JP2019178448A - Glossy woven or knitted fabric - Google Patents

Glossy woven or knitted fabric Download PDF

Info

Publication number
JP2019178448A
JP2019178448A JP2018067725A JP2018067725A JP2019178448A JP 2019178448 A JP2019178448 A JP 2019178448A JP 2018067725 A JP2018067725 A JP 2018067725A JP 2018067725 A JP2018067725 A JP 2018067725A JP 2019178448 A JP2019178448 A JP 2019178448A
Authority
JP
Japan
Prior art keywords
woven
knitted fabric
light
fiber
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018067725A
Other languages
Japanese (ja)
Inventor
雅人 関山
Masato Sekiyama
雅人 関山
慎也 中道
Shinya Nakamichi
慎也 中道
知彦 松浦
Tomohiko Matsuura
知彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018067725A priority Critical patent/JP2019178448A/en
Publication of JP2019178448A publication Critical patent/JP2019178448A/en
Pending legal-status Critical Current

Links

Abstract

To provide a woven or knitted fabric having soft feeling suitable for clothing use, which has an excellent glossy feeling, and in which shade is emphasized to exhibit deep aesthetic property when the woven or knitted fabric is bent.SOLUTION: In a woven or knitted fabric, a relation of a regular reflection intensity Iat an incident angle of 60° and a regular reflection intensity Iat an incident angle of 8° to an incident light having a wavelength of 300 to 750 nm in the warp/weft directions of the woven or knitted fabric satisfies I/I>0.5, and both the relative glossiness at an incident angle of 45° and the relative glossiness at an incident angle 60° are between 1.5 or more and 3.0 or less.SELECTED DRAWING: None

Description

本発明は織編物に関する。   The present invention relates to a woven or knitted fabric.

ポリエステルやポリアミドなどからなる合成繊維はその優れた力学特性やウォッシャブル性から衣料用途に広く用いられており、人々の生活が多様化する中で新たな感性、審美性を有する素材が求められている。   Synthetic fibers made of polyester, polyamide, etc. are widely used for clothing due to their excellent mechanical properties and washability, and materials with new sensibility and aesthetics are required as people's lives diversify. .

特に審美性を追求した光沢素材では、ポリマー中の添加物を最小化しポリエステル独特の光沢を増長した繊維のほか、繊維断面の異型化や金属膜の蒸着により反射率を向上させ、織編物に光沢を付与する技術が検討されてきた。   Especially for glossy materials that pursue aesthetics, in addition to fibers that minimize the additive in the polymer and increase the gloss unique to polyester, the reflectance is improved by atypical fiber cross-sections and metal film deposition, resulting in a glossy woven or knitted fabric. Techniques for imparting have been studied.

また例えば特許文献1では繊維中に屈折率の異なるポリマーを積層することで、積層界面で反射した光の光学干渉により金属のような審美性を有する繊維を得る技術を開示している。   Further, for example, Patent Document 1 discloses a technique for obtaining a fiber having an aesthetic property like a metal by laminating polymers having different refractive indexes in the fiber and optical interference of light reflected at the lamination interface.

特開2007−146338号公報(特許請求の範囲)JP 2007-146338 A (Claims)

特許文献1のように繊維中の異屈折率相界面での干渉発色効果により光沢織編物を得る技術は存在するものの、扁平断面繊維を用いた際には複数の繊維の平滑面がそろうことにより特有のぎらつきが生じるほか、強い光沢感は視認できるものの、織編物を屈曲した際に陰影と深みのある光沢感を有する織編物は得られていなかった。   Although there is a technique for obtaining a glossy woven or knitted fabric by the interference coloring effect at the interface of different refractive index phase in the fiber as in Patent Document 1, when flat cross-section fibers are used, the smooth surfaces of a plurality of fibers are aligned. In addition to the occurrence of specific glare, a strong gloss feeling can be visually recognized, but a woven or knitted fabric having a glossiness with a shadow and depth when the woven or knitted fabric is bent has not been obtained.

本発明は上述した従来技術の問題点に鑑み、優れた光沢感を有しながらも織編物が屈曲した際に陰影が強調され深みのある審美性を呈する、衣料用途に好適なソフトな風合いを有する織編物を提供することにある。   In view of the above-mentioned problems of the prior art, the present invention has a soft texture suitable for apparel, which has an excellent gloss and exhibits a deep aesthetics when a woven or knitted fabric is bent and has a deep shadow. The object is to provide a woven or knitted fabric.

本発明の目的は以下の手段によって達成される。
(1)織編物の経/緯方向への波長300〜750nmの入射光に対し、入射角60度での正反射強度I60と入射角8度での正反射強度Iの関係がI/I60>0.5を満たし、入射角30−60°における対比光沢度が1.5以上3.0以下である織編物。
(2)波長300〜750nmの入射光に対する平均反射率が20%以上である請求項1に記載の織編物。
(3)波長300〜750nmの入射光に対する平均透過率が40%以下である請求項1または2に記載の織編物。
(4)屈折率の異なる複数の相を含む繊維を少なくとも一部に使用した、請求項1−3のいずれかに記載の特徴を有する織編物。
(5)屈折率の異なる複数の相を同心状に積層配列した構造を有する繊維を少なくとも一部に使用した、請求項1−4のいずれかに記載の特徴を有する織編物。
(6)酸化チタン含有率が0.5質量%以下の繊維を少なくとも一部に使用した、請求項1−5のいずれかに記載の特徴を有する織編物。
(7)繊維を構成する少なくとも1つの相中に光吸収粒子を0.01−5.0質量%含有する繊維を少なくとも一部に使用した、請求項1−6のいずれかに記載の特徴を有する織編物。
The object of the present invention is achieved by the following means.
(1) with respect to incident light having a wavelength 300~750nm to via / weft directions of the woven or knitted fabric, the relationship between the specular reflection intensity I 8 at an incident angle of 8 degrees specular reflection intensity I 60 at an incident angle of 60 degrees I 8 A woven or knitted fabric satisfying / I 60 > 0.5 and having a relative glossiness of 1.5 to 3.0 at an incident angle of 30-60 °.
(2) The woven or knitted fabric according to claim 1, wherein an average reflectance with respect to incident light having a wavelength of 300 to 750 nm is 20% or more.
(3) The woven or knitted fabric according to claim 1 or 2, wherein the average transmittance for incident light having a wavelength of 300 to 750 nm is 40% or less.
(4) A woven or knitted fabric having the characteristics according to any one of claims 1 to 3, wherein fibers containing a plurality of phases having different refractive indexes are used at least in part.
(5) The woven or knitted fabric having the characteristics according to any one of claims 1 to 4, wherein at least a part of fibers having a structure in which a plurality of phases having different refractive indexes are concentrically laminated are arranged.
(6) The woven or knitted fabric having the characteristics according to any one of claims 1 to 5, wherein a fiber having a titanium oxide content of 0.5% by mass or less is used at least in part.
(7) The characteristic according to any one of claims 1 to 6, wherein a fiber containing 0.01 to 5.0 mass% of light absorbing particles in at least one phase constituting the fiber is used at least in part. Woven knitted fabric.

本発明の織編物は、織編物が屈曲した際に陰影が強調され、深みのある光沢を呈することを特徴とする。   The woven or knitted fabric of the present invention is characterized in that when the woven or knitted fabric is bent, the shadow is emphasized and a deep gloss is exhibited.

入射角、反射角、正反射および拡散反射を説明するための概念図である。It is a conceptual diagram for demonstrating an incident angle, a reflection angle, regular reflection, and diffuse reflection. 異なる複数の相を含む繊維の繊維軸方向に垂直な方向の断面の概略図である。It is the schematic of the cross section of the direction perpendicular | vertical to the fiber-axis direction of the fiber containing a several different phase. 受光角を説明するための概念図である。It is a conceptual diagram for demonstrating a light reception angle.

以下、本発明において望ましい実施形態と共に詳述する。   Hereinafter, the present invention will be described in detail together with preferred embodiments.

可視光波長域における反射率の入射角/反射角依存性を特定の範囲へと制御した際に、織編物が屈曲した際の陰影が最大化されることを見出したことが本発明の基礎になっている。すなわち織編物の陰影は、光反射により形成される明部と織物の屈曲で生じた影(暗部)の反射率差およびそれぞれの面積により特徴付けられる。物体への光反射は正反射(入射角と反射角が同角度の反射)が最も大きく、一般に入射角が低下するほど反射も低下するため、屈曲時の明部は入射角の大きな領域に限られる。ここでいうところの入射角とは、織編物の法線と光の入射方向が形成する角度を指す。図1は法線1に対し入射角θ1で光が入射し、反射角θ2で反射する様子を示す。θ1=θ2のとき、反射角θ2での反射を正反射、反射角θがθ2≠θ1のあらゆる方向に反射が拡散することを拡散反射という。   The basis of the present invention is that when the incidence angle / reflection angle dependency of the reflectance in the visible light wavelength region is controlled to a specific range, the shadow when the woven or knitted fabric is bent is maximized. It has become. That is, the shading of the woven or knitted fabric is characterized by the reflectance difference between the bright part formed by light reflection and the shadow (dark part) generated by the bending of the fabric and the respective areas. Reflection of light to an object is the largest in regular reflection (reflection with the same incident angle and reflection angle), and generally the reflection decreases as the incident angle decreases. Therefore, the bright part at the time of bending is limited to a region with a large incident angle. It is done. The incident angle here refers to an angle formed by the normal line of the woven or knitted fabric and the incident direction of light. FIG. 1 shows a state in which light is incident on the normal 1 at an incident angle θ1 and reflected at a reflection angle θ2. When θ1 = θ2, the reflection at the reflection angle θ2 is referred to as regular reflection, and the reflection diffused in any direction where the reflection angle θ is θ2 ≠ θ1 is referred to as diffuse reflection.

本発明の織編物は入射角が小さい場合にも反射率低下が抑制でき、明部の領域を拡大したことで優れた陰影を有する。さらに織編物の屈曲時に影となる領域では視界に正反射光が届かないが、拡散反射(入射角と反射角が異なる反射)が大きい場合には影の明度が上昇するため明部とのコントラストが低下する。本発明の織編物は拡散反射を低下させることで暗部の明度を低下させ、明部とのコントラストを増大することで陰影を増大することができる。   The woven or knitted fabric of the present invention can suppress a decrease in reflectance even when the incident angle is small, and has an excellent shadow by expanding the bright area. In addition, specularly reflected light does not reach the field of view in the shadow area when the woven or knitted fabric is bent. However, if diffuse reflection (reflection with a different incident angle and reflection angle) is large, the brightness of the shadow increases, so the contrast with the bright part Decreases. The woven or knitted fabric of the present invention can reduce the lightness of the dark part by reducing the diffuse reflection, and can increase the shadow by increasing the contrast with the bright part.

具体的には下記の光学的なパラメータを制御することを必要とするが、まず明部の面積拡大という観点から、本発明においては、入射角60度での正反射強度I60と入射角8度での正反射強度Iの関係がI/I60>0.5を満たす。ここでいうところの正反射強度とは、正反射における反射強度を指す。 Specifically, it is necessary to control the following optical parameters. First, from the viewpoint of expanding the area of the bright portion, in the present invention, the regular reflection intensity I 60 at the incident angle of 60 degrees and the incident angle of 8 are used. The relation of regular reflection intensity I 8 in degrees satisfies I 8 / I 60 > 0.5. The regular reflection intensity here refers to the reflection intensity in regular reflection.

各入射角での正反射強度は、波長域300〜750nmの光の測定が可能となる光源とその光源に対する光検出器を有した自動変角光度計を用いて評価可能なものである。波長域300〜750nmの光は一般に可視光と呼ばれ、この波長域における光を人間は明暗として視認できる。本発明においてはハロゲンランプを光源として入射角8°および60°で入射し、その正反射強度IおよびI60を評価した。 The specular reflection intensity at each incident angle can be evaluated using an automatic goniophotometer having a light source capable of measuring light in the wavelength region of 300 to 750 nm and a photodetector for the light source. Light in the wavelength range of 300 to 750 nm is generally called visible light, and humans can visually recognize light in this wavelength range as bright and dark. In the present invention, a halogen lamp was used as a light source and incident at an incident angle of 8 ° and 60 °, and the regular reflection intensities I 8 and I 60 were evaluated.

織編物の陰影感を強く視認するには、織編物を屈曲させた際に、明部が広範囲にわたって形成される必要がある。よって織編物に対して小さい入射角の光に対しても高い反射率を有するほど、織編物の陰影感は強調される。すなわち入射角8度での最大反射率Iと入射角60度での最大反射率I60が近いほど良く、本発明ではI/I60>0.5であることで優れた陰影感を付与できる。なかでもI/I60>0.7において上記の特徴がより顕著に発現するようになるため、より好ましい条件として挙げることが出来る。さらにはI/I60>1.0のとき、織編物を屈曲させた際に屈曲部の広範囲で強い光沢が得られるため、特に好ましい条件として挙げる事ができる。I/I60>2.0の場合には正反射が相対的に小さく視認され光沢を感じにくくなることから、本発明の特徴を発現する上でI/I60の上限は通常2.0程度である。 In order to visually recognize the shading feeling of the woven or knitted fabric, it is necessary to form a bright portion over a wide range when the woven or knitted fabric is bent. Therefore, the higher the reflectivity for light having a small incident angle with respect to the woven or knitted fabric, the more the shading feeling of the woven or knitted fabric is enhanced. That good closer maximum reflectivity I 60 at an incident angle of 60 degrees and the maximum reflectance I 8 at an incident angle of 8 degrees, the shading feeling better by a I 8 / I 60> 0.5 in the present invention Can be granted. Above all, the above characteristics are more remarkably exhibited at I 8 / I 60 > 0.7, and therefore can be mentioned as more preferable conditions. Furthermore, when I 8 / I 60 > 1.0, when the woven or knitted fabric is bent, a strong gloss can be obtained over a wide range of the bent portion, so that it can be mentioned as a particularly preferable condition. Since hardly feel the visible specular reflection is relatively small gloss in the case of I 8 / I 60> 2.0, the upper limit of I 8 / I 60 in order to express the characteristics of the present invention is usually 2. It is about zero.

次に影の明度抑制の観点から、入射角45°および60°における対比光沢度はそれぞれ1.5以上であることが望ましい。対比光沢度とは、正反射の拡散反射に対する比を意味し、波長域300〜750nmの光の測定が可能となる光源とその光源に対する光検出器を有した自動変角光度計を用いて評価可能なものである。本発明においては入射角45°および60°で各サンプルに光を入射し、反射強度を受光角0°付近における最小光強度(拡散反射強度)で割った値を対比光沢度として定義する。受光角θとは図3に示す通り、測定点におけるサンプルの法線と、測定点と受光器中心を結ぶ直線とが成す角を意味する。 Next, from the viewpoint of suppressing the brightness of the shadow, the relative glossiness at the incident angles of 45 ° and 60 ° is preferably 1.5 or more. Contrast gloss means the ratio of specular reflection to diffuse reflection, and is evaluated using an automatic goniophotometer having a light source capable of measuring light in the wavelength range of 300 to 750 nm and a photodetector for the light source. It is possible. In the present invention, light is incident on each sample at incident angles of 45 ° and 60 °, and the value obtained by dividing the reflection intensity by the minimum light intensity (diffuse reflection intensity) near the light receiving angle of 0 ° is defined as the contrast glossiness. As shown in FIG. 3, the light receiving angle θ 3 means an angle formed by the normal line of the sample at the measurement point and a straight line connecting the measurement point and the center of the light receiver.

対比光沢度が大きいほど織編物表面の拡散反射が小さく、屈曲時に影を形成する部分の明度を抑制できるため優れた陰影を発現できる。すなわち入射角45°および60°における対比光沢度がそれぞれ1.5以上であると優れた陰影感を付与できる。特に対比光沢度が1.7以上の場合には明部とのコントラストが強調され、織編物の屈曲時に優れた陰影を呈するためより好ましい条件として挙げることができ、特に優れた特徴的な陰影感を発現する上で対比光沢度は2.0以上であることが特に望ましい。対比光沢度が過度に大きくなると織編物を衣服とした際の光沢異方性が大きくなり、広い視野からの光沢感の視認がされにくくなるため、対比光沢度の上限は3.0であることが好ましい。   The greater the contrast glossiness, the smaller the diffuse reflection on the surface of the woven or knitted fabric, and the lightness of the portion that forms a shadow when bent can be suppressed, so that an excellent shadow can be expressed. That is, excellent shading can be imparted when the relative glossiness at an incident angle of 45 ° and 60 ° is 1.5 or more, respectively. In particular, when the contrast glossiness is 1.7 or more, the contrast with the bright part is enhanced, and an excellent shadow is exhibited when the woven or knitted fabric is bent. It is particularly desirable that the contrast glossiness is 2.0 or more in order to express the above. If the contrast glossiness is excessively large, the gloss anisotropy when the woven or knitted fabric is used as clothing increases, and it becomes difficult to visually recognize the glossiness from a wide field of view, so the upper limit of the contrast glossiness is 3.0. Is preferred.

次に、光沢感という観点からは、波長300〜750nmの入射光に対する平均反射率が20%以上であることが望ましい。該平均反射率とは、波長300〜750nmにおける波長10nm毎の反射率の平均値を意味し、波長300〜750nmでの反射率の測定が可能となる光源を有した分光光度計を用いて評価可能なものである。光沢が強いほど、織編物を屈曲し影を形成した際の、明暗コントラストが強調されるので、平均反射率が高いほど好適であり、平均反射率が40%以上である場合に本素材の特徴を強く表現でき、より好ましい条件として挙げることが出来る。なかでも照明等の環境要素に関係なく光沢素材として優れた審美性を発現できる点から平均反射率が60%以上であることが特に望ましい。但し、本発明の光沢繊維からなる素材を染色等して有色の素材として使用する場合には、過度な平均反射率を付与した場合には、白色反射が強く、見掛け発色性が低下することも想定されるため、衣料用途等の発色性が必要になる用途においては、平均反射率の実質的な上限は99%になる。   Next, from the viewpoint of glossiness, it is desirable that the average reflectance for incident light with a wavelength of 300 to 750 nm is 20% or more. The average reflectance means the average value of the reflectance for each wavelength of 10 nm at a wavelength of 300 to 750 nm, and is evaluated using a spectrophotometer having a light source capable of measuring the reflectance at a wavelength of 300 to 750 nm. It is possible. The stronger the gloss, the brighter and darker contrast is enhanced when the woven or knitted fabric is bent and shadows are formed. Therefore, the higher the average reflectance, the better. The characteristics of this material when the average reflectance is 40% or more. Can be expressed strongly, and can be cited as a more preferable condition. In particular, it is particularly desirable that the average reflectance is 60% or more from the standpoint that excellent aesthetics can be exhibited as a glossy material regardless of environmental factors such as lighting. However, when the material comprising the glossy fiber of the present invention is used as a colored material by dyeing or the like, if an excessive average reflectance is given, white reflection is strong, and apparent color development may be reduced. Since it is assumed, the practical upper limit of the average reflectance is 99% in applications that require color development such as clothing.

次に暗部の形成という観点から、波長300〜750nmの入射光に対する平均透過率は40%以下であることが望ましい。この平均透過率とは、波長300〜750nmにおける波長10nm毎の透過率の平均値を意味し、平均反射率同様の波長300〜750nmの透過率の測定が可能となる光源を有した分光光度計を用いて評価可能であり、本発明では光源入射角8°の条件で測定する。平均透過率が低いほど、織編物を屈曲させた際の影が強調されるため明暗のコントラストを人間の目でより鮮明に視認できるようになり、陰影感の強調された素材としての特徴を顕著に発揮することができる。この観点から、平均透過率が20%以下の場合には明部の強い光沢感と相まって魅力的な陰影感を有する光沢織編物が得られ、特に好ましい条件として挙げる事ができる。平均透過率を低減するほど、陰影感を向上させることが可能であるが、繊維で構成されることで空隙を有する織編物の構造上の制限から、平均透過率の実質的な下限は0.1%となる。   Next, from the viewpoint of forming a dark part, the average transmittance for incident light with a wavelength of 300 to 750 nm is desirably 40% or less. The average transmittance means an average value of transmittance for each wavelength of 10 nm at wavelengths of 300 to 750 nm, and a spectrophotometer having a light source capable of measuring the transmittance of wavelengths of 300 to 750 nm similar to the average reflectance. In the present invention, the measurement is performed under the condition of a light source incident angle of 8 °. The lower the average transmittance, the more the shadow when the woven or knitted fabric is bent is emphasized, so that the contrast of light and dark can be seen more clearly with the human eye, and the characteristics as a material with enhanced shading are prominent Can be demonstrated. From this viewpoint, when the average transmittance is 20% or less, a glossy woven or knitted fabric having an attractive shading feeling combined with a strong glossiness at the bright part can be obtained, and can be mentioned as a particularly preferable condition. It is possible to improve the shading feeling as the average transmittance is reduced. However, due to the structural limitations of the woven or knitted fabric having voids by being composed of fibers, the practical lower limit of the average transmittance is 0. 1%.

上記光学的パラメータの達成手段は、本発明で規定する範囲を満たす限りにおいて特に限定されるものではないが、下記の原糸設計を選択することで比較的容易に上記光学的パラメータを制御することが可能となる。   The means for achieving the optical parameter is not particularly limited as long as it satisfies the scope defined in the present invention, but the optical parameter can be controlled relatively easily by selecting the following yarn design. Is possible.

低入射角で入射した光に対して比較的容易に反射率を上げるには、織編物を構成する繊維が屈折率の異なる複数の相を有することが好ましい。これは光が屈折率差のある物質間の界面で反射するという特性に基づいており、その屈折率差が大きいほど界面での反射も大きくなる。すなわち、繊維内部において屈折率の異なる相を複合すればよく、本発明の光沢繊維においては、繊維軸に垂直方向の繊維断面が異なる複数の相で構成される構造とすることが好ましい。ただし、ここで言うところの異なる複数の相とは、ポリマーの基本組成が異なる場合は元より、ポリマーの基本組成が同一であっても共重合成分や含有成分が異なっていれば異なる相であることを意味する。また層間剥離の抑制と複合断面を良好とする観点から、複合する相は全て同じポリマー群、すなわちポリマーの基本組成が同じか、類似であることがより好ましい。同じポリマー群とすることによって、高い界面親和性を付与することができ、剥離が起こりにくい繊維が得られる。   In order to increase the reflectance relatively easily with respect to light incident at a low incident angle, it is preferable that the fibers constituting the woven or knitted fabric have a plurality of phases having different refractive indexes. This is based on the characteristic that light is reflected at the interface between substances having a difference in refractive index, and the reflection at the interface increases as the difference in refractive index increases. That is, it is only necessary to combine phases having different refractive indexes inside the fiber, and the glossy fiber of the present invention preferably has a structure composed of a plurality of phases having different fiber cross sections perpendicular to the fiber axis. However, the different phases referred to here are different phases if the basic composition of the polymer is different, but if the copolymer component and the contained component are different even if the basic composition of the polymer is the same. Means that. Further, from the viewpoint of suppressing delamination and improving the composite cross section, it is more preferable that the composite phases are all the same polymer group, that is, the basic composition of the polymer is the same or similar. By using the same polymer group, high interfacial affinity can be imparted, and fibers that do not easily peel off can be obtained.

繊維を構成するポリマーの基本組成としては、あらゆるポリマーを適用可能であるが、衣料用途として特徴的な陰影と柔らかな風合いを両立する際にはポリエチレンテレフタラート等のポリエステル、ポリアミドなどが好ましく、ポリエステルが特に好ましい。   As the basic composition of the polymer constituting the fiber, any polymer can be applied. However, polyesters such as polyethylene terephthalate, polyamides, etc. are preferable in order to achieve both a characteristic shadow and a soft texture for clothing applications. Is particularly preferred.

屈折率の異なる複数の相の複合形態は、芯鞘構造や海島構造、積層構造など相間の界面が存在する構造であり、かつ本発明で規定する範囲を満たす限り、特に限定されるものではないが、異なる相を同心状に積層配列した構造(以下、同心状積層構造)とすれば単糸の周囲のいずれの位置からでもほぼ同様の反射効果が得られ、特定の領域に反射界面が揃うことによるギラツキの発生を抑制できるため、より好ましい条件として挙げる事ができる。ただしここで言う同心状積層構造とは、同じ重心をもって繊維中心から外層に向けて年輪状に積層された構造を意味する。   The composite form of a plurality of phases having different refractive indexes is not particularly limited as long as it is a structure in which an interface between phases such as a core-sheath structure, a sea-island structure, or a laminated structure exists and satisfies the range specified in the present invention. However, if a structure in which different phases are concentrically laminated (hereinafter referred to as a concentric laminated structure) is used, almost the same reflection effect can be obtained from any position around the single yarn, and the reflective interface is aligned in a specific region. Since the occurrence of glare due to this can be suppressed, more preferable conditions can be mentioned. However, the concentric laminated structure mentioned here means a structure in which the same center of gravity is laminated in an annual ring shape from the fiber center toward the outer layer.

異なる屈折率を有する2相の界面が多いほど反射率を向上できるため、上記積層構造の積層数は、3層以上であることが好ましい。ただし、ここで言う積層数とは、繊維軸に垂直方向の繊維断面の最外層の任意の点から繊維中心に向かって上に存在する交互積層構造の最大積層数をいう。積層数が10層以上のとき、低入射角においても繊維内部に透過した光を反射する確率が増加し高い反射率が得られるためより好ましい条件として挙げる事ができる。本発明においては、該総積層数は本発明で規定する範囲を満たす限り、任意に設計することが可能であるが、本発明の目的である良好な風合いや耐磨耗などの力学特性を担保するという観点から、実質的な積層数の上限値は150層である。   Since the reflectance can be improved as the number of two-phase interfaces having different refractive indexes increases, the number of stacked layers in the stacked structure is preferably 3 or more. However, the number of laminations referred to here refers to the maximum number of laminations of an alternate laminated structure existing upward from an arbitrary point on the outermost layer of the fiber cross section perpendicular to the fiber axis toward the fiber center. When the number of stacked layers is 10 or more, the probability of reflecting the light transmitted inside the fiber is increased even at a low incident angle, and a high reflectance can be obtained. In the present invention, the total number of layers can be arbitrarily designed as long as it satisfies the range specified in the present invention. However, the mechanical properties such as good texture and wear resistance, which are the objects of the present invention, are guaranteed. Therefore, the upper limit value of the substantial number of layers is 150 layers.

また、隣合う二つの層において、各層の屈折率の差が大きいほど積層界面での反射を増大することができる。   In addition, in two adjacent layers, the reflection at the stack interface can be increased as the difference in refractive index between the layers increases.

屈折率差の大きな界面を比較的容易に得ようとする際には、繊維内部を構成する複数の相において、低屈折率の相内に空気孔を形成することが好ましい。繊維を構成するポリマーの成し得る屈折率がおおよそ1.3〜1.8であることを考えると、屈折率約1.0の空気孔が存在することで相全体の屈折率低下効果が得られ、高屈折率相との屈折率差を増大し反射率増大が期待でき、好ましい。   In order to obtain an interface having a large refractive index difference relatively easily, it is preferable to form air holes in the low refractive index phase in a plurality of phases constituting the inside of the fiber. Considering that the refractive index that can be formed by the polymer constituting the fiber is approximately 1.3 to 1.8, the presence of air holes having a refractive index of approximately 1.0 provides an effect of decreasing the refractive index of the entire phase. The refractive index difference from the high refractive index phase is increased, and an increase in reflectance can be expected.

空気孔の形成方法としては限定されるものではなく、後述する溶融紡糸における吐出時に中空を形成する方法や、繊維内部に熱水又はアルカリに可溶な成分(以下易溶出成分という場合もある)を複合し、該成分を溶出する方法など様々な方法を採用できるが、容易に微細な空気孔が多数形成することが出来るという観点から、繊維を構成するポリマーに、易溶出成分を混合して溶融紡糸をして繊維を構成するポリマー中に易溶出成分が分散した複合繊維とし、そこから易溶出成分を溶出する方法が好ましい。また該易溶出成分としては、例えば易水溶出性のポリエチレングリコールや易アルカリ溶出性の5−ナトリウムスルホイソフタル酸共重合ポリエステル、易有機溶媒溶出性のポリスチレンなどを用いると、ポリアミド系やポリプロピレン系などといった溶出が容易なポリマーのみならず、溶出が困難とされるポリエステル系においても空気孔の形成が可能となるため、好ましい。   The method of forming the air holes is not limited, and is a method of forming a hollow at the time of discharge in melt spinning described later, or a component soluble in hot water or alkali inside the fiber (hereinafter also referred to as an easily eluted component). Various methods such as a method of eluting the component, and from the viewpoint that a large number of fine air holes can be easily formed, an easily eluting component is mixed with the polymer constituting the fiber. It is preferable to use a composite fiber in which an easily eluted component is dispersed in a polymer constituting the fiber by melt spinning and eluting the easily eluted component therefrom. Further, as the easily eluting component, for example, readily water-eluting polyethylene glycol, easily alkali-eluting 5-sodium sulfoisophthalic acid copolymer polyester, easily organic solvent-eluting polystyrene, etc. are used. The formation of air holes is possible not only in polymers that are easy to elute, but also in polyester systems that are difficult to elute.

本発明の織編物を構成する繊維への酸化チタン含有率は特に限定されるものではないが、酸化チタン含有率が高い場合には、該素材の波長300〜750nmの入射光に対する反射率が高い場合であっても、酸化チタン粒子上での乱反射が増加することで人間の目に入射する反射光量が減少し、光沢感を感じにくくなる。よって繊維中の酸化チタン含有率は0.5質量%以下であることが好ましい。酸化チタン含有率が0.1質量%以下のとき、乱反射がさらに抑制されることで優れた光沢と陰影が強調された審美性が得られるためより好ましい条件として挙げることができる。   The titanium oxide content in the fibers constituting the woven or knitted fabric of the present invention is not particularly limited, but when the titanium oxide content is high, the reflectance of the material with respect to incident light having a wavelength of 300 to 750 nm is high. Even in this case, the diffuse reflection on the titanium oxide particles increases, so that the amount of reflected light that enters the human eye decreases, making it difficult to feel glossiness. Therefore, the titanium oxide content in the fiber is preferably 0.5% by mass or less. When the titanium oxide content is 0.1% by mass or less, it can be mentioned as a more preferable condition because aesthetic properties with excellent gloss and shading are obtained by further suppressing irregular reflection.

本発明の織編物を構成する繊維へのその他添加剤の添加は特に限定されるものではないが、波長300〜750nmの入射光に対する平均透過率を比較的容易に抑制しようとする際には、織編物を構成する繊維の少なくとも1つの相中に光吸収粒子を0.01−5.0質量%含有することが好ましい。ただし、ここで言う光吸収粒子とは波長300〜750nmに吸収波長域を有する粒子を意味する。本発明における光沢繊維中に含有する光吸収粒子の種類は特に限定されるものではないが、例えば可視光波長域に加えて、赤外波長域まで吸収し蓄熱性を付与するカーボンブラック、赤外波長を反射し遮熱性を付与するペリレンブラックなどの機能性粒子を用いると、本発明の光沢繊維にさらなる機能性が付与できるため、より好ましい。1つのポリマー中に光吸収粒子が0.01−5.0質量%の範囲で含有していると、粒子による光吸収効果を発揮し、光透過を抑制できるため好ましい。さらに1.0質量%以下とすることで、光反射を妨げることなく光透過を抑制し、本発明の織編物に必要な平均反射率および平均透過率のバランスを最適な範囲に制御できるため、より好適な範囲として挙げることが出来る。   The addition of other additives to the fibers constituting the woven or knitted fabric of the present invention is not particularly limited, but when trying to suppress the average transmittance for incident light having a wavelength of 300 to 750 nm relatively easily, It is preferable to contain 0.01 to 5.0% by mass of light absorbing particles in at least one phase of the fibers constituting the woven or knitted fabric. However, the light absorption particle said here means the particle | grains which have an absorption wavelength range in wavelength 300-750 nm. The kind of the light absorbing particles contained in the glossy fiber in the present invention is not particularly limited. For example, in addition to the visible light wavelength range, carbon black that absorbs up to the infrared wavelength range and imparts heat storage properties, infrared It is more preferable to use functional particles such as perylene black that reflects the wavelength and imparts heat-shielding properties, since further functionality can be imparted to the glossy fiber of the present invention. When the light absorbing particles are contained in one polymer in the range of 0.01 to 5.0% by mass, the light absorbing effect by the particles can be exhibited and light transmission can be suppressed, which is preferable. Furthermore, by controlling to 1.0% by mass or less, light transmission can be suppressed without hindering light reflection, and the balance of average reflectance and average transmittance necessary for the woven or knitted fabric of the present invention can be controlled within an optimal range. It can be mentioned as a more suitable range.

本発明の織編物は高反射率と低透過率を実現することでより深い陰影が得られる。よって繊維中に光吸収粒子を含む相を複合する場合においては、その他の相および界面での光反射を阻害しないよう配置することが好ましい。光吸収領域の断面形状は特に限定されないが、その観点からは繊維軸に垂直方向の繊維断面において、光吸収領域が図2(a)および(b)に示すように芯鞘構造の芯部Aであり、該芯部が繊維中心を通っていることが好ましい。ただしここで言う繊維中心とは、繊維軸に垂直方向の繊維断面の面積を2等分するような任意の2本の直線の交点を意味する。図2(a)、図2(b)は、芯部Aと鞘部Bからなる芯鞘構造の断面の概略図である。芯部Aを光吸収領域とすることで、入射した光がまず鞘部の光反射領域を通過することから、光吸収粒子による反射率低下の影響を最小限にすることが出来るのである。   The woven or knitted fabric of the present invention achieves a deeper shade by realizing a high reflectance and a low transmittance. Therefore, in the case where a phase containing light-absorbing particles is combined in the fiber, it is preferable to arrange the fibers so as not to inhibit light reflection at other phases and interfaces. The cross-sectional shape of the light absorption region is not particularly limited, but from that point of view, in the fiber cross section perpendicular to the fiber axis, the light absorption region has a core portion A having a core-sheath structure as shown in FIGS. 2 (a) and 2 (b). It is preferable that the core portion passes through the fiber center. However, the fiber center mentioned here means the intersection of two arbitrary straight lines that bisect the area of the fiber cross section perpendicular to the fiber axis. 2A and 2B are schematic views of a cross section of a core-sheath structure including a core part A and a sheath part B. FIG. By making the core portion A a light absorption region, the incident light first passes through the light reflection region of the sheath portion, so that it is possible to minimize the influence of a decrease in reflectance due to the light absorption particles.

本発明の織編物の生機設計は、本発明の範囲を満たす限り特に限定するものではないが、高密度とするほど陰影に優れた審美性を得ることができる。これは単位面積当たりの繊維数が多いほど反射領域が増加し光沢が向上することに加え、織編物裏面からの光の透過を抑制し、織編物が屈曲した際の影になる領域の暗さがより際立って視認されるためである。この観点から、本発明の織物のカバーファクターは1700以上であることが好ましく、2000以上であることがより好ましい。ただしここでいうところのカバーファクターとは{(緯糸繊度)0.5×緯糸密度+(経糸繊度)0.5×経糸密度}で定義される。この考えを推し進めるとカバーファクター2200以上のとき、特に優れた陰影を呈すため特に好ましい条件として挙げる事ができる。製織性の観点から、カバーファクターの実質的な上限は4000である。 The raw machine design of the woven or knitted fabric of the present invention is not particularly limited as long as it satisfies the scope of the present invention, but the higher the density, the better the aesthetics can be obtained. This means that as the number of fibers per unit area increases, the reflection area increases and the gloss improves.In addition, the transmission of light from the back of the woven or knitted fabric is suppressed, and the darkness of the area that becomes a shadow when the woven or knitted fabric is bent. This is because is more noticeable. From this viewpoint, the cover factor of the fabric of the present invention is preferably 1700 or more, and more preferably 2000 or more. However, the cover factor here is defined as {(weft fineness) 0.5 × weft density + (warp fineness) 0.5 × warp density}. When this idea is promoted, when the cover factor is 2200 or more, a particularly excellent shadow is exhibited. From the viewpoint of weaving properties, the practical upper limit of the cover factor is 4000.

本発明の織編物の組織は特に限定されるものではないが、上記の高いカバーファクターを得る観点から、織組織はツイル組織やサテン組織が好ましく、サテン組織が特に好ましい。   The structure of the woven or knitted fabric of the present invention is not particularly limited, but from the viewpoint of obtaining the above high cover factor, the woven structure is preferably a twill structure or a satin structure, and a satin structure is particularly preferable.

本発明の織編物の高次加工方法は、本発明の範囲を満たす限り特に限定するものではないが、易溶出成分により空気孔を導入した積層繊維を用いる場合には、発色性と光沢発現の観点から、染色前に易溶出成分を除去し空気孔を導入することが好ましい。   The high-order processing method of the woven or knitted fabric of the present invention is not particularly limited as long as it satisfies the scope of the present invention. However, when a laminated fiber into which air holes are introduced by an easily eluting component is used, color developability and gloss development are exhibited. From the viewpoint, it is preferable to remove easily eluted components and introduce air holes before dyeing.

具体的には染色前処理において100℃以上の温度で30分以上の湿熱処理を行い、易溶出成分を除去する。十分に易溶出成分を除去し層内に所望の空気孔を発生させるためには、処理温度は120℃以上、処理時間は60分以上であることがより好ましい。   Specifically, in the pre-dyeing treatment, wet heat treatment is performed for 30 minutes or more at a temperature of 100 ° C. or higher to remove easily eluted components. In order to sufficiently remove easily-eluting components and generate desired air holes in the layer, it is more preferable that the treatment temperature is 120 ° C. or more and the treatment time is 60 minutes or more.

以下実施例を挙げて、本発明の織編物を具体的に説明する。実施例および比較例については下記の評価を行った。   Hereinafter, the knitted or knitted fabric of the present invention will be specifically described with reference to examples. The following evaluation was performed about the Example and the comparative example.

光学的評価(正反射強度、平均反射率、平均透過率、対比光沢度)
以下の手法を用いて正反射強度、平均反射率・平均透過率・対比光沢度の4つの光学パラメータを算出した。
Optical evaluation (regular reflection intensity, average reflectance, average transmittance, contrast gloss)
Four optical parameters of regular reflection intensity, average reflectance, average transmittance, and contrast gloss were calculated using the following method.

(1)正反射強度
正反射強度は村上色彩技術研究所製自動変角光度計(GONIOPHOTOMETER GP―200型)を用いて、入射角8°および60°で各サンプルに光を入射し、0.1°毎に受光角0°〜90°での光強度を二次元反射光分布測定にて測定し、正反射方向の反射強度を正反射強度として採用した。本発明においては、同じサンプルについて、1箇所あたり3回の測定を行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点2桁目で四捨五入した値を評価サンプルの測定値とした。
(1) Regular reflection intensity The regular reflection intensity was measured by applying light to each sample at an incident angle of 8 ° and 60 ° using an automatic goniophotometer (GONIOPHOTOMETER GP-200 type) manufactured by Murakami Color Research Laboratory. The light intensity at a light receiving angle of 0 ° to 90 ° was measured every 1 ° by two-dimensional reflected light distribution measurement, and the reflection intensity in the regular reflection direction was adopted as the regular reflection intensity. In the present invention, the same sample is measured three times per place, a simple number average of the results obtained for a total of 10 places is obtained, and the value rounded to the second decimal place is the measured value of the evaluation sample. It was.

(2)平均反射率
平均反射率は、SHIMADZU製分光光度計(UV−3100PCシリーズ)を用いて、標準白色板(BaSO4)の反射強度を100として規格化した後、標準白色版を取り出して測定サンプルをセットし、光入射角8°での波長域300〜750nmにおける各サンプルの反射率(鏡面反射を含む)を測定し、測定した波長20nm毎の値から該波長域における反射率の平均値を算出した。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点以下を四捨五入した値を平均反射率とした。
(2) Average reflectance The average reflectance is measured by standardizing the reflection intensity of a standard white plate (BaSO4) as 100 using a spectrophotometer manufactured by SHIMADZU (UV-3100PC series), and then taking out the standard white plate. Set the sample, measure the reflectance (including specular reflection) of each sample in the wavelength range of 300 to 750 nm at a light incident angle of 8 °, and calculate the average value of the reflectance in the wavelength range from the measured value for every 20 nm Was calculated. This operation was performed three times per place, and a simple number average of results obtained by performing this operation for a total of 10 places was obtained, and a value obtained by rounding off the decimal point was taken as the average reflectance.

(3)平均透過率
平均透過率は、SHIMADZU製分光光度計(UV−3100PCシリーズ)を用いて、標準白色板(BaSO4)の反射強度を100として規格化した後、標準白色版を取り出して測定サンプルをセットし、光入射角8°での波長域300〜750nmにおける各サンプルの透過率(鏡面反射を含む)を測定し、測定した波長20nm毎の値から該波長域における透過率の平均値を算出した。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点以下を四捨五入した値を平均透過率とした。
(3) Average transmittance The average transmittance was measured by standardizing the reflection intensity of a standard white plate (BaSO4) as 100 using a spectrophotometer manufactured by SHIMADZU (UV-3100PC series), and then taking out the standard white plate. Set a sample, measure the transmittance (including specular reflection) of each sample in the wavelength range of 300 to 750 nm at a light incident angle of 8 °, and measure the average value of the transmittance in the wavelength range from the measured values for every 20 nm Was calculated. This operation was performed three times per place, and a simple number average of results obtained by performing this operation for a total of 10 places was obtained, and a value obtained by rounding off the decimal places was taken as the average transmittance.

(4)対比光沢度
b 次に対比光沢度は、村上色彩技術研究所製自動変角光度計(GONIOPHOTOMETER GP―200型)を用いて、入射角60°で各サンプルに光を入射し、0.1°毎に受光角0°〜90°での光強度を二次元反射光分布測定にて求め、受光角60°付近における最大光強度(鏡面反射)を受光角0°付近における最小光強度(拡散反射)で割った値を算出した。この動作を1箇所あたり3回行い、これを合計10箇所について行った結果の単純な数平均を求め、小数点第2位を四捨五入した値を対比光沢度とした。
(4) Contrast glossiness b Next, contrast glossiness is measured by using an automatic goniophotometer (GONIOPHOTOMETER GP-200 type) manufactured by Murakami Color Research Laboratory, with light incident on each sample at an incident angle of 60 °. The light intensity at a light receiving angle of 0 ° to 90 ° is obtained for each 1 ° by two-dimensional reflected light distribution measurement, and the maximum light intensity (specular reflection) near the light receiving angle of 60 ° is the minimum light intensity near the light receiving angle of 0 °. The value divided by (diffuse reflection) was calculated. This operation was performed three times per place, a simple number average of the results obtained by performing this operation for a total of 10 places was obtained, and the value obtained by rounding off the second decimal place was taken as the contrast glossiness.

また、入射角60°、受光角60°とするかわりに入射角45°、受光角45°として同様の測定を行い、入射角45°における対比光沢度を測定した。   Further, instead of setting an incident angle of 60 ° and a light receiving angle of 60 °, the same measurement was performed with an incident angle of 45 ° and a light receiving angle of 45 °, and the relative glossiness at an incident angle of 45 ° was measured.

[実施例1]
相1としてポリエチレンテレフタラート(酸化チタン含有率:0質量%)、相2としてポリエチレングリコール(PEG)12.5質量%をアロイ化したポリエチレンテレフタラート(酸化チタン含有率:0質量%)、相3としてカーボンブラック粒子を0.25質量%含んだポリエチレンテレフタレート(酸化チタン含有率:0%)からなる56dtex−24フィラメントのポリエステル繊維を準備した。繊維軸方向に垂直な方向の断面について、図2(c)に示すように、芯部にY字型の相3を配した相1を配し、その外側に同心状に相2、相1を配し、同心状積層構造となるようにした。該繊維からなる平織物(経糸密度[本/2.54cm]×緯糸密度[本/2.54cm]=150×95)を作成し糊抜き精練処理後、130℃の温度で90分の湿熱処理により含有PEGを除去して繊維内部に空気孔を導入した。
[Example 1]
Polyethylene terephthalate (titanium oxide content: 0% by mass) as phase 1, polyethylene terephthalate (titanium oxide content: 0% by mass) alloyed with 12.5% by mass of polyethylene glycol (PEG) as phase 2, phase 3 A polyester fiber of 56 dtex-24 filaments made of polyethylene terephthalate (titanium oxide content: 0%) containing 0.25% by mass of carbon black particles was prepared. Regarding the cross section in the direction perpendicular to the fiber axis direction, as shown in FIG. 2 (c), the core 1 is provided with the phase 1 with the Y-shaped phase 3, and the outer side thereof is concentrically with the phase 2 and the phase 1 To provide a concentric laminated structure. A plain woven fabric (warp density [lines / 2.54 cm] × weft density [lines / 2.54 cm] = 150 × 95) made of the fibers is prepared and subjected to desizing and scouring treatment, followed by wet heat treatment at a temperature of 130 ° C. for 90 minutes. To remove the contained PEG and introduce air holes inside the fiber.

得られた織物の光学パラメータはI/I60=0.6、平均反射率が42%、平均透過率が23%、入射角45°および60°における対比光沢度はそれぞれ2.22、2.54であった。該織物は優れた光沢を有しており、屈曲した際には陰影感を強く視認できるものであった。 The optical parameters of the resulting fabric were I 8 / I 60 = 0.6, the average reflectance was 42%, the average transmittance was 23%, and the relative glossiness at incident angles of 45 ° and 60 ° was 2.22, 2 respectively. .54. The fabric had an excellent gloss, and when it was bent, the shading was strongly visible.

[実施例2]
相1としてポリエチレンテレフタラート(酸化チタン含有率:0質量%)、相2としてポリエチレングリコール12.5質量%をアロイ化したポリエチレンテレフタラート(酸化チタン含有率:0質量%)、相3としてカーボンブラック粒子を0.25質量%含んだポリエチレンテレフタレート(酸化チタン含有率:0%)からなる56dtex−24フィラメントのポリエステル繊維を準備した。
[Example 2]
Polyethylene terephthalate (titanium oxide content: 0% by mass) as phase 1, polyethylene terephthalate (titanium oxide content: 0% by mass) alloyed with 12.5% by mass of polyethylene glycol as phase 2, and carbon black as phase 3 A 56 dtex-24 filament polyester fiber made of polyethylene terephthalate (titanium oxide content: 0%) containing 0.25% by mass of particles was prepared.

芯部にY字型の相3を配した相1を配し、その外側に同心状に相2、相1を積層し、積層数10の同心状積層構造となるようにした。該繊維からなる平織物(経糸密度[本/2.54cm]×緯糸密度[本/2.54cm]=150×95)を作成し糊抜き精練処理後、130℃の温度で90分の湿熱処理により含有PEGを除去して繊維内部に空気孔を導入した。   A phase 1 having a Y-shaped phase 3 arranged in the core portion was arranged, and phases 2 and 1 were laminated concentrically on the outer side to form a concentric laminated structure having 10 laminated layers. A plain woven fabric (warp density [lines / 2.54 cm] × weft density [lines / 2.54 cm] = 150 × 95) made of the fibers is prepared and subjected to desizing and scouring treatment, followed by wet heat treatment at a temperature of 130 ° C. for 90 minutes. To remove the contained PEG and introduce air holes inside the fiber.

得られた織物の光学パラメータはI/I60=0.8、平均反射率が47%、平均透過率が19%、入射角45°および60°における対比光沢度はそれぞれ1.96、2.35であった。織物を構成する繊維の相1と相2の積層数を増加したことで低入射角における入射光の光反射が増大しており、光沢と陰影が特に強調された布帛であった。 The optical parameters of the obtained fabric were I 8 / I 60 = 0.8, the average reflectance was 47%, the average transmittance was 19%, and the relative glossiness at incident angles of 45 ° and 60 ° was 1.96, 2 .35. Increasing the number of laminated layers 1 and 2 of the fibers constituting the fabric increased the light reflection of incident light at a low incident angle, and the fabric was particularly emphasized in gloss and shading.

[比較例1]
ポリエチレンテレフタラート(酸化チタン含有率:0質量%)からなる56dtex−24フィラメントのポリエステル繊維を準備した。該繊維からなる平織物(経糸密度[本/2.54cm]×緯糸密度[本/2.54cm]=150×95)を作成し糊抜き精練処理後、130℃の温度で90分の湿熱処理を施した。
[Comparative Example 1]
A polyester fiber of 56 dtex-24 filament made of polyethylene terephthalate (titanium oxide content: 0% by mass) was prepared. A plain woven fabric (warp density [lines / 2.54 cm] × weft density [lines / 2.54 cm] = 150 × 95) made of the fibers is prepared and subjected to desizing and scouring treatment, followed by wet heat treatment at a temperature of 130 ° C. for 90 minutes. Was given.

得られた織物の光学パラメータはI/I60=0.3、平均反射率が46%、平均透過率が52%、入射角45°および60°における対比光沢度はそれぞれ4.5、5.0であった。該織物は正反射強度が高いものの低入射角における入射光の光反射が小さく、透過率も高いため、織物を屈曲した際の明部が非常に限定されたもので、陰影に欠けたものであった。 The optical parameters of the resulting fabric were I 8 / I 60 = 0.3, the average reflectance was 46%, the average transmittance was 52%, and the relative glossiness at incident angles of 45 ° and 60 ° was 4.5, 5, respectively. 0.0. Although the woven fabric has high specular reflection intensity, the light reflection of incident light at a low incident angle is small and the transmittance is high, so the bright part when the fabric is bent is very limited and lacks shading. there were.

[比較例2]
ポリエチレンテレフタラート(酸化チタン含有率:2.2質量%)からなる56dtex−24フィラメントのポリエステル繊維を準備した。該繊維からなる平織物(経糸密度[本/2.54cm]×緯糸密度[本/2.54cm]=150×95)を作成し糊抜き精練処理後、130℃の温度で90分の湿熱処理を施した。
[Comparative Example 2]
A polyester fiber of 56 dtex-24 filament made of polyethylene terephthalate (titanium oxide content: 2.2% by mass) was prepared. A plain woven fabric (warp density [lines / 2.54 cm] × weft density [lines / 2.54 cm] = 150 × 95) made of the fibers is prepared and subjected to desizing and scouring treatment, followed by wet heat treatment at a temperature of 130 ° C. for 90 minutes. Was given.

得られた織物の光学パラメータはI/I60=0.8、平均反射率が71%、平均透過率が24%、入射角45°および60°における対比光沢度はそれぞれ1.2、1.3であった。平均反射率が高く、透過率も低いものの、反射光が拡散することで陰影が発現せず、本発明の織編物の特徴である陰影に優れた光沢感を視認できないものであった。 The optical parameters of the resulting fabric were I 8 / I 60 = 0.8, the average reflectance was 71%, the average transmittance was 24%, and the relative glossiness at incident angles of 45 ° and 60 ° was 1.2, 1, respectively. .3. Although the average reflectance was high and the transmittance was low, the reflected light was not diffused by the diffused light, and the glossiness excellent in the shadow characteristic of the woven or knitted fabric of the present invention was not visually recognized.

[比較例3]
相1としてポリエチレンテレフタラート(酸化チタン含有率:0質量%)、相2としてカーボンブラック粒子を0.5質量%含んだポリエチレンテレフタレート(酸化チタン含有率:0質量%)からなる56dtex−24フィラメントのポリエステル繊維を準備した。該繊維の横断面形状は、Y字に配した相2を芯部とし、相1を鞘部とする芯鞘構造であった。該繊維からなる平織物(経糸密度[本/2.54cm]×緯糸密度[本/2.54cm]=150×95)を作成し糊抜き精練処理後、130℃の温度で90分の湿熱処理を施した。
[Comparative Example 3]
56 dtex-24 filament composed of polyethylene terephthalate (titanium oxide content: 0% by mass) as phase 1 and polyethylene terephthalate (titanium oxide content: 0% by mass) containing 0.5% by mass of carbon black particles as phase 2. Polyester fibers were prepared. The cross-sectional shape of the fiber was a core-sheath structure in which the phase 2 arranged in a Y-shape was the core and the phase 1 was the sheath. A plain woven fabric (warp density [lines / 2.54 cm] × weft density [lines / 2.54 cm] = 150 × 95) made of the fibers is prepared and subjected to desizing and scouring treatment, followed by wet heat treatment at a temperature of 130 ° C. for 90 minutes. Was given.

得られた織物の光学パラメータはI/I60=0.3、平均反射率が45%、平均透過率が28%、入射角45°および60°における対比光沢度はそれぞれ2.8、2.9であった。該織物は光沢を有する薄い黒色を呈したが、屈曲した際の明部の領域が小さく、陰影を強く視認できるものではなかった。 The optical parameters of the resulting fabric were I 8 / I 60 = 0.3, the average reflectance was 45%, the average transmittance was 28%, and the relative glossiness at incident angles of 45 ° and 60 ° was 2.8, 2 respectively. .9. The fabric exhibited a glossy light black color, but the area of the bright portion when bent was small, and the shadow was not strongly visible.

かくして得られる織編物は、織編物が屈曲した際の優れた陰影感と光沢により得られる特有の審美性を活かし、インナー・アウターなどの一般衣料用途、カーテン・クロスなどのインテリア用途といった衣料・アパレル用途として幅広く用いることができる。   The woven and knitted fabrics obtained in this way are used for general clothing such as inner and outer clothing and apparel for interior clothing such as curtains and cloth, taking advantage of the unique aesthetics obtained by the excellent shadow and gloss when the woven and knitted fabric is bent. It can be used widely as an application.

θ:入射角
θ:反射角
A:芯部
B:鞘部
θ:受光角
θ 1 : Incident angle θ 2 : Reflection angle A: Core part B: Sheath part θ 3 : Light receiving angle

Claims (7)

織編物の経/緯方向への波長300〜750nmの入射光に対し、入射角60度での正反射強度I60と入射角8度での正反射強度Iの関係がI/I60>0.5を満たし、入射角45°および60°における対比光沢度がそれぞれ1.5以上3.0以下である織編物。 Respect to the incident light of wavelength 300~750nm to via / weft directions of the woven or knitted fabric, the relationship between the specular reflection intensity I 8 at an incident angle of 8 degrees specular reflection intensity I 60 at an incident angle of 60 degrees I 8 / I 60 A woven or knitted fabric satisfying> 0.5 and having a relative glossiness of 1.5 or more and 3.0 or less at incident angles of 45 ° and 60 °, respectively. 波長300〜750nmの入射光に対する平均反射率が20%以上である、請求項1に記載の織編物。 The woven or knitted fabric according to claim 1, wherein an average reflectance with respect to incident light having a wavelength of 300 to 750 nm is 20% or more. 波長300〜750nmの入射光に対する平均透過率が40%以下である、請求項1または2に記載の織編物。 The woven or knitted fabric according to claim 1 or 2, wherein an average transmittance for incident light having a wavelength of 300 to 750 nm is 40% or less. 屈折率の異なる複数の相を含む繊維を少なくとも一部に使用した、請求項1〜3のいずれかに記載の織編物。 The woven or knitted fabric according to any one of claims 1 to 3, wherein a fiber including a plurality of phases having different refractive indexes is used at least in part. 屈折率の異なる複数の相を同心状に積層配列した構造を有する繊維を少なくとも一部に使用した、請求項1〜4のいずれかに記載の織編物。 The knitted or knitted fabric according to any one of claims 1 to 4, wherein a fiber having a structure in which a plurality of phases having different refractive indexes are concentrically stacked and arranged is used at least in part. 繊維中の酸化チタン含有率が0.5質量%以下の繊維を少なくとも一部に使用した、請求項1〜5のいずれかに記載の特徴を有する織編物。 The woven or knitted fabric having the characteristics according to any one of claims 1 to 5, wherein a fiber having a titanium oxide content in the fiber of 0.5% by mass or less is used at least in part. 繊維を構成する少なくとも1つの相中に光吸収粒子を0.01−5.0質量%含有する繊維を少なくとも一部に使用した、請求項1〜6のいずれかに記載の特徴を有する織編物。 The knitted or knitted fabric having the characteristics according to any one of claims 1 to 6, wherein a fiber containing 0.01-5.0% by mass of light-absorbing particles in at least one phase constituting the fiber is used at least in part. .
JP2018067725A 2018-03-30 2018-03-30 Glossy woven or knitted fabric Pending JP2019178448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067725A JP2019178448A (en) 2018-03-30 2018-03-30 Glossy woven or knitted fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067725A JP2019178448A (en) 2018-03-30 2018-03-30 Glossy woven or knitted fabric

Publications (1)

Publication Number Publication Date
JP2019178448A true JP2019178448A (en) 2019-10-17

Family

ID=68278031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067725A Pending JP2019178448A (en) 2018-03-30 2018-03-30 Glossy woven or knitted fabric

Country Status (1)

Country Link
JP (1) JP2019178448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474502A (en) * 2019-02-28 2021-10-01 东丽株式会社 Cord and hat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474502A (en) * 2019-02-28 2021-10-01 东丽株式会社 Cord and hat

Similar Documents

Publication Publication Date Title
TWI551742B (en) Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber
CA2461551C (en) Flat multifilament yarn woven fabric
KR100324459B1 (en) Fiber Structure and Textile Using Same
KR102246475B1 (en) Glossy fiber
CN101570901B (en) Chemical fiber with high optical shielding
JP2019178448A (en) Glossy woven or knitted fabric
CN101724973A (en) Double-face isomeric novel curtain textile and production process
JP2000170028A (en) Optically functional structure and woven or knitted fabric
JP2004162194A (en) Non-visible woven fabric and interior article
KR101564528B1 (en) Blackout fabric for lightweight non-coated
CN115398051B (en) Knitted fabric and application thereof
JP2006307383A (en) Heat-retaining polyester fiber having excellent clarity and fabric
JP7364423B2 (en) Textiles and interior goods
JPH11181630A (en) Conjugated fiber
WO2022033414A1 (en) Fabric
JP2015200039A (en) Heat shield cloth and manufacturing method therefor
WO2016133196A1 (en) Fiber bundle and false twisted yarn, woven knitted item, and clothing containing same
JP7094630B2 (en) Indexing method and evaluation method of glare suppression effect
JPH11181629A (en) Fibrous structure, textile fabric and textile product thereof
CN209669442U (en) A kind of noise reduction shade curtain fabric
Liu et al. Visible light shielding performance of fabrics with non-circular cross section fiber
CN204666852U (en) A kind of highlighted vapor-permeable type fancy reflection material
JP2021011662A (en) Light shielding fiber
CN113026177A (en) Manufacturing method of optically variable fabric capable of warning ultraviolet intensity
WO2021093825A1 (en) Fabric