JP2019178954A - Seawater cooling system - Google Patents

Seawater cooling system Download PDF

Info

Publication number
JP2019178954A
JP2019178954A JP2018068364A JP2018068364A JP2019178954A JP 2019178954 A JP2019178954 A JP 2019178954A JP 2018068364 A JP2018068364 A JP 2018068364A JP 2018068364 A JP2018068364 A JP 2018068364A JP 2019178954 A JP2019178954 A JP 2019178954A
Authority
JP
Japan
Prior art keywords
seawater
water
fresh water
heat exchanger
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018068364A
Other languages
Japanese (ja)
Other versions
JP6858156B2 (en
Inventor
康次郎 西分
Kojiro Nishiwake
康次郎 西分
省三 窪田
Shozo Kubota
省三 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2018068364A priority Critical patent/JP6858156B2/en
Priority to GB1904270.4A priority patent/GB2574299B/en
Priority to GB2005292.4A priority patent/GB2580573B/en
Publication of JP2019178954A publication Critical patent/JP2019178954A/en
Application granted granted Critical
Publication of JP6858156B2 publication Critical patent/JP6858156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/035Moderator- or coolant-level detecting devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

To provide a seawater cooling system such as auxiliary machine cooling seawater system, capable of continuously operating without stopping the operation of the auxiliary machine cooling water, even if becoming unable to take seawater.SOLUTION: The seawater cooling system comprises: a heat exchanger 101 removing heat from cooling fluid via seawater; a water supply line 202 supplying the seawater taken from the sea into a heat exchanger; a water discharge line 204 discharging, to the sea, the seawater to which heat is transferred via the cooling fluid by the heat exchanger; and a fresh water circulation cooling device connected to the water supply line and the water discharge to be aligned in parallel with the heat exchanger, and circulating and discharging fresh water to the heat exchanger as well as cooling the fresh water absorbing heat in the heat exchanger. When an abnormality occurs in taking seawater, water intake into the heat exchanger is switched from the seawater to fresh water of the fresh water circulation cooling device, a specified quantity of fresh water is supplied from the fresh water circulation cooling device to the heat exchanger, seawater in quantity corresponding to the quantity of the supplied fresh water is discharged through the water discharge line, and then the fresh water circulation cooling device is configured to circulate and cool the fresh water in the heat exchanger.SELECTED DRAWING: Figure 1

Description

本発明は、火力発電所や原子力発電所で用いられている補機冷却海水系等の海水冷却システムに関する。   The present invention relates to a seawater cooling system such as an auxiliary machine cooling seawater system used in thermal power plants and nuclear power plants.

火力発電所や原子力発電所では、蒸気タービンから排気された蒸気を海水により復水して原子炉圧力容器や蒸気発生器、ボイラーに戻すとともに、発電所内の熱機器や回転機器を健全に動作させるための除熱系統である原子炉補機冷却水系やタービン補機冷却水系の冷却水の除熱にも海水を用いている。
このため、海岸に海水の取水設備が設けられ、海水が、取水口からポンプにより汲み上げられて、蒸気や補機冷却水を除熱した後に海に排水されている。(以後、これらを補機冷却海水系と呼ぶ)
In thermal power plants and nuclear power plants, the steam exhausted from the steam turbine is condensed with seawater and returned to the reactor pressure vessel, steam generator, and boiler, and the thermal equipment and rotating equipment in the power plant are operated soundly. Seawater is also used to remove heat from the cooling water in the reactor auxiliary cooling water system and the turbine auxiliary cooling water system, which are heat removal systems.
For this reason, seawater intake facilities are provided on the shore, and the seawater is pumped up from the intake port by a pump, and is discharged into the sea after removing heat from steam and auxiliary coolant. (Hereafter, these are called auxiliary cooling seawater systems)

取水口には、取水する海水の塵芥を除去するためにスクリーンが設けられているが、大量に発生した藻やクラゲ等の異物により取水口に設けられたスクリーンが閉塞して、補機冷却海水系の海水取水が制限されることがある。
また、海水を汲み上げるポンプの定期検査のため、補機冷却海水系のポンプを停止することがある。
The intake port is provided with a screen to remove the debris of the seawater to be taken in, but the screen provided at the intake port is blocked by a large amount of foreign matter such as algae and jellyfish. System water intake may be limited.
In addition, auxiliary equipment cooling seawater system pumps may be stopped for periodic inspection of pumps that pump seawater.

一方、原子炉補機冷却水系やタービン補機冷却水系等の補機設備には、冷却を停止できないものがある。例えば、原子力発電所では、冷温停止後も原子炉の崩壊熱を冷却する残留熱除去系は停止できない。このため、残留熱除去系の冷却水の除熱を行うための海水の取水は原則として停止できない。   On the other hand, some auxiliary equipment such as a reactor auxiliary cooling water system and a turbine auxiliary cooling water system cannot stop cooling. For example, in a nuclear power plant, a residual heat removal system that cools the decay heat of a nuclear reactor cannot be stopped even after a cold shutdown. For this reason, in principle, seawater intake for removing heat from the cooling water in the residual heat removal system cannot be stopped.

海水の取水を停止するために、例えば、特許文献1では、補機冷却海水系を冷凍機により冷却液の除熱を行う冷却水循環系で代替するシステムが開示され、定期検査時にも原子炉補機冷却水系の運転を行えるようにしている。   In order to stop the intake of seawater, for example, Patent Document 1 discloses a system in which an auxiliary machine cooling seawater system is replaced by a cooling water circulation system that removes heat from a cooling liquid using a refrigerator, and the auxiliary reactor is also used during periodic inspections. The machine cooling water system can be operated.

詳しくは、特許文献1には、従来の補機冷却海水系に加えて、隔離弁によって隔離された空冷式冷凍機と、循環ポンプと、前記循環ポンプ吸込み圧力確保のためのサージタンクを有し、定期検査時に補機冷却海水系の代替冷却を実施する際は、補機冷却水系熱交換器を取水側から隔離後に、熱交換器内の海水抜き及び清掃を行い、循環ポンプによって淡水を通水することで空冷式冷凍機経由のループ冷却を実現することが開示されている。   Specifically, Patent Document 1 includes an air-cooled refrigerator isolated by an isolation valve, a circulation pump, and a surge tank for securing the circulation pump suction pressure in addition to the conventional auxiliary cooling seawater system. When carrying out alternative cooling of the auxiliary equipment cooling seawater system during periodic inspections, after removing the auxiliary equipment cooling water system heat exchanger from the water side, drain and clean the seawater in the heat exchanger, and pass fresh water through the circulation pump. It has been disclosed to realize loop cooling via an air-cooled refrigerator by watering.

特開2002−257972号公報JP 2002-257972 A

特許文献1の技術によれば、海水により補機冷却水系の冷却水の除熱を行う補機冷却海水系を、冷凍機により除熱を行う閉ループ淡水冷却に代替できるが、切替えの際に補機冷却水系熱交換器を海水側から一時隔離し、熱交換機器・配管内の水抜きおよび清掃を手順として実施しなくてはならないため、熱交換ができない時間が生じ、連続的な運転を行うことができない問題がある。   According to the technique of Patent Document 1, the auxiliary equipment cooling seawater system that removes heat from the cooling water of the auxiliary equipment cooling water system by seawater can be replaced by closed-loop freshwater cooling that removes heat from the refrigerator. The machine cooling water system heat exchanger must be temporarily isolated from the seawater side, and the heat exchange equipment and piping must be drained and cleaned as a procedure. There is a problem that can not be.

この切替え時間の短縮のために、冗長構成の熱交換機器の予備機(待機機)を予め水抜きおよび清掃しておくことが考えられるが、この場合には、切替え後の熱交換容量(除熱量)を維持するために、冗長構成の熱交換機器の本番機と予備機(待機機)の台数を同じにする必要があり、設備が大型化する問題がある。   In order to shorten the switching time, it may be possible to drain and clean the spare unit (standby unit) of the redundantly configured heat exchange device in advance. In order to maintain the amount of heat), it is necessary to make the number of production units and standby units (standby units) of the heat exchange device in a redundant configuration the same, and there is a problem that the facility becomes large.

本発明は、海水が取水できない状態になっても、補機冷却水系の運転を中断することなく、連続して運転可能な補機冷却海水系等の海水冷却システムを提供することを目的とする。   It is an object of the present invention to provide a seawater cooling system such as an auxiliary cooling seawater system that can be operated continuously without interrupting the operation of the auxiliary cooling water system even when seawater cannot be taken. .

前記課題を解決するため、本発明の海水冷却システムは、海水により冷却流体の除熱を行う熱交換器と、海から取水した海水を前記熱交換器に注水する注水ラインと、前記熱交換器で冷却流体から吸熱した海水を海に放水する放水ラインと、前記熱交換器と並列になるように前記注水ラインと前記放水ラインとに接続されて、前記熱交換器に淡水を循環注水するとともに、前記熱交換器で吸熱した淡水を冷却する淡水循環冷却装置と、を備え、海水の取水異常が生じた際に、前記熱交換器への注水を海水から前記淡水循環冷却装置の淡水に切り替えて、前記淡水循環冷却装置から前記熱交換器へ所定量の淡水注水を行い、前記淡水注水された量に相当する海水を前記放水ラインから放水した後に、前記淡水循環冷却装置が前記熱交換器に淡水を循環冷却するようにした。   In order to solve the above problems, a seawater cooling system of the present invention includes a heat exchanger that removes heat from a cooling fluid using seawater, a water injection line that injects seawater taken from the sea into the heat exchanger, and the heat exchanger. And a water discharge line for discharging seawater absorbed from the cooling fluid to the sea, and the water injection line and the water discharge line so as to be in parallel with the heat exchanger, and circulating fresh water into the heat exchanger and A fresh water circulation cooling device that cools fresh water absorbed by the heat exchanger, and when seawater intake abnormality occurs, water injection into the heat exchanger is switched from sea water to fresh water in the fresh water circulation cooling device. The fresh water circulation cooling device performs a predetermined amount of fresh water injection from the fresh water circulation cooling device to the heat exchanger, and discharges seawater corresponding to the amount of the fresh water injected from the water discharge line. Fresh water It was to circulate cooling.

本発明の補機冷却海水系等の海水冷却システムによれば、海水の取水が行えない状態になっても補機冷却水系の運転を中断する必要がないので、原子力発電所や火力発電所の可用性を向上することができる。   According to the seawater cooling system such as the auxiliary cooling seawater system of the present invention, it is not necessary to interrupt the operation of the auxiliary cooling water system even when seawater intake is not possible. Availability can be improved.

実施形態の海水冷却システムの構成を示す系統図である。It is a distribution diagram showing the composition of the seawater cooling system of an embodiment. 実施形態の海水冷却システムの状態遷移を示す図である。It is a figure which shows the state transition of the seawater cooling system of embodiment. 実施形態の他の淡水置換判定手段を示す図である。It is a figure which shows the other fresh water substitution determination means of embodiment. 実施形態の海水冷却システムの他構成を示す系統図である。It is a systematic diagram which shows the other structure of the seawater cooling system of embodiment.

以下、本発明の海水冷却システムの実施形態について、図面を参照しながら詳細に説明する。
≪第1実施形態≫
図1は、海水冷却システムとしての、原子力発電所における原子炉補機冷却水系の冷却水を海水で除熱する原子炉補機冷却海水系やタービン補機冷却水系の冷却水を海水で除熱するタービン補機冷却海水系の構成を示す系統図である。また、火力発電所のタービン補機冷却海水系においても、同様の構成を採ることができる。
Hereinafter, embodiments of the seawater cooling system of the present invention will be described in detail with reference to the drawings.
<< First Embodiment >>
Fig. 1 shows the seawater cooling system, which removes the cooling water from the reactor auxiliary cooling water system at the nuclear power plant using seawater, and removes the cooling water from the reactor auxiliary cooling seawater system and turbine auxiliary cooling water system from the seawater. It is a systematic diagram which shows the structure of the turbine auxiliary machine cooling seawater system which performs. Moreover, the same structure can be taken also in the turbine auxiliary equipment cooling seawater system of a thermal power plant.

熱交換器101a、101b、101c(以下、総称して熱交換器101と記す)は、補機冷却系の冷却水を注水ライン202から供給される海水により除熱する熱交換器である。熱交換器101a、101b、101cで補機冷却系の冷却水から吸熱した海水は、熱交換器出口ライン203を通って放水ライン204で海へ排水される。
注水ライン202は、海水取水弁301を介して、海水ポンプ102a、102b(以下、総称して海水ポンプ102と記す)に接続している。海水ポンプ102は、取水ライン201a、201bから汲み上げた海水を注水ライン202に供給する。
The heat exchangers 101a, 101b, and 101c (hereinafter collectively referred to as the heat exchanger 101) are heat exchangers that remove the cooling water of the auxiliary equipment cooling system from the seawater supplied from the water injection line 202. Seawater that has absorbed heat from the cooling water of the auxiliary equipment cooling system in the heat exchangers 101a, 101b, and 101c passes through the heat exchanger outlet line 203 and is discharged into the sea through the discharge line 204.
The water injection line 202 is connected to the seawater pumps 102a and 102b (hereinafter collectively referred to as the seawater pump 102) via the seawater intake valve 301. The seawater pump 102 supplies seawater pumped from the water intake lines 201 a and 201 b to the water injection line 202.

海水取水弁301は、注水ライン202に設けられ、熱交換器101への海水注入を制御する開閉弁である。
海水放水弁302は、海水を海に放水するための放水ライン204に設けられ、熱交換器101の海水放水を制御する開閉弁である。
The seawater intake valve 301 is an open / close valve that is provided in the water injection line 202 and controls injection of seawater into the heat exchanger 101.
The seawater discharge valve 302 is an open / close valve that is provided in the water discharge line 204 for discharging seawater into the sea and controls the seawater discharge of the heat exchanger 101.

海水冷却システムにおける海水により原子炉補機冷却水系やタービン補機冷却水系の冷却水を除熱する通常運転時には、海水取水弁301と海水放水弁302は、開状態となっている。
これにより、海水ポンプ102で汲み上げた海水は、注水ライン202から熱交換器101に注水され、熱交換器101で原子炉補機冷却水系やタービン補機冷却水系の冷却水から吸熱し、放水ライン204を通って海へ放水される。
During normal operation in which the seawater in the seawater cooling system removes the coolant from the reactor auxiliary machine cooling water system and the turbine auxiliary machine cooling water system, the seawater intake valve 301 and the seawater discharge valve 302 are open.
As a result, the seawater pumped up by the seawater pump 102 is poured into the heat exchanger 101 from the water injection line 202, and the heat exchanger 101 absorbs heat from the cooling water of the reactor auxiliary machine cooling water system and the turbine auxiliary machine cooling water system, and the water discharge line. It is discharged into the sea through 204.

図1の系統図では、熱交換器101は1つの熱交換器を予備器とした冗長構成となっているが、この構成に限定されるものではない。また、冗長構成でない熱交換器101を備えた補機冷却海水系でも実施形態の海水冷却システムを適用することができる。
また、海水ポンプ102も冗長構成となっているが、この構成に限定されない。
In the system diagram of FIG. 1, the heat exchanger 101 has a redundant configuration using one heat exchanger as a spare unit, but is not limited to this configuration. Further, the seawater cooling system of the embodiment can be applied even to an auxiliary machine cooling seawater system including the heat exchanger 101 that is not redundant.
The seawater pump 102 also has a redundant configuration, but is not limited to this configuration.

つぎに、異物により取水口に設けられたスクリーンが閉塞して海水の取水を制限される場合や、海水ポンプ102の故障により海水の汲み上げができなかった場合の海水冷却システムの代替運転について説明する。
この代替運転は、海水冷却システムの海水ポンプ102の定期検査時に行ってもよい。
Next, an alternative operation of the seawater cooling system will be described in the case where the screen provided at the water intake port is closed by a foreign object and the intake of seawater is restricted, or when the seawater pump 102 has failed to pump up the seawater. .
This alternative operation may be performed during periodic inspection of the seawater pump 102 of the seawater cooling system.

海水冷却システムの代替運転は、図1の系統図において、冷却塔103と淡水ポンプ104により行われる。以下、これらの構成や動作について詳細に説明する。
なお、本明細書では、冷却塔103と淡水ポンプ104と接続配管を合わせて、淡水循環冷却装置と記す。
The alternative operation of the seawater cooling system is performed by the cooling tower 103 and the fresh water pump 104 in the system diagram of FIG. Hereinafter, these configurations and operations will be described in detail.
In this specification, the cooling tower 103, the fresh water pump 104, and the connecting pipe are collectively referred to as a fresh water circulation cooling device.

冷却塔103は、上部から冷却水を滴下させて側部より外気を流入させ、冷却水の蒸発潜熱を外気により奪うことで、冷却水を除熱する冷却装置である。
冷却塔103は、例えば、特開2016-40031号公報(段落0038-0043、図1を参照)にも開示されている構造を有する。
The cooling tower 103 is a cooling device that removes the cooling water by dropping cooling water from the upper part and allowing the outside air to flow in from the side, and removing the latent heat of evaporation of the cooling water by the outside air.
The cooling tower 103 has a structure disclosed in, for example, Japanese Patent Laid-Open No. 2016-40031 (see paragraphs 0038-0043 and FIG. 1).

冷却塔103は、下部の貯水槽(特開2016-40031号公報の貯留部113に対応)に所定量の冷却水として淡水を貯水している。
詳細は後述するが、冷却塔103の貯水槽には、少なくとも、注水ライン202の海水取水弁301から熱交換器101を通って放水ライン204の海水放水弁302までの海水の流路の流路容量に相当する容量の淡水を貯水している。
The cooling tower 103 stores fresh water as a predetermined amount of cooling water in a lower water storage tank (corresponding to the storage unit 113 in JP-A-2016-40031).
Although details will be described later, the water tank of the cooling tower 103 includes at least a seawater flow path from the seawater intake valve 301 of the water injection line 202 to the seawater discharge valve 302 of the water discharge line 204 through the heat exchanger 101. A volume of fresh water equivalent to the volume is stored.

淡水ポンプ104は、冷却塔103に接続し、冷却塔103の貯水槽に貯水されている淡水を、注水ライン202を通して熱交換器101に注水するポンプである。
水位計401は、冷却塔103の貯水槽に貯水されている淡水の貯水容量を検出する。詳細は後述するが、水位計401の検出結果に応じて淡水循環冷却装置が給水する淡水容量を把握し、実施形態の海水冷却システムの系統制御を行う。
The fresh water pump 104 is a pump that is connected to the cooling tower 103 and injects fresh water stored in the water storage tank of the cooling tower 103 into the heat exchanger 101 through the water injection line 202.
The water level meter 401 detects the water storage capacity of fresh water stored in the water storage tank of the cooling tower 103. Although details will be described later, the freshwater circulation cooling device supplies the freshwater capacity according to the detection result of the water level gauge 401 and performs system control of the seawater cooling system of the embodiment.

上記の冷却塔103と淡水ポンプ104とを備えた淡水循環冷却装置は、吐出側(淡水ポンプ104の吐出側)の淡水吐出ライン205に設けられた淡水吐出弁303を介して注水ライン202に接続し、吸入側(冷却塔103の吸入側)の淡水吸入ライン206に設けられた淡水吸入弁304を介して放水ライン204に接続している。   The fresh water circulation cooling device including the cooling tower 103 and the fresh water pump 104 is connected to the water injection line 202 via a fresh water discharge valve 303 provided in the fresh water discharge line 205 on the discharge side (discharge side of the fresh water pump 104). The fresh water suction valve 304 provided in the fresh water suction line 206 on the suction side (the suction side of the cooling tower 103) is connected to the water discharge line 204.

この接続により、淡水循環冷却装置と熱交換器101との間で、淡水による循環冷却流路が形成されている。つまり、熱交換器101で補機冷却水系の冷却水から吸熱した淡水が、淡水循環冷却装置の冷却塔103で除熱され、淡水ポンプ104により淡水が熱交換器101に注水されて循環を行う。   By this connection, a circulation cooling flow path using fresh water is formed between the fresh water circulation cooling device and the heat exchanger 101. That is, the fresh water that has absorbed heat from the cooling water of the auxiliary cooling water system by the heat exchanger 101 is removed by the cooling tower 103 of the fresh water circulation cooling device, and the fresh water is injected into the heat exchanger 101 by the fresh water pump 104 for circulation. .

詳しくは、代替運転時には、淡水循環冷却装置と熱交換器101との間で淡水による循環冷却流路が形成するように、淡水吐出弁303と淡水吸入弁304を淡水が通流するように開状態とし、海水を注水しないように海水取水弁301を閉状態とし、淡水が海に放水されないように海水放水弁302を閉状態とする。海水ポンプ102が停止状態であることは言うまでもない。
これにより、海水が取水できない状態でも、淡水循環冷却装置によって補機冷却水系の冷却水の除熱を行うことができる。
Specifically, during the alternative operation, the fresh water discharge valve 303 and the fresh water intake valve 304 are opened so that fresh water flows so that a fresh water circulation cooling channel is formed between the fresh water circulation cooling device and the heat exchanger 101. The seawater intake valve 301 is closed so that seawater is not poured, and the seawater discharge valve 302 is closed so that fresh water is not discharged into the sea. Needless to say, the seawater pump 102 is stopped.
Thereby, even if seawater cannot be taken, the cooling water of the auxiliary machine cooling water system can be removed by the fresh water circulation cooling device.

淡水循環冷却装置に貯水または循環する淡水は、海水であってもよいが、貯水や循環に伴う海水の腐敗や、異物の付着、析出物の発生等により、淡水循環冷却装置に悪影響を及ぼす恐れがあるため、淡水や純水を使用することが望ましい。
また、冷却塔103は、媒体が大気と接触する開放型となるため、細菌汚染を引き起こす可能性がある。このため、淡水を使用する場合でも、塩素剤等の薬剤を投入することが望ましい。
The fresh water stored or circulated in the fresh water circulating cooling device may be seawater, but there is a risk of adverse effects on the fresh water circulating cooling device due to the decay of seawater, foreign matter adhesion, or generation of precipitates during storage or circulation. Therefore, it is desirable to use fresh water or pure water.
Moreover, since the cooling tower 103 is an open type in which the medium comes into contact with the atmosphere, there is a possibility of causing bacterial contamination. For this reason, even when fresh water is used, it is desirable to add a chemical such as a chlorine agent.

上記では、水位計401により、淡水循環冷却装置が給水する淡水容量を把握すると述べたが、水位計401に替えて、淡水吐出ライン205に図示しない流量計を設け、時間積分により淡水循環冷却装置が給水する淡水容量を把握するようにしてもよい。
淡水循環冷却装置が給水する淡水容量を把握できるセンサであれば、水位計401や流量計に限定されない。
In the above, it has been described that the fresh water circulation cooling device supplies the fresh water capacity by the water level meter 401. Instead of the water level meter 401, a fresh water discharge line 205 is provided with a flow meter (not shown), and the fresh water circulation cooling device is integrated by time integration. You may make it grasp | ascertain the fresh-water capacity | capacitance which water supplies.
If it is a sensor which can grasp | ascertain the fresh water capacity | capacitance which a fresh water circulation cooling device supplies, it will not be limited to the water level meter 401 or a flow meter.

ところで、冷却塔103は、蒸発潜熱を利用した開放型の冷却装置のため、運転中に、淡水の容量が減少する。また、待機状態においても、蒸発により淡水の容量が減少する。
淡水の補給機構を設けて、水位計401により一定量の淡水を貯水するようにすることが望ましい。
By the way, the cooling tower 103 is an open type cooling device that uses latent heat of vaporization, so the capacity of fresh water decreases during operation. Even in the standby state, the capacity of fresh water is reduced by evaporation.
It is desirable to provide a fresh water replenishment mechanism and store a certain amount of fresh water by the water level gauge 401.

つぎに、図1に示した海水冷却システムとしての原子炉補機冷却海水系やタービン補機冷却水系の運転状態の遷移を図2により説明する。
実施形態の海水冷却システムは、海水により原子炉補機冷却水系やタービン補機冷却水系の冷却水を除熱する通常運転の状態(S21)と、冷却塔103と淡水ポンプ104を有する淡水循環冷却装置と熱交換器101との間で、淡水を循環して原子炉補機冷却水系やタービン補機冷却水系の冷却水を除熱する代替運転の状態(S23)を有する。
Next, transition of the operation state of the reactor auxiliary cooling seawater system and the turbine auxiliary cooling water system as the seawater cooling system shown in FIG. 1 will be described with reference to FIG.
The seawater cooling system of the embodiment includes a normal operation state (S21) in which the cooling water in the reactor auxiliary machine cooling water system and the turbine auxiliary machine cooling water system is removed by seawater, and a fresh water circulation cooling having the cooling tower 103 and the fresh water pump 104. There is an alternative operation state (S23) in which fresh water is circulated between the apparatus and the heat exchanger 101 to remove heat from the cooling water in the reactor auxiliary machine cooling water system and the turbine auxiliary machine cooling water system.

さらに、海水冷却システムが通常運転の状態(S21)から代替運転の状態(S23)に遷移する際には、熱交換器101の通流水が、海水から淡水に連続して替わるように、海水取水弁301と海水放水弁302と淡水吐出弁303と淡水吸入弁304の開閉状態を設定する入替運転の状態(S22)を経由する。
この入替運転の状態(S22)は、つぎに説明するように、熱交換器101の海水を淡水循環冷却装置に貯水した淡水で押し出す運転状態となっている。
Furthermore, when the seawater cooling system transitions from the normal operation state (S21) to the alternative operation state (S23), the seawater intake is so that the water flowing through the heat exchanger 101 is continuously changed from seawater to fresh water. It goes through the replacement operation state (S22) for setting the open / close state of the valve 301, the seawater discharge valve 302, the freshwater discharge valve 303, and the freshwater intake valve 304.
As described below, this replacement operation state (S22) is an operation state in which seawater in the heat exchanger 101 is pushed out with fresh water stored in the freshwater circulation cooling device.

通常運転の状態(S21)の海水冷却システムでは、淡水循環冷却装置の冷却塔103の貯水槽には、少なくとも、注水ライン202の海水取水弁301から熱交換器101を通って放水ライン204の海水放水弁302までの海水の流路の流路容量に相当する容量の淡水を貯水している。   In the seawater cooling system in the normal operation state (S21), at least the seawater tank of the cooling tower 103 of the fresh water circulation cooling device has seawater in the discharge line 204 through the heat exchanger 101 from the seawater intake valve 301 of the water injection line 202. Fresh water having a volume corresponding to the flow path capacity of the seawater flow path up to the water discharge valve 302 is stored.

そして、海水冷却システムは、異物により取水口に設けられたスクリーンが閉塞して海水の取水を制限される場合や、海水ポンプ102の故障により海水の汲み上げができない状態を検出すると、“海水取得停止”の状態遷移条件が成立し、入替運転の状態(S22)に遷移する。   When the seawater cooling system detects that the screen provided at the intake port is blocked by a foreign object and restricts the intake of seawater, or when the seawater pump 102 fails, the seawater cannot be pumped. The state transition condition “is satisfied, and the state transitions to the replacement operation state (S22).

入替運転の状態(S22)では、海水冷却システムは、海水ポンプ102を停止し、海水取水弁301を閉じて、海水の取水を停止するとともに、淡水ポンプ104を動作させ、淡水吐出弁303を開いて、冷却塔103の貯水槽に貯水された淡水を注水ライン202に注水する。この際、海水放水弁302は開のままとし、淡水吸入弁304は閉のままとして、海水を海に放水する。   In the replacement operation state (S22), the seawater cooling system stops the seawater pump 102, closes the seawater intake valve 301, stops intake of seawater, operates the freshwater pump 104, and opens the freshwater discharge valve 303. Then, the fresh water stored in the water storage tank of the cooling tower 103 is injected into the water injection line 202. At this time, the seawater discharge valve 302 remains open and the freshwater intake valve 304 remains closed, and the seawater is discharged into the sea.

入替運転の状態(S22)では、淡水ポンプ104により淡水が注水されるので、注水ライン202と熱交換器101と放水ライン204の海水は、淡水に押し出される。この際、熱交換器101の通流は継続しているので、原子炉補機冷却水系やタービン補機冷却水系の冷却水の除熱も継続して行われる。   In the replacement operation state (S22), since fresh water is injected by the fresh water pump 104, seawater in the water injection line 202, the heat exchanger 101, and the water discharge line 204 is pushed out into the fresh water. At this time, since the flow of the heat exchanger 101 is continued, the heat removal from the cooling water in the reactor auxiliary machine cooling water system and the turbine auxiliary machine cooling water system is also continued.

海水冷却システムは、水位計401により冷却塔103の貯水槽の水位を監視し、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの海水または淡水の流路の流路容量に相当する水位より大きな水位の減少を検出したか否かを継続的に判定する。   The seawater cooling system monitors the water level of the water storage tank of the cooling tower 103 with a water level gauge 401, and the seawater from the seawater intake valve 301 of the water injection line 202 to the seawater discharge valve 302 of the water discharge line 204 through the heat exchanger 101. Alternatively, it is continuously determined whether or not a decrease in the water level larger than the water level corresponding to the channel capacity of the fresh water channel is detected.

つまり、海水冷却システムは、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の海水が、淡水に置換されたか否かを判定している。海水が淡水に置換されたと判定すると、“淡水置換完了”の状態遷移条件が成立したとして、代替運転の状態(S23)に遷移する。   That is, the seawater cooling system determines whether the seawater in the flow path from the seawater intake valve 301 of the water injection line 202 to the seawater discharge valve 302 of the water discharge line 204 through the heat exchanger 101 has been replaced with fresh water. is doing. If it is determined that the seawater has been replaced with fresh water, the state transition condition “fresh water replacement complete” is established, and the state transitions to the alternative operation state (S23).

代替運転の状態(S23)では、海水冷却システムは、海水放水弁302が閉になり、淡水吸入弁304が開となるので、淡水が冷却塔103に還流する。これにより、冷却塔103で、熱交換器101で原子炉補機冷却水系やタービン補機冷却水系の冷却水から吸熱した淡水の冷却が行われ、淡水による循環冷却が行われる。   In the alternative operation state (S23), in the seawater cooling system, the seawater discharge valve 302 is closed and the freshwater intake valve 304 is opened, so that freshwater flows back to the cooling tower 103. As a result, the cooling tower 103 cools the fresh water that has absorbed heat from the cooling water of the reactor auxiliary machine cooling water system or the turbine auxiliary machine cooling water system by the heat exchanger 101, and the circulating cooling by the fresh water is performed.

代替運転の状態(S23)で海水取水が可能になると、海水冷却システムは、“海水取水開始”の状態遷移条件が成立したとして、通常運転の状態(S21)に遷移する。
通常運転の状態(S21)への遷移時では、海水冷却システムは、淡水ポンプ104を停止し、淡水吐出弁303を閉じて淡水注水を停止するとともに、海水ポンプ102を動作し、海水取水弁301を開いて海水を取水し、注水ライン202に海水を注水する。
When seawater intake becomes possible in the alternative operation state (S23), the seawater cooling system transitions to the normal operation state (S21), assuming that the state transition condition of “starting seawater intake” is satisfied.
At the time of transition to the normal operation state (S21), the seawater cooling system stops the freshwater pump 104, closes the freshwater discharge valve 303 to stop freshwater injection, operates the seawater pump 102, and operates the seawater intake valve 301. Is opened to take in seawater, and water is poured into the water injection line 202.

この通常運転の状態(S21)では、淡水吸入弁304は閉となり、海水放水弁302は開となるので、海水の注入により、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の淡水は押し出されて、海に排水され、流路は海水で満たされる。
流路が海水で満たされるまでの間も、淡水が熱交換器101を通流するので、原子炉補機冷却水系やタービン補機冷却水系の冷却水の除熱は継続する。
In this normal operation state (S21), the fresh water intake valve 304 is closed and the seawater discharge valve 302 is opened, so that seawater is injected from the seawater intake valve 301 of the water injection line 202 through the heat exchanger 101. The fresh water in the flow path to the sea water discharge valve 302 of the water discharge line 204 is pushed out and drained into the sea, and the flow path is filled with sea water.
Since fresh water flows through the heat exchanger 101 until the flow path is filled with seawater, the heat removal from the cooling water in the nuclear reactor auxiliary cooling water system and the turbine auxiliary machine cooling water system continues.

上記のように、代替運転から通常運転に状態遷移したときに、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路を満たしていた淡水が海に放水されるので、次回の代替運転に備えて、淡水循環冷却装置の冷却塔103の貯水槽に淡水の補給を行う。
この代替運転時に循環していた淡水を放水することで、熱交換器101や注水ライン202、放水ライン204の洗浄を兼ねることができる。
As described above, when the state transition is made from the alternative operation to the normal operation, the flow path from the seawater intake valve 301 of the water injection line 202 to the seawater discharge valve 302 of the water discharge line 204 through the heat exchanger 101 is satisfied. Since fresh water is discharged into the sea, fresh water is replenished to the water storage tank of the cooling tower 103 of the fresh water circulation cooling device in preparation for the next alternative operation.
By discharging the fresh water circulated during this alternative operation, the heat exchanger 101, the water injection line 202, and the water discharge line 204 can also be washed.

代替運転時に使用した淡水を海に放水せずに、淡水循環冷却装置の冷却塔103の貯水槽に還流するようにしてもよい。この場合には、海水冷却システムが代替運転から通常運転に状態遷移する間に、還流運転の状態を設ける。   You may make it return to the water tank of the cooling tower 103 of a fresh water circulation cooling device, without discharging the fresh water used at the time of alternative operation to the sea. In this case, the state of the reflux operation is provided while the seawater cooling system makes a state transition from the alternative operation to the normal operation.

この還流運転の状態では、海水冷却システムは、淡水吸入弁304が開で、海水放水弁302が閉のままで、淡水ポンプ104を停止し、淡水吐出弁303を閉じて淡水注水を停止するとともに、海水ポンプ102を動作し、海水取水弁301を開いて海水を取水し、注水ライン202に海水を注水する。
注水ライン202に海水が注水されることで、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の淡水は押し出されて、淡水吸入弁304を通って、淡水循環冷却装置の冷却塔103の貯水槽に還流する。
In this recirculation operation state, the seawater cooling system has the freshwater intake valve 304 open, the seawater discharge valve 302 remains closed, the freshwater pump 104 is stopped, the freshwater discharge valve 303 is closed, and freshwater injection is stopped. The seawater pump 102 is operated, the seawater intake valve 301 is opened to take in the seawater, and the seawater is injected into the water injection line 202.
By injecting seawater into the water injection line 202, fresh water in the flow path from the seawater intake valve 301 of the water injection line 202 to the seawater water discharge valve 302 of the water discharge line 204 through the heat exchanger 101 is pushed out, and the fresh water It returns to the water storage tank of the cooling tower 103 of the fresh water circulation cooling device through the suction valve 304.

淡水の還流量は、水位計401により冷却塔103の貯水槽の水位を検出することで求めることができる。つまり、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の流路容量に相当する水位の上昇を検出したときに、淡水の還流が完了したことを検出できる。
この淡水の還流完了を検出すると、海水冷却システムは、淡水吸入弁304を閉じ、海水放水弁302を開いて、淡水の還流を停止し、海への放水に切り替える。
The amount of fresh water recirculated can be determined by detecting the water level in the water storage tank of the cooling tower 103 with the water level gauge 401. That is, when an increase in the water level corresponding to the flow path capacity of the flow path from the seawater intake valve 301 of the water injection line 202 to the seawater discharge valve 302 of the water discharge line 204 through the heat exchanger 101 is detected, It can be detected that the reflux is complete.
When detecting the completion of the return of fresh water, the seawater cooling system closes the fresh water intake valve 304 and opens the sea water discharge valve 302 to stop the return of fresh water and switch to the water discharge to the sea.

図1に示した海水冷却システムでは、海水が取水できない状態になっても、淡水循環冷却装置の冷却塔103の貯水槽に貯水された淡水を注水するので、熱交換器101の通流が途切れることがない。
これにより、原子炉補機冷却水系やタービン補機冷却水系の冷却水の除熱が中断することがない。また、淡水に代替した後には、淡水循環冷却装置により熱交換器101を淡水の循環冷却により除熱するので、原子炉補機冷却水系やタービン補機冷却水系の動作に影響を与えることがなく運転継続できる。
In the seawater cooling system shown in FIG. 1, fresh water stored in the water storage tank of the cooling tower 103 of the freshwater circulation cooling device is injected even when seawater cannot be taken, so the flow of the heat exchanger 101 is interrupted. There is nothing.
Thereby, the heat removal of the cooling water in the reactor auxiliary coolant system and the turbine auxiliary coolant system is not interrupted. In addition, after replacing the fresh water, the heat exchanger 101 is removed by the fresh water circulation cooling by the fresh water circulation cooling device, so that the operation of the reactor auxiliary cooling water system and the turbine auxiliary cooling water system is not affected. The operation can be continued.

つぎに、図3により、海水冷却システムにおける、淡水置換の判定手段の他構成について説明する。
図3の海水冷却システムは、図1の海水冷却システムの水位計401に替えて、放水ライン204を通流する流体の電気伝導率(導電率)を検出する電気伝導率センサ402を放水ライン204の海水放水弁302の海側に設けるようにしている。
電気伝導率センサ402以外の図3の海水冷却システムは、図1と同様であり、また、通常運転の状態(図2のS21)や代替運転の状態(図2のS22)も同様であるので、ここでは説明しない。
Next, another configuration of the fresh water replacement determination unit in the seawater cooling system will be described with reference to FIG.
The seawater cooling system of FIG. 3 replaces the water level gauge 401 of the seawater cooling system of FIG. 1 with an electrical conductivity sensor 402 that detects the electrical conductivity (conductivity) of the fluid flowing through the water discharge line 204. The seawater discharge valve 302 is provided on the sea side.
The seawater cooling system of FIG. 3 other than the electrical conductivity sensor 402 is the same as that of FIG. 1, and the normal operation state (S21 of FIG. 2) and the alternative operation state (S22 of FIG. 2) are also the same. I will not explain it here.

図3の海水冷却システムは、入替運転の状態(図2のS22)で、淡水循環冷却装置の冷却塔103の貯水槽に貯水された淡水が淡水ポンプ104により注水ライン202に注入され、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の海水が押し出され、海水放水弁302を通っての海に放水される。淡水の注水を始めてから所定時間の経過後には、淡水が海水放水弁302を通過することになる。   The seawater cooling system in FIG. 3 is in the state of replacement operation (S22 in FIG. 2), and fresh water stored in the water storage tank of the cooling tower 103 of the fresh water circulation cooling device is injected into the water injection line 202 by the fresh water pump 104. Seawater in the flow path from the seawater intake valve 301 of 202 to the seawater discharge valve 302 of the discharge line 204 through the heat exchanger 101 is pushed out and discharged into the sea through the seawater discharge valve 302. After a predetermined time has elapsed since the start of the injection of fresh water, the fresh water passes through the seawater discharge valve 302.

電気伝導率センサ402は、海水放水弁302を通った流体の電気伝導率(導電率)を周期的に検出する。海水冷却システムは、検出した電気伝導率に基づいて、海水放水弁302を通った流体が海水から淡水に変化したことを検知し、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の海水が淡水に置換したことを判定する。
これにより、図3の海水冷却システムは、“淡水置換完了”の状態遷移条件が成立したとし、入替運転の状態(図2のS22)から代替運転の状態(図2のS23)に遷移する。
The electrical conductivity sensor 402 periodically detects the electrical conductivity (conductivity) of the fluid that has passed through the seawater discharge valve 302. The seawater cooling system detects that the fluid that has passed through the seawater discharge valve 302 has changed from seawater to fresh water based on the detected electrical conductivity, and passes through the heat exchanger 101 from the seawater intake valve 301 of the water injection line 202. Then, it is determined that the seawater in the flow path to the seawater discharge valve 302 of the water discharge line 204 has been replaced with fresh water.
Accordingly, the seawater cooling system in FIG. 3 transitions from the replacement operation state (S22 in FIG. 2) to the alternative operation state (S23 in FIG. 2) assuming that the state transition condition of “freshwater replacement is complete” is satisfied.

つぎに、図4により、海水冷却システムの他の実施形態を説明する。
図4の海水冷却システムは、図1の冷却塔103の貯水槽に替えて、淡水循環冷却装置が淡水貯水タンク105と淡水放水弁305とを設けている。
この淡水貯水タンク105は、少なくとも、注水ライン202の海水取水弁301から熱交換器101を通って放水ライン204の海水放水弁302までの流路の流路容量に相当する容量の淡水を貯水している。
また、淡水放水弁305は、淡水貯水タンク105の淡水の放水を制御する開閉弁である。
Next, another embodiment of the seawater cooling system will be described with reference to FIG.
In the seawater cooling system of FIG. 4, a fresh water circulation cooling device is provided with a fresh water storage tank 105 and a fresh water discharge valve 305 instead of the water storage tank of the cooling tower 103 of FIG. 1.
The fresh water storage tank 105 stores fresh water having a capacity corresponding to at least the flow path capacity of the flow path from the sea water intake valve 301 of the water injection line 202 through the heat exchanger 101 to the sea water discharge valve 302 of the water discharge line 204. ing.
The fresh water discharge valve 305 is an open / close valve that controls the discharge of fresh water from the fresh water storage tank 105.

また、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の海水が淡水に置換したことを、海水放水弁302を通った流体の電気伝導率(導電率)を検出する電気伝導率センサ402により行う点が図1の淡水循環冷却装置と異なる。
図4の海水冷却システムの上記以外の構成は、図1と同様であり、また、通常運転の状態(図2のS21)や代替運転の状態(図2のS22)も同様であるので、ここでは説明しない。
Further, the fact that the seawater in the flow path from the seawater intake valve 301 of the water injection line 202 through the heat exchanger 101 to the seawater discharge valve 302 of the water discharge line 204 has been replaced with fresh water is a fluid that has passed through the seawater discharge valve 302. 1 is different from the fresh water circulation cooling device of FIG. 1 in that the electrical conductivity sensor 402 detects the electrical conductivity (conductivity).
The other configuration of the seawater cooling system of FIG. 4 is the same as that of FIG. 1, and the normal operation state (S21 in FIG. 2) and the alternative operation state (S22 in FIG. 2) are also the same. I will not explain.

図4の海水冷却システムは、入替運転の状態(図2のS22)で、淡水放水弁305が開けられて、淡水貯水タンク105に貯水された淡水が、淡水ポンプ104により注水ライン202に注入され、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の海水が押し出され、海水放水弁302を通っての海に放水される。淡水の注水を始めてから所定時間の経過後には、淡水が海水放水弁302を通過することになる。   The seawater cooling system in FIG. 4 is in the replacement operation state (S22 in FIG. 2), the freshwater discharge valve 305 is opened, and freshwater stored in the freshwater storage tank 105 is injected into the water injection line 202 by the freshwater pump 104. The seawater in the flow path from the seawater intake valve 301 of the water injection line 202 to the seawater discharge valve 302 of the water discharge line 204 through the heat exchanger 101 is pushed out and discharged into the sea through the seawater discharge valve 302. . After a predetermined time has elapsed since the start of the injection of fresh water, the fresh water passes through the seawater discharge valve 302.

電気伝導率センサ402は、海水放水弁302を通った流体の電気伝導率(導電率)を周期的に検出する。海水冷却システムは、検出した電気伝導率に基づいて、海水放水弁302を通った流体が海水から淡水に変化したことを検知し、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の海水が淡水に置換したことを判定する。
これにより、図3の海水冷却システムは、“淡水置換完了”の状態遷移条件が成立したとし、入替運転の状態(図2のS22)から代替運転の状態(図2のS23)に遷移する。
代替運転の状態(S23)では、淡水放水弁305は閉じられる。
The electrical conductivity sensor 402 periodically detects the electrical conductivity (conductivity) of the fluid that has passed through the seawater discharge valve 302. The seawater cooling system detects that the fluid that has passed through the seawater discharge valve 302 has changed from seawater to fresh water based on the detected electrical conductivity, and passes through the heat exchanger 101 from the seawater intake valve 301 of the water injection line 202. Then, it is determined that the seawater in the flow path to the seawater discharge valve 302 of the water discharge line 204 has been replaced with fresh water.
Accordingly, the seawater cooling system in FIG. 3 transitions from the replacement operation state (S22 in FIG. 2) to the alternative operation state (S23 in FIG. 2) assuming that the state transition condition of “freshwater replacement is complete” is satisfied.
In the alternative operation state (S23), the fresh water discharge valve 305 is closed.

また、図示しないが、図4の海水冷却システムにおいて、電気伝導率センサ402に替えて、淡水貯水タンク105に貯水量検出センサを設けようにしてもよい。
この構成では、淡水置換するための、注水ライン202の海水取水弁301から、熱交換器101を通って、放水ライン204の海水放水弁302までの流路の流路容量に相当する量の淡水を淡水貯水タンク105に予め貯水しておく。そして、入替運転の状態(図2のS22)で、貯水量検出センサにより淡水貯水タンク105が空になったことを検出することで、海水が淡水に置換したと判定する。
淡水貯水タンク105に、淡水置換するための水量よりも所定量多く貯水しておき、貯水量検出センサにより、貯水量がこの所定量より少なくなったことを検出することで、海水が淡水に置換したと判定してもよい。
In addition, although not shown, in the seawater cooling system of FIG. 4, a water storage amount detection sensor may be provided in the fresh water storage tank 105 instead of the electrical conductivity sensor 402.
In this configuration, the amount of fresh water corresponding to the flow path capacity of the flow path from the seawater intake valve 301 of the water injection line 202 to the seawater discharge valve 302 of the water discharge line 204 through the heat exchanger 101 for replacement of fresh water. Is stored in the fresh water storage tank 105 in advance. Then, in the replacement operation state (S22 in FIG. 2), it is determined that the seawater has been replaced with fresh water by detecting that the fresh water storage tank 105 is emptied by the stored water amount detection sensor.
The fresh water storage tank 105 stores a predetermined amount of water more than the amount of water to be replaced with fresh water, and the water storage amount detection sensor detects that the amount of stored water is less than the predetermined amount, thereby replacing seawater with fresh water. You may determine that you did.

図4の淡水貯水タンク105を設けた海水冷却システムによれば、冷却塔103に貯水する場合に比べて、淡水の大気との接触が少なくなり、藻の発生や腐敗を低減することができる。   According to the seawater cooling system provided with the fresh water storage tank 105 of FIG. 4, contact with the fresh water atmosphere is reduced as compared with the case of storing water in the cooling tower 103, and generation of algae and decay can be reduced.

上記の実施形態では、淡水循環冷却装置は、循環する淡水を冷却塔103により冷却する構成としたが、冷却塔103に替えて冷凍機により淡水を冷却してもよい。
この構成によれば、環境変化による冷却性能の調整を容易に行えるので、より安定した淡水の循環冷却を行うことができる。
In the above embodiment, the fresh water circulation cooling device is configured to cool the circulating fresh water by the cooling tower 103, but the fresh water may be cooled by a refrigerator instead of the cooling tower 103.
According to this configuration, it is possible to easily adjust the cooling performance due to environmental changes, so that more stable circulating cooling of fresh water can be performed.

また、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。上記の実施形態は本発明で分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。   Further, the present invention is not limited to the above-described embodiment, and includes various modifications. The above-described embodiment has been described in detail for easy understanding in the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

101、101a、 101b、101c 熱交換器
102、102a、102b、 海水ポンプ
103 冷却塔
104 淡水ポンプ
105 淡水貯水タンク
201a、201b 取水ライン
202 注水ライン
203 熱交換器出口ライン
204 放水ライン
205 淡水吐出ライン
206 淡水吸入ライン
301 海水取水弁
302 海水放水弁
303 淡水吐出弁
304 淡水吸入弁
305 淡水放水弁
401 水位計
402 電気伝導率(導電率)センサ
101, 101a, 101b, 101c Heat exchangers 102, 102a, 102b, Seawater pump 103 Cooling tower 104 Fresh water pump 105 Fresh water storage tank 201a, 201b Water intake line 202 Water injection line 203 Heat exchanger outlet line 204 Water discharge line 205 Fresh water discharge line 206 Freshwater intake line 301 Seawater intake valve 302 Seawater discharge valve 303 Freshwater discharge valve 304 Freshwater intake valve 305 Freshwater discharge valve 401 Water level gauge 402 Electrical conductivity (conductivity) sensor

Claims (15)

海水により冷却流体の除熱を行う熱交換器と、
海から取水した海水を前記熱交換器に注水する注水ラインと、
前記熱交換器で冷却流体から吸熱した海水を海に放水する放水ラインと、
前記熱交換器に並列接続するように前記注水ラインと前記放水ラインとに接続されて、前記熱交換器に淡水を循環注水するとともに、前記熱交換器で吸熱した淡水を冷却する淡水循環冷却装置と、を備え、
海水の取水異常が生じた際に、前記熱交換器への注水を海水から前記淡水循環冷却装置の淡水に切り替えて、前記淡水循環冷却装置から前記熱交換器へ所定量の淡水注水を行い、前記淡水注水された量に相当する海水を前記放水ラインから放水した後に、前記淡水循環冷却装置により淡水を循環する
ことを特徴とする海水冷却システム。
A heat exchanger that removes heat from the cooling fluid with seawater;
A water injection line for injecting seawater taken from the sea into the heat exchanger;
A water discharge line for discharging the seawater absorbed from the cooling fluid in the heat exchanger into the sea;
A fresh water circulation cooling device connected to the water injection line and the water discharge line so as to be connected in parallel to the heat exchanger, circulating fresh water to the heat exchanger, and cooling fresh water absorbed by the heat exchanger And comprising
When seawater intake abnormality occurs, water injection to the heat exchanger is switched from seawater to fresh water circulation cooling device fresh water injection from the fresh water circulation cooling device to the heat exchanger, A seawater cooling system characterized in that freshwater is circulated by the freshwater circulation cooling device after the seawater corresponding to the amount of freshwater injected is discharged from the water discharge line.
請求項1に記載の海水冷却システムにおいて、
前記淡水循環冷却装置から前記熱交換器へ注水される淡水の所定量は、前記注水ラインに設けられた海水の注入を遮断する海水取水弁から前記熱交換器を通って前記放水ラインに設けられた海への放水を遮断する海水放水弁までの流路の流路容量よりも大きい
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 1,
A predetermined amount of fresh water poured from the fresh water circulation cooling device to the heat exchanger is provided in the water discharge line through the heat exchanger from a sea water intake valve that blocks injection of sea water provided in the water injection line. The seawater cooling system is characterized by being larger than the flow path capacity of the flow path to the seawater discharge valve that shuts off the water discharge to the sea.
請求項2に記載の海水冷却システムにおいて、
前記淡水循環冷却装置から前記熱交換器へ注水される淡水が前記所定量に達したか否かの判定は、前記淡水循環冷却装置に貯水される淡水の水位を検出する水位計により行う
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 2,
The determination whether or not the amount of fresh water poured from the fresh water circulation cooling device to the heat exchanger has reached the predetermined amount is performed by a water level meter that detects the level of fresh water stored in the fresh water circulation cooling device. Features a seawater cooling system.
請求項2に記載の海水冷却システムにおいて、
前記淡水循環冷却装置から前記熱交換器へ注水される淡水が前記所定量に達したか否かの判定は、前記海水放水弁の海側に設けられた前記放水ラインを通流する流体の電気伝導率を検出する電気伝導率センサにより行う
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 2,
The determination as to whether or not the amount of fresh water injected from the fresh water circulation cooling device to the heat exchanger has reached the predetermined amount is the electric power of the fluid flowing through the water discharge line provided on the sea side of the sea water discharge valve. A seawater cooling system, which is performed by an electrical conductivity sensor that detects conductivity.
海水により冷却対象流体の除熱を行う熱交換器と、
海から海水を汲み上げて前記熱交換器に注水する海水ポンプと、
前記熱交換器と前記海水ポンプとを接続する注水ラインの途中に設けられ、海水の注水を遮断する海水取水弁と、
前記熱交換器から海への放水ラインの途中に設けられ、海への放水を遮断する海水放水弁と、
前記注水ラインの前記熱交換器と前記海水取水弁との間および前記放水ラインの前記熱交換器と前記海水放水弁との間に、淡水吐出弁と淡水吸入弁を介して、前記熱交換器に並列に接続し、前記熱交換器に淡水を循環注水して前記熱交換器を冷却する淡水循環冷却装置と、
を備えたことを特徴とする海水冷却システム。
A heat exchanger that removes heat from the fluid to be cooled by seawater;
A seawater pump that pumps seawater from the sea and pours it into the heat exchanger;
A seawater intake valve that is provided in the middle of a water injection line connecting the heat exchanger and the seawater pump, and shuts off seawater injection;
A seawater discharge valve provided in the middle of a water discharge line from the heat exchanger to the sea, and shuts off water discharge to the sea;
The heat exchanger between the heat exchanger of the water injection line and the seawater intake valve and between the heat exchanger of the water discharge line and the seawater water discharge valve via a fresh water discharge valve and a fresh water intake valve. A fresh water circulation cooling device that is connected in parallel to circulate and inject fresh water into the heat exchanger to cool the heat exchanger;
A seawater cooling system characterized by comprising:
請求項5に記載の海水冷却システムにおいて、
前記淡水循環冷却装置は、
冷却水としての淡水を除熱する冷却塔と、
前記冷却塔で除熱した淡水を前記熱交換器に注水する淡水ポンプと、
を備えたことを特徴とする海水冷却システム。
The seawater cooling system according to claim 5,
The fresh water circulation cooling device is:
A cooling tower that removes heat from fresh water as cooling water;
A fresh water pump for pouring fresh water removed by the cooling tower into the heat exchanger;
A seawater cooling system characterized by comprising:
請求項6に記載の海水冷却システムにおいて、
前記冷却塔は、前記注水ラインの前記海水取水弁から前記熱交換器を通って前記放水ラインの前記海水放水弁までの流路を満たす海水の容量に等しい容量の淡水を少なくとも貯水する淡水貯水槽を有する
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 6,
The cooling tower stores at least fresh water having a capacity equal to the capacity of seawater filling a flow path from the seawater intake valve of the water injection line to the seawater water discharge valve of the water discharge line through the heat exchanger. A seawater cooling system characterized by comprising:
請求項7に記載の海水冷却システムにおいて、
前記淡水循環冷却装置の淡水貯水槽の水位を検出する水位センサを備え、
前記海水取水弁を閉じるとともに前記淡水吐出弁を開いて前記淡水循環冷却装置から前記熱交換器に淡水を注水する場合において、前記水位センサで検出した水位が所定値より小さいときに、前記注水ラインの前記海水取水弁から前記熱交換器を通って前記放水ラインの前記海水放水弁までの流路の海水が淡水で置換されたと判定して、前記海水放水弁を閉じるとともに前記淡水吸入弁を開いて前記淡水循環冷却装置による淡水循環冷却を行う
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 7,
A water level sensor for detecting the water level of the fresh water storage tank of the fresh water circulation cooling device,
When the seawater intake valve is closed and the freshwater discharge valve is opened to inject fresh water from the freshwater circulation cooling device to the heat exchanger, when the water level detected by the water level sensor is smaller than a predetermined value, the water injection line It is determined that the seawater in the flow path from the seawater intake valve to the seawater discharge valve of the discharge line through the heat exchanger has been replaced with fresh water, and closes the seawater discharge valve and opens the freshwater intake valve A seawater cooling system, wherein the freshwater circulation cooling is performed by the freshwater circulation cooling device.
請求項6に記載の海水冷却システムにおいて、
前記淡水循環冷却装置は、さらに、
前記注水ラインの前記海水取水弁から前記熱交換器を通って前記放水ラインの前記海水放水弁までの流路を満たす海水の容量に等しい容量の淡水を少なくとも貯水する淡水貯水タンクを有する
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 6,
The fresh water circulation cooling device further includes:
A fresh water storage tank for storing at least fresh water having a capacity equal to the capacity of sea water filling a flow path from the sea water intake valve of the water injection line to the sea water discharge valve of the water discharge line through the heat exchanger; Seawater cooling system.
請求項9に記載の海水冷却システムにおいて、
前記淡水循環冷却装置の淡水貯水タンクの貯水量を検出する貯水量検出センサを備え、
前記海水取水弁を閉じるとともに前記淡水吐出弁を開いて前記淡水循環冷却装置から前記熱交換器に淡水を注水する場合において、前記貯水量検出センサで検出した貯水量により、前記注水ラインの前記海水取水弁から前記熱交換器を通って前記放水ラインの前記海水放水弁までの流路が海水から淡水に置換されたと判定して、前記海水放水弁を閉じるとともに前記淡水吸入弁を開いて前記淡水循環冷却装置による淡水循環冷却を行う
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 9,
A water storage amount detection sensor for detecting a water storage amount of a fresh water storage tank of the fresh water circulation cooling device;
In the case where fresh water is injected into the heat exchanger from the fresh water circulation cooling device by closing the sea water intake valve and opening the fresh water discharge valve, the sea water in the water injection line is determined by the amount of water detected by the water storage amount detection sensor. It is determined that the flow path from the intake valve through the heat exchanger to the seawater discharge valve of the water discharge line has been replaced with seawater to fresh water, and the seawater discharge valve is closed and the freshwater intake valve is opened. A seawater cooling system characterized in that fresh water circulation cooling is performed by a circulation cooling device.
請求項7または9に記載の海水冷却システムにおいて、
前記海水放水弁の放水ラインの海側に設けられ、前記放水ラインを通流する流体の電気伝導率を検出する電気伝導率センサを備え、
前記海水取水弁を閉じるとともに前記淡水吐出弁を開いて、前記淡水循環冷却装置から前記熱交換器に淡水を注水する場合において、前記電気伝導率センサで検出した電気伝導率が所定値より小さいときに前記注水ラインの前記海水取水弁から前記熱交換器を通って前記放水ラインの前記海水放水弁までの流路が海水から淡水に置換されたと判定して、前記海水放水弁を閉じるとともに前記淡水吸入弁を開いて前記淡水循環冷却装置による淡水循環冷却を行う
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 7 or 9,
An electric conductivity sensor that is provided on the sea side of the water discharge line of the sea water discharge valve and detects the electric conductivity of the fluid flowing through the water discharge line;
When the seawater intake valve is closed and the fresh water discharge valve is opened to inject fresh water into the heat exchanger from the fresh water circulation cooling device, when the electrical conductivity detected by the electrical conductivity sensor is smaller than a predetermined value And determining that the flow path from the seawater intake valve of the water injection line to the seawater discharge valve of the water discharge line through the heat exchanger is replaced with seawater and closing the seawater water discharge valve and the fresh water A seawater cooling system characterized by opening a suction valve and performing freshwater circulation cooling by the freshwater circulation cooling device.
請求項5に記載の海水冷却システムにおいて、さらに、
前記注水ラインの前記海水取水弁から前記熱交換器を通って前記放水ラインの前記海水放水弁までの流路が淡水で満たされたことを判定する淡水置換判定手段を備え、
前記海水の取水異常が生じた際に、前記海水の取水を停止して前記海水取水弁を閉じるとともに、前記淡水吐出弁を開いて前記淡水循環冷却装置から淡水の給水を開始し、
前記淡水置換判定手段により淡水で満たされたことを判定した際に、前記海水放水弁を閉じて海への放水を停止するとともに、前記淡水吸入弁を開いて前記淡水循環冷却装置による淡水循環冷却を行う
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 5, further comprising:
Comprising fresh water replacement determination means for determining that the flow path from the sea water intake valve of the water injection line to the sea water discharge valve of the water discharge line through the heat exchanger is filled with fresh water;
When the seawater intake abnormality occurs, the seawater intake is stopped and the seawater intake valve is closed, and the freshwater discharge valve is opened to start supplying freshwater from the freshwater circulation cooling device,
When the fresh water replacement determining means determines that the water is filled with fresh water, the sea water discharge valve is closed to stop water discharge to the sea, and the fresh water intake valve is opened to perform fresh water circulation cooling by the fresh water circulation cooling device. A seawater cooling system characterized by
請求項12に記載の海水冷却システムにおいて、
前記淡水循環冷却装置は、
前記注水ラインの前記海水取水弁から前記熱交換器を通って前記放水ラインの前記海水放水弁までの流路を満たす海水の容量に等しい容量の淡水を少なくとも貯水するとともに、淡水の冷却水を除熱する冷却塔と、
前記冷却塔で除熱した冷却水を前記熱交換器に注水する淡水ポンプと、
を備えたことを特徴とする海水冷却システム。
The seawater cooling system according to claim 12,
The fresh water circulation cooling device is:
Stores at least fresh water having a capacity equal to the capacity of seawater that fills the flow path from the seawater intake valve of the water injection line to the seawater water discharge valve of the water discharge line through the heat exchanger, and removes fresh water cooling water. A heating cooling tower,
A fresh water pump for pouring the cooling water removed by the cooling tower into the heat exchanger;
A seawater cooling system characterized by comprising:
請求項12に記載の海水冷却システムにおいて、
前記海水の取水異常が解消した際には、
前記淡水吐出弁と前記淡水吸入弁とを閉じるとともに、前記海水取水弁と前記海水放水弁とを開いて前記海水ポンプにより海水を前記熱交換器に注水する
ことを特徴とする海水冷却システム。
The seawater cooling system according to claim 12,
When the seawater intake abnormality is resolved,
A seawater cooling system, wherein the freshwater discharge valve and the freshwater intake valve are closed, the seawater intake valve and the seawater discharge valve are opened, and seawater is injected into the heat exchanger by the seawater pump.
請求項1または5に記載の海水冷却システムにおいて、
前記淡水は、塩素剤を投入した冷却水である
ことを特徴とする海水冷却システム。
In the seawater cooling system according to claim 1 or 5,
The seawater cooling system, wherein the fresh water is cooling water charged with a chlorine agent.
JP2018068364A 2018-03-30 2018-03-30 Seawater cooling system Active JP6858156B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018068364A JP6858156B2 (en) 2018-03-30 2018-03-30 Seawater cooling system
GB1904270.4A GB2574299B (en) 2018-03-30 2019-03-27 Sea water cooling system
GB2005292.4A GB2580573B (en) 2018-03-30 2019-03-27 Sea Water Cooling System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068364A JP6858156B2 (en) 2018-03-30 2018-03-30 Seawater cooling system

Publications (2)

Publication Number Publication Date
JP2019178954A true JP2019178954A (en) 2019-10-17
JP6858156B2 JP6858156B2 (en) 2021-04-14

Family

ID=66381253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068364A Active JP6858156B2 (en) 2018-03-30 2018-03-30 Seawater cooling system

Country Status (2)

Country Link
JP (1) JP6858156B2 (en)
GB (2) GB2574299B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508623A (en) * 2020-04-29 2020-08-07 中国核动力研究设计院 Overpressure protection device for pressure-bearing containment vessel for ship and application of overpressure protection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941081B2 (en) * 2018-07-19 2021-09-29 日立Geニュークリア・エナジー株式会社 Auxiliary cooling equipment for nuclear power plants
CN215927804U (en) 2021-08-02 2022-03-01 创科无线普通合伙 Fluid transfer pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956098A (en) * 1982-09-22 1984-03-31 Hitachi Ltd Storage of seawater heat exchanger
JP2002022388A (en) * 2000-06-30 2002-01-23 Ebara Corp Microorganism adhesion preventing method for external water intake heat exchange device
JP2002257972A (en) * 2001-03-01 2002-09-11 Hitachi Ltd Method and system for operating nuclear reactor auxiliary machine cooling system
JP2002336614A (en) * 2001-05-11 2002-11-26 Hitachi Zosen Corp Fresh water and seawater back washing and filtering system for seawater filtering device in water treatment facility of aquarium or the like
JP2007012565A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Fuel cell system
JP2009063292A (en) * 2008-12-25 2009-03-26 Miura Co Ltd Cooling method for circulating water in cooling tower and cooling method for water spray for cooling circulating water
JP2014029300A (en) * 2012-07-31 2014-02-13 Kandenko Co Ltd Method and apparatus for maintaining nuclear reactor safety when power is lost and sea water cooling is not possible
KR101594440B1 (en) * 2014-10-22 2016-02-17 한국원자력연구원 Shutdown cooling facility and nuclear power plant having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915891A (en) * 1982-07-19 1984-01-26 日本原子力事業株式会社 Cooling circuit for reactor equipment
US5657360A (en) * 1994-09-19 1997-08-12 Kabushiki Kaisha Toshiba Reactor container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956098A (en) * 1982-09-22 1984-03-31 Hitachi Ltd Storage of seawater heat exchanger
JP2002022388A (en) * 2000-06-30 2002-01-23 Ebara Corp Microorganism adhesion preventing method for external water intake heat exchange device
JP2002257972A (en) * 2001-03-01 2002-09-11 Hitachi Ltd Method and system for operating nuclear reactor auxiliary machine cooling system
JP2002336614A (en) * 2001-05-11 2002-11-26 Hitachi Zosen Corp Fresh water and seawater back washing and filtering system for seawater filtering device in water treatment facility of aquarium or the like
JP2007012565A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Fuel cell system
JP2009063292A (en) * 2008-12-25 2009-03-26 Miura Co Ltd Cooling method for circulating water in cooling tower and cooling method for water spray for cooling circulating water
JP2014029300A (en) * 2012-07-31 2014-02-13 Kandenko Co Ltd Method and apparatus for maintaining nuclear reactor safety when power is lost and sea water cooling is not possible
KR101594440B1 (en) * 2014-10-22 2016-02-17 한국원자력연구원 Shutdown cooling facility and nuclear power plant having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508623A (en) * 2020-04-29 2020-08-07 中国核动力研究设计院 Overpressure protection device for pressure-bearing containment vessel for ship and application of overpressure protection device
CN111508623B (en) * 2020-04-29 2022-07-15 中国核动力研究设计院 Overpressure protection device for pressure-bearing containment vessel for ship and application of overpressure protection device

Also Published As

Publication number Publication date
GB202005292D0 (en) 2020-05-27
GB2574299A (en) 2019-12-04
JP6858156B2 (en) 2021-04-14
GB2580573A (en) 2020-07-22
GB2580573B (en) 2021-01-13
GB2574299B (en) 2020-05-27
GB201904270D0 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6858156B2 (en) Seawater cooling system
KR101200216B1 (en) Water-spray residual heat removal system for nuclear power plant
KR101463440B1 (en) Passive safety system and nuclear power plant having the same
KR101594440B1 (en) Shutdown cooling facility and nuclear power plant having the same
KR20110040953A (en) Fuel cell cogeneration system
JP2008185572A (en) Alternative cooling system for nuclear reactor and the like
JP2011220627A (en) Mist cooling apparatus, and heat treatment apparatus
JP6185076B2 (en) Reactor suppression pool cooling system
KR101307744B1 (en) Apparatus and method for resupplying reactor coolant
JP5315167B2 (en) Boiling water nuclear power plant and reactor pressure vessel pressure leak test method
CN109584950B (en) Cooling system for instrument
JP2011052970A (en) Reactor water cooling method and nuclear power plant
KR20180078898A (en) cooling system for converter unit of a electric propulsion ship and control method for thereof
JP2009156799A (en) Ph adjusting unit
KR101656361B1 (en) Reactor shutdown cooling using heat exchangers submerged within the water pool (or the water tank) around a nuclear reactor
JP5969355B2 (en) Nuclear fuel cooling method and nuclear fuel cooling device
JP2006159003A (en) Heating and cooling method and apparatus for ultrapure water
JP4385218B2 (en) Reactor water injection equipment
JP2001074874A (en) Cooling equipment for nuclear reactor or the like
JP6952248B2 (en) Fuel cell system
JP2013224889A (en) High pressure core injection system
JP4363611B2 (en) Solution concentration management method and solution circulation device
WO2015093059A1 (en) Reactor water injection system, nuclear facility, and pipeline of nuclear plant
JP5513846B2 (en) Nuclear power plant and method for operating the same
JP2002122688A (en) Boiling water type nuclear power plant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6858156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150