferable.

3)分散媒またはバインダー
分散媒は、本発明の発光性組成物が液体状またはスラリー状である場合に各成分を溶解または分散させる媒体である。発光性組成物が液体状またはスラリー状であるとは、組成物が流動可能な状態をいう。この際、多環芳香族化合物(A成分)を効率よく担体(B成分)に担持させる観点から、分散媒はA成分を溶解しかつB成分を分散できることが好ましい。この観点から分散媒は水、水溶性有機溶媒、または両者の混合溶媒であることが好ましい。水溶性有機溶媒としては、アルコール、ケトン、エーテル、アルカンニトリル、アミド、スルホキシド、ピロリドン等が挙げられる。これらの溶媒の炭素数は水溶性を考慮して適宜決定されるが、1〜5程度が好ましく、1〜3程度がより好ましい。分散媒が水と水溶性有機溶媒の混合溶媒である場合、その混合比率は任意である。さらに、分散媒は、分散媒が相分離しない程度に非水溶性溶媒を含んでいてもよい。
3) Dispersion medium or binder The dispersion medium is a medium in which each component is dissolved or dispersed when the luminescent composition of the present invention is in a liquid form or a slurry form. The luminescent composition being liquid or slurry means a state in which the composition can flow. At this time, from the viewpoint of efficiently supporting the polycyclic aromatic compound (component A) on the carrier (component B), it is preferable that the dispersion medium can dissolve the component A and disperse the component B. From this viewpoint, the dispersion medium is preferably water, a water-soluble organic solvent, or a mixed solvent of both. Examples of the water-soluble organic solvent include alcohol, ketone, ether, alkanenitrile, amide, sulfoxide, pyrrolidone and the like. Although carbon number of these solvents is suitably determined in consideration of water solubility, about 1-5 are preferable and about 1-3 are more preferable. When the dispersion medium is a mixed solvent of water and a water-soluble organic solvent, the mixing ratio is arbitrary. Furthermore, the dispersion medium may contain a water-insoluble solvent to such an extent that the dispersion medium does not undergo phase separation.

バインダーは、本発明の発光性組成物が固体状である場合に多環芳香族化合物を担持する担体同士を固着させる媒体である。バインダーが存在することで固体状の当該組成物を一定の形状に成形できる。液体状またはスラリー状の発光性組成物を濃縮して分散媒(C成分)の濃度を低減すると、組成物は固体状になり流動性を失う。この状態で存在しているC成分がバインダーとなる。したがって、バインダーは分散媒と同一の成分であってよい。   The binder is a medium for fixing carriers supporting polycyclic aromatic compounds to each other when the luminescent composition of the present invention is in a solid state. The presence of the binder makes it possible to form the solid composition into a certain shape. When the liquid or slurry luminescent composition is concentrated to reduce the concentration of the dispersion medium (component C), the composition becomes solid and loses fluidity. C component which exists in this state becomes a binder. Therefore, the binder may be the same component as the dispersion medium.

4)組成比
B成分がA成分を担持する力を高めるために、A成分とB成分がそれぞれ有する電荷によってA成分がB成分に担持されることが好ましい。よって両者の比率は電荷の比率で表すことができる。当該比率は所望の発光強度を得るために適宜調整されるが、一態様においてA成分電荷/B成分電荷は5〜50/100であることが好ましい。本発明において当該比率が10/100である場合、A成分濃度を「10%vs.CEC」と表記する。
4) Composition ratio In order to increase the force with which the B component supports the A component, it is preferable that the A component is supported on the B component by the charges of the A component and the B component. Therefore, the ratio of both can be expressed by the ratio of charges. The ratio is appropriately adjusted in order to obtain a desired light emission intensity. In one embodiment, the A component charge / B component charge is preferably 5 to 50/100. In the present invention, when the ratio is 10/100, the concentration of component A is expressed as “10% vs. CEC”.

全組成物中におけるA成分とB成分の合計量は限定されないが、一態様において当該合計量が線組成物中90重量%以下である場合に当該組成物は液体状またはスラリー状であり、90重量%超である場合に当該組成物は固体状となる。   The total amount of the A component and the B component in the entire composition is not limited, but in one embodiment, when the total amount is 90% by weight or less in the wire composition, the composition is liquid or slurry, and 90 The composition becomes solid when it is more than% by weight.

(2)環境変化
本発明の発光性組成物の環境を変化させることで発光特性を調節できる。変化させる環境は、当該組成物の温度、分散媒またはバインダー(C成分)の種類、または多環芳香族化合物(A成分)の濃度である。これらの環境を変化させることで発光特性を調節できるメカニズムは限定されないが次のように推察される。まず、本発明の発光性組成物において、図5に示すようにA成分はB成分に固定されている。この状態で励起光を照射されるなどしてA成分が励起され、そして基底状態に戻る際に分子の運動が抑制されているのでエネルギーを熱として放出することができず、光として放出する。すなわち蛍光が観測される。この際、A成分が剛直な構造を有しB成分が板状であると、A成分のB成分への固定が強化されるので蛍光強度を観測しやすい。発光性組成物の環境を変化させると、A成分のB成分への固定度合いが変化して蛍光強度も変化するので発光特性を調節できる。例えば、発光性組成物の温度を変化させるとA成分のB成分への固定度合いが変化する。低温の場合、A成分はB成分上に強く固定されるが、高温になるとA成分の熱振動によってB成分への固定度合いが弱まる。このため、蛍光強度は温度によって変化する。また、分散媒またはバインダー(C成分)の種類を変更すると、A成分のB成分への固定度合いが変化し、固定度合いによって、または、単層体が積層体になることでさらに発光増強する。例えば、C成分として、A成分およびB成分の良溶媒(DASMに対してのアセトニトリル等)を用いると、当該溶媒の量が増えるにつれてA成分のB成分への固定度合いが低くなり発光しにくくなる。一方、貧溶媒(DASMに対してのジオキサン等)を用いると、当該溶媒が増えるにつれてA成分のB成分への固定度合いが強くなって積層体が形成され、発光強度が増加する。さらに、A成分の濃度を高めるとB成分への吸着状態が変化する(DASMではH会合体が形成される)ので蛍光強度も変化する。
(2) Environmental change Luminous characteristics can be adjusted by changing the environment of the luminescent composition of the present invention. The environment to be changed is the temperature of the composition, the type of the dispersion medium or binder (component C), or the concentration of the polycyclic aromatic compound (component A). The mechanism by which the light emission characteristics can be adjusted by changing these environments is not limited, but is presumed as follows. First, in the luminescent composition of the present invention, the A component is fixed to the B component as shown in FIG. In this state, the A component is excited by irradiating excitation light and the like, and since the movement of the molecule is suppressed when returning to the ground state, energy cannot be released as heat, and it is emitted as light. That is, fluorescence is observed. At this time, if the A component has a rigid structure and the B component is plate-like, the fixation of the A component to the B component is strengthened, so that the fluorescence intensity can be easily observed. When the environment of the luminescent composition is changed, the degree of fixation of the A component to the B component changes and the fluorescence intensity also changes, so that the light emission characteristics can be adjusted. For example, when the temperature of the luminescent composition is changed, the degree of fixation of the A component to the B component changes. When the temperature is low, the A component is strongly fixed on the B component. However, when the temperature is high, the fixing degree to the B component is weakened due to thermal vibration of the A component. For this reason, fluorescence intensity changes with temperature. Moreover, when the kind of a dispersion medium or a binder (C component) is changed, the fixed degree to the B component of A component will change, and light emission will be further enhanced by a fixed degree or by a single layer body becoming a laminated body. For example, when a good solvent of component A and component B (acetonitrile, etc. for DASM) is used as component C, the degree of fixation of component A to component B decreases as the amount of the solvent increases, making it difficult to emit light. . On the other hand, when a poor solvent (dioxane or the like for DASM) is used, the degree of fixation of the A component to the B component increases as the solvent increases, and a laminate is formed, resulting in an increase in emission intensity. Further, when the concentration of the A component is increased, the adsorption state to the B component changes (H aggregates are formed in DASM), so the fluorescence intensity also changes.

(3)発光測定方法
前述のとおり、本発明の発光性組成物の発光現象は、好ましくは蛍光現象である。したがって、本発明の発光性組成物を励起光にて励起して定法によってその蛍光強度を測定して発光挙動を測定することが好ましい。励起光は使用するA成分によって適宜選択されるが、一態様においてその波長は紫外域もしくは可視域であることが好ましい。
(3) Luminescence measurement method As described above, the luminescence phenomenon of the luminescent composition of the present invention is preferably a fluorescence phenomenon. Therefore, it is preferable to measure the luminescence behavior by exciting the luminescent composition of the present invention with excitation light and measuring the fluorescence intensity by a conventional method. The excitation light is appropriately selected depending on the component A to be used. In one embodiment, the wavelength is preferably in the ultraviolet region or the visible region.

2.センシング方法
前述のとおり、本発明の発光性組成物を用いると環境変化をセンシングすることができるので、温度センサーまたは化学センサーとして有用である。以下に、センシングの例を挙げて説明する。
1)温度センシング方法
次の工程により、検体の温度を特定できる。
工程i−1:発光性組成物を調製して種々の温度における発光強度を測定し、温度と発光強度に関する検量線を作成する。
工程i−2:発光性組成物と温度が不明の検体を接触させた後に発光強度を測定し、前記検量線から当該検体の温度を特定する。
当該方法は、温度を補正する工程をさらに含んでいてもよい。
2. Sensing Method As described above, when the luminescent composition of the present invention is used, environmental changes can be sensed, which is useful as a temperature sensor or a chemical sensor. Hereinafter, an example of sensing will be described.
1) Temperature sensing method The temperature of the specimen can be specified by the following steps.
Step i-1: A luminescent composition is prepared, the luminescence intensity at various temperatures is measured, and a calibration curve relating to the temperature and the luminescence intensity is prepared.
Step i-2: A luminescent composition is contacted with a sample whose temperature is unknown, the luminescence intensity is measured, and the temperature of the sample is specified from the calibration curve.
The method may further include the step of correcting the temperature.

2)溶媒センシング方法
発光性組成物を溶媒と接触させた時の発光挙動は当該溶媒の濃度によって異なる。よって、以下の工程により、未知の溶媒を同定できる。
工程ii−1:異なる濃度の、水と水溶性有機溶媒との混合溶媒を準備する。
工程ii−2:発光性組成物を調製して、前記種々の濃度の混合溶媒と接触させた後、その都度発光強度を測定し、濃度と発光強度の関係S1を得る。
工程ii−3:複数の異なる水溶性有機溶媒を用いて工程ii−1およびii−2を繰り返し、各溶媒について濃度と発光強度の関係S2・・・Snを得る。
工程ii−4:異なる濃度の、検体(未知の水溶性有機溶媒)と水との混合溶媒を準備する。
工程ii−5:前記発光性組成物を検体混合溶媒と接触させた後で発光強度を測定し、濃度と発光強度の関係Tを把握する。
工程ii−6:TのパターンをS1・・・Snのパターンと照合し、検体の種類を同定する。
2) Solvent sensing method The light emission behavior when the luminescent composition is brought into contact with the solvent varies depending on the concentration of the solvent. Therefore, an unknown solvent can be identified by the following steps.
Step ii-1: Prepare a mixed solvent of water and a water-soluble organic solvent having different concentrations.
Step ii-2: After preparing a luminescent composition and bringing it into contact with the mixed solvent having various concentrations, the luminescence intensity is measured each time to obtain the relationship S1 between the concentration and the luminescence intensity.
Step ii-3: Steps ii-1 and ii-2 are repeated using a plurality of different water-soluble organic solvents, and the relationship between the concentration and the emission intensity S2... Sn is obtained for each solvent.
Step ii-4: Prepare a mixed solvent of sample (unknown water-soluble organic solvent) and water at different concentrations.
Step ii-5: After bringing the luminescent composition into contact with the sample mixed solvent, the luminescence intensity is measured, and the relationship T between the concentration and the luminescence intensity is grasped.
Step ii-6: The pattern of T is compared with the pattern of S1... Sn to identify the type of specimen.

具体的に、S1〜S4が以下の関係である場合を例に説明する。
S1:水性有機溶媒濃度と発光強度がほぼ比例関係にある
S2:当該濃度と発光強度がほぼ反比例関係にある
S3:ある濃度までは発光強度が増加し、ある濃度を超えると発光強度が減少する
S4:ある濃度までは発光強度が減少し、ある濃度を超えると発光強度が増加する
このような関係が得られた場合に、検体の濃度と発光強度の関係Tを得て、TとS1〜S4を照合する。その結果、例えばTとS4が類似すれば、検体はS4の有機溶媒であると特定できる。
Specifically, a case where S1 to S4 have the following relationship will be described as an example.
S1: Aqueous organic solvent concentration and emission intensity are in a substantially proportional relationship S2: The concentration and emission intensity are in an inversely proportional relationship S3: The emission intensity increases up to a certain concentration, and the emission intensity decreases when exceeding a certain concentration S4: The emission intensity decreases to a certain concentration, and the emission intensity increases beyond a certain concentration. When such a relationship is obtained, a relationship T between the concentration of the specimen and the emission intensity is obtained, and T and S1 to Check S4. As a result, for example, if T and S4 are similar, the specimen can be specified as the organic solvent of S4.

3)濃度センシング方法
次の工程により、検体におけるA成分の濃度を特定できる。
工程iii−1:A成分がC成分に溶解した溶液であって、A成分の濃度が異なる複数の溶液を準備する。
工程iii−2:工程iii−1で使用したA成分およびC成分を含む発光性組成物を調製し、工程iii−1で調製した溶液と接触させた後、その都度発光強度を測定し、A成分の濃度と発光強度にかかる検量線を作成する。
工程iii−3:発光性組成物と、検体(濃度不明のA成分がC成分に溶解した溶液)とを接触させた後に発光強度を測定し、前記検量線から当該検体のA成分濃度を特定する。
3) Concentration sensing method The concentration of the component A in the specimen can be specified by the following steps.
Step iii-1: A solution in which the A component is dissolved in the C component, and a plurality of solutions having different concentrations of the A component are prepared.
Step iii-2: A luminescent composition containing the component A and the component C used in step iii-1 is prepared. After contacting with the solution prepared in step iii-1, the luminescence intensity is measured each time. Create a calibration curve for the concentration and emission intensity of the components.
Step iii-3: After contacting the luminescent composition and the sample (solution in which the A component of unknown concentration is dissolved in the C component), the luminescence intensity is measured, and the A component concentration of the sample is specified from the calibration curve To do.

3.センサー
前記センシング方法は、本発明の発光性組成物と前記発光性組成物の発光強度を測定する測定部を備えるセンサーによって実施できる。例えば、固体状の本発明の発光性組成物を金属製、ガラス製、またはポリマー製セルに埋封しこれをプローブとする。当該プローブと測定部としての蛍光強度測定装置を組合せることで、温度センサーを構成できる。
3. Sensor The sensing method can be implemented by a sensor including a luminescent composition of the present invention and a measurement unit that measures the luminescence intensity of the luminescent composition. For example, the solid luminescent composition of the present invention is embedded in a metal, glass, or polymer cell and used as a probe. A temperature sensor can be configured by combining the probe and a fluorescence intensity measuring device as a measuring unit.

[実施例1a]
多環芳香族化合物として、trans−4−[4−(ジメチルアミノ)スチリル]−1−メチルピリジニウム(DASM)ヨード塩(シグマアルドリッチ社製)を用いた。
1000mLの水に1gのクレー(クニミネ工業社製)を分散させて分散液を調製した。当該分散液にDASM塩を濃度が10%vs.CECとなるように添加して撹拌し、発光性組成物を調製した。「%vs.CEC」はクレーの負電荷に対するDASMの正電荷の割合であり、10%vs.CECはクレーの負電荷100に対してDASMの正電荷が10存在することを意味する。25℃にて発光性組成物に励起光として450nmの光を照射して、FP−6500(日本分光株式会社)を用いて発光強度を測定した。
次いで、濃度を80%vs.CECにした発光性組成物を調製し、同様にして発光強度を測定した。結果を図1aに示す。
[Example 1a]
As the polycyclic aromatic compound, trans-4- [4- (dimethylamino) styryl] -1-methylpyridinium (DASM) iodo salt (manufactured by Sigma-Aldrich) was used.
A dispersion was prepared by dispersing 1 g of clay (manufactured by Kunimine Kogyo Co., Ltd.) in 1000 mL of water. DASM salt was added to the dispersion at a concentration of 10% vs. 10%. It added so that it might become CEC, it stirred, and the luminescent composition was prepared. “% Vs. CEC” is the ratio of the positive charge of DASM to the negative charge of the clay, and is 10% vs. CEC. CEC means that there are 10 DASM positive charges for every 100 negative clay charges. The light-emitting composition was irradiated with 450 nm light as excitation light at 25 ° C., and the emission intensity was measured using FP-6500 (JASCO Corporation).
The concentration was then adjusted to 80% vs. A luminescent composition made into CEC was prepared, and the luminescence intensity was measured in the same manner. The result is shown in FIG.

[比較例1a]
DASMを含まない比較用組成物を調製して、実施例1と同様にして発光強度を測定した。結果を図1aに示す。
[Comparative Example 1a]
A comparative composition not containing DASM was prepared, and the emission intensity was measured in the same manner as in Example 1. The result is shown in FIG.

[実施例1b]
DASM塩の代わりに、後述するように合成した4−[4−(ジメチルアミノ)−trans−β−メチルスチリル]−1−メチルピリジニウム(Me−DASM)ヨード塩を用いて、実施例1aと同様にして発光性組成物を調製し、発光強度を測定した。当該例の結果を比較例1aの結果と合わせて図1bに示す。
[Example 1b]
Similar to Example 1a, using 4- [4- (dimethylamino) -trans-β-methylstyryl] -1-methylpyridinium (Me-DASM) iodo salt synthesized as described below instead of DASM salt. A luminescent composition was prepared and the luminescence intensity was measured. The result of this example is shown in FIG. 1b together with the result of Comparative Example 1a.

[実施例1c]
DASM塩の代わりに、後述するように合成した4−[4−(ジメチルアミノ)−trans−β−エチルスチリル]−1−メチルピリジニウム(Et−DASM)ヨード塩を用いて、実施例1aと同様にして発光性組成物を調製し、発光強度を測定した。当該例の結果を比較例1aの結果と合わせて図1cに示す。
[Example 1c]
Similar to Example 1a, using 4- [4- (dimethylamino) -trans-β-ethylstyryl] -1-methylpyridinium (Et-DASM) iodo salt synthesized as described below instead of DASM salt. A luminescent composition was prepared and the luminescence intensity was measured. The result of this example is shown in FIG. 1c together with the result of Comparative Example 1a.

[実施例2a]
実施例1aで調製した発光性組成物と同じ組成物を調製した。当該組成物の温度を25℃にし、発光性組成物に励起光として450nmの光を照射して発光強度を測定した。その後、温度を以下のように変化させ、その都度、発光強度を測定した。結果を図2aに示す。
温度変化:70℃→25℃→15℃
[Example 2a]
The same composition as the luminescent composition prepared in Example 1a was prepared. The temperature of the composition was 25 ° C., and the luminous intensity was measured by irradiating the luminous composition with 450 nm light as excitation light. Thereafter, the temperature was changed as follows, and the emission intensity was measured each time. The result is shown in FIG.
Temperature change: 70 ℃ → 25 ℃ → 15 ℃

[実施例2b]
DASM塩の代わりにMe−DASM塩を用いた以外は実施例2aと同様にして発光性組成物を調製し、発光強度を測定した。結果を図2bに示す。
[Example 2b]
A luminescent composition was prepared in the same manner as in Example 2a except that the Me-DASM salt was used instead of the DASM salt, and the luminescence intensity was measured. The result is shown in FIG.

[実施例2c]
DASM塩の代わりにEt−DASM塩を用いた以外は実施例2aと同様にして発光性組成物を調製し、発光強度を測定した。結果を図2cに示す。
[Example 2c]
A luminescent composition was prepared in the same manner as in Example 2a except that an Et-DASM salt was used instead of the DASM salt, and the luminescence intensity was measured. The result is shown in FIG.

[実施例3a]
実施例1aで調製した発光性組成物と同じ組成物を調製した。当該組成物にアセトニトリルを添加し、分散媒中のアセトニトリル濃度が10重量%である組成物を調製した。当該組成物の温度を25℃にし、発光性組成物に励起光として450nmの光を照射して発光強度を測定した。その後、アセトニトリル濃度を以下のように変化させ、その都度、発光強度を測定した。結果を図3aに示す。図3aに示すとおり、濃度が上昇するにつれて発光強度は低下した。
濃度変化:20、30、40、50重量%
Example 3a
The same composition as the luminescent composition prepared in Example 1a was prepared. Acetonitrile was added to the composition to prepare a composition having an acetonitrile concentration in the dispersion medium of 10% by weight. The temperature of the composition was 25 ° C., and the luminous intensity was measured by irradiating the luminous composition with 450 nm light as excitation light. Thereafter, the acetonitrile concentration was changed as follows, and the emission intensity was measured each time. The result is shown in FIG. As shown in FIG. 3a, the emission intensity decreased as the concentration increased.
Concentration change: 20, 30, 40, 50% by weight

[実施例3b]
DASM塩の代わりにMe−DASM塩を用いた以外は実施例3aと同様にして発光性組成物を調製し、発光強度を測定した。結果を図3bに示す。
[Example 3b]
A luminescent composition was prepared in the same manner as in Example 3a except that the Me-DASM salt was used instead of the DASM salt, and the luminescence intensity was measured. The result is shown in FIG.

[実施例3c]
DASM塩の代わりにEt−DASM塩を用いた以外は実施例3aと同様にして発光性組成物を調製し、発光強度を測定した。結果を図3cに示す。
[Example 3c]
A luminescent composition was prepared in the same manner as in Example 3a except that an Et-DASM salt was used instead of the DASM salt, and the luminescence intensity was measured. The result is shown in FIG.

[実施例4a〜c]
アセトニトリルの代わりにジオキサンを用いた以外は、実施例3a〜cと同様にして発光性組成物を調製し、発光強度を測定した。結果を図4a〜cに示す。
[Examples 4a to 4c]
A luminescent composition was prepared in the same manner as in Examples 3a to c except that dioxane was used instead of acetonitrile, and the luminescence intensity was measured. The results are shown in FIGS.

[Me−DASMヨード塩の合成]
合成の概要をスキームS1に示す。
2mL(17mmol)の4−エチルピリジン(東京化成工業株式会社製)、2mL(32mmol)のCHI(関東化学株式会社製)を50mLのアセトンに加えた。当該混合物を室温にて一晩撹拌したところ、白色結晶が析出した。当該生成物をろ過して、アセトンで洗浄した。3.0gの4−エチル−1−メチルピリジニウムヨード塩を黄白色結晶として得た。収率は69%であった。Bruker B−500を用いてH−NMRスペクトルを得た。
1H-NMR (MeOD / ppm) δ 1.35 (3H, t), 3.00 (2H, m), 4.38 (3H, s), 7.97 (2H, d), 8.78 (2H, d)
[Synthesis of Me-DASM iodo salt]
An outline of the synthesis is shown in Scheme S1.
2 mL (17 mmol) of 4-ethylpyridine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2 mL (32 mmol) of CH 3 I (manufactured by Kanto Chemical Co., Ltd.) were added to 50 mL of acetone. When the mixture was stirred overnight at room temperature, white crystals were precipitated. The product was filtered and washed with acetone. 3.0 g of 4-ethyl-1-methylpyridinium iodo salt was obtained as yellowish white crystals. The yield was 69%. An H-NMR spectrum was obtained using a Bruker B-500.
1 H-NMR (MeOD / ppm) δ 1.35 (3H, t), 3.00 (2H, m), 4.38 (3H, s), 7.97 (2H, d), 8.78 (2H, d)

次に、1.0g(4.0mmol)の4−エチル−1−メチルピリジニウムヨード塩と1.5g(10mmol)の4−ジメチルアミノベンズアルデヒド(関東化学株式会社製)をメタノールに溶解した。1滴のピペリジンを当該溶液に滴下し、50℃にて1.5時間撹拌した。エバポレーターを用いて反応混合物から溶媒を除去し、残留物を少量のアセトンに加え、これをろ過した。さらにアセトンで洗浄し不純物を除去した。暗褐色の固体としてMe−DASMヨード塩を得た。収率は33%であった。
1H-NMR (MeOD / ppm) δ 2.45 (3H, s), 3.05 (6H, s), 4.31 (3H, s), 6.79 (2H, d), 7.51 (2H, d), 7.58 (1H, s), 8.14 (2H, d), 8.61 (2H, d)
Next, 1.0 g (4.0 mmol) of 4-ethyl-1-methylpyridinium iodide salt and 1.5 g (10 mmol) of 4-dimethylaminobenzaldehyde (manufactured by Kanto Chemical Co., Inc.) were dissolved in methanol. One drop of piperidine was added dropwise to the solution and stirred at 50 ° C. for 1.5 hours. The solvent was removed from the reaction mixture using an evaporator, the residue was added to a small amount of acetone, and this was filtered. Further, it was washed with acetone to remove impurities. The Me-DASM iodo salt was obtained as a dark brown solid. The yield was 33%.
1 H-NMR (MeOD / ppm) δ 2.45 (3H, s), 3.05 (6H, s), 4.31 (3H, s), 6.79 (2H, d), 7.51 (2H, d), 7.58 (1H, s ), 8.14 (2H, d), 8.61 (2H, d)

[Et−DASMヨード塩の合成]
合成の概要をスキームS2に示す。
前述した方法と同様にして、2.0gの4−プロピル−1−メチルピリジウムヨード塩を赤みがかった白色固体として得た。収率は50%であった。
1H-NMR (MeOD / ppm) δ 1.03 (3H, t), 1.81 (2H, m), 2.95 (2H, m), 4.36 (3H, s), 7.95 (2H, d), 8.77 (2H, d)
[Synthesis of Et-DASM iodo salt]
An outline of the synthesis is shown in Scheme S2.
In the same manner as described above, 2.0 g of 4-propyl-1-methylpyridinium iodo salt was obtained as a reddish white solid. The yield was 50%.
1 H-NMR (MeOD / ppm) δ 1.03 (3H, t), 1.81 (2H, m), 2.95 (2H, m), 4.36 (3H, s), 7.95 (2H, d), 8.77 (2H, d )

次に、前述した方法と同様にして、250mgのEt−DASMヨード塩を暗褐色固体として得た。収率は17%であった。
1H-NMR (MeOD / ppm) δ 1.26 (3H, t), 2.98 (2H, m), 3.06 (6H, s), 4.31 (3H, s), 6.79 (2H, d), 7.50 (3H, m), 8.14 (2H, d), 8.61 (2H, d)
Next, 250 mg of Et-DASM iodo salt was obtained as a dark brown solid in the same manner as described above. The yield was 17%.
1 H-NMR (MeOD / ppm) δ 1.26 (3H, t), 2.98 (2H, m), 3.06 (6H, s), 4.31 (3H, s), 6.79 (2H, d), 7.50 (3H, m ), 8.14 (2H, d), 8.61 (2H, d)

本発明の発光性組成物の環境を変化させることで当該組成物の発光特性を調整できることが明らかである。当顔方法は温度センシング等に有用である。   It is apparent that the luminescent properties of the composition can be adjusted by changing the environment of the luminescent composition of the present invention. This face method is useful for temperature sensing and the like.

Claims (9)

(A)多環芳香族化合物、
(B)前記多環芳香族化合物を担持する担体、および
(C)分散媒またはバインダー、を含む発光性組成物の発光調節方法であって、
i)前記組成物の温度、
ii)前記(C)成分の種類、あるいは
iii)前記(A)成分の濃度、を変化させる工程を含む、
発光調節方法。
(A) a polycyclic aromatic compound,
(B) A method for controlling light emission of a light-emitting composition comprising a carrier carrying the polycyclic aromatic compound, and (C) a dispersion medium or a binder,
i) the temperature of the composition;
ii) changing the type of the component (C), or iii) the concentration of the component (A),
Light emission adjustment method.
前記(A)成分と前記(B)成分が、互いに異なる電荷を有し当該電荷によって(A)成分が(B)成分に担持されている、請求項1に記載の方法。   The method according to claim 1, wherein the component (A) and the component (B) have different charges, and the component (A) is supported on the component (B) by the charges. 前記(A)成分が正電荷を有し、前記(B)成分が負電荷を有する、請求項2に記載の方法。   The method according to claim 2, wherein the component (A) has a positive charge and the component (B) has a negative charge. 前記(A)成分が一般式(I)で表される:
Ar−X−Ar (I)
(Ar、Arはそれぞれ独立に、置換または非置換のアリール基またはヘテロアリール基であり、
Xは単結合、式(II)で表される基、アルキレン基、スルホン基、カルボニル基、エーテル基、またはチオエーテル基であり、
、Rはそれぞれ独立に水素、または炭素数が1〜6のアルキル基である)
請求項1〜3のいずれかに記載の方法。
The component (A) is represented by the general formula (I):
Ar 1 -X-Ar 2 (I )
(Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group or heteroaryl group;
X is a single bond, a group represented by the formula (II), an alkylene group, a sulfone group, a carbonyl group, an ether group, or a thioether group,
R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms)
The method according to claim 1.
前記置換基が、アルキル基、アルケニル基、アミノ基、シアノ基、またはニトロ基である、請求項4に記載の方法。   The method according to claim 4, wherein the substituent is an alkyl group, an alkenyl group, an amino group, a cyano group, or a nitro group. 前記担体が板状である、請求項1〜5のいずれかに記載の方法。   The method according to claim 1, wherein the carrier has a plate shape. 前記(C)成分が、水または水溶性有機溶媒を含む、請求項1〜6のいずれに記載の方法。   The method according to any one of claims 1 to 6, wherein the component (C) contains water or a water-soluble organic solvent. 請求項1〜7のいずれかに記載の方法を利用したセンシング方法であって、
請求項1に記載の発光性組成物と検体を接触させて、i)当該組成物の温度、ii)前記(C)成分の種類、あるいはiii)前記(A)成分の濃度、を変化させる工程、
当該組成物の発光強度を測定して前記検体の温度または前記検体中に含まれる化学物質を特定する工程、
を備えるセンシング方法。
A sensing method using the method according to claim 1,
A step of contacting the specimen with the luminescent composition according to claim 1 to change i) temperature of the composition, ii) type of the component (C), or iii) concentration of the component (A). ,
Measuring the emission intensity of the composition to identify the temperature of the specimen or a chemical substance contained in the specimen;
A sensing method comprising:
請求項1に記載の発光性組成物、および
前記発光性組成物の発光強度を測定する測定部
を備える温度または化学センサー。
A temperature or chemical sensor comprising: the luminescent composition according to claim 1; and a measurement unit that measures the luminescence intensity of the luminescent composition.
JP2018077347A 2018-04-13 2018-04-13 Light emission adjustment method of luminescent composition and sensor using the same Pending JP2019183045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018077347A JP2019183045A (en) 2018-04-13 2018-04-13 Light emission adjustment method of luminescent composition and sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018077347A JP2019183045A (en) 2018-04-13 2018-04-13 Light emission adjustment method of luminescent composition and sensor using the same

Publications (1)

Publication Number Publication Date
JP2019183045A true JP2019183045A (en) 2019-10-24

Family

ID=68339810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018077347A Pending JP2019183045A (en) 2018-04-13 2018-04-13 Light emission adjustment method of luminescent composition and sensor using the same

Country Status (1)

Country Link
JP (1) JP2019183045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037495A (en) * 2018-09-03 2020-03-12 国立研究開発法人物質・材料研究機構 Composite and laminate
JP2021031558A (en) * 2019-08-21 2021-03-01 国立大学法人山口大学 Reversible temperature-sensitive material containing complex of clay mineral and cationic organic dye, and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508897A (en) * 1995-03-23 1998-09-02 バイオサイト・ダイアグノスティックス・インコーポレイテッド Hybrid phthalocyanine derivatives and uses thereof
JP2007064712A (en) * 2005-08-30 2007-03-15 Mitsubishi Gas Chem Co Inc Oxygen detecting agent composition
JP2007161767A (en) * 2005-12-09 2007-06-28 Tokyo Metropolitan Univ Solvatochromic dye composed of composite of porphyrin compound and phyllosilicate
JP2013124303A (en) * 2011-12-14 2013-06-24 National Institute For Materials Science Luminous resin composition, film-shaped formed article thereof, and polymer self-supporting film
WO2015034070A1 (en) * 2013-09-06 2015-03-12 国立大学法人山口大学 Pressure-sensing material, method for producing same, and pressure-sensing paint
JP2016065113A (en) * 2014-09-22 2016-04-28 国立大学法人山口大学 Light-emitting material for sensing organic matter
CN107573926A (en) * 2017-09-01 2018-01-12 南京邮电大学 A kind of double luminous organic fluorescence temperature sensing films and preparation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508897A (en) * 1995-03-23 1998-09-02 バイオサイト・ダイアグノスティックス・インコーポレイテッド Hybrid phthalocyanine derivatives and uses thereof
JP2007064712A (en) * 2005-08-30 2007-03-15 Mitsubishi Gas Chem Co Inc Oxygen detecting agent composition
JP2007161767A (en) * 2005-12-09 2007-06-28 Tokyo Metropolitan Univ Solvatochromic dye composed of composite of porphyrin compound and phyllosilicate
JP2013124303A (en) * 2011-12-14 2013-06-24 National Institute For Materials Science Luminous resin composition, film-shaped formed article thereof, and polymer self-supporting film
WO2015034070A1 (en) * 2013-09-06 2015-03-12 国立大学法人山口大学 Pressure-sensing material, method for producing same, and pressure-sensing paint
JP2016065113A (en) * 2014-09-22 2016-04-28 国立大学法人山口大学 Light-emitting material for sensing organic matter
CN107573926A (en) * 2017-09-01 2018-01-12 南京邮电大学 A kind of double luminous organic fluorescence temperature sensing films and preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037495A (en) * 2018-09-03 2020-03-12 国立研究開発法人物質・材料研究機構 Composite and laminate
JP7145490B2 (en) 2018-09-03 2022-10-03 国立研究開発法人物質・材料研究機構 laminate
JP2021031558A (en) * 2019-08-21 2021-03-01 国立大学法人山口大学 Reversible temperature-sensitive material containing complex of clay mineral and cationic organic dye, and method for producing the same
JP7305172B2 (en) 2019-08-21 2023-07-10 国立大学法人山口大学 Reversible temperature-sensitive material containing composite of clay mineral and cationic organic dye, and method for producing the same

Similar Documents

Publication Publication Date Title
Ni et al. The unusual aggregation-induced emission of coplanar organoboron isomers and their lipid droplet-specific applications
KR102271108B1 (en) Luminescent Particles and Compounds
JP6861644B2 (en) Luminescent devices and compounds
Li et al. Functionalized siloles: versatile synthesis, aggregation‐induced emission, and sensory and device applications
Debsharma et al. Aggregation-induced emission active donor–acceptor fluorophore as a dual sensor for volatile acids and aromatic amines
Zhang et al. A multi-sensing fluorescent compound derived from cyanoacrylic acid
CN108780852B (en) Luminescent compounds
EP3023414A1 (en) Compound, light-emitting material, and organic light-emitting element
KR20150050570A (en) Light emitting material, compound and organic light emitting element using light emitting material
Wang et al. A novel pyridinium modified tetraphenylethene: AIE-activity, mechanochromism, DNA detection and mitochondrial imaging
TW201343874A (en) Luminescence material and organic luminescence device
CN111875602B (en) Cyano-modified pyridino-imidazole derivative and preparation method and application thereof
Aksungur et al. Coumarin-indole conjugate donor-acceptor system: Synthesis, photophysical properties, anion sensing ability, theoretical and biological activity studies of two coumarin-indole based push-pull dyes
Zhan et al. Reversible mechanofluorochromism and acidochromism using a cyanostyrylbenzimidazole derivative with aggregation-induced emission
Neena et al. Replacing the non-polarized C [double bond, length as m-dash] C bond with an isoelectronic polarized B–N unit for the design and development of smart materials
EP2319842B1 (en) Fluorescent carbazole compounds for cancer diagnosis
JP2019183045A (en) Light emission adjustment method of luminescent composition and sensor using the same
Sergeeva et al. Synthesis and sensor propeties of crown-containing derivatives of 4-(1, 5-diphenyl-Δ 2-pyrazolin-3-yl)-1, 8-naphthalimide
EP3535348A1 (en) Photochromic hydrazone switches
JP5773377B2 (en) Bipyridine compounds end-capped with carbazole and methods for their preparation
Chen et al. New rofecoxib-based mechanochromic luminescent materials and investigations on their aggregation-induced emission, acidochromism, and LD-specific bioimaging
Coman et al. Conformation-induced light emission switching of N-acylhydrazone systems
Umeno et al. Naphthyridine-Based Electron Push–Pull-Type Amine-Reactive Fluorescent Probe for Sensing Amines and Proteins in Aqueous Media
Battula et al. Spirocyclic rhodamine B benzoisothiazole derivative: a multi-stimuli fluorescent switch manifesting ethanol-responsiveness, photo responsiveness, and acidochromism
Zhao et al. Specific Cu (II) detection using a novel tricarbazolyl-tristriazolotriazine based on photoinduced charge transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220401