JP2019178466A - Method for producing carbon nanotube wire rod and carbon nanotube wire rod - Google Patents

Method for producing carbon nanotube wire rod and carbon nanotube wire rod Download PDF

Info

Publication number
JP2019178466A
JP2019178466A JP2018069831A JP2018069831A JP2019178466A JP 2019178466 A JP2019178466 A JP 2019178466A JP 2018069831 A JP2018069831 A JP 2018069831A JP 2018069831 A JP2018069831 A JP 2018069831A JP 2019178466 A JP2019178466 A JP 2019178466A
Authority
JP
Japan
Prior art keywords
carbon nanotube
cnt
wire
nanotube wire
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018069831A
Other languages
Japanese (ja)
Other versions
JP6952003B2 (en
Inventor
田中 彰
Akira Tanaka
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2018069831A priority Critical patent/JP6952003B2/en
Publication of JP2019178466A publication Critical patent/JP2019178466A/en
Priority to JP2021138346A priority patent/JP7348934B2/en
Application granted granted Critical
Publication of JP6952003B2 publication Critical patent/JP6952003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

To provide a method for producing a carbon nanotube capable of highly orienting a plurality of carbon nanotube aggregates to enhance mechanical strength of the carbon nanotube wire rod.SOLUTION: In a method for producing a carbon nanotube wire rod, a dispersion containing a plurality of CNT is discharged from a discharging part 2 such as a syringe into a coagulation bath 1 filled with a coagulation liquid to prepare a CNT raw yarn (A), and then the CNT raw yarn (A) is subjected to stretching treatment in the coagulation bath 1 to prepare a CNT raw yarn (B).SELECTED DRAWING: Figure 1

Description

本発明は、複数のカーボンナノチューブで構成されるカーボンナノチューブ線材の製造方法、及び該方法によって製造されて複数のカーボンナノチューブ集合体が配向しているカーボンナノチューブ線材に関する。   The present invention relates to a method for producing a carbon nanotube wire composed of a plurality of carbon nanotubes, and a carbon nanotube wire that is produced by the method and in which a plurality of carbon nanotube aggregates are oriented.

カーボンナノチューブは、様々な特性を有する素材であり、多くの分野への応用が期待されている。   Carbon nanotubes are materials having various characteristics and are expected to be applied in many fields.

例えば、カーボンナノチューブは、六角形格子の網目構造を有する筒状体の単層、または略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、熱伝導性、機械的強度等の諸特性に優れる。しかし、カーボンナノチューブを線材化することは容易ではなく、カーボンナノチューブを線材として利用する技術は提案されていない。   For example, a carbon nanotube is a three-dimensional network structure composed of a single layer of a cylindrical body having a hexagonal lattice network structure or a multilayer arranged substantially coaxially, and is lightweight, conductive, thermally conductive. Excellent properties such as conductivity and mechanical strength. However, it is not easy to turn carbon nanotubes into a wire, and no technology that uses carbon nanotubes as a wire has been proposed.

カーボンナノチューブ線材を製造する方法としては、例えば、カーボンナノチューブと、カルボキシメチルセルロース及びポリビニルピロリドンからなる群から選ばれる増粘剤を含む分散液を凝固浴中に吐出して紡糸し、延伸し、得られた延伸糸を増粘剤が溶解可能な溶媒により処理して増粘剤を除去する方法が開示されている(特許文献1)。   As a method for producing a carbon nanotube wire, for example, a dispersion containing a carbon nanotube and a thickener selected from the group consisting of carboxymethylcellulose and polyvinylpyrrolidone is discharged into a coagulation bath, spun, stretched, and obtained. A method of removing the thickener by treating the drawn yarn with a solvent in which the thickener can be dissolved is disclosed (Patent Document 1).

特開2010−168679号公報JP 2010-168679 A

上記従来の技術では、押出式紡糸方法にて分散液を凝固浴中に吐出することにより湿式紡糸して紡糸原糸を得て、ドライヤーにて熱風をかけながら該紡糸原糸を延伸機により延伸することにより、カーボンナノチューブ線材を得ている。そして、上記従来技術では、その延伸倍率が1.1〜3倍程度と開示されており、紡糸原糸を凝固液中から取り出した後に加熱しながら延伸する場合、CNTは凝固過程がおよそ終了し強く凝集した状態であり、線方向に力を加えてもCNT同士の配置はほとんど変化せず、必要以上に力を加えるとCNT間の相互作用および絡み合いが弱い箇所を起点に破断しやすい。このため、上記従来技術では延伸倍率を大きくするのは困難であり、カーボンナノチューブ線材を構成する複数のカーボンナノチューブ集合体の配向性が不十分となり、カーボンナノチューブ線材の機械的強度の向上に限界がある。また、紡糸処理後のカーボンナノチューブ線材に熱を加えながら延伸しても、紡糸原糸は僅かに延伸する程度であり、カーボンナノチューブ線材を構成する複数のカーボンナノチューブ集合体の配向性を向上させることは困難である。   In the above-mentioned conventional technique, a spinning raw material is obtained by wet spinning by discharging a dispersion into a coagulation bath by an extrusion spinning method, and the spinning raw yarn is drawn by a drawing machine while applying hot air with a dryer. By doing so, a carbon nanotube wire is obtained. The above prior art discloses that the draw ratio is about 1.1 to 3 times. When the spinning raw yarn is taken out from the coagulation liquid and then drawn while heating, the solidification process of CNT is almost completed. Even if a force is applied in the linear direction, the arrangement of the CNTs hardly changes even when a force is applied in the linear direction, and if a force is applied more than necessary, the CNTs tend to break starting from a place where the interaction and entanglement between the CNTs is weak. For this reason, it is difficult to increase the draw ratio in the above prior art, the orientation of the plurality of carbon nanotube aggregates constituting the carbon nanotube wire becomes insufficient, and there is a limit to improving the mechanical strength of the carbon nanotube wire. is there. In addition, even if the carbon nanotube wire after the spinning process is stretched while applying heat, the spinning yarn is slightly stretched, and the orientation of the plurality of carbon nanotube aggregates constituting the carbon nanotube wire is improved. It is difficult.

本発明の目的は、複数のカーボンナノチューブ集合体を高配向させることができ、カーボンナノチューブ線材の機械的強度を高めることができるカーボンナノチューブ線材の製造方法及びカーボンナノチューブ線材を提供することにある。   An object of the present invention is to provide a carbon nanotube wire manufacturing method and a carbon nanotube wire capable of highly orienting a plurality of carbon nanotube aggregates and increasing the mechanical strength of the carbon nanotube wire.

上記目的を達成するために、本発明のカーボンナノチューブ線材の製造方法は、複数のカーボンナノチューブを含有する分散液を凝固液中に吐出してカーボンナノチューブ原糸(A)を作製する工程と、前記カーボンナノチューブ原糸(A)を前記凝固液中で延伸処理してカーボンナノチューブ原糸(B)を作製することを特徴とする。   In order to achieve the above object, a method for producing a carbon nanotube wire of the present invention comprises a step of producing a carbon nanotube yarn (A) by discharging a dispersion containing a plurality of carbon nanotubes into a coagulation liquid, The carbon nanotube yarn (A) is drawn in the coagulating liquid to produce the carbon nanotube yarn (B).

前記カーボンナノチューブ原糸(A)の延伸方向に関して下流側に配置された第2搬送部の搬送速度V2を、前記延伸方向に関して上流側に配置された第1搬送部の搬送速度V1よりも大きくして、前記第1搬送部及び前記第2搬送部の双方で前記カーボンナノチューブ原糸(A)を挟持しながら延伸するのが好ましい。   The conveyance speed V2 of the second conveyance unit disposed on the downstream side in the drawing direction of the carbon nanotube raw yarn (A) is set to be larger than the conveyance speed V1 of the first conveyance unit arranged on the upstream side in the drawing direction. In addition, it is preferable that the carbon nanotube raw yarn (A) is stretched while being sandwiched by both the first transport unit and the second transport unit.

前記第1搬送部は、前記凝固液中に配置された第1の一対の挟持ローラであり、前記第2搬送部は、前記凝固液中に配置された第2の一対の挟持ローラであり、前記第1の一対の挟持ローラの前記搬送速度V1に対する前記第2の一対の挟持ローラの搬送速度V2の比であるV2/V1が、3以上10以下であるのが好ましい。   The first transport unit is a first pair of sandwiching rollers disposed in the coagulating liquid, and the second transport unit is a second pair of sandwiching rollers disposed in the coagulating liquid, It is preferable that V2 / V1, which is a ratio of the transport speed V2 of the second pair of sandwiching rollers to the transport speed V1 of the first pair of sandwiching rollers, is 3 or more and 10 or less.

上記目的を達成するために、本発明のカーボンナノチューブ線材は、複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の複数が束ねられて形成されているカーボンナノチューブ線材であって、複数の前記カーボンナノチューブ集合体の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値幅Δθが25°以上50°未満であることを特徴とする。   In order to achieve the above object, a carbon nanotube wire of the present invention is a carbon nanotube wire formed by bundling a plurality of carbon nanotube aggregates composed of a plurality of carbon nanotubes, and a plurality of the carbon nanotube wires The azimuth angle half-value width Δθ in the azimuth plot by small-angle X-ray scattering indicating the orientation of the aggregate is 25 ° or more and less than 50 °.

前記カーボンナノチューブ線材の断面において、前記カーボンナノチューブ線材の内部を構成する複数の前記カーボンナノチューブ集合体の配向性を示すアジマス角の半値幅Δθinに対する、前記カーボンナノチューブ線材の外周部を構成する複数の前記カーボンナノチューブ集合体の配向性を示すアジマス角の半値幅Δθoutの比であるΔθout/Δθinが、0.85よりも大きいことが好ましい。   In the cross section of the carbon nanotube wire, a plurality of the carbon nanotube wire constituting the outer peripheral portion of the carbon nanotube wire with respect to the FWHM Δθin of the azimuth angle indicating the orientation of the plurality of carbon nanotube aggregates constituting the inside of the carbon nanotube wire It is preferable that Δθout / Δθin, which is a ratio of the half width Δθout of the azimuth angle indicating the orientation of the carbon nanotube aggregate, is larger than 0.85.

本発明によれば、複数のカーボンナノチューブを含有する分散液を凝固液中に吐出してカーボンナノチューブ原糸(A)を形成し、カーボンナノチューブ原糸(A)を前記凝固液中で延伸処理してカーボンナノチューブ原糸(B)を形成するので、カーボンナノチューブ原糸(B)を構成する複数のカーボンナノチューブ集合体を高配向させることができ、CNT原糸(B)から得られるカーボンナノチューブ線材の機械的強度を高めることができる。   According to the present invention, a carbon nanotube yarn (A) is formed by discharging a dispersion containing a plurality of carbon nanotubes into a coagulation solution, and the carbon nanotube yarn (A) is drawn in the coagulation solution. Thus, the carbon nanotube yarn (B) is formed, so that a plurality of carbon nanotube aggregates constituting the carbon nanotube yarn (B) can be highly oriented, and the carbon nanotube wire obtained from the CNT yarn (B) Mechanical strength can be increased.

本発明の実施形態に係るカーボンナノチューブ線材の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the carbon nanotube wire which concerns on embodiment of this invention. 図1の製造方法において凝固液中でカーボンナノチューブ原糸(A)に延伸処理を施す工程を説明する図である。It is a figure explaining the process of extending | stretching a carbon nanotube raw material yarn (A) in the coagulating liquid in the manufacturing method of FIG.

以下、本発明の実施形態を、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施形態に係るカーボンナノチューブ線材の製造方法の一例を示すフローチャートである。本実施形態では、カーボンナノチューブ線材の製造方法として、湿式紡糸法によってカーボンナノチューブを紡糸する。
図1に示すように、先ず、浮遊触媒法(特許第5819888号)や、基板法(特許第5590603号)などの手法で作製したカーボンナノチューブ(以下、「CNT」)を準備し、複数のCNTと溶媒とを混合して、複数のCNTを含有する分散液を作製する(ステップS1)。分散液の溶媒としては、例えばトルエン、Nーメチルピロリドン(NMP)、ドデシルスルホン酸ナトリウム、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、メチルイソブチルケトン(MIBK)の有機溶媒の他、界面活性剤を含む水溶液が用いられる。界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキル硫酸塩などの陰イオン性界面活性剤、テトラアルキルアンモニウムハライドなどの陽イオン性界面活性剤を用いることができる。分散液中におけるカーボンナノチューブの含有量は、例えば0.05〜20質量%である。
FIG. 1 is a flowchart showing an example of a carbon nanotube wire manufacturing method according to this embodiment. In the present embodiment, carbon nanotubes are spun by a wet spinning method as a method for producing a carbon nanotube wire.
As shown in FIG. 1, first, carbon nanotubes (hereinafter referred to as “CNT”) prepared by a floating catalyst method (Patent No. 5819888) and a substrate method (Patent No. 5990603) are prepared, and a plurality of CNTs are prepared. And a solvent are mixed to prepare a dispersion containing a plurality of CNTs (step S1). Examples of the solvent for the dispersion include organic solvents such as toluene, N-methylpyrrolidone (NMP), sodium dodecyl sulfonate, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), and methyl isobutyl ketone (MIBK). An aqueous solution containing a surfactant is used. As the surfactant, an anionic surfactant such as alkylbenzene sulfonate and alkyl sulfate, and a cationic surfactant such as tetraalkylammonium halide can be used. The carbon nanotube content in the dispersion is, for example, 0.05 to 20% by mass.

上記分散液には、粘性を増大させるための増粘剤が含有されてもよい。増粘剤としては、例えばカルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)、グリセリン、エチレングリコールが用いられる。分散液中における増粘剤の含有量は、例えば0.05〜5質量%である。   The dispersion may contain a thickener for increasing the viscosity. As the thickener, for example, carboxymethylcellulose (CMC), polyvinylpyrrolidone (PVP), glycerin, and ethylene glycol are used. Content of the thickener in a dispersion liquid is 0.05-5 mass%, for example.

次に、図2に示すように、複数のCNTを含有する上記分散液を、シリンジなどの吐出部2から凝固液で満たされた凝固浴1中に吐出してカーボンナノチューブ原糸(以下、「CNT原糸」ともいう)(A)を作製する(ステップS2)。分散液が凝固液中に吐出された際に当該凝固液と接触することで、複数のCNT集合体が線状に形成される。このとき、CNT原糸(A)は、CNT集合体の複数が撚り合わされた構成であってもよいし、複数のCNT集合体の長手方向とCNT原糸(A)の長手方向が同一或いは実質的に同一である状態を含んでいてもよい。すなわち、CNT原糸(A)は、CNT集合体の複数が撚り合わされていない状態で束ねられているものを含んでいてもよい。   Next, as shown in FIG. 2, the dispersion containing a plurality of CNTs is discharged from a discharge unit 2 such as a syringe into a coagulation bath 1 filled with a coagulation liquid, and a carbon nanotube raw yarn (hereinafter, “ (Also referred to as “CNT yarn”) (A) is produced (step S2). When the dispersion liquid is discharged into the coagulation liquid, it comes into contact with the coagulation liquid, thereby forming a plurality of CNT aggregates in a linear shape. At this time, the CNT raw yarn (A) may have a configuration in which a plurality of CNT aggregates are twisted together, and the longitudinal direction of the plurality of CNT aggregates and the longitudinal direction of the CNT raw yarn (A) are the same or substantially the same. May be included in the same state. That is, the CNT raw yarn (A) may include a bundle in which a plurality of CNT aggregates are not twisted together.

凝固液としては、例えばNMP、N,N−ジメチルアセトアミド(DMA)、DMF、水、メタノール、エタノール、プロパノールなど、分散溶媒との親和性が異なるものを適宜選択して用いる。   As the coagulation liquid, for example, those having different affinity with the dispersion solvent such as NMP, N, N-dimethylacetamide (DMA), DMF, water, methanol, ethanol, propanol and the like are appropriately selected and used.

次いで、図2に示すように、CNT原糸(A)を凝固浴1中で延伸処理し、カーボンナノチューブ原糸(以下、「CNT原糸」ともいう)(B)を作製する(ステップS3)。この延伸処理は、例えば、上記吐出工程で分散液を凝固液中に吐出した後、同凝固液中で連続的に行われる。   Next, as shown in FIG. 2, the CNT yarn (A) is drawn in the coagulation bath 1 to produce a carbon nanotube yarn (hereinafter also referred to as “CNT yarn”) (B) (step S3). . For example, this stretching process is performed continuously in the coagulating liquid after the dispersion liquid is discharged into the coagulating liquid in the above-described discharging step.

CNT原糸(A)を延伸する方法としては、例えば、凝固浴1中に、CNT原糸(A)の延伸方向Xに関して上流側に第1搬送部3を、上記延伸方向Xに関して下流側に第2搬送部4をそれぞれ配置する。そして、CNT原糸(A)の延伸方向Xに関して下流側に配置された第2搬送部の搬送速度V2を、上記延伸方向Xに関して上流側に配置された第1搬送部3の搬送速度V1よりも大きくして、第1搬送部3及び第2搬送部4の双方でCNT原糸(A)を挟持しながら延伸する。第2搬送部4の搬送速度V2を第1搬送部3の搬送速度V1よりも大きくすることで、凝固浴1中で、CNT原糸(A)にその長手方向に沿う引張応力を付与することができる。   As a method of stretching the CNT raw yarn (A), for example, in the coagulation bath 1, the first conveyance unit 3 is disposed upstream in the stretching direction X of the CNT raw yarn (A), and the first conveying unit 3 is disposed downstream in the stretching direction X. The 2nd conveyance part 4 is arrange | positioned, respectively. And the conveyance speed V2 of the 2nd conveyance part arrange | positioned downstream with respect to the extending | stretching direction X of CNT original yarn (A) is compared with the conveyance speed V1 of the 1st conveyance part 3 arrange | positioned upstream with respect to the said extending | stretching direction X. The CNT raw yarn (A) is sandwiched between both the first transport unit 3 and the second transport unit 4 and stretched. Giving tensile stress along the longitudinal direction to the CNT yarn (A) in the coagulation bath 1 by making the conveyance speed V2 of the second conveyance unit 4 larger than the conveyance speed V1 of the first conveyance unit 3. Can do.

ここで、前述の従来技術においては、凝固過程が終了しているCNTが強く凝集した状態での延伸のため、延伸倍率を高くすることは困難である。一方で、本発明においては、凝固液中で延伸しており、CNTおよびCNT集合体は分散媒に囲まれた状態で、線方向に力を加えてもCNT集合体同士は分散媒を介して配置を変えることができるため、従来技術に比べて破断せず高延伸倍率を出すことができる。
また、CNT線材の凝固処理では、通常、CNT線材の外周部から分散液が染み出して凝固が進行するため、CNT線材の内部を構成する複数のCNT集合体の密度が、CNT線材の外周部を構成する複数のCNT集合体の密度よりも小さくなる傾向がある。よって、凝固処理後に延伸処理を施す従来方法の場合において、凝固処理によって凝固が完了したCNT線材では、CNT線材の内部を構成する複数のCNT集合体の密度が、CNT線材の外周部を構成する複数のCNT集合体の密度よりも小さくなっていると想定される。また、この密度差が生じているCNT線材に加熱しながら延伸処理を施すと、CNT集合体の密度が小さいCNT線材の内部では、隣接するCNT集合体からの力を受け難く、CNT集合体の密度が大きい外周部と比較して配向性が低くなる。
Here, in the above-described prior art, it is difficult to increase the draw ratio because of the stretching in a state where the solidified CNTs are strongly aggregated. On the other hand, in the present invention, the CNT aggregates are stretched in the coagulating liquid, and the CNT aggregates are not separated from each other through the dispersion medium even when a force is applied in the linear direction in a state surrounded by the dispersion medium. Since the arrangement can be changed, a high stretch ratio can be obtained without breaking as compared with the prior art.
Also, in the solidification treatment of the CNT wire, since the dispersion liquid oozes out from the outer periphery of the CNT wire and solidification proceeds, the density of the plurality of CNT aggregates constituting the inside of the CNT wire is determined by the outer periphery of the CNT wire. Tends to be smaller than the density of the plurality of CNT aggregates constituting the CNT. Therefore, in the case of the conventional method in which the stretching process is performed after the solidification process, in the CNT wire that has been solidified by the solidification process, the density of a plurality of CNT aggregates constituting the inside of the CNT wire constitutes the outer peripheral part of the CNT wire. It is assumed that the density is smaller than the density of the plurality of CNT aggregates. In addition, when the CNT wire having the difference in density is stretched while being heated, it is difficult to receive the force from the adjacent CNT aggregate within the CNT wire having a small density of the CNT aggregate. The orientation is lower than that of the outer peripheral portion having a large density.

一方、本実施形態のように、凝固液中でCNT原糸(A)に延伸処理を施すと、CNT原糸(A)の外周部から内部に向かって徐々に凝固が進行するときに当該CNT原糸(A)を延伸するので、CNT原糸(A)の内部を構成する複数のCNT集合体の密度の低下が抑制され、CNT原糸(A)の内部を構成する複数のCNT集合体の密度と、CNT原糸(A)の外周部を構成する複数のCNT集合体の密度との差が小さくなる。また、延伸処理中にCNT原糸(A)を加熱しないので、外周部の凝固の進行を抑制することができる。よって、上記延伸処理においてCNT原糸(A)の外周部を構成する複数のCNT集合体の長軸方向と、CNT原糸(A)の内部を構成する複数のCNT集合体の長軸方向とが揃い易くなり、CNT原糸(A)全体での複数のCNT集合体の長軸方向がほぼ揃った状態で、当該複数のCNT集合体の凝固が完了する。これにより、CNT原糸(B)を構成する複数のCNT集合体全体の配向性が向上する。   On the other hand, when the CNT yarn (A) is stretched in the coagulating liquid as in the present embodiment, the CNTs are gradually solidified from the outer peripheral portion of the CNT yarn (A) toward the inside. Since the raw yarn (A) is drawn, a decrease in density of the plurality of CNT aggregates constituting the inside of the CNT raw yarn (A) is suppressed, and a plurality of CNT aggregates constituting the inside of the CNT raw yarn (A) And the density of the plurality of CNT aggregates constituting the outer peripheral portion of the CNT raw yarn (A) become small. Further, since the CNT raw yarn (A) is not heated during the stretching process, the progress of solidification of the outer peripheral portion can be suppressed. Therefore, in the drawing process, the long axis direction of the plurality of CNT aggregates constituting the outer peripheral portion of the CNT raw yarn (A), and the long axis direction of the plurality of CNT aggregates constituting the inside of the CNT raw yarn (A) Are easily aligned, and solidification of the plurality of CNT aggregates is completed in a state where the major axis directions of the plurality of CNT aggregates in the entire CNT raw yarn (A) are substantially aligned. Thereby, the orientation of the whole several CNT aggregate | assembly which comprises CNT original yarn (B) improves.

上記の第1搬送部3は、例えば凝固浴1などの凝固液中に配置された第1の一対の挟持ローラ3a,3bであり、第2搬送部4は、例えば凝固浴1などの凝固液中に配置された第2の一対の挟持ローラ4a,4bである。第1の一対の挟持ローラ3a,3bは、凝固液中で所定回転数で回転可能に構成されており、所定回転数に基づいて被搬送体であるCNT原糸(A)の搬送速度が設定或いは調整される。第2の一対の挟持ローラ4a,4bも同様、所定回転数で回転可能に構成されており、所定回転数に基づいて被搬送体であるCNT原糸(A)の搬送速度が設定或いは調整される。   Said 1st conveyance part 3 is a 1st pair of clamping rollers 3a and 3b arrange | positioned in coagulating liquids, such as coagulation bath 1, for example, and the 2nd conveyance part 4 is coagulating liquids, such as coagulation bath 1, for example A second pair of sandwiching rollers 4a and 4b disposed therein. The first pair of sandwiching rollers 3a and 3b are configured to be rotatable in the coagulating liquid at a predetermined rotational speed, and the transport speed of the CNT raw yarn (A) that is the transported body is set based on the predetermined rotational speed. Or it is adjusted. Similarly, the second pair of sandwiching rollers 4a and 4b are configured to be rotatable at a predetermined rotation speed, and the conveyance speed of the CNT raw yarn (A) as a conveyed body is set or adjusted based on the predetermined rotation speed. The

第1の一対の挟持ローラ3a,3bの搬送速度をV1、第2の一対の挟持ローラ4a,4bの搬送速度をV2としたとき、第1の一対の挟持ローラ3a,3bの搬送速度V1に対する第2の一対の挟持ローラ4a,4bの搬送速度V2の比であるV2/V1が、例えば3以上10以下であり、好ましくは4以上10以下、より好ましくは6以上10以下である。これにより、CNT原糸(A)に付与される引張応力がより増大し、CNT原糸(A)の内部を構成する複数のCNT集合体の密度と、CNT原糸(A)の外周部を構成する複数のCNT集合体の密度との差をより小さくすることができ、CNT原糸(B)を構成する複数のCNT集合体の配向性が更に向上する。   When the transport speed of the first pair of sandwiching rollers 3a and 3b is V1, and the transport speed of the second pair of sandwiching rollers 4a and 4b is V2, it corresponds to the transport speed V1 of the first pair of sandwiching rollers 3a and 3b. V2 / V1, which is the ratio of the conveyance speed V2 of the second pair of sandwiching rollers 4a and 4b, is, for example, 3 or more and 10 or less, preferably 4 or more and 10 or less, more preferably 6 or more and 10 or less. As a result, the tensile stress applied to the CNT yarn (A) is further increased, and the density of the plurality of CNT aggregates constituting the inside of the CNT yarn (A) and the outer peripheral portion of the CNT yarn (A) are reduced. The difference from the density of the plurality of CNT aggregates to be formed can be further reduced, and the orientation of the plurality of CNT aggregates constituting the CNT raw yarn (B) is further improved.

上記工程を経た後、CNT原糸(B)を乾燥させ、必要に応じて加熱することで、本実施形態に係るCNT線材が製造される。   After passing through the above steps, the CNT raw yarn (B) is dried and heated as necessary to produce the CNT wire according to this embodiment.

[CNT線材の構成]
上記の製造方法によって製造されるCNT線材は、複数のCNTで構成されるCNT集合体の複数が束ねられて形成されている。ここで、CNT線材とはCNTの割合が90質量%以上のCNT線材を意味する。なお、CNT線材におけるCNT割合の算定においては、メッキやドーパントの質量は除く。CNT集合体の長手方向が、CNT線材の長手方向を形成している。従って、CNT集合体は、線状となっている。CNT線材における複数のCNT集合体は、その長軸方向がほぼ揃って配されている。従って、CNT線材における複数のCNT集合体は、配向している。素線であるCNT線材の円相当直径は、特に限定されないが、例えば、0.01mm以上1.0mm以下である。また、CNT線材は、CNT集合体が、複数、束ねられて構成されていてもよい。撚り線とした1本のCNT線材の円相当直径は、特に限定されないが、例えば、0.05mm以上5mm以下である。複数のCNT線材からCNT線材を構成した場合もCNT線材と称し、この場合には断面積の上限は限定されない。
[Configuration of CNT wire]
The CNT wire manufactured by the above manufacturing method is formed by bundling a plurality of CNT aggregates composed of a plurality of CNTs. Here, the CNT wire means a CNT wire having a CNT ratio of 90% by mass or more. In the calculation of the CNT ratio in the CNT wire, the mass of plating or dopant is excluded. The longitudinal direction of the CNT aggregate forms the longitudinal direction of the CNT wire. Therefore, the CNT aggregate is linear. A plurality of CNT aggregates in the CNT wire are arranged so that the major axis directions thereof are substantially aligned. Therefore, the plurality of CNT aggregates in the CNT wire are oriented. Although the circle equivalent diameter of the CNT wire which is a strand is not specifically limited, For example, it is 0.01 mm or more and 1.0 mm or less. In addition, the CNT wire may be configured by bundling a plurality of CNT aggregates. The equivalent circle diameter of one CNT wire made of a stranded wire is not particularly limited, but is, for example, 0.05 mm or more and 5 mm or less. When a CNT wire is composed of a plurality of CNT wires, it is also called a CNT wire, and in this case, the upper limit of the cross-sectional area is not limited.

CNT線材は、CNT集合体の複数が撚り合わされた構成であってもよいし、CNT集合体の長手方向とCNT線材の長手方向が同一或いは実質的に同一である状態を含んでいてもよい。すなわち、CNT線材は、CNT集合体の複数が撚り合わされていない状態で束ねられているものを含んでいてもよい。   The CNT wire may have a configuration in which a plurality of CNT aggregates are twisted together, or may include a state in which the longitudinal direction of the CNT aggregates and the longitudinal direction of the CNT wires are the same or substantially the same. That is, the CNT wire may include a bundle in which a plurality of CNT aggregates are not twisted together.

CNT集合体は、1層以上の層構造を有するCNTの束である。CNTの長手方向が、CNT集合体の長手方向を形成している。CNT集合体における複数のCNTは、その長軸方向がほぼ揃って配されている。従って、CNT集合体における複数のCNTは、配向している。CNT集合体の円相当直径は、例えば、20nm以上1000nm以下であり、より典型的には、20nm以上80nm以下である。CNTの最外層の幅寸法は、例えば、1.0nm以上20nm以下である。   A CNT aggregate is a bundle of CNTs having a layer structure of one or more layers. The longitudinal direction of CNT forms the longitudinal direction of the CNT aggregate. The plurality of CNTs in the CNT aggregate are arranged so that their major axis directions are substantially aligned. Therefore, the plurality of CNTs in the CNT aggregate are oriented. The equivalent circle diameter of the CNT aggregate is, for example, 20 nm or more and 1000 nm or less, and more typically 20 nm or more and 80 nm or less. The width dimension of the outermost layer of CNT is 1.0 nm or more and 20 nm or less, for example.

CNT集合体を構成するCNTは、単層構造又は複層構造を有する筒状体であり、それぞれ、SWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。CNT集合体には、3層構造以上の層構造を有するCNTや単層構造の層構造を有するCNTも含まれていてもよく、3層構造以上の層構造を有するCNTまたは単層構造の層構造を有するCNTから形成されていてもよい。   The CNTs constituting the CNT aggregate are cylindrical bodies having a single-layer structure or a multi-layer structure, and are called SWNT (single-walled nanotube) and MWNT (multi-walled nanotube), respectively. The CNT aggregate may include a CNT having a layer structure of three or more layers, a CNT having a layer structure of a single layer structure, or a CNT having a layer structure of three or more layers or a layer of a single layer structure You may form from CNT which has a structure.

2層構造を有するCNTでは、六角形格子の網目構造を有する2つの筒状体が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。   A CNT having a two-layer structure has a three-dimensional network structure in which two cylindrical bodies having a hexagonal lattice network structure are arranged substantially coaxially, and is called DWNT (Double-walled nanotube). The hexagonal lattice, which is a structural unit, is a six-membered ring in which a carbon atom is arranged at the apex, and these are continuously bonded adjacent to another six-membered ring.

次に、CNT線材におけるCNT及びCNT集合体の配向性について説明する。   Next, the orientation of CNT and CNT aggregate in the CNT wire will be described.

小角X線散乱(SAXS)は、数nm〜数十nmの大きさの構造等を評価するのに適している。例えば、SAXSを用いて、以下の方法でX線散乱画像の情報を分析することで、外径が数十nmであるCNT集合体の配向性を評価することができる。複数のCNT集合体が良好な配向性を有していることで、従来のCNT線材と比較して引張強度などの機械的強度を一層高めることができる。なお、配向性とは、CNTを撚り集めて作製した撚り線の長手方向へのベクトルVに対する内部のCNT及びCNT集合体のベクトルの角度差のことを指す。   Small angle X-ray scattering (SAXS) is suitable for evaluating a structure having a size of several nanometers to several tens of nanometers. For example, the orientation of a CNT aggregate having an outer diameter of several tens of nanometers can be evaluated by analyzing information of an X-ray scattering image by the following method using SAXS. Since a plurality of CNT aggregates have good orientation, mechanical strength such as tensile strength can be further increased as compared with conventional CNT wires. The orientation refers to the angle difference between the internal CNT and the CNT aggregate vector with respect to the vector V in the longitudinal direction of the stranded wire produced by twisting together the CNTs.

本実施形態では、複数のCNT集合体の配向性を示す小角X線散乱(SAXS)のアジマスプロットにおけるアジマス角の半値幅Δθにより示される一定以上の配向性を得ることで、CNT線材の機械的強度を高める点から、アジマス角の半値幅Δθは25°以上50°未満であり、好ましくは29°以上45°以下である。   In the present embodiment, the mechanical property of the CNT wire is obtained by obtaining an orientation greater than a certain value indicated by the half-value width Δθ of the azimuth angle in the azimuth plot of small angle X-ray scattering (SAXS) indicating the orientation of a plurality of CNT aggregates From the viewpoint of increasing the strength, the half width Δθ of the azimuth angle is 25 ° or more and less than 50 °, and preferably 29 ° or more and 45 ° or less.

また、本実施形態では、CNT線材の断面において、CNT線材の内部を構成する複数のCNT集合体の配向性を示すアジマス角の半値幅Δθinに対する、上記CNT線材の外周部を構成する複数のCNT集合体の配向性を示すアジマス角の半値幅Δθoutの比であるΔθout/Δθinが、0.85よりも大きく、好ましくは0.89以上である。CNT線材の内部とは、幅方向断面内の中心から円相当半径の半分よりも内側の領域を指し、CNT線材の外周部とは、当該CNT線材の内部以外の部分であって、幅方向断面内の中心から円相当半径の半分よりも外側の領域を指す。Δθout/Δθinが、0.85以上であると、CNT線材の内部におけるCNT集合体の配向性とその外周部における複数のCNT集合体の配向性との差が小さくなり、CNT線材の引張強度などの機械的特性が向上する。   In the present embodiment, in the cross section of the CNT wire, a plurality of CNTs constituting the outer peripheral portion of the CNT wire with respect to the half-value width Δθin of the azimuth angle indicating the orientation of the plurality of CNT aggregates constituting the inside of the CNT wire. Δθout / Δθin, which is the ratio of the FWHM Δθout of the azimuth angle indicating the orientation of the aggregate, is greater than 0.85, and preferably 0.89 or more. The inside of the CNT wire refers to a region inside the half of the equivalent circle radius from the center in the cross section in the width direction, and the outer peripheral portion of the CNT wire is a portion other than the inside of the CNT wire, An area outside the half of the equivalent circle radius from the inner center. When Δθout / Δθin is 0.85 or more, the difference between the orientation of the CNT aggregate in the CNT wire and the orientation of the plurality of CNT aggregates in the outer peripheral portion becomes small, and the tensile strength of the CNT wire, etc. Improved mechanical properties.

CNT線材には、その外周部を被覆する絶縁被覆層が設けられてもよい。その場合、CNT線材及び絶縁被覆層は、CNT被覆電線を構成する。   The CNT wire may be provided with an insulating coating layer that covers the outer periphery thereof. In that case, the CNT wire and the insulating coating layer constitute a CNT-coated electric wire.

絶縁被覆層の材料としては、芯線として金属を用いた被覆電線の絶縁被覆層に用いる材料を使用することができ、例えば、熱可塑性樹脂、熱硬化性樹脂を挙げることができる。熱可塑性樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリカーボネート、ポリアミド、ポリ塩化ビニル、ポリメチルメタクリレート、ポリウレタン等を挙げることができる。また、熱硬化性樹脂としては、例えばポリイミド、フェノール樹脂等を挙げることができる。これらは、単独で使用してもよく、2種以上を適宜混合して使用してもよい。   As a material of the insulating coating layer, a material used for an insulating coating layer of a coated electric wire using a metal as a core wire can be used, and examples thereof include a thermoplastic resin and a thermosetting resin. Examples of the thermoplastic resin include polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyether ether ketone, polycarbonate, polyamide, polyvinyl chloride, polymethyl methacrylate, and polyurethane. Etc. Moreover, as a thermosetting resin, a polyimide, a phenol resin, etc. can be mentioned, for example. These may be used alone, or two or more kinds may be appropriately mixed and used.

CNT被覆電線が高圧電線の場合、熱可塑性樹脂としては、ポリエチレン、ポリ塩化ビニルが好ましく、特に、架橋ポリエチレン、軟質ポリ塩化ビニルが好ましい。   When the CNT-covered electric wire is a high-voltage electric wire, the thermoplastic resin is preferably polyethylene or polyvinyl chloride, and particularly preferably crosslinked polyethylene or soft polyvinyl chloride.

絶縁被覆層は、一層としてもよく、これに代えて、二層以上としてもよい。また、必要に応じて、絶縁被覆層上に、さらに、熱硬化性樹脂の層が設けられていてもよい。また、上記熱硬化性樹脂が、繊維形状或いは粒子形状を有する充填材を含有していてもよい。   The insulating coating layer may be a single layer, or alternatively, two or more layers. Further, if necessary, a layer of a thermosetting resin may be further provided on the insulating coating layer. The thermosetting resin may contain a filler having a fiber shape or a particle shape.

絶縁被覆層は、例えば、CNT線材の外周部全体を覆うように、CNT線材の長手方向の全体に亘って形成される。絶縁被覆層を形成する方法としては、アルミニウムや銅の芯線に絶縁被覆層を被覆する方法を使用でき、例えば、絶縁被覆層の原料である熱可塑性樹脂を溶融させ、CNT線材の周りに押し出して被覆する方法や、或いはCNT線材の周りに塗布する方法を挙げることができる。   The insulating coating layer is formed over the entire length of the CNT wire so as to cover the entire outer periphery of the CNT wire, for example. As a method of forming the insulation coating layer, a method of coating the insulation coating layer on an aluminum or copper core wire can be used. For example, a thermoplastic resin that is a raw material of the insulation coating layer is melted and extruded around the CNT wire. Examples thereof include a coating method and a method of coating around a CNT wire.

本実施形態に係るCNT線材、或いはCNT被覆電線は、ワイヤハーネス等の一般電線として使用することができ、また、CNT線材或いはCN被覆電線を使用した一般電線からケーブルを作製してもよい。   The CNT wire according to the present embodiment or the CNT-covered electric wire can be used as a general electric wire such as a wire harness, and a cable may be produced from the general electric wire using the CNT wire or the CN-coated electric wire.

上述したように、本実施形態によれば、複数のCNTを含有する分散液を凝固液中に吐出してCNT原糸(A)を形成し、CNT原糸(A)を凝固液中で延伸処理してCNT原糸(B)を形成するので、CNT原糸(B)を構成する複数のCNT集合体を高配向させることができ、CNT原糸(B)から得られるCNT線材の機械的強度を高めることができる。   As described above, according to this embodiment, a dispersion containing a plurality of CNTs is discharged into the coagulation liquid to form the CNT original yarn (A), and the CNT original yarn (A) is stretched in the coagulation liquid. Since the CNT raw yarn (B) is formed by processing, a plurality of CNT aggregates constituting the CNT raw yarn (B) can be highly oriented, and the mechanical properties of the CNT wire obtained from the CNT raw yarn (B) Strength can be increased.

また、上記製造方法にて製造されたCNT線材は、複数のCNTで構成されるCNT集合体の複数が束ねられて形成されおり、複数のCNT集合体の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値幅Δθが25°以上50°未満であるので、CNT線材を構成する複数のCNT集合体の配向性が良好であり、機械的強度の高いCNT線材を提供することができる。   Further, the CNT wire manufactured by the above manufacturing method is formed by bundling a plurality of CNT aggregates composed of a plurality of CNTs, and azimuth by small angle X-ray scattering indicating the orientation of the plurality of CNT aggregates. Since the half width Δθ of the azimuth angle in the plot is 25 ° or more and less than 50 °, the orientation of the plurality of CNT aggregates constituting the CNT wire is good, and a CNT wire with high mechanical strength can be provided. .

次に、本発明の実施例を説明するが、本発明の趣旨を超えない限り、下記実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.

(実施例1)
先ず、浮遊触媒法でCNTを作製し、CNTおよびドデシルスルホン酸ナトリウムを各0.5質量%含む水溶液を作製し、30分超音波処理を行い分散液とした。
Example 1
First, CNTs were prepared by a floating catalyst method, an aqueous solution containing 0.5% by mass of each of CNTs and sodium dodecyl sulfonate was prepared, and subjected to ultrasonic treatment for 30 minutes to obtain a dispersion.

次に、凝固液としてエタノールを準備し、複数のCNTを含有する上記分散液を、シリンジから凝固浴中に吐出してCNT原糸(A)を形成した。次いで、第1の一対の挟持ローラの搬送速度V1、第2の一対の挟持ローラの搬送速度V2及びV2/V1がそれぞれ表1に示す値となるように設定し、CNT原糸(A)を第1の一対の挟持ローラ及び第2の一対の挟持ローラでこの順で挟持並びに搬送して、CNT原糸(A)を凝固液中で延伸処理し、CNT原糸(B)を作製した。その後、CNT原糸(B)を乾燥させて円相当直径50μm〜300μmのCNT線材を得た。   Next, ethanol was prepared as a coagulation liquid, and the dispersion containing a plurality of CNTs was discharged from a syringe into a coagulation bath to form a CNT yarn (A). Next, the transport speed V1 of the first pair of sandwiching rollers, the transport speed V2 and V2 / V1 of the second pair of sandwiching rollers are set to the values shown in Table 1, and the CNT raw yarn (A) is set. The first pair of sandwiching rollers and the second pair of sandwiching rollers were sandwiched and conveyed in this order, and the CNT raw yarn (A) was drawn in a coagulating liquid to produce the CNT raw yarn (B). Thereafter, the CNT raw yarn (B) was dried to obtain a CNT wire having an equivalent circle diameter of 50 μm to 300 μm.

(実施例2)
第2の一対の挟持ローラの搬送速度V2及びV2/V1を変えたこと以外は、実施例1と同様にしてCNT線材を作製した。
(Example 2)
A CNT wire was produced in the same manner as in Example 1 except that the conveying speeds V2 and V2 / V1 of the second pair of sandwiching rollers were changed.

(実施例3)
第2の一対の挟持ローラの搬送速度V2及びV2/V1を変えたこと以外は、実施例1と同様にしてCNT線材を作製した。
(Example 3)
A CNT wire was produced in the same manner as in Example 1 except that the conveying speeds V2 and V2 / V1 of the second pair of sandwiching rollers were changed.

(実施例4)
第2の一対の挟持ローラの搬送速度V2及びV2/V1を変えたこと以外は、実施例1と同様にしてCNT線材を作製した。
Example 4
A CNT wire was produced in the same manner as in Example 1 except that the conveying speeds V2 and V2 / V1 of the second pair of sandwiching rollers were changed.

(実施例5)
第1の一対の挟持ローラの搬送速度V1及び第2の一対の挟持ローラの搬送速度V2を変えたこと以外は、実施例3と同様にしてCNT線材を作製した。
(Example 5)
A CNT wire was produced in the same manner as in Example 3 except that the conveyance speed V1 of the first pair of clamping rollers and the conveyance speed V2 of the second pair of clamping rollers were changed.

(実施例6)
第1の一対の挟持ローラの搬送速度V1及び第2の一対の挟持ローラの搬送速度V2を変えたこと以外は、実施例4と同様にしてCNT線材を作製した。
(Example 6)
A CNT wire was produced in the same manner as in Example 4 except that the conveyance speed V1 of the first pair of clamping rollers and the conveyance speed V2 of the second pair of clamping rollers were changed.

(比較例1)
第2の一対の挟持ローラの搬送速度V2及びV2/V1を変えたこと以外は、実施例1と同様にしてCNT線材を作製した。
(Comparative Example 1)
A CNT wire was produced in the same manner as in Example 1 except that the conveying speeds V2 and V2 / V1 of the second pair of sandwiching rollers were changed.

(比較例2)
特開2010−168679号公報に記載の製造方法により、延伸倍率を1.2倍として加熱しながら延伸処理を行い、CNT線材を作製した。
(Comparative Example 2)
According to the manufacturing method described in JP 2010-168679 A, a stretching process was performed while heating at a stretching ratio of 1.2 to prepare a CNT wire.

次に、上記のようにして作製したCNT線材について、以下の測定、評価を行った。   Next, the following measurements and evaluations were performed on the CNT wire produced as described above.

(a)CNT集合体の配向度
収束イオンビーム(FIB)を用いてCNT線材の断面方向に50μm厚に薄くスライスした。小角X線散乱装置を用いて、このスライス片の面に対して垂直方向にX線を入射し、得られた散乱ピークのアジマスプロット(方位角)をガウス関数もしくはローレンツ関数でフィッティングし、アジマス角の半値幅Δθを求めた。
(A) Orientation degree of CNT aggregate Using a focused ion beam (FIB), it was thinly sliced to a thickness of 50 μm in the cross-sectional direction of the CNT wire. Using a small-angle X-ray scattering device, X-rays are incident in the direction perpendicular to the surface of the slice piece, and the azimuth plot (azimuth angle) of the obtained scattering peak is fitted with a Gaussian function or Lorentz function to obtain an azimuth angle. The half-value width Δθ of was obtained.

(b)配向性内外比
マイクロビーム小角X線を用いて、前記と同様にCNT線材より切り出したスライス片の面に対して垂直方向に、それぞれビームサイズを10μmに絞ったX線を入射し、前記と同様にしてアジマス角の半値幅Δθを求めた。上記面におけるCNT線材の外周部および内部にX線を入射した際のアジマス角の半値幅をそれぞれΔθout、Δθinとし、Δθout/Δθinを配向性内外比αとして評価した。
(B) Orientation inside / outside ratio Using micro-beam small-angle X-rays, X-rays each having a beam size reduced to 10 μm are incident in a direction perpendicular to the surface of the slice piece cut out from the CNT wire in the same manner as above In the same manner as described above, the half-value width Δθ of the azimuth angle was obtained. The half width of the azimuth angle when X-rays were incident on the outer peripheral portion and the inside of the CNT wire on the above surface was evaluated as Δθout and Δθin, respectively, and Δθout / Δθin was evaluated as the orientation internal / external ratio α.

(c)引張強度
引張試験機を用い、CNT線材の長手方向における引張強度を測定した。破断時における引張強度が600MPaよりも大きい場合を極めて良好「◎」、500MPaよりも大きく600MPa以下である場合を良好「〇」、400MPaよりも大きく500MPa以下である場合を概ね良好「△」、400MPa以下である場合を不良「×」とした。
(C) Tensile strength A tensile tester was used to measure the tensile strength in the longitudinal direction of the CNT wire. Very good when the tensile strength at break is greater than 600 MPa “◎”, good when it is greater than 500 MPa and less than or equal to 600 MPa, “good”, and generally better when greater than 400 MPa and less than or equal to 500 MPa “Δ”, 400 MPa The case where it was below was set as defect "x".

CNT被覆電線の上記各測定及び評価の結果を、下記表1に示す。   The results of the above measurements and evaluations of the CNT-coated wires are shown in Table 1 below.

表1に示すように、実施例1では、第1の一対の挟持ローラの搬送速度V1に対する第2の一対の挟持ローラの搬送速度V2の比であるV2/V1が10であり、配向度が29°、配向性内外比が0.95、引張強度が714MPaであり、機械的強度が極めて良好であった。   As shown in Table 1, in Example 1, V2 / V1, which is the ratio of the conveyance speed V2 of the second pair of nip rollers to the conveyance speed V1 of the first pair of nip rollers, is 10, and the degree of orientation is 10. It was 29 °, the orientation ratio was 0.95, the tensile strength was 714 MPa, and the mechanical strength was very good.

実施例2では、V2/V1が6であり、配向度が37°、配向性内外比が0.93、引張強度が625MPaであり、機械的強度が極めて良好であった。   In Example 2, V2 / V1 was 6, the degree of orientation was 37 °, the orientation ratio was 0.93, the tensile strength was 625 MPa, and the mechanical strength was very good.

実施例3では、V2/V1が4であり、配向度が44°、配向性内外比が0.89、引張強度が511MPaであり、機械的強度が良好であった。   In Example 3, V2 / V1 was 4, the degree of orientation was 44 °, the orientation ratio was 0.89, the tensile strength was 511 MPa, and the mechanical strength was good.

実施例4では、V2/V1が3であり、配向度が48°、配向性内外比が0.91、引張強度が402MPaであり、機械的強度が概ね良好であった。   In Example 4, V2 / V1 was 3, the degree of orientation was 48 °, the orientation ratio was 0.91, the tensile strength was 402 MPa, and the mechanical strength was generally good.

実施例5では、V1が0.4m/min、V2が1.6m/min、V2/V1が4であり、配向度が42°、配向性内外比が0.94、引張強度が523MPaであり、機械的強度が良好であった。   In Example 5, V1 is 0.4 m / min, V2 is 1.6 m / min, V2 / V1 is 4, the degree of orientation is 42 °, the orientation ratio is 0.94, and the tensile strength is 523 MPa. The mechanical strength was good.

実施例6では、V1が0.4m/min、V2が1.2m/min、V2/V1が3であり、配向度が47°、配向性内外比が0.88、引張強度が419MPaであり、機械的強度が概ね良好であった。   In Example 6, V1 was 0.4 m / min, V2 was 1.2 m / min, V2 / V1 was 3, the degree of orientation was 47 °, the orientation ratio was 0.88, and the tensile strength was 419 MPa. The mechanical strength was generally good.

一方、比較例1では、第1の一対の挟持ローラの搬送速度V1は実施例1と同じものの、第2の一対の挟持ローラの搬送速度V2が実施例1よりも小さく、V2/V1が1.5であり、配向度が50°、配向性内外比が0.83、引張強度が376MPaであり、機械的強度が劣った。   On the other hand, in Comparative Example 1, the transport speed V1 of the first pair of sandwiching rollers is the same as that of Embodiment 1, but the transport speed V2 of the second pair of sandwiching rollers is smaller than that of Embodiment 1, and V2 / V1 is 1. The degree of orientation was 50 °, the orientation ratio was 0.83, the tensile strength was 376 MPa, and the mechanical strength was poor.

また、比較例2では、延伸倍率を1.2倍として加熱しながら延伸処理を行ったところ、配向度が52°、配向性内外比が0.85、引張強度が345MPaであり、機械的強度が劣った。   In Comparative Example 2, when the stretching treatment was performed while heating at a stretching ratio of 1.2, the degree of orientation was 52 °, the orientation ratio was 0.85, the tensile strength was 345 MPa, and the mechanical strength was Was inferior.

1 凝固浴
2 吐出部
3 第1搬送部
3a,3a 第1の一対の挟持ローラ
4 第2搬送部
4a,4a 第2の一対の挟持ローラ
X 延伸方向
(A) CNT原糸
(B) CNT原糸
DESCRIPTION OF SYMBOLS 1 Coagulation bath 2 Discharge part 3 1st conveyance part 3a, 3a 1st pair of clamping roller 4 2nd conveyance part 4a, 4a 2nd pair of clamping roller X Stretching direction (A) CNT original yarn (B) CNT raw material yarn

Claims (5)

複数のカーボンナノチューブを含有する分散液を凝固液中に吐出してカーボンナノチューブ原糸(A)を作製する工程と、
前記カーボンナノチューブ原糸(A)を前記凝固液中で延伸処理してカーボンナノチューブ原糸(B)を作製することを特徴とする、カーボンナノチューブ線材の製造方法。
A step of producing a carbon nanotube yarn (A) by discharging a dispersion containing a plurality of carbon nanotubes into a coagulating liquid;
A method for producing a carbon nanotube wire, wherein the carbon nanotube yarn (A) is drawn in the coagulating liquid to produce the carbon nanotube yarn (B).
前記カーボンナノチューブ原糸(A)の延伸方向に関して下流側に配置された第2搬送部の搬送速度V2を、前記延伸方向に関して上流側に配置された第1搬送部の搬送速度V1よりも大きくして、前記第1搬送部及び前記第2搬送部の双方で前記カーボンナノチューブ原糸(A)を挟持しながら延伸する、請求項1記載のカーボンナノチューブ線材の製造方法。   The conveyance speed V2 of the second conveyance unit disposed on the downstream side in the drawing direction of the carbon nanotube raw yarn (A) is set to be larger than the conveyance speed V1 of the first conveyance unit arranged on the upstream side in the drawing direction. The carbon nanotube wire manufacturing method according to claim 1, wherein the carbon nanotube raw material (A) is stretched while being sandwiched between both the first transport unit and the second transport unit. 前記第1搬送部は、前記凝固液中に配置された第1の一対の挟持ローラであり、前記第2搬送部は、前記凝固液中に配置された第2の一対の挟持ローラであり、
前記第1の一対の挟持ローラの前記搬送速度V1に対する前記第2の一対の挟持ローラの搬送速度V2の比であるV2/V1が、3以上10以下である、請求項2記載のカーボンナノチューブ線材の製造方法。
The first transport unit is a first pair of sandwiching rollers disposed in the coagulating liquid, and the second transport unit is a second pair of sandwiching rollers disposed in the coagulating liquid,
The carbon nanotube wire according to claim 2, wherein V2 / V1, which is a ratio of the conveyance speed V2 of the second pair of clamping rollers to the conveyance speed V1 of the first pair of clamping rollers, is 3 or more and 10 or less. Manufacturing method.
複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の複数が束ねられて形成されているカーボンナノチューブ線材であって、
複数の前記カーボンナノチューブ集合体の配向性を示す小角X線散乱によるアジマスプロットにおけるアジマス角の半値幅Δθが25°以上50°未満であることを特徴とする、カーボンナノチューブ線材。
A carbon nanotube wire formed by bundling a plurality of carbon nanotube aggregates composed of a plurality of carbon nanotubes,
A carbon nanotube wire characterized by having a azimuth angle half-value width Δθ of 25 ° or more and less than 50 ° in an azimuth plot by small-angle X-ray scattering indicating the orientation of a plurality of carbon nanotube aggregates.
前記カーボンナノチューブ線材の断面において、前記カーボンナノチューブ線材の内部を構成する複数の前記カーボンナノチューブ集合体の配向性を示すアジマス角の半値幅Δθinに対する、前記カーボンナノチューブ線材の外周部を構成する複数の前記カーボンナノチューブ集合体の配向性を示すアジマス角の半値幅Δθoutの比であるΔθout/Δθinが、0.85よりも大きい、請求項4記載のカーボンナノチューブ線材。

In the cross section of the carbon nanotube wire, a plurality of the carbon nanotube wire constituting the outer peripheral portion of the carbon nanotube wire with respect to the half width Δθin of the azimuth angle indicating the orientation of the plurality of carbon nanotube aggregates constituting the inside of the carbon nanotube wire The carbon nanotube wire according to claim 4, wherein Δθout / Δθin, which is a ratio of half-value width Δθout of the azimuth angle indicating the orientation of the carbon nanotube aggregate, is larger than 0.85.

JP2018069831A 2018-03-30 2018-03-30 Manufacturing method of carbon nanotube wire rod Active JP6952003B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018069831A JP6952003B2 (en) 2018-03-30 2018-03-30 Manufacturing method of carbon nanotube wire rod
JP2021138346A JP7348934B2 (en) 2018-03-30 2021-08-26 carbon nanotube wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018069831A JP6952003B2 (en) 2018-03-30 2018-03-30 Manufacturing method of carbon nanotube wire rod

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021138346A Division JP7348934B2 (en) 2018-03-30 2021-08-26 carbon nanotube wire

Publications (2)

Publication Number Publication Date
JP2019178466A true JP2019178466A (en) 2019-10-17
JP6952003B2 JP6952003B2 (en) 2021-10-20

Family

ID=68278072

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018069831A Active JP6952003B2 (en) 2018-03-30 2018-03-30 Manufacturing method of carbon nanotube wire rod
JP2021138346A Active JP7348934B2 (en) 2018-03-30 2021-08-26 carbon nanotube wire

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021138346A Active JP7348934B2 (en) 2018-03-30 2021-08-26 carbon nanotube wire

Country Status (1)

Country Link
JP (2) JP6952003B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168679A (en) * 2009-01-21 2010-08-05 National Institute Of Advanced Industrial Science & Technology Oriented carbon nano tube yarn, and method for producing the same
JP2011502925A (en) * 2007-10-29 2011-01-27 ウィリアム・マーシュ・ライス・ユニバーシティ Orderly aligned carbon nanotube article processed from superacid solution and method for producing the same
WO2012070537A1 (en) * 2010-11-22 2012-05-31 古河電気工業株式会社 Coagulation spinning structure and production method therefor, and electric wire using same
WO2014185497A1 (en) * 2013-05-17 2014-11-20 独立行政法人産業技術総合研究所 Drawn carbon nanotube yarn and production method therefor
JP2014530964A (en) * 2011-09-07 2014-11-20 テイジン・アラミド・ビー.ブイ. Carbon nanotube fiber having low resistivity, high elastic modulus, and / or high thermal conductivity, and method for producing the fiber by spinning using fiber spinning dope
WO2019074072A1 (en) * 2017-10-13 2019-04-18 国立研究開発法人産業技術総合研究所 Fiber constituted from carbon nanotube and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007926A2 (en) 2003-07-11 2005-01-27 Cambridge University Technical Services Limited Production of agglomerates from gas phase
JP5429751B2 (en) 2010-01-28 2014-02-26 地方独立行政法人大阪府立産業技術総合研究所 Carbon nanotube twisted yarn and method for producing the same
JP2014169521A (en) 2013-02-05 2014-09-18 Honda Motor Co Ltd Carbon nanotube fiber and manufacturing method thereof
DE102015101282A1 (en) 2015-01-29 2016-08-04 Rwth Aachen Process and apparatus for the production of inorganic airgel fibers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502925A (en) * 2007-10-29 2011-01-27 ウィリアム・マーシュ・ライス・ユニバーシティ Orderly aligned carbon nanotube article processed from superacid solution and method for producing the same
JP2010168679A (en) * 2009-01-21 2010-08-05 National Institute Of Advanced Industrial Science & Technology Oriented carbon nano tube yarn, and method for producing the same
WO2012070537A1 (en) * 2010-11-22 2012-05-31 古河電気工業株式会社 Coagulation spinning structure and production method therefor, and electric wire using same
JP2014530964A (en) * 2011-09-07 2014-11-20 テイジン・アラミド・ビー.ブイ. Carbon nanotube fiber having low resistivity, high elastic modulus, and / or high thermal conductivity, and method for producing the fiber by spinning using fiber spinning dope
WO2014185497A1 (en) * 2013-05-17 2014-11-20 独立行政法人産業技術総合研究所 Drawn carbon nanotube yarn and production method therefor
WO2019074072A1 (en) * 2017-10-13 2019-04-18 国立研究開発法人産業技術総合研究所 Fiber constituted from carbon nanotube and method for manufacturing same

Also Published As

Publication number Publication date
JP2021185284A (en) 2021-12-09
JP6952003B2 (en) 2021-10-20
JP7348934B2 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
RU2504604C2 (en) Articles made of pure carbon nanotubes, made from superacid solutions and methods for production thereof
US8604340B2 (en) Coaxial cable
US20150167205A1 (en) Methods of making nanofiber yarns and threads
JP6434492B2 (en) Polymer / filler / metal composite fiber and method for producing the same
JP2012516362A (en) Method for incorporating carbon particles into a polyurethane surface layer
CN111201343B (en) Fiber composed of carbon nanotubes and method for producing same
JP7306996B2 (en) Carbon nanotube coated wires and coils
KR20180059492A (en) Monolithic films of highly oriented, integrated halogenated graphene
JP7407700B2 (en) Carbon nanotube-coated wire for coils, coil using carbon nanotube-coated wire for coils, and method for manufacturing carbon nanotube-coated wire coils
JP7053427B2 (en) Enamel wire manufacturing method
US20210283863A1 (en) Architecture-, Geometry-, and Microstructure-Controlled Processing of Carbon Fibers and Nanofibers via Pyrolysis of Multicomponent Hot-Drawn Precursors
JP6952003B2 (en) Manufacturing method of carbon nanotube wire rod
Lee et al. Multifunctional Ni-plated carbon fiber reinforced thermoplastic composite with excellent electrothermal and superhydrophobic properties using MWCNTs and SiO2/Ag microspheres
JP2008126468A (en) Conductive net and its manufacturing method
KR20200126406A (en) Nanomaterial-Coated Fiber
US8018059B2 (en) Electrical interconnect with an electrical pathway including at least a first member overlain by a second member at a contact point
JP2014001266A (en) Polyester molded article and method for manufacturing the same
KR101308183B1 (en) Conductive polymer complex and forming method thereof
JP6421300B2 (en) Carbon fiber reinforced resin extruded material and method for producing the same
JP7316822B2 (en) carbon nanotube wire
Zangrossi et al. Improvement in electrical characteristics by surface modification of multi-wall carbon nanotube based buckypaper for de-icing application
CN111279435B (en) Carbon nanotube coated wire
KR102176737B1 (en) Filament for 3-dimensional printing and methods of fabricating the same
JP7195711B2 (en) Carbon nanotube coated wire
CN111279436B (en) Carbon nanotube coated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6952003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151