JP2019181115A - Walking cycle variation measurement device - Google Patents

Walking cycle variation measurement device Download PDF

Info

Publication number
JP2019181115A
JP2019181115A JP2018087613A JP2018087613A JP2019181115A JP 2019181115 A JP2019181115 A JP 2019181115A JP 2018087613 A JP2018087613 A JP 2018087613A JP 2018087613 A JP2018087613 A JP 2018087613A JP 2019181115 A JP2019181115 A JP 2019181115A
Authority
JP
Japan
Prior art keywords
measurement
walking
time
acceleration
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018087613A
Other languages
Japanese (ja)
Inventor
一博 椎名
Kazuhiro Shiina
一博 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018087613A priority Critical patent/JP2019181115A/en
Publication of JP2019181115A publication Critical patent/JP2019181115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To eliminate the need for a device fixation operation of equipment and a measurement assistant, achieve high precision measurement under the same measurement condition while being a simple measurement act so that an elderly person may repeat and continue by oneself on a daily basis, and enable a walking cycle variation coefficient being an important indicator of the syndrome at old age and the evaluation of the aging variation.SOLUTION: (1) Walking start is automatically determined to eliminate failure of measurement, and the measurement is made in the constant step count just after an acceleration period and measurement conditions are aligned to enable comparison with the standard and temporal comparison. (2) A measuring apparatus is contained in a pocket of the garment coming in contact with a thigh without being fixedly worn in a body. (3) Gravity direction acceleration is calculated from a value of an acceleration sensor of the measuring apparatus. (4) The time of arrival of an impact of the heel grounding that spreads without going by way of a hip joint is detected from the transitivity and high precision measurement of the walking cycle variation coefficient is achieved. (5) The measurement results capable of recognizing repeatability are extracted from multiple measurement results of the same timing, compared with the standard, or evaluated by catching a sequential change.SELECTED DRAWING: Figure 2

Description

本発明は、高齢者を対象として、経時的変化の把握を目的に、手軽に安定して高精度計測が可能な歩行周期変動係数(以下CVと略す)の計測法に関する。  The present invention relates to a method for measuring a walking cycle variation coefficient (hereinafter abbreviated as CV) that enables easy and stable high-accuracy measurement for the purpose of grasping changes with time for elderly people.

既に普及しているスマホには、加速度センサなどの各種センサが搭載されている。  Various types of sensors such as an acceleration sensor are mounted on smartphones that are already widely used.

CVは歩行のリズム感を表す指標で、平坦な路面を一定速度で歩行する場合の、平均歩行周期に対する、同平均歩行周期と各歩行周期の差分の標準偏差の割合と定義される。
健常な人のCVは1%未満と非常に小さい場合もある。既存の研究では、通常健常成人:1.6±0.5%、通常高齢者:2.1±0.8%、整形外科疾患患者:2.8±1.1%、脳梗塞・脳出血患者の自立群:3.0±1.7%、同監視・介助群10.4±10.0%という値が得られている。
CVは高齢で虚弱になり、あるいは認知機能が低下してくると大きくなり、転倒リスクなど様々な老年症候群の重要リスク評価指標であることが知られている。
疾病等にも影響され、何らかの介入の結果として改善することもある。
高齢者にとっては重要指標であるが、これまでは高齢者が日常的に手軽に計測可能な手段がなかったため、ほとんどの高齢者は自らのCVを知らない。
CV is an index representing a sense of rhythm of walking, and is defined as the ratio of the standard deviation of the difference between the average walking cycle and each walking cycle to the average walking cycle when walking on a flat road surface at a constant speed.
A healthy person may have a very low CV of less than 1%. In existing studies, normal healthy adults: 1.6 ± 0.5%, normal elderly: 2.1 ± 0.8%, orthopedic patients: 2.8 ± 1.1%, cerebral infarction / cerebral hemorrhage patients Self-supporting group: 3.0 ± 1.7% and the same monitoring and assistance group 10.4 ± 10.0%.
CV is known to be an important risk evaluation index for various geriatric syndromes such as a fall risk, and becomes larger when it becomes weak at an old age or when cognitive function is lowered.
It is also affected by illness and may improve as a result of some kind of intervention.
Although it is an important index for elderly people, until now there has been no means for elderly people to easily measure on a daily basis, so most elderly people do not know their CV.

CVを指標として先のような被計測者の状態変化を知るためには、計測誤差が十分に小さいことが求められ、できれば0.5%未満であることが望ましい。
通常歩行での歩行周期は1秒内外、900〜1,350ミリ秒程度である。この0.5%は4.5〜6.8ミリ秒で、1%でも9.0〜13.5ミリ秒であり、歩行周期の計測誤差を数ミリ秒のレベルで抑え、その精度で安定して計測(以下、単に高精度計測という。)できないと、CVの改善ないし悪化の状況を的確に評価できない。また計測時に計測補助者の介在、計測機器(以下単に端末と略す)の身体への装着・固定動作、その固定のための道具などが必要であれば、日常生活における高齢者の利用継続上、致命的な障害になる。
In order to know the state change of the person to be measured as described above using CV as an index, the measurement error is required to be sufficiently small, and is preferably less than 0.5% if possible.
The walking cycle in normal walking is about 900 to 1,350 milliseconds inside and outside for 1 second. This 0.5% is 4.5 to 6.8 milliseconds, and even 1% is 9.0 to 13.5 milliseconds. The measurement error of the walking cycle is suppressed to a level of several milliseconds, and the accuracy is stable. If measurement cannot be performed (hereinafter simply referred to as high-precision measurement), the improvement or deterioration of CV cannot be accurately evaluated. In addition, if measurement assistants, measurement equipment (hereinafter simply abbreviated as “terminal”), and fixing tools, etc. are required for measurement, tools for securing the elderly, It becomes a fatal obstacle.

力の伝播速度とは、物体に衝撃的な力が加えられたときの応力やひずみが応力波として物体内を伝わる速さを言い、当該物体の剛性等の物性によって大きく異なる。
速度があるということは応力波の伝播には時間を要することを意味するが、その伝播経路となる人体の状況によって伝播速度は異なる。歩行時の踵接地の衝撃は、剛性の高い骨と柔らかい関節を通って端末に伝播していく。このときの伝播速度に関してはまだ十分なデータが揃っていないものの、先の4.5〜13.5ミリ秒という値と比較すると、それと同程度ないしそれ以上の伝播時間が生じていることが多い。
特に端末を腰部や大腿部に保持した場合、剛性の低い関節部を幾つも通るため、その影響は決して小さくない。端末を大腿部に接したポケットに収納した場合、同じ側の踵の衝撃は足関節と膝関節を通ってくるが、反対側の踵の衝撃は、足関節、膝関節に加えて二つの股関節を通ってくる。このため、左右の踵の衝撃の伝播時間は大きく異なり、発明者の検証では100ミリ秒以上の差異が生じている。また関節部を幾つも通ると、その関節部で衝撃が緩衝されて波形がなだらかになり、ピーク時刻の検出精度が低下し計測誤差が拡大し易い。
本発明は、このような状況があることを踏まえた上で、身体への固定動作を不要とし、計測補助者不在を前提とした簡単な操作で、高齢者でも日常生活において先のような高精度計測を可能にする。また計測条件を揃え、経時的変化の解析、評価を可能にする。
尚、ここで言うところの高精度計測は、0004項でも説明しているが、歩行周期変動の経時的な変化を解析できるだけの計測精度を安定的に保てることとする。
The force propagation speed refers to the speed at which stress or strain when an impact force is applied to an object is transmitted as a stress wave in the object, and varies greatly depending on physical properties such as the rigidity of the object.
The fact that the velocity is present means that it takes time to propagate the stress wave, but the propagation velocity varies depending on the condition of the human body that is the propagation path. The impact of heel contact during walking propagates to the terminal through highly rigid bones and soft joints. Although sufficient data is not yet available for the propagation speed at this time, it is often the case that the propagation time is comparable or longer than that of the previous value of 4.5 to 13.5 milliseconds. .
In particular, when the terminal is held on the waist or thigh, the influence is not small because it passes through several joints having low rigidity. When the terminal is stored in a pocket in contact with the thigh, the impact on the same side of the heel passes through the ankle and knee joints, but the impact on the opposite side of the heel is in addition to the ankle and knee joints. Come through the hip joint. For this reason, the propagation time of the impact between the left and right eyelids is greatly different, and the inventors have verified that there is a difference of 100 milliseconds or more. Further, when passing through a number of joints, the shock is buffered at the joints, the waveform becomes gentle, the detection accuracy of the peak time is lowered, and the measurement error is easily increased.
In consideration of the above situation, the present invention eliminates the need for a fixing operation to the body and is a simple operation on the premise of the absence of a measurement assistant. Enables accuracy measurement. In addition, measurement conditions are aligned to enable analysis and evaluation of changes over time.
Note that the high-accuracy measurement referred to here is also described in the section 0004, but it is possible to stably maintain measurement accuracy sufficient to analyze the temporal change of the walking cycle fluctuation.

腹部中央に端末を装着する場合、装着位置のズレを防ぐためにしっかり固定するため、大きな反動を受けやすく、ベルトの締め方が緩かったりすると反動が混在して適切にピークを捉えられない状況がしばしば生じる。その結果、歩行周期変動が実際以上に大きく計算される場合が生じ、弱り始めた高齢者が一人で安定した高精度計測を実現するのは難しい。
端末を体にしっかり固定しないと安定した計測結果を得ることが難しいので、これまでは装着位置を定め、専用ベルトで固定して計測する方法が採られてきた。
When wearing the terminal in the center of the abdomen, it is fixed firmly to prevent the displacement of the wearing position, so it is easy to receive a large reaction, and when the belt is loosely tightened, the reaction is mixed and the peak can not be properly captured Arise. As a result, the gait cycle fluctuation may be calculated to be larger than actual, and it is difficult for an elderly person who has started to weaken to realize stable high-accuracy measurement alone.
Since it is difficult to obtain a stable measurement result unless the terminal is firmly fixed to the body, until now, a method has been adopted in which a wearing position is determined and fixed with a dedicated belt for measurement.

従来の技術は、主には研究目的で高齢者のCVを計測するために開発されてきた。従って、高齢者が日常的に用いて自らのCVの経時的変化を把握するという視点に立っていないため、本発明の目的に必要な要件を備えていない。具体的には、高齢者が継続的に計測し続けるための要件としての身近な計測手段、容易な計測操作と計測の失敗の少なさ、経時的な変化を見るために必要な計測精度のレベルの見極めと安定した精度の確保という要件が備わっていなかった。本発明はこれらの要件を満たし、高齢者が日常生活で自らのCVの経時的変化を把握できることにより、歩行能力の維持、改善に寄与することを目的としている。  Conventional techniques have been developed to measure the CV of the elderly, primarily for research purposes. Therefore, since it is not based on the viewpoint that an elderly person uses it daily and grasps a time-dependent change of own CV, it does not have the requirements necessary for the purpose of the present invention. Specifically, familiar measurement means as requirements for the elderly to continue to measure, easy measurement operation and few measurement failures, level of measurement accuracy required to see changes over time There was no requirement to determine the accuracy and ensure stable accuracy. The present invention is intended to contribute to the maintenance and improvement of walking ability by satisfying these requirements and enabling an elderly person to grasp the temporal change of his / her CV in daily life.

歩行周期は、歩行の荷重応答期(踵接地期)の時間間隔を加速度センサや圧力センサなど何らかのセンサを用いて計測する。
特開2015−177925(歩行支援装置、歩容計測装置、方法及びプログラム、日本電信電話株式会社、以下、特許文献という。)では、『3軸加速度データと角速度データのいずれか一方を用いて、歩行者の一方の足が着地してから他方の足が着地するまでの時間を表す半歩行周期(一歩の所要時間)を算出し、この算出された半歩行周期をもとに歩行周期変動率を算出する』方法が記載されている。特許文献の目的は『歩行者が専門家の助けを借りずに歩行時の左右バランスを改善できるようにした歩行支援装置とその方法及びプログラムを提供すること』としてあり、歩行周期変動の計測はその過程と位置付けられている。
特許文献の明細書の第1の実施例においては、センサデータを取得するスマートフォンをズボンの脇ポケットに収容するか、又は腰部のベルトに装着することとし、本発明の収容位置と同じ大腿部など四肢に近い位置に設置した場合は角速度センサを選択し、腰部など体幹部に近い位置に設置している場合は加速度センサを選択することとしている。
発明者の計測テストにおいては、腰部、特に腹部中央に装着した場合は、左右の半歩行周期はほぼ同じ時間間隔になるものの、ズボンの脇ポケットに収納した場合は計測される半歩行周期は最大で約2倍もの開きが生じることが判明した。そうした計測結果を避けるために、特許文献ではズボンの脇ポケットに収納した場合は角速度センサを選択したものと推察される。また、腹部中央に装着する場合、何らかの道具を用いてしっかり固定しないと、計測精度が非常に悪くなる場合が少なくないことが判明した。
特許文献では、歩行周期を検出するにあたって、3軸加速度データのベクトルそのものではなくベクトル長であるスカラー値を用いることとしているが、大きな反動が観測されるような保持の仕方をした場合、ベクトル長での検出では重力方向と水平方向の判別ができず、重力方向以外の反動も観察してしまうため、ピークを取り違えて歩行周期の計測誤差が拡大する懸念があり、本発明の目的のように精度が要求される場合は適さない。
「踵接地のタイミングは加速度のピーク値もしくは角速度の積分値の極値を取るタイミングに等しい。」との記述もあるが、実際には踵接地期の衝撃が計測装置に伝播するまでには時間がかかるため、ミリ秒単位で見ると踵接地期とセンサの加速度のピーク期計測時刻の間にはタイムラグが発生する。角加速度の積分値の極値、即ち端末の姿勢の角度のピークで見る場合、踵は一旦足を振り上げた後に降ろしたタイミングで接地し、また生体は撓る(しなる)のでモーメントの伝播にもタイムラグが生じ、ミリ秒単位で見ればやはりタイミングは等しくならない。生じるタイムラグは常に一定ではなく、計測誤差の拡大要因になる。
従って、特許文献の方法でも何らかのCVの値は算出されるものの、本発明の目的である高精度のCV計測は実現できない。加速度計測と角速度計測では計測精度が異なり、本発明の目的とする経時的変化を評価するのであれば、いずれかに統一する必要がある。
1秒(1,000ミリ秒)内外の歩行周期において、1%の計測誤差は僅か10ミリ秒である。
即ち、本発明の目的とする計測精度を実現するためには、このような端末の保持位置の違いによる計測結果の差異を踏まえた計測法が求められる。
また、身体に装着・固定する場合、装着位置と固定の仕方にそれなりの配慮をしないと、反動の減衰が遅いためにピーク時刻を誤って選択してしまい、歩行周期の計測誤差が許容範囲を超えてしまう場合が多々あることを付記しておく。更にこの固定動作は、高齢者が日常的に繰り返し計測するには煩わしく、利用継続には致命的な障害になる。
特許文献の第2の実施例は関連性が薄いので割愛する。
The walking cycle measures the time interval of the load response period of walking (the ground contact period) using some sensor such as an acceleration sensor or a pressure sensor.
In Japanese Patent Application Laid-Open No. 2015-177925 (walking support device, gait measuring device, method and program, Nippon Telegraph and Telephone Corporation, hereinafter referred to as patent document), “using either one of three-axis acceleration data and angular velocity data, A half-walking period (time required for one step) that represents the time from when one foot of a pedestrian has landed until the other foot has landed is calculated. Based on the calculated half-walking cycle, the walking cycle fluctuation rate is calculated. The method of “calculating” is described. The purpose of the patent document is to “provide a walking support device and method and program that allow a pedestrian to improve the left-right balance during walking without the assistance of an expert”, and the measurement of walking cycle fluctuation is It is positioned as that process.
In the first embodiment of the specification of the patent document, a smartphone for acquiring sensor data is accommodated in a side pocket of trousers or attached to a waist belt, and the same thigh as the accommodation position of the present invention For example, an angular velocity sensor is selected when installed at a position close to the extremities, and an acceleration sensor is selected when installed at a position close to the trunk such as the waist.
In the inventor's measurement test, the left and right half-walking cycles are approximately the same time interval when worn in the waist, especially in the center of the abdomen, but the half-walking cycle measured is maximum when stored in the side pockets of the pants. It was found that about twice as much opening occurred. In order to avoid such measurement results, it is inferred in the patent literature that the angular velocity sensor is selected when stored in a side pocket of trousers. In addition, it has been found that the measurement accuracy is often very poor unless it is firmly fixed with some tool when it is attached to the center of the abdomen.
In the patent document, when detecting a walking cycle, a scalar value that is a vector length is used instead of a vector of the triaxial acceleration data itself. In the detection at, the gravity direction and the horizontal direction cannot be discriminated, and the reaction other than the gravity direction is also observed, so there is a concern that the measurement error of the walking cycle may be increased by mistaking the peak. Not suitable when accuracy is required.
There is also a statement that “the timing of contact with the ground is equal to the timing at which the peak value of acceleration or the extreme value of the angular velocity is integrated.” In reality, however, it takes time to propagate the impact during the ground contact period to the measuring device. Therefore, when viewed in milliseconds, there is a time lag between the ground contact period and the peak measurement time of the sensor acceleration. When looking at the extreme value of the integrated value of angular acceleration, that is, the peak of the posture angle of the terminal, the heel is grounded at the timing when it is first lifted and then lowered, and the living body bends (becomes), so the propagation of moment However, there is a time lag, and the timing is not the same when viewed in milliseconds. The generated time lag is not always constant, and becomes an increase factor of measurement error.
Therefore, although some CV value is calculated by the method of the patent document, high-precision CV measurement which is the object of the present invention cannot be realized. Measurement accuracy is different between acceleration measurement and angular velocity measurement, and it is necessary to unify them in order to evaluate the temporal change of the present invention.
In a walking cycle of 1 second (1,000 milliseconds), the 1% measurement error is only 10 milliseconds.
That is, in order to realize the measurement accuracy targeted by the present invention, a measurement method based on the difference in the measurement result due to the difference in the holding position of the terminal is required.
In addition, when wearing / fixing to the body, unless proper consideration is given to the mounting position and fixing method, the reaction time decays slowly, so the peak time is selected incorrectly, and the measurement error of the walking cycle exceeds the allowable range. It should be noted that there are many cases where this is exceeded. Furthermore, this fixing operation is troublesome for the elderly to repeatedly measure on a daily basis, and becomes a fatal obstacle to continued use.
The second embodiment of the patent document is omitted because it is not relevant.

実用化に際しては以上のような類の課題があるため、現時点で製品化されているCV計測装置は、圧力センサや光学センサを用いた床置き型か、腰に巻いたベルトに携帯端末を固定して計測するタイプである。株式会社LSIメディエンス、三菱化学株式会社のゲイト君MG−M1110−HW、株式会社デジタル・スタンダードのQualityなどがある。
床置き型は装置が大きく高価格で計測者も必要なため、高齢者の日常的な使用に適さない。ベルトで固定するタイプは、いずれも専用ベルトと腰に巻く動作を必要とし、手軽ではない。また計測者補助の介在や計測精度という点で、本発明の目的に適さない。
尚、実験用に足首に端末を固定装着する装置が用いられる場合もある。
Due to the above-mentioned problems in practical use, the CV measuring devices that have been commercialized at the present time are either floor-mounted using pressure sensors or optical sensors, or a portable terminal is fixed to a belt wrapped around the waist This is the type to measure. There are LSI Medience Corporation, Gate MG-M1110-HW of Mitsubishi Chemical Corporation, and Quality of Digital Standard Corporation.
The floor-standing type is not suitable for daily use by the elderly because the equipment is large and expensive and requires a measurer. All types that are fixed with a belt require a dedicated belt and a motion to wrap around the waist, which is not easy. Moreover, it is not suitable for the purpose of the present invention in terms of intervention of a measurer and measurement accuracy.
In some cases, a device for fixing a terminal to an ankle is used for an experiment.

歩行時の加速度センサの値は、図3−3の例のような正弦波に近い波形を描くように考えがちであるが、実際には計測機器の保持位置や保持の仕方によって大きく異なる。
腹部中央に保持した場合は図3−3のように半歩行周期を基本的な周期とする正弦波状の波形を示すが、大腿部に接したズボンの片方の脇ポケットに収納した場合は図3−1のように一歩行周期を単位とし、間に反対側の踵接地の衝撃の伝播を観測するものの、その時間幅がかなりずれた波形を示す。左右いずれかの脇腹に保持した場合は図3−2のようにどちらかというと図3−3に似た波形を示す。観測結果は、股関節を挟んで大腿部側、骨盤側どちら側に端末を保持するかで波形が大きく異なる。
路面の固さや靴によって端末が受ける衝撃の程度が変わり、保持位置が踵から離れるほど伝播する衝撃は緩衝され、端末の保持の仕方で加速度センサの値は大きく変わる。
The value of the acceleration sensor at the time of walking tends to draw a waveform close to a sine wave as in the example of FIG. 3-3, but actually varies greatly depending on the holding position and holding method of the measuring device.
When held in the center of the abdomen, it shows a sine wave waveform with a half-walking period as the basic cycle as shown in Fig. 3-3, but when stored in one side pocket of the pants in contact with the thigh Although the propagation of the impact on the other side of the heel contact is observed in the unit of one walking cycle as shown in 3-1, the time width is considerably shifted. When held on either the left or right flank, a waveform similar to that shown in FIG. The waveform of the observation results greatly differs depending on whether the terminal is held on the thigh side or the pelvis side across the hip joint.
The degree of impact received by the terminal varies depending on the hardness of the road surface and shoes, and the impact that propagates as the holding position moves away from the bag is buffered, and the value of the acceleration sensor varies greatly depending on how the terminal is held.

課題を解決するための手段Means for solving the problem

本発明では、ズボンのポケットなど脚部に接した位置に端末を収納し、ベルトなどの装着道具を用いずに、従って固定しないまま計測する。
この場合、端末は歩行に合わせてポケットの中で踊るように動き続け、その間に頻繁にポケット壁にぶつかって反動を受け、端末の姿勢も変わり続ける。その結果として計測精度が悪くなるように思いがちであるが、直感には反するものの、発明者の試験においては、実際にはこれが一番安定した高精度計測を実現した。この直感に反する点が、これまで本発明のような内容が出願されなかった要因の一つと考えられる。
ポケットの壁は柔らかな布で構成され、且つ多くの場合、そのポケット自体も動きに自由度がある。動きの自由度が大きい柔らかな布に衝突しても、端末が受ける反動はすぐに減衰するため、踵接地期の大きな衝撃のみを鮮明に抽出することが可能になる。また、ポケットの中では、動き続けはするものの、大きな位置のずれは生じようがない。
試験機で多数回の計測を行い、すべての計測回で同様の波形が生じ、CVを高精度で安定的に計測できることを検証した。図4にその計測事例の一部を示す。
逆説的であるが、端末を腹部中央に固定した場合の方が、比較的硬い素材で固定せざるをえないため反動が大きくなり、固定の仕方を誤ると計測誤差が拡大し易いことが分かった。
In the present invention, the terminal is housed in a position in contact with the leg portion such as a pocket of a trouser, and measurement is performed without using a wearing tool such as a belt, and thus without fixing.
In this case, the terminal continues to move as if dancing in the pocket as it walks, during which time it frequently hits the pocket wall and receives a reaction, and the terminal's posture continues to change. As a result, it tends to be thought that the measurement accuracy deteriorates, but this is contrary to intuition, but in the inventor's test, this actually realized the most stable high-accuracy measurement. The point contrary to this intuition is considered to be one of the factors for which the contents of the present invention have not been filed so far.
The wall of the pocket is made of a soft cloth, and in many cases, the pocket itself is also free to move. Even if it collides with a soft cloth that has a high degree of freedom of movement, the recoil received by the terminal is immediately attenuated, so that only a large impact during the heel-contact period can be extracted clearly. Moreover, although it continues to move in the pocket, there is no possibility that a large position shift will occur.
A number of measurements were performed with a testing machine, and it was verified that the same waveform was generated in all measurement times, and CV could be measured stably with high accuracy. FIG. 4 shows a part of the measurement example.
Paradoxically, when the terminal is fixed at the center of the abdomen, it is necessary to fix it with a relatively hard material, so the reaction becomes large, and it is understood that if the fixing method is wrong, the measurement error is likely to increase. It was.

但し、ポケットに収めて計測する場合は、解決が必要な別の課題が生じる。
端末に手が届き、操作して即座に歩行できる計測形態とは異なり、端末を手にして計測ボタン操作(あるいは計測アプリ起動操作)を行ってから、同端末をポケットに収める動作を経て、通常はその後に歩行し始めて計測するという手順を踏む。
実際に計測動作を行うと分かるが、端末がポケットの端に引っかかったり、ポケットの中の内ポケットの上端に引っかかったりして、収納するまでに予想外に時間を要する場合が少なくない。特に高齢者では時間がかかる場合が多い。また二重課題実施時などは特にそうであるが、心の準備に時間をかける場合も想定される。そのため、端末の計測操作から同端末をポケットに仕舞い、安定歩行動作に移るまでの時間を予め確定できない。
端末を収納するまでの時間的制約が厳しければ被験者は焦ってしまうだろうし、停止期間や歩き始めの加速期間を計測対象時間に含めてしまい誤った計測結果を算出する事態も生じる。逆に制約を緩めて計測開始時刻を遅らせれば、素早く収納した高齢者はその分長く歩行しなければならず、後述のように計測条件が揃わなくなり、手軽さもその分失われる。
計測条件を揃えるという課題がある。CVを基準値と比べ、あるいは経時的な変化を見る場合、計測時間ないし計測歩数は同一にする必要がある。計測時間が10秒と20秒、30秒では、低いCVを実現する難易度が異なる。特に高齢者は10秒歩行で低いCVを達成しても、30秒歩行で同じCV値を達成できるとは限らない。長時間歩行では歩行リズムの持続が次第に難しくなる。従って、計測時間ないし計測歩数は一定に揃える必要がある。
また、計測のタイミングも揃える必要がある。一人の人は安定歩行に入り始めてから最初の10秒で計測し、別の人では安定歩行に入り始めて15秒経過した後の10秒で計測したのでは、同条件とは言えなくなってしまう。
高齢の利用者にポケットへの収納動作を急かすようなストレスは利用の継続を阻害する。高齢者が日常生活でストレスなく自分一人で計測できることを前提にすると、この問題は致命的であり、自動的に同一条件下での計測を実現する方法が求められる。
However, when measuring in a pocket, another problem that needs to be solved arises.
Unlike the measurement mode in which a hand can reach the terminal and operate and immediately walk, the measurement button operation (or measurement application activation operation) is performed with the terminal in hand, and then the terminal is placed in the pocket. Then follow the procedure of starting walking and measuring.
Although it can be seen that the measurement operation is actually performed, there are many cases where the terminal is caught on the edge of the pocket or the upper end of the inner pocket in the pocket, and it takes an unexpectedly long time to store. In particular, elderly people often take time. This is especially true when implementing double tasks, but it is also possible to spend time on mental preparation. For this reason, it is not possible to determine in advance the time from the measurement operation of the terminal until the terminal is put into the pocket and the stable walking motion is started.
If the time restriction until the terminal is stowed is severe, the subject will be impatient, and there may be a situation in which an erroneous measurement result is calculated by including a stop period or an acceleration period at the start of walking in the measurement target time. Conversely, if the measurement start time is delayed by loosening the constraints, the elderly who quickly stored must walk longer and the measurement conditions are not met as described later, and the convenience is lost accordingly.
There is a problem of aligning measurement conditions. When comparing CV with a reference value or looking at changes over time, the measurement time or the number of steps needs to be the same. When the measurement time is 10 seconds, 20 seconds, and 30 seconds, the difficulty level for realizing a low CV is different. In particular, even if an elderly person achieves a low CV by walking for 10 seconds, it cannot always achieve the same CV value by walking for 30 seconds. Long walks make it difficult to maintain a walking rhythm. Therefore, it is necessary to make the measurement time or the number of measurement steps constant.
It is also necessary to align the measurement timing. If one person measured in the first 10 seconds after starting stable walking and another person started measuring in 10 seconds after 15 seconds had passed after entering stable walking, the same condition could not be said.
Stress that urges elderly users to store in their pockets hinders continued use. Assuming that the elderly can measure by themselves without stress in daily life, this problem is fatal and a method for automatically realizing measurement under the same conditions is required.

3軸加速度センサを備える端末を用いて高精度でCVを算出する方法を記す。
▲1▼CVは、平坦な歩行面で意識的にリズミカルに歩くようにして計測する。
端末を大腿部に接した衣類のポケットに収納し、歩行時の一定時間ないし一定歩数の3軸加速度データを得る。収容する際、特段の固定器具は不要で、端末の姿勢も任意である。
加速度データの取得時間間隔は概ね一定ではあるが、例えば21.5ミリ秒だったり18.3ミリ秒だったりと、正確に言えば一定にはならない。それでも、以下のアルゴリズムを経てCVを算出する上で問題が生じないことを確認している。
尚、この大凡の時間間隔の長短は、プログラムで選択できるようになっている。
また、大腿部ではなく、その他の身体の部位に接したポケットに端末を収納する方法を排除するものではないが、接する部位によって計測精度や精度の安定性は劣ってくる。実際に試してみると、固定しないままズボンの腹部中央のウェスト部に挟んで計測した場合、位置のずれが生じ易いために、計算された精度は大きく下がることが多く、安定しない。足首のポケットは望ましいが、そのような衣類はあまりない。
▲2▼この3軸加速度センサの値から、重力方向の加速度を算出する。
その一つの方法は、3軸磁気センサを併せて用い、3軸加速度センサの値をワールド座標系に変換し、垂直方向の加速度を得る方法である。例えばandroid端末ではgetRotationMatrix()メソッドとremapCoordinateSystem()メソッドが用意されており、3軸加速度データと3軸磁気強度データからワールド座標系での端末の傾きを算出して、重力方向の加速度ベクトルを算出できる。但し、センサの値は計測誤差を含み、磁気強度などで計算が複雑になると誤差も拡大し易い点には注意を要する。
より簡便なもう一つの方法は、数秒間以上の十分な数の3軸加速度センサの値の平均値をもって重力ベクトルに代替し、内積の定理から各時刻の重力方向ベクトル成分を算出するものである。この場合、本来の重力ベクトルとは若干の差異があるものの、計算上まったく問題が生じないことを確認している。
時刻Tiの加速度ベクトル:(Xi,Yi,Zi) 重力ベクトル:(Xave,Yave,Zave)
但し、Xave,Yave,Zaveは3軸それぞれのXi,Yi,Ziの平均値として、
重力ベクトル長:Lg=√(Xave+Yave+Zave)≒9.8m/ss
時刻Tiの加速度ベクトル長:Li=√(Xi+Yi+Zi
時刻Tiの重力方向ベクトル長:Lgi=Li*cosθ=(Xave*Xi+Yave*Yi+Zave*Zi)/Lg
時刻Tiの加速度ベクトルが重力ベクトルと同じような方向を向いているときはLi*cosθが正の値になり、逆方向を向いているときは負の値になるので、端末を上下逆さまに収納しても、計測される波形は同じになる。
重力方向ベクトル長を算出するため、衝撃を受けた端末が横のポケット壁に衝突した際の反動の大半は除外される。類似の計算において、重力方向ではなく、単純に各時刻の3軸加速度センサから得られた加速度ベクトルのベクトル長で代替する方法も見受けられるが、計測精度を低下させる要因となるため推奨できない。
また発明によってはローパスフィルターを用いて加速度センサの計測誤差を補完する方法も見受けられるが、ローパスフィルターは波形のピーク時刻に大きな影響を与えるため、誤差を拡大させ易く、これも推奨できない。
▲3▼重力方向のベクトル長の時系列の推移(重力方向ベクトル長が描く波形)から、そのピークを踵接地期として抽出する。
即ち、垂直方向の大きな反力を受けた時刻を踵接地期(荷重応答期)とする。
観測される波形は正弦波のような波形ではなく、概ね図3−1のような波形になるが、通常歩行時の周期は750ミリ秒以上、1,500ミリ秒未満(歩行周期数40〜80/分、ケイデンス80〜160歩/分)なので、一つひとつの歩行周期を特定できる。
この特定の仕方は任意で良いが、その一方法として離散フーリエ変換を用いて概ねの周期時間を見定め、実際のデータの波形と照合する方法がある。一つのピークを起点とした場合、次のピークは前記概ねの周期時間後の近傍に存し、その中での鮮明なピークは一つに絞られるので、正確に歩行周期を特定できる。
尚、離散フーリエ変換により推定される平均周期はあくまで大凡のものであるが、その後の処理においては計測精度の低下などの問題は生じないこと、一歩行周期ではなく半歩行周期が抽出される場合の処理を追加する必要があることを付記しておく。
また、計測精度をより高める任意の工夫、例えば加速度データ取得の時間間隔に起因する誤差を補正する工夫などを加えても良い。
▲4▼抽出された各踵接地時刻から歩行周期を算定し、CVの定義に基づき、その平均値との差分の標準偏差を求めて、当該前記平均値に対する割合をCVとする。
A method for calculating CV with high accuracy using a terminal including a three-axis acceleration sensor will be described.
(1) CV is measured by consciously walking rhythmically on a flat walking surface.
The terminal is stored in a pocket of clothing that is in contact with the thigh, and triaxial acceleration data for a certain time or a certain number of steps during walking is obtained. When storing, a special fixing device is not required, and the posture of the terminal is arbitrary.
Although the acceleration data acquisition time interval is generally constant, for example, it is not 21.5 milliseconds or 18.3 milliseconds. Nevertheless, it has been confirmed that there is no problem in calculating CV through the following algorithm.
Note that the length of this approximate time interval can be selected by a program.
In addition, a method of storing the terminal in a pocket in contact with another body part instead of the thigh is not excluded, but measurement accuracy and accuracy stability are inferior depending on the part in contact. In actual trials, when the measurement is performed with the west part of the center of the abdomen of the trousers being fixed without being fixed, the position is likely to be displaced, so the calculated accuracy is often greatly lowered and is not stable. While an ankle pocket is desirable, there is not much such clothing.
{Circle around (2)} The acceleration in the direction of gravity is calculated from the value of this three-axis acceleration sensor.
One method is to use a three-axis magnetic sensor together and convert the value of the three-axis acceleration sensor to the world coordinate system to obtain vertical acceleration. For example, the Android terminal has a getRotationMatrix () method and a remapCoordinateSystem () method, which calculates the acceleration vector in the gravitational direction by calculating the tilt of the terminal in the world coordinate system from the 3-axis acceleration data and 3-axis magnetic intensity data. it can. However, it should be noted that the sensor value includes a measurement error, and that the error is likely to increase when the calculation is complicated due to magnetic strength or the like.
Another simpler method is to replace the gravity vector with the average value of a sufficient number of three-axis acceleration sensors for several seconds or more and calculate the gravity direction vector component at each time from the inner product theorem. . In this case, although there is a slight difference from the original gravity vector, it has been confirmed that no problem occurs in the calculation.
Acceleration vector at time Ti: (Xi, Yi, Zi) Gravity vector: (Xave, Yave, Zave)
However, Xave, Yave, and Zave are average values of Xi, Yi, and Zi of the three axes,
Gravity vector length: Lg = √ (Xave 2 + Yave 2 + Zave 2 ) ≈9.8 m / ss
Acceleration vector length at time Ti: Li = √ (Xi 2 + Yi 2 + Zi 2 )
Gravity direction vector length at time Ti: Lgi = Li * cos θ = (Xave * Xi + Yave * Yi + Zave * Zi) / Lg
Li * cosθ is a positive value when the acceleration vector at time Ti is in the same direction as the gravity vector, and a negative value when the acceleration vector is in the opposite direction, so the terminal is stored upside down. Even so, the measured waveform is the same.
In order to calculate the gravity direction vector length, most of the recoil when the impacted terminal collides with the side pocket wall is excluded. In a similar calculation, instead of using the direction of gravity, instead of simply using the vector length of the acceleration vector obtained from the three-axis acceleration sensor at each time, there is a method that cannot be recommended because it causes a reduction in measurement accuracy.
Further, although there is a method of supplementing the measurement error of the acceleration sensor by using a low-pass filter depending on the invention, the low-pass filter has a large influence on the peak time of the waveform, so that the error can be easily enlarged and this is not recommended.
(3) From the time-series transition of the vector length in the gravitational direction (waveform drawn by the gravitational direction vector length), the peak is extracted as the ground contact period.
That is, the time when a large vertical reaction force is received is defined as the heel contact period (load response period).
The observed waveform is not a waveform like a sine wave, but generally a waveform as shown in FIG. 3-1, but the period during normal walking is 750 milliseconds or more and less than 1,500 milliseconds (walking cycle number 40 to 40). 80 / min, cadence 80-160 steps / min), so that each walking cycle can be specified.
This specific method may be arbitrary, but as one method there is a method of determining an approximate cycle time using a discrete Fourier transform and collating with an actual data waveform. When one peak is set as the starting point, the next peak exists in the vicinity after the above-mentioned approximate cycle time, and the clear peak in the peak is narrowed down to one, so that the walking cycle can be specified accurately.
Note that the average period estimated by the discrete Fourier transform is only an approximate one, but there is no problem such as a decrease in measurement accuracy in the subsequent processing, and a half-walking period is extracted instead of one walking period. Note that it is necessary to add the process.
In addition, an arbitrary device that further increases the measurement accuracy, for example, a device that corrects an error caused by a time interval of acceleration data acquisition may be added.
{Circle around (4)} The walking cycle is calculated from each of the extracted contact times, and the standard deviation of the difference from the average value is obtained based on the definition of CV, and the ratio to the average value is defined as CV.

次に、端末をポケットに収納して計測する場合に、同一条件下での計測を自動的に実現する方法を記す。計測の同一条件は、停止時から歩行に入った直後の加速期間を経た後の、一定速度の安定歩行区間における、一定秒数ないし一定歩数での計測とする。
例えば10秒を計測対象とする場合、CVは偶数の歩数でしか算出できないため、秒数で定めるのであれば『10秒以内の偶数の歩数』というような表現が正確なものになる。
計測ボタン操作ないしアプリ起動操作後、一律時間経過後の計測開始とすると0012項のような問題が生じるため、生じた状況に自動的に対応する以下の機能を備える。
▲1▼アプリ起動後ないしはアプリの計測ボタン操作後、加速度センサの値から自動的に歩行開始動作を検出する。
停止状態で端末を手にして、それをポケットに仕舞う動作を経て歩き始める。その間、端末の位置も姿勢も大きく変わるが、ポケットに仕舞うときに受ける衝撃を除くと、歩行開始まで端末が受ける加速度は重力方向に9.8m/ss近い値が続く。
加速度ベクトル長√(Xi*Xi+Yi*Yi+Zi*Zi)を算出する。
▲2▼歩き始めると、前記加速度ベクトル長は周期的に大きい値を示し始める。
一度大きい値を示しても再び小さい値に戻り続ければ静止状態、3秒程度など一定時間(加速期間)、1秒前後、最大でも1.5秒以内の間隔で周期的に大きい値を示し続けると安定歩行に入ったと判別できる。この判別の閾値設定は任意である。
この▲1▼、▲2▼のステップは、加速度ベクトル長に代えて、垂直方向加速度ベクトルを用いても良いし、STEP_DETECTORやSTEP_COUNTERなどの歩数計測機能を用いても良い。
▲3▼安定歩行に入ってからの一定区間(時間ないしは歩数)で計測する。
被計測者には、歩き始める前に端末をゆっくりとポケットに仕舞ってよいことを伝え、歩き始めたら一定歩数歩くよう指示する。
この一定歩数は、計測対象となる歩数、その前の加速期間の歩数、計測終了〜停止までの減速区間の歩数を足し合わせた歩数を若干上回る歩数とする。“一定時間”を指示しても、時計を見ていない限り被計測者は時間が把握できないため、一定歩数とする。
端末側では操作から歩行終了までの時間を予め確定できないが、十分な時間幅で加速度データを収集する、1秒毎に停止したか否かを判定するなどの方法でも対処できる。
以上で、人によって、またそのときどきによってポケットへの端末収納動作時間は異なるものの、同一条件での計測が可能になる。
Next, a method for automatically realizing measurement under the same conditions when the terminal is housed in a pocket for measurement will be described. The same measurement condition is a measurement at a fixed number of seconds or a fixed number of steps in a stable walking section at a constant speed after an acceleration period immediately after entering a walk from a stop.
For example, when measuring 10 seconds, the CV can be calculated only with an even number of steps. Therefore, if it is determined by the number of seconds, an expression such as “an even number of steps within 10 seconds” becomes accurate.
Since the problem as described in item 0012 occurs when the measurement is started after a uniform time has elapsed after the measurement button operation or the application activation operation, the following functions are provided that automatically correspond to the situation that has occurred.
(1) After starting the application or operating the measurement button of the application, the walking start operation is automatically detected from the value of the acceleration sensor.
Hold the terminal in a stopped state and start walking through the action of putting it in your pocket. In the meantime, the position and posture of the terminal change greatly, but the acceleration received by the terminal until the start of walking continues to a value close to 9.8 m / ss until the start of walking, excluding the impact that is received when the pocket is finished.
The acceleration vector length √ (Xi * Xi + Yi * Yi + Zi * Zi) is calculated.
(2) When walking begins, the acceleration vector length starts to show a large value periodically.
Once it shows a large value, if it continues to return to a small value again, it will continue to show a large value periodically at intervals of a fixed time (acceleration period) such as about 3 seconds (around 1 second), at most 1.5 seconds It can be determined that it has entered stable walking. The threshold value for this determination is arbitrary.
In steps (1) and (2), a vertical acceleration vector may be used instead of the acceleration vector length, or a step count measuring function such as STEP_DETECTOR or STEP_COUNTER may be used.
(3) Measure in a certain section (time or number of steps) after entering stable walking.
Inform the person being measured that the terminal can be slowly put into the pocket before starting to walk, and instruct him to walk a certain number of steps when he starts walking.
This fixed number of steps is a number of steps that slightly exceeds the number of steps to be added, the number of steps to be measured, the number of steps in the previous acceleration period, and the number of steps in the deceleration section from the end of measurement to the stop. Even if “fixed time” is instructed, the measured person cannot grasp the time unless he / she is looking at the clock.
Although the time from the operation to the end of walking cannot be determined in advance on the terminal side, it can be dealt with by a method such as determining whether or not the vehicle stops every second by collecting acceleration data with a sufficient time width.
As described above, although the terminal storage operation time in the pocket varies depending on the person and sometimes, measurement under the same conditions becomes possible.

計測に際しては、被計測者は意識的にリズミカルに歩くようにするのであるが、路面の状態やその他の何かの要因で、ふとした拍子にリズムを失い大きなCV値が計測される場合がある。逆に、たまたま一度だけ非常に良いCV値が計測されても、なかなか再現できない場合もありうる。このように、たまたま生じた高い値や低い値の計測値を恣意的に選択してしまっては適切な評価はできない。
悪化であれ改善であれCVの経時的変化を見るには、計測精度の高さと共に、その被計測者の再現性のあるCV値を比較することが望まれる。
再現性のあるCV値の抽出の仕方は任意で良いが、例えば一定回数の計測値において、上位一定数の内、最も低いCV値を除いた計測値の平均値をとるというような形で評価する方法が考えられる。
そのように考えると、計測精度の高さと共に、計測精度の安定性も重要であることが分かる。本発明の方法は、図4の計測例に見るように安定して高精度を維持できており、経時的な変化を把握することが可能である。
計測したCVデータは計測時刻情報と併せて20解析装置に送信、保管され、一定期間毎に経時的な変化が解析される。解析と評価の方法は任意である。
In the measurement, the person to be measured consciously walks rhythmically, but due to the road surface condition or some other factor, there is a case where a large CV value is measured due to loss of rhythm. Conversely, even if a very good CV value is measured only once, it may be difficult to reproduce. As described above, if a high or low measurement value that happens to be generated is arbitrarily selected, an appropriate evaluation cannot be performed.
In order to see the change in CV over time, whether it is deterioration or improvement, it is desirable to compare the reproducible CV value of the measurement subject with the high measurement accuracy.
The method of extracting the reproducible CV value may be arbitrary, but for example, in a certain number of measurement values, the average value of the measurement values excluding the lowest CV value of the upper fixed number is taken. A way to do this is conceivable.
In this way, it can be seen that the stability of the measurement accuracy is important as well as the high measurement accuracy. The method of the present invention can stably maintain high accuracy as seen in the measurement example of FIG. 4 and can grasp changes with time.
The measured CV data is transmitted to and stored in the 20 analyzer together with the measurement time information, and changes over time are analyzed at regular intervals. Analysis and evaluation methods are arbitrary.

端末を2つ用意し、両脇のポケットに一つずつ収納し、同時に計測する。左右の歩行バランスが等しければ、図3−1に類した二つのグラフはほぼ一致するはずであるが、バランスが崩れていると、一歩行周期の間に観測される反対側の踵接地の時間のズレの程度は一致しない。この相違の程度を評価指標として、左右バランスを評価することもできる。  Prepare two terminals, store them in the pockets on both sides, and measure them simultaneously. If the left and right walking balances are equal, the two graphs similar to those in Fig. 3-1 should almost match, but if the balance is lost, the opposite side of the heel contact time observed during one walking cycle The degree of deviation does not match. The left / right balance can also be evaluated using the degree of this difference as an evaluation index.

発明の効果The invention's effect

本発明により、高齢者でも本発明のアプリを備えたスマホだけで簡単に高精度のCVを計測でき、計測を容易に繰り返して信頼性の高い評価指標が得られる。
二重課題など何らかの負荷を与えた場合の相違も信頼性の高い評価が可能になる。
その結果、0003項の既存研究などの基準と照らし合わせ、自分の歩行能力の立ち位置が分かる。また、継続的に計測し続けることで、経時的な変化、即ち年齢あるいは疾病による悪化、何らかの介入による改善効果を評価できる。介入策としては、二重課題、運動、サプリ摂取、食生活改善、社会活動など様々なものが考えられる。
理由が分からず突発的にCVが悪化した場合は、何らかの体調不良の可能性が想起され、対処の切っ掛けとすることができる。「なんとなく調子が悪い」では見過ごしがちでも、数値で確認できれば的確な判断に結び付けられる。
酒に酔った際のふらつき度を測る手段としても有意である。
同一基準で安価に多人数のデータ取集が可能になるため、老年症候群など様々な疾病とCVの関係性の研究を推進できる。
According to the present invention, a highly accurate CV can be easily measured even by an elderly person using only a smartphone equipped with the application of the present invention, and a highly reliable evaluation index can be obtained by easily repeating the measurement.
Differences in the case of applying some load such as a double task can be evaluated with high reliability.
As a result, the standing position of one's walking ability can be understood in comparison with the existing research standards in 0003. In addition, by continuously measuring, it is possible to evaluate changes over time, that is, deterioration due to age or disease, and improvement effects due to some kind of intervention. There are various interventions such as dual tasks, exercise, supplement intake, dietary improvement, and social activities.
If the CV suddenly deteriorates without knowing the reason, there is a possibility of some poor physical condition, which can be used as a countermeasure. Even though it is often overlooked in “somehow unwell”, if it can be confirmed by numerical values, it will lead to accurate judgment.
It is also significant as a means of measuring the degree of wandering when drunk.
Since it is possible to collect data for a large number of people at low cost under the same standard, research on the relationship between various diseases such as geriatric syndrome and CV can be promoted.

機器の構成図  Device configuration diagram 計測の流れ  Measurement flow 計測機器の保持位置の違いによる重力方向加速度の推移  Changes in acceleration in the gravitational direction due to differences in the holding position of measuring instruments 計測結果の事例  Examples of measurement results

被計測者(以下、単に被計測者という)は、停止状態で10計測装置を手に持ち、本発明のアプリを起動するか、ないしは同アプリの計測操作ボタンを押し、10計測装置を大腿部に接した衣類のポケットに固定せずに収納する。
14演算部は、11加速度センサの値から被計測者の歩行開始を自動判別し、歩行開始後数秒の加速期間の後の一定時間の加速度センサ、ないしは加速度センサと磁気センサの値(以下、単に計測データという)を取得する。次に、当該計測データに基づき各時刻の重力方向加速度からCVを算出し、そのCVデータと計測時刻データを併せて13通信装置から23通信装置に送信する。20解析装置では、受信データを21記憶部に保存し、同時期の複数のCVデータから再現性のある値(以下、評価指標という)を抽出し、当該評価指標を21記憶部に保存し、22解析部で当該評価指標と推移を評価する。
算出された評価指標は13通信装置に送信され、10計測装置の画面に表示される。
A person to be measured (hereinafter simply referred to as a person to be measured) holds the 10 measurement apparatus in his / her hand and starts the application of the present invention or presses the measurement operation button of the application, and places the 10 measurement apparatus on the thigh. Store without fixing in the pocket of clothing that touches the part.
The 14 calculating unit automatically determines the start of walking of the person to be measured from the value of the 11 acceleration sensor, and the acceleration sensor for a certain time after the acceleration period of several seconds after the start of walking, or the values of the acceleration sensor and the magnetic sensor (hereinafter simply referred to as “acceleration sensor”) Get measurement data). Next, CV is calculated from the acceleration in the gravitational direction at each time based on the measurement data, and the CV data and the measurement time data are combined and transmitted from the 13 communication device to the 23 communication device. In the 20 analyzer, the received data is stored in the 21 storage unit, a reproducible value (hereinafter referred to as an evaluation index) is extracted from a plurality of CV data at the same time, and the evaluation index is stored in the 21 storage unit. 22 The evaluation unit evaluates the evaluation index and the transition.
The calculated evaluation index is transmitted to 13 communication devices and displayed on the screen of 10 measuring devices.

10 計測装置 11 加速度センサ 12 磁気センサ 13 通信装置20 解析装置 21 記憶部 22 解析部 23 通信装置DESCRIPTION OF SYMBOLS 10 Measurement apparatus 11 Acceleration sensor 12 Magnetic sensor 13 Communication apparatus 20 Analysis apparatus 21 Storage part 22 Analysis part 23 Communication apparatus

Claims (1)

加速度センサを備えた計測機器を脚部に接した衣類のポケットに置き、歩行開始時刻を自動的に検出し、当該歩行開始検出時刻から一定時間経過後の一定偶数歩数を計測対象とすることで計測条件を揃え、当該計測対象において自動的に、加速度センサの値から一つひとつの歩行周期を特定し、当該一つひとつの歩行周期から歩行周期変動係数を算出する方法。前記一定偶数歩数は、『一定時間内の最大偶数歩数』と読み替えても良い。  By placing a measuring device equipped with an acceleration sensor in a pocket of clothing in contact with the leg, automatically detecting the start time of walking, and measuring a certain even number of steps after a certain period of time has elapsed from the start time of walking detection A method of aligning measurement conditions, automatically specifying each walking cycle from the value of the acceleration sensor in the measurement target, and calculating a walking cycle variation coefficient from each walking cycle. The certain even number of steps may be read as “maximum even number of steps within a certain time”.
JP2018087613A 2018-04-12 2018-04-12 Walking cycle variation measurement device Pending JP2019181115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087613A JP2019181115A (en) 2018-04-12 2018-04-12 Walking cycle variation measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087613A JP2019181115A (en) 2018-04-12 2018-04-12 Walking cycle variation measurement device

Publications (1)

Publication Number Publication Date
JP2019181115A true JP2019181115A (en) 2019-10-24

Family

ID=68338559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087613A Pending JP2019181115A (en) 2018-04-12 2018-04-12 Walking cycle variation measurement device

Country Status (1)

Country Link
JP (1) JP2019181115A (en)

Similar Documents

Publication Publication Date Title
Zago et al. Gait evaluation using inertial measurement units in subjects with Parkinson’s disease
KR102010898B1 (en) System and method for Gait analysis
Jasiewicz et al. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals
Lee et al. Quasi real-time gait event detection using shank-attached gyroscopes
EP3076870B1 (en) Method and apparatus for determining the orientation of an accelerometer
JP6771162B2 (en) Cognitive function evaluation device, cognitive function evaluation method and program
JP6516283B2 (en) Motion analysis device
JP2015062654A (en) Gait estimation device, program thereof, stumble risk calculation device and program thereof
Lockhart et al. Portable, non-invasive fall risk assessment in end stage renal disease patients on hemodialysis
US20140142466A1 (en) Physical motion detecting device and control method for physical motion detecting device
Tamura Wearable inertial sensors and their applications
Mileti et al. Gait partitioning methods in Parkinson's disease patients with motor fluctuations: A comparative analysis
Kong et al. Comparison of gait event detection from shanks and feet in single-task and multi-task walking of healthy older adults
JP2016106948A (en) Step-counting device, walking function determination device, and step-counting system
JP7289246B2 (en) Lower-limb muscle strength evaluation method, lower-limb muscle strength evaluation program, lower-limb muscle strength evaluation device, and lower-limb muscle strength evaluation system
Rantalainen et al. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals
KR102039236B1 (en) Indicator Derivatives, Wearables, and Mobile Devices
JP6796772B2 (en) Exercise test evaluation system, exercise test evaluation device, exercise test evaluation method and computer program
Huang et al. Wearable Sensor for Measurement of Gait Walking and Running Motion.
Allen et al. Evaluation of fall risk for post-stroke patients using bluetooth low-energy wireless sensor
US20150150491A1 (en) Movement estimation device, and activity tracker
JP2019181115A (en) Walking cycle variation measurement device
Bertuletti et al. Inter-leg distance measurement as a tool for accurate step counting in patients with multiple sclerosis
Hwang et al. Real-time gait event detection using a single head-worn inertial measurement unit
Horner et al. The effect of anatomical placement and trunk adiposity on the reliability and validity of triaxial accelerometer output during treadmill exercise