JP2019175889A - Superconducting device and superconducting coil protection method - Google Patents

Superconducting device and superconducting coil protection method Download PDF

Info

Publication number
JP2019175889A
JP2019175889A JP2018059024A JP2018059024A JP2019175889A JP 2019175889 A JP2019175889 A JP 2019175889A JP 2018059024 A JP2018059024 A JP 2018059024A JP 2018059024 A JP2018059024 A JP 2018059024A JP 2019175889 A JP2019175889 A JP 2019175889A
Authority
JP
Japan
Prior art keywords
superconducting
coils
superconducting coils
superconducting coil
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018059024A
Other languages
Japanese (ja)
Other versions
JP7104398B2 (en
Inventor
修巳 塚本
Osami Tsukamoto
修巳 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sophia School Corp
Original Assignee
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia School Corp filed Critical Sophia School Corp
Priority to JP2018059024A priority Critical patent/JP7104398B2/en
Publication of JP2019175889A publication Critical patent/JP2019175889A/en
Application granted granted Critical
Publication of JP7104398B2 publication Critical patent/JP7104398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

To protect any superconducting coils among a plurality of superconducting coils connected in series.SOLUTION: A superconducting device 1 includes: a plurality of superconducting coils L connected in series; a first resistor and a first switch S that are connected in series with each other and provided in parallel with each of the superconducting coils L; and a control unit 12 that, when it is detected that quench has occurred at any of the superconducting coils L, makes one or more first switches S provided in parallel with one or more superconducting coils L other than a first superconducting coil L at which quench has occurred in a conduction state among the superconducting coils L.SELECTED DRAWING: Figure 2

Description

本発明は、クエンチが発生した超電導コイルを保護することができる超電導装置及び超電導コイル保護方法に関する。   The present invention relates to a superconducting device and a superconducting coil protection method capable of protecting a superconducting coil in which a quench has occurred.

従来、超電導コイルにクエンチが発生した場合に超電導コイルが破損してしまうことを防ぐための方法が提案されている(例えば、非特許文献1を参照)。   Conventionally, there has been proposed a method for preventing the superconducting coil from being damaged when quenching occurs in the superconducting coil (see, for example, Non-Patent Document 1).

松尾竜太、小島あかね、有山隆紘、松田直大、渕田佳稀、高尾智明、塚本修巳著「マルチ超電導コイルで構成されるHTSコイルのクエンチ保護法の提案」、2017年超電導機器研究会ASC−17−010Ryuta Matsuo, Akane Kojima, Takahiro Ariyama, Naohiro Matsuda, Yoshiki Hamada, Tomoaki Takao, Shugo Tsukamoto “Proposal of Quench Protection Method for HTS Coils Consisting of Multi-Superconducting Coils”, 2017 Superconducting Equipment Research Group ASC-17-010

従来の方法においては、直列接続された複数の超電導コイルのうち両端の超電導コイルにクエンチが発生することが想定されていた。しかしながら、両端の超電導コイル以外の超電導コイルにクエンチが発生することも想定される。従来の方法では、両端の超電導コイル以外の超電導コイルにクエンチが発生した場合に、クエンチが発生した超電導コイルを保護することができないという問題があった。   In the conventional method, it is assumed that quenching occurs in the superconducting coils at both ends among the plurality of superconducting coils connected in series. However, it is also assumed that quenching occurs in superconducting coils other than the superconducting coils at both ends. The conventional method has a problem that when a quench occurs in a superconducting coil other than the superconducting coils at both ends, the superconducting coil in which the quench occurs cannot be protected.

そこで、本発明はこれらの点に鑑みてなされたものであり、直列接続された複数の超電導コイルのうち任意の超電導コイルを保護するための超電導装置及び超電導コイル保護方法を提供することを目的とする。   Therefore, the present invention has been made in view of these points, and an object thereof is to provide a superconducting device and a superconducting coil protection method for protecting an arbitrary superconducting coil among a plurality of superconducting coils connected in series. To do.

本発明の第1の態様の超電導装置は、直列に接続された複数の超電導コイルと、互いに直列に接続され、かつ前記複数の超電導コイルそれぞれと並列に設けられた第1抵抗器及び第1スイッチと、前記複数の超電導コイルのいずれかにクエンチが発生したことを検出した場合に、前記複数の超電導コイルのうちクエンチが発生した第1超電導コイル以外の一以上の超電導コイルと並列に設けられた一以上の前記第1スイッチを導通状態にする制御部と、を有する。   A superconducting device according to a first aspect of the present invention includes a plurality of superconducting coils connected in series, a first resistor and a first switch connected in series with each other and provided in parallel with each of the plurality of superconducting coils. And when one of the plurality of superconducting coils detects that quenching has occurred, the plurality of superconducting coils are provided in parallel with one or more superconducting coils other than the first superconducting coil in which quenching has occurred. And a control unit that brings one or more first switches into a conductive state.

超電導装置は、前記複数の超電導コイルのうち互いに隣接する2つの超電導コイルの接続点と、当該2つの超電導コイルに対応する2つの前記第1抵抗器及び前記第1スイッチの群の接続点との間に直列に設けられた第2抵抗器及び第2スイッチをさらに有してもよい。   The superconducting device includes a connection point between two superconducting coils adjacent to each other among the plurality of superconducting coils, and a connection point between the two first resistors and the first switch group corresponding to the two superconducting coils. You may further have the 2nd resistor and 2nd switch which were provided in series between.

前記制御部は、前記第1超電導コイルと並列に設けられた前記第1スイッチ、及び前記複数の超電導コイルの直列接続方向の中央位置を基準として前記第1超電導コイルの位置と対称な位置の第2超電導コイルと並列に設けられた前記第1スイッチ以外の前記一以上の第1スイッチを導通状態にしてもよい。   The control unit includes a first switch provided in parallel with the first superconducting coil, and a first position symmetrical to the position of the first superconducting coil with respect to a central position in a serial connection direction of the plurality of superconducting coils. The one or more first switches other than the first switch provided in parallel with the two superconducting coils may be in a conductive state.

前記制御部は、前記複数の超電導コイルのうち前記第1超電導コイル及び前記第2超電導コイル以外の全ての前記超電導コイルと並列に設けられた前記一以上の第1スイッチを導通状態にしてもよい。   The control unit may turn on the one or more first switches provided in parallel with all the superconducting coils other than the first superconducting coil and the second superconducting coil among the plurality of superconducting coils. .

前記複数の超電導コイルのうち、前記複数の超電導コイルの直列接続方向の中央位置に近いほど、前記超電導コイルと並列に設けられている前記第1抵抗器の抵抗値が小さくてもよい。   Of the plurality of superconducting coils, the resistance value of the first resistor provided in parallel with the superconducting coil may be smaller as it is closer to the center position in the series connection direction of the plurality of superconducting coils.

また、前記複数の超電導コイルと並列に設けられた第2抵抗器をさらに有し、前記第1抵抗器の抵抗値が前記第2抵抗器の抵抗値よりも小さくてもよい。この場合、導通状態にする前記一以上の第1スイッチと直列接続された一以上の前記第1抵抗器の抵抗値の合計値が前記第2抵抗器の抵抗値よりも小さくてもよい。   Moreover, it may further include a second resistor provided in parallel with the plurality of superconducting coils, and a resistance value of the first resistor may be smaller than a resistance value of the second resistor. In this case, the total value of the resistance values of the one or more first resistors connected in series with the one or more first switches to be in a conductive state may be smaller than the resistance value of the second resistor.

超電導装置は、前記複数の超電導コイルそれぞれと並列に設けられた、それぞれ抵抗値が異なる複数の前記第1抵抗器を有し、前記制御部は、クエンチが発生した前記超電導コイルがどれであるかによって、前記複数の第1抵抗器のうち導通状態にする第1抵抗器を決定してもよい。   The superconducting device has the plurality of first resistors provided in parallel with the plurality of superconducting coils, each having a different resistance value, and the control unit is the superconducting coil in which the quench has occurred. The first resistor to be turned on among the plurality of first resistors may be determined.

本発明の第2の態様の超電導コイルの保護方法は、直列に接続された複数の超電導コイルと、互いに直列に接続され、かつ前記複数の超電導コイルそれぞれと並列に設けられた第1抵抗器及び第1スイッチと、を有する装置を制御する方法であって、前記複数の超電導コイルのいずれかにクエンチが発生したことを検出するステップと、前記複数の超電導コイルのいずれかにクエンチが発生したことを検出した場合に、前記複数の超電導コイルのうちクエンチが発生した第1超電導コイル以外の一以上の超電導コイルと並列に設けられた一以上の前記第1スイッチを導通状態にするステップと、を有する。   The superconducting coil protection method according to the second aspect of the present invention includes a plurality of superconducting coils connected in series, a first resistor connected in series with each other and provided in parallel with each of the plurality of superconducting coils, and A method of controlling a device having a first switch, the step of detecting that quenching has occurred in any of the plurality of superconducting coils, and the occurrence of quenching in any of the plurality of superconducting coils. Detecting one of the first switches provided in parallel with one or more superconducting coils other than the first superconducting coil in which quenching occurs among the plurality of superconducting coils, Have.

本発明によれば、直列接続された複数の超電導コイルのうち任意の超電導コイルを保護することができるという効果を奏する。   According to the present invention, it is possible to protect an arbitrary superconducting coil among a plurality of superconducting coils connected in series.

超電導装置が有する超電導コイルユニットの概要を示す図である。It is a figure which shows the outline | summary of the superconducting coil unit which a superconducting apparatus has. 超電導装置の構成を示す図である。It is a figure which shows the structure of a superconducting apparatus. 一部の超電導コイルにクエンチが発生した後に各超電導コイルを流れる電流の変化を示すシミュレーション結果である。It is a simulation result which shows the change of the electric current which flows through each superconducting coil, after quenching generate | occur | produces in some superconducting coils. 一部の超電導コイルにクエンチが発生した後に各超電導コイルを流れる電流の変化を示すシミュレーション結果である。It is a simulation result which shows the change of the electric current which flows through each superconducting coil, after quenching generate | occur | produces in some superconducting coils. 第2実施形態に係る超電導装置の構成を示す図である。It is a figure which shows the structure of the superconducting apparatus which concerns on 2nd Embodiment.

<第1実施形態>
[超電導コイルの概要]
図1は、本実施形態の超電導装置1が有する超電導コイルユニット11の概要を示す図である。図2は、超電導装置1の構成を示す図である。超電導装置1は、例えばMRI(Magnetic Resonance Imaging)装置である。
<First Embodiment>
[Overview of superconducting coil]
FIG. 1 is a diagram showing an outline of a superconducting coil unit 11 included in the superconducting device 1 of the present embodiment. FIG. 2 is a diagram showing the configuration of the superconducting device 1. The superconducting device 1 is, for example, an MRI (Magnetic Resonance Imaging) device.

図1に示す超電導コイルユニット11は、4つのパンケーキコイルである超電導コイルL1、L2、L3、L4を備えているが、超電導コイルユニット11が有する超電導コイルの数は任意である。超電導コイルL1、L2、L3、L4に電流を流すと、図1に示すように磁界が発生する。   The superconducting coil unit 11 shown in FIG. 1 includes superconducting coils L1, L2, L3, and L4, which are four pancake coils, but the number of superconducting coils included in the superconducting coil unit 11 is arbitrary. When a current is passed through the superconducting coils L1, L2, L3, and L4, a magnetic field is generated as shown in FIG.

超電導コイルL1、L2、L3、L4のいずれかにクエンチが発生すると、クエンチが生じた超電導コイルが損傷してしまう。そこで、超電導装置1は、クエンチが発生したことを検出すると、クエンチが発生した超電導コイルを流れている電流を他の超電導コイルに移す転流を行うことで、クエンチが発生した超電導コイルを保護する構成を備えている。以下、超電導装置1の詳細について説明する。   If a quench occurs in any of the superconducting coils L1, L2, L3, and L4, the superconducting coil in which the quench has occurred is damaged. Therefore, when the superconducting device 1 detects that the quench has occurred, the superconducting device 1 protects the superconducting coil in which the quench has occurred by performing a commutation that transfers the current flowing in the superconducting coil in which the quench has occurred to another superconducting coil. It has a configuration. Details of the superconducting device 1 will be described below.

[超電導装置1の構成]
超電導装置1は、超電導コイルユニット11と制御部12とを備える。超電導コイルユニット11は、電流源Pと、複数の超電導コイルL(超電導コイルL1〜Ln)と、複数の第1抵抗器R1(抵抗器R11〜R1n)と、複数の第2抵抗器R2(抵抗器R21〜R2n)と、複数の第1スイッチS1(スイッチS11〜S1n)と、複数の第2スイッチS2(スイッチS21〜S2n)第3スイッチTと、ダイオードDと、第3抵抗器rと、を有する。ここで、nは、2以上の整数である。
[Configuration of Superconducting Device 1]
The superconducting device 1 includes a superconducting coil unit 11 and a control unit 12. The superconducting coil unit 11 includes a current source P, a plurality of superconducting coils L (superconducting coils L1 to Ln), a plurality of first resistors R1 (resistors R11 to R1n), and a plurality of second resistors R2 (resistors). R21 to R2n), a plurality of first switches S1 (switches S11 to S1n), a plurality of second switches S2 (switches S21 to S2n), a third switch T, a diode D, a third resistor r, Have Here, n is an integer of 2 or more.

電流源P及び第3スイッチTは、複数の超電導コイルLと直列に設けられている。電流源Pは、複数の超電導コイルLに磁界を発生させるための電流を供給する。第3スイッチTは、電流源Pと直列接続されており、制御部12の制御に基づいて、電流源Pが出力する電流を複数の超電導コイルLに流す導通状態と、電流を複数の超電導コイルLに流さない非導通状態とを切り替える。   The current source P and the third switch T are provided in series with the plurality of superconducting coils L. The current source P supplies a current for generating a magnetic field in the plurality of superconducting coils L. The third switch T is connected in series with the current source P, and based on the control of the control unit 12, a conduction state in which the current output from the current source P flows to the plurality of superconducting coils L, and the current to the plurality of superconducting coils. The non-conducting state which does not flow through L is switched.

ダイオードD及び第3抵抗器rは、互いに直列に接続された複数の超電導コイルLと並列に設けられている。ダイオードD及び第3抵抗器rは、電流源Pにおける第3スイッチTと接続されていない側と、第3スイッチTにおける電流源Pと接続されていない側との間において、互いに直列に接続されている。   The diode D and the third resistor r are provided in parallel with a plurality of superconducting coils L connected in series with each other. The diode D and the third resistor r are connected in series between the side of the current source P not connected to the third switch T and the side of the third switch T not connected to the current source P. ing.

超電導装置1は、それぞれの超電導コイルLと並列に、互いに直列に接続された第1抵抗器R11〜R1nと第1スイッチS11〜S1nとを有する。すなわち、超電導装置1は、互いに直列に接続され、かつ複数の超電導コイルL1〜Lnそれぞれと並列に設けられた第1抵抗器R11〜R1n及び第1スイッチS11〜S1nを有する。   The superconducting device 1 includes first resistors R11 to R1n and first switches S11 to S1n connected in series with each superconducting coil L in parallel. That is, the superconducting device 1 includes first resistors R11 to R1n and first switches S11 to S1n that are connected in series with each other and provided in parallel with each of the plurality of superconducting coils L1 to Ln.

また、超電導装置1は、隣接する超電導コイルLの接続点と、第1抵抗器R1kと第1スイッチS1(k+1)との接続点との間に、互いに直列に接続された第2抵抗器R21〜R2nと第2スイッチS21〜S2nとを有する。ここで、kはn以下の整数である。第1抵抗器R11〜R1nの抵抗値は、第3抵抗器rの抵抗値よりも小さい。第1スイッチS11〜S1n、第2スイッチS21〜S2n、及び第3スイッチTは、制御部12の制御により、導通状態と非導通状態とを切り替えることができる。   The superconducting device 1 includes a second resistor R21 connected in series between a connection point between adjacent superconducting coils L and a connection point between the first resistor R1k and the first switch S1 (k + 1). To R2n and second switches S21 to S2n. Here, k is an integer of n or less. The resistance values of the first resistors R11 to R1n are smaller than the resistance value of the third resistor r. The first switches S11 to S1n, the second switches S21 to S2n, and the third switch T can be switched between a conduction state and a non-conduction state under the control of the control unit 12.

制御部12は、例えばコンピュータである。制御部12は、記録媒体に記憶されたプログラムを実行することにより、複数の第1スイッチS11〜S1n、第2スイッチS21〜S2n、及び第3スイッチTの導通状態を制御する。   The control unit 12 is a computer, for example. The control unit 12 controls a conduction state of the plurality of first switches S11 to S1n, the second switches S21 to S2n, and the third switch T by executing a program stored in the recording medium.

制御部12は、複数の超電導コイルLのいずれかにクエンチが発生したことを検出した場合に、第3スイッチTを非導通状態にする。また、制御部12は、複数の超電導コイルLのうちクエンチが発生した第1超電導コイルL以外の一以上の超電導コイルLと並列に設けられた一以上の第1スイッチS1を導通状態にする。また、制御部12は、導通状態にした第1スイッチS1と直列に接続された第1抵抗器R1に電流が流れるように、少なくとも一部の第2スイッチS2を導通状態にする。例えば、制御部12は、超電導コイルL1と超電導コイルLnにクエンチが発生したことを検出した場合に、超電導コイルL2〜L(n−1)と並列に設けられた第1スイッチS12〜S1(n−1)を導通状態にするとともに、第2スイッチS21〜S2(n−1)を導通状態にする。   When the control unit 12 detects that quenching has occurred in any of the plurality of superconducting coils L, the control unit 12 brings the third switch T into a non-conductive state. Moreover, the control part 12 makes one or more 1st switch S1 provided in parallel with one or more superconducting coils L other than the 1st superconducting coil L which the quench generate | occur | produced among the some superconducting coils L into a conduction | electrical_connection state. Moreover, the control part 12 makes at least one part 2nd switch S2 into a conduction | electrical_connection state so that an electric current may flow into 1st resistor R1 connected in series with 1st switch S1 made into the conduction | electrical_connection state. For example, when the control unit 12 detects that quenching has occurred in the superconducting coil L1 and the superconducting coil Ln, the first switches S12 to S1 (n) provided in parallel with the superconducting coils L2 to L (n−1). -1) is turned on, and the second switches S21 to S2 (n-1) are turned on.

制御部12が第3スイッチTを非導通状態にすることにより、電流源Pから供給される電流が超電導コイルL1〜Lnに流れなくなる。そして、制御部12が第1スイッチS12〜S1(n−1)の少なくともいずれかを導通状態にするとともに、導通状態にした第1スイッチS1と直列に接続された第1抵抗器R1に電流が流れるようにすることで、相互インダクタンスによる磁気結合により、超電導コイルL1及び超電導コイルLnに流れている電流に対応する電流が、導通状態になった第1スイッチSに対応する超電導コイルL(例えば超電導コイルL2〜超電導コイルL(n−1))に転流し、超電導コイルL1及び超電導コイルLnに流れる電流が急速に減少する。このように、超電導コイルL1及び超電導コイルLnに流れる電流が急速に減少することにより、クエンチが発生して常電導状態になった超電導コイルL1及び超電導コイルLnでのジュール熱の発生を抑制することができるので、超電導コイルL1及び超電導コイルLnの損傷を防止できる。   When the control part 12 makes the 3rd switch T a non-conduction state, the electric current supplied from the current source P does not flow into the superconducting coils L1 to Ln. And while the control part 12 makes at least any one of 1st switch S12-S1 (n-1) a conduction | electrical_connection state, an electric current is sent to 1st resistor R1 connected in series with 1st switch S1 made into the conduction | electrical_connection state. By making it flow, the current corresponding to the current flowing in the superconducting coil L1 and the superconducting coil Ln due to magnetic coupling due to mutual inductance causes the superconducting coil L (for example, superconducting coil) corresponding to the first switch S in the conductive state. The current flowing through the superconducting coil L1 and the superconducting coil Ln is rapidly reduced by commutation to the coil L2 to the superconducting coil L (n-1)). As described above, the current flowing in the superconducting coil L1 and the superconducting coil Ln is rapidly reduced, thereby suppressing the generation of Joule heat in the superconducting coil L1 and the superconducting coil Ln that are in the normal conducting state due to the quench. Therefore, damage to the superconducting coil L1 and the superconducting coil Ln can be prevented.

制御部12は、クエンチが発生した超電導コイルLと並列に設けられた第1スイッチS1、及び複数の超電導コイルLの直列接続方向の中央位置を基準としてクエンチが発生した超電導コイルLの位置と対称な位置の第2超電導コイルLと並列に設けられた第1スイッチS1以外の一以上の第1スイッチS1を導通状態にしてもよい。制御部12は、例えば、複数の超電導コイルLのうち第1超電導コイル及び第2超電導コイル以外の全ての超電導コイルと並列に設けられた一以上の第1スイッチS1を導通状態にする。   The control unit 12 is symmetrical to the position of the superconducting coil L where the quench has occurred with reference to the first switch S1 provided in parallel with the superconducting coil L where the quench has occurred and the center position in the series connection direction of the plurality of superconducting coils L. One or more first switches S1 other than the first switch S1 provided in parallel with the second superconducting coil L at any position may be in a conductive state. For example, the control unit 12 brings one or more first switches S1 provided in parallel with all the superconducting coils other than the first superconducting coil and the second superconducting coil among the plurality of superconducting coils L into a conductive state.

制御部12は、例えば超電導コイルL1にクエンチが発生した場合、(1)超電導コイルL1と並列に設けられた第1スイッチS11、及び(2)複数の超電導コイルLの中央位置に相当する超電導コイルL(n/2)を基準として超電導コイルL1と対称な位置の超電導コイルLnと並列に設けられた第1スイッチS1nの2つの第1スイッチS1以外の、第1スイッチS12〜S1(n−1)を導通状態にする。また、制御部12は、第2スイッチS21〜S2(n−1)を導通状態にする。   For example, when quenching occurs in the superconducting coil L1, the control unit 12 (1) a first switch S11 provided in parallel with the superconducting coil L1, and (2) a superconducting coil corresponding to the central position of the plurality of superconducting coils L. First switches S12 to S1 (n-1) other than the two first switches S1 of the first switch S1n provided in parallel with the superconducting coil Ln at a position symmetrical to the superconducting coil L1 with reference to L (n / 2). ) Is turned on. Moreover, the control part 12 makes 2nd switch S21-S2 (n-1) a conduction state.

制御部12は、例えば超電導コイルL2にクエンチが発生した場合、(1)超電導コイルL2と並列に設けられた第1スイッチS2、及び(2)超電導コイルL(n−1)と並列に設けられた第1スイッチS(n−1)の2つの第1スイッチ以外の、第1スイッチS1、及び第1スイッチS2〜S(n−2)を導通状態にする。また、制御部12は、第2スイッチS21〜S2(n−1)を導通状態にする。このようにすることで、電流のアンバランスが生じることにより超電導コイルLが損傷することを防止できる。   For example, when quenching occurs in the superconducting coil L2, the control unit 12 is provided in parallel with (1) the first switch S2 provided in parallel with the superconducting coil L2, and (2) with the superconducting coil L (n-1). The first switch S1 and the first switches S2 to S (n-2) other than the two first switches of the first switch S (n-1) are turned on. Moreover, the control part 12 makes 2nd switch S21-S2 (n-1) a conduction state. By doing so, it is possible to prevent the superconducting coil L from being damaged due to current imbalance.

複数の第1抵抗器R11〜R1nの抵抗値は任意であるが、第1抵抗器R11〜R1nそれぞれの抵抗値は、第3抵抗器rの抵抗値よりも小さいことが望ましい。そして、導通状態にする一以上の第1スイッチS1と直列接続された一以上の第1抵抗器R1の抵抗値の合計値が第3抵抗器rの抵抗値よりも小さいことが望ましい。このように、第1抵抗器R11〜R1nそれぞれの抵抗値が第3抵抗器rの抵抗値よりも小さいことで、いずれかの超電導コイルLにクエンチが発生した場合に、クエンチが発生していない超電導コイルLに転流される電流値を十分に大きくすることができる。   The resistance values of the plurality of first resistors R11 to R1n are arbitrary, but the resistance values of the first resistors R11 to R1n are preferably smaller than the resistance value of the third resistor r. The total resistance value of the one or more first resistors R1 connected in series with the one or more first switches S1 to be in a conductive state is preferably smaller than the resistance value of the third resistor r. As described above, when the resistance value of each of the first resistors R11 to R1n is smaller than the resistance value of the third resistor r, no quench occurs when any of the superconducting coils L is quenched. The current value commutated to the superconducting coil L can be sufficiently increased.

また、複数の超電導コイルLのうち、複数の超電導コイルLの直列接続方向の中央位置に近いほど、超電導コイルLと並列に設けられている第1抵抗器R1の抵抗値が小さくなるようにしてもよい。このようにすることで、クエンチが発生しやすい両端の超電導コイルL1又は超電導コイルLnからの距離が大きく、超電導コイルL1又は超電導コイルLnとの間の相互インダクタンスが小さい超電導コイルLに電流が流れやすくなる。この結果、複数の超電導コイルLそれぞれに流れる電流の量の差を小さくすることができるとともに、クエンチが発生した超電導コイルLを流れる電流を短時間で小さくすることができる。   Further, among the plurality of superconducting coils L, the resistance value of the first resistor R1 provided in parallel with the superconducting coil L is decreased as the position is closer to the center position in the series connection direction of the plurality of superconducting coils L. Also good. By doing in this way, it is easy for current to flow to the superconducting coil L where the distance from the superconducting coil L1 or the superconducting coil Ln at both ends where quenching is likely to occur is large and the mutual inductance between the superconducting coil L1 or the superconducting coil Ln is small. Become. As a result, the difference in the amount of current flowing through each of the plurality of superconducting coils L can be reduced, and the current flowing through the superconducting coil L in which quenching has occurred can be reduced in a short time.

[シミュレーション結果]
図3及び図4は、一部の超電導コイルLにクエンチが発生した後に各超電導コイルLを流れる電流の変化を示すシミュレーション結果である。図3及び図4の横軸は、クエンチが発生してからの経過時間を示し、縦軸は1つの超電導コイルLを流れる電流の大きさを示している。図3及び図4に示すシミュレーション結果は、超電導装置1が8個の超電導コイルLを有する場合(すなわちn=8の場合)のシミュレーション結果である。
[simulation result]
3 and 4 are simulation results showing changes in the current flowing through each superconducting coil L after quenching occurs in some superconducting coils L. FIG. The horizontal axis of FIGS. 3 and 4 represents the elapsed time since the quenching occurred, and the vertical axis represents the magnitude of the current flowing through one superconducting coil L. The simulation results shown in FIGS. 3 and 4 are simulation results when the superconducting device 1 has eight superconducting coils L (that is, when n = 8).

図3は、超電導コイルL1及び超電導コイルL8にクエンチが発生した場合の、超電導コイルL1、L8、超電導コイルL2、L7、超電導コイルL3、L6、並びに超電導コイルL4、L5を流れる電流を示している。超電導コイルL1及び超電導コイルL8を流れる電流は、クエンチが発生した直後に急速に低下し、超電導コイルL2及び超電導コイルL7を流れる電流が増加している。その後、超電導コイルL3及び超電導コイルL6、並びに超電導コイルL4及び超電導コイルL5を流れる電流が増加するにつれて、超電導コイルL2及び超電導コイルL7を流れる電流も低下している。このように、超電導コイルL1及び超電導コイルL8を流れる電流が、内側のコイルに転流することで、超電導コイルL1及び超電導コイルL8の破損を防げることが確認できた。   FIG. 3 shows currents flowing through the superconducting coils L1 and L8, the superconducting coils L2 and L7, the superconducting coils L3 and L6, and the superconducting coils L4 and L5 when quenching occurs in the superconducting coil L1 and the superconducting coil L8. . The current flowing through the superconducting coil L1 and the superconducting coil L8 decreases rapidly immediately after the quench occurs, and the current flowing through the superconducting coil L2 and the superconducting coil L7 increases. Thereafter, as the current flowing through the superconducting coil L3 and the superconducting coil L6, and the superconducting coil L4 and the superconducting coil L5 increase, the current flowing through the superconducting coil L2 and the superconducting coil L7 also decreases. Thus, it was confirmed that the current flowing through the superconducting coil L1 and the superconducting coil L8 was commutated to the inner coil, thereby preventing the superconducting coil L1 and the superconducting coil L8 from being damaged.

図4は、超電導コイルL2にクエンチが発生した場合の、各超電導コイルLを流れる電流を示している。超電導コイルL2を流れる電流は、クエンチが発生した直後に急速に低下し、超電導コイルL2に隣接する超電導コイルL1及び超電導コイルL3を流れる電流が増加している。その後、他の超電導コイルLを流れる電流が増加するにつれて、超電導コイルL1及び超電導コイルL3を流れる電流も低下していることが確認できる。このように、両端以外の超電導コイルLにクエンチが発生した場合にも転流が発生し、クエンチが発生した超電導コイルLの破損を防げることが確認できた。   FIG. 4 shows the current flowing through each superconducting coil L when quenching occurs in the superconducting coil L2. The current flowing through the superconducting coil L2 decreases rapidly immediately after the quench occurs, and the current flowing through the superconducting coil L1 and the superconducting coil L3 adjacent to the superconducting coil L2 increases. Thereafter, as the current flowing through the other superconducting coil L increases, it can be confirmed that the current flowing through the superconducting coil L1 and the superconducting coil L3 also decreases. Thus, even when quenching occurred in the superconducting coil L other than both ends, commutation occurred, and it was confirmed that damage to the superconducting coil L in which quenching occurred could be prevented.

[超電導装置1による効果]
以上のとおり、超電導装置1においては、各超電導コイルLと並列に、第1抵抗器R及び第1スイッチSが設けられている。そして、制御部12は、複数の超電導コイルLのいずれかにクエンチが発生したことを検出した場合に、複数の超電導コイルLのうちクエンチが発生した超電導コイルL以外の一以上の超電導コイルLと並列に設けられた一以上の第1スイッチSを導通状態にする。このようにすることで、クエンチが発生した超電導コイルLを流れている電流が、導通状態にした第1スイッチSと並列の位置にある超電導コイルLに転流するので、クエンチが発生した超電導コイルLを流れる電流が減少し、クエンチが発生した超電導コイルLの損傷を防ぐことができる。
[Effects of superconducting device 1]
As described above, in the superconducting device 1, the first resistor R and the first switch S are provided in parallel with each superconducting coil L. And when the control part 12 detects that quench generate | occur | produced in either of the several superconducting coils L, one or more superconducting coils L other than the superconducting coil L which the quench generate | occur | produced among several superconducting coils L and One or more first switches S provided in parallel are turned on. By doing in this way, since the current flowing through the superconducting coil L where the quench has occurred is transferred to the superconducting coil L in a position parallel to the first switch S in the conducting state, the superconducting coil where the quench has occurred The current flowing through L is reduced, and damage to the superconducting coil L in which quenching has occurred can be prevented.

なお、以上の説明においては、制御部12が、第2スイッチS21〜S2(n−1)を導通状態にする動作例を示したが、制御部12は、クエンチが発生した超電導コイルL以外の一以上の超電導コイルLと並列に設けられた一以上の第1抵抗器R1に電流が流れるように、一部に第2スイッチS2を導通状態にしてもよい。例えば、超電導コイルL1にクエンチが発生した場合、制御部12は、第1スイッチS12、第2スイッチS21及び第2スイッチS22を導通状態にして、第1抵抗器R21に電流が流れるようにしてもよい。また、超電導装置1は、第2スイッチS2を有していなくてもよい。   In addition, in the above description, although the control part 12 showed the operation example which makes 2nd switch S21-S2 (n-1) a conduction | electrical_connection state, the control part 12 other than the superconducting coil L in which quench generate | occur | produced was shown. The second switch S2 may partially be in a conductive state so that current flows through one or more first resistors R1 provided in parallel with the one or more superconducting coils L. For example, when quenching occurs in the superconducting coil L1, the control unit 12 causes the first switch S12, the second switch S21, and the second switch S22 to be in a conductive state so that a current flows through the first resistor R21. Good. Further, the superconducting device 1 may not have the second switch S2.

<第2実施形態>
図5は、第2実施形態に係る超電導装置2の構成を示す図である。超電導装置2は、複数の超電導コイルLそれぞれと並列に設けられた、それぞれ抵抗値が異なる複数の第1抵抗器Rと第1スイッチSとを有する。超電導装置2は、例えば、超電導コイルL1と並列に設けられた第1抵抗器R11及び第1抵抗器R31と、第1抵抗器R11及び第1抵抗器R32のいずれかを超電導コイルL1と接続するための第3スイッチS21及び第4スイッチS41とを有する。
<Second Embodiment>
FIG. 5 is a diagram showing a configuration of the superconducting device 2 according to the second embodiment. The superconducting device 2 includes a plurality of first resistors R and first switches S that are provided in parallel with the plurality of superconducting coils L and have different resistance values. The superconducting device 2 connects, for example, the first resistor R11 and the first resistor R31 provided in parallel with the superconducting coil L1, and the first resistor R11 and the first resistor R32 to the superconducting coil L1. A third switch S21 and a fourth switch S41.

制御部12は、クエンチが発生した超電導コイルLがどれであるかによって、複数の第1抵抗器R1及び複数の第1抵抗器R3のうち導通状態にする第1抵抗器R1及び第1抵抗器R3を決定する。制御部12は、例えば、クエンチが発生した超電導コイルLが近ければ近いほど相互インダクタンスが大きいので、より小さい第1抵抗器R1又は第1抵抗器R3を導通状態にすることに決定する。具体的には、第1抵抗器R11の抵抗値が第1抵抗器R31の抵抗値よりも大きい場合、超電導コイルL2にクエンチが発生したときには第1抵抗器R11を導通状態にし、超電導コイルL3にクエンチが発生したときには第1抵抗器R31を導通状態にする。このようにすることで、クエンチが発生した超電導コイルLの位置による、転流により発生する電流の大きさのばらつきを小さくすることができる。   The control unit 12 includes a first resistor R1 and a first resistor that are turned on among the plurality of first resistors R1 and the plurality of first resistors R3, depending on which of the superconducting coils L in which the quench has occurred. Determine R3. For example, the closer the superconducting coil L in which quenching occurs, the greater the mutual inductance, so that the control unit 12 determines to make the smaller first resistor R1 or first resistor R3 conductive. Specifically, when the resistance value of the first resistor R11 is larger than the resistance value of the first resistor R31, when a quench occurs in the superconducting coil L2, the first resistor R11 is turned on, and the superconducting coil L3 When the quench occurs, the first resistor R31 is brought into a conducting state. By doing in this way, the dispersion | variation in the magnitude | size of the electric current which generate | occur | produces by commutation by the position of the superconducting coil L where quenching generate | occur | produced can be made small.

[超電導装置2による効果]
以上のとおり、超電導装置2の制御部12は、クエンチが発生した超電導コイルLがどれであるかによって、他の超電導コイルLと並列に設けられた第1抵抗器R1及び第1抵抗器R3の抵抗値を制御することができる。超電導装置2がこのような構成を有することで、超電導装置2は、クエンチが発生した超電導コイルLの位置によらず、各超電導コイルLを流れる電流を所望の範囲に制御することができるので、クエンチが発生した超電導コイルLとともに、他の超電導コイルLの損傷も防ぎやすくなる。
[Effects of superconducting device 2]
As described above, the control unit 12 of the superconducting device 2 has the first resistor R1 and the first resistor R3 provided in parallel with the other superconducting coils L depending on which of the superconducting coils L has been quenched. The resistance value can be controlled. Since the superconducting device 2 has such a configuration, the superconducting device 2 can control the current flowing through each superconducting coil L to a desired range regardless of the position of the superconducting coil L where the quench occurs. It becomes easy to prevent damage to other superconducting coils L together with the superconducting coil L where the quench has occurred.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment, A various deformation | transformation and change are possible within the range of the summary. is there. For example, the specific embodiments of device distribution / integration are not limited to the above-described embodiments, and all or a part of them may be configured to be functionally or physically distributed / integrated in arbitrary units. Can do. In addition, new embodiments generated by any combination of a plurality of embodiments are also included in the embodiments of the present invention. The effect of the new embodiment produced by the combination has the effect of the original embodiment.

1 超電導装置
2 超電導装置
11 超電導コイルユニット
12 制御部
L1〜Ln 超電導コイル
R11〜R1n、R31、R32 第1抵抗器
R21〜R2n 第2抵抗器
r 第3抵抗器
S11〜S1n 第1スイッチ
S21〜S2n 第2スイッチ
T 第3スイッチ
P 電流源
D ダイオード
DESCRIPTION OF SYMBOLS 1 Superconducting device 2 Superconducting device 11 Superconducting coil unit 12 Control part L1-Ln Superconducting coil R11-R1n, R31, R32 1st resistor R21-R2n 2nd resistor r 3rd resistor S11-S1n 1st switch S21-S2n Second switch T Third switch P Current source D Diode

Claims (9)

直列に接続された複数の超電導コイルと、
互いに直列に接続され、かつ前記複数の超電導コイルそれぞれと並列に設けられた第1抵抗器及び第1スイッチと、
前記複数の超電導コイルのいずれかにクエンチが発生したことを検出した場合に、前記複数の超電導コイルのうちクエンチが発生した第1超電導コイル以外の一以上の超電導コイルと並列に設けられた一以上の前記第1スイッチを導通状態にする制御部と、
を有する超電導装置。
A plurality of superconducting coils connected in series;
A first resistor and a first switch connected in series with each other and provided in parallel with each of the plurality of superconducting coils;
One or more provided in parallel with one or more superconducting coils other than the first superconducting coil in which quenching occurred among the plurality of superconducting coils when it is detected that quenching has occurred in any of the plurality of superconducting coils. A control unit for turning on the first switch of
A superconducting device.
前記複数の超電導コイルのうち互いに隣接する2つの超電導コイルの接続点と、当該2つの超電導コイルに対応する2つの前記第1抵抗器及び前記第1スイッチの群の接続点との間に直列に設けられた第2抵抗器及び第2スイッチをさらに有する、
請求項1に記載の超電導装置。
Between the connection point of two superconducting coils adjacent to each other among the plurality of superconducting coils and the connection point of the two first resistors and the first switch group corresponding to the two superconducting coils in series. A second resistor and a second switch provided;
The superconducting device according to claim 1.
前記制御部は、前記第1超電導コイルと並列に設けられた前記第1スイッチ、及び前記複数の超電導コイルの直列接続方向の中央位置を基準として前記第1超電導コイルの位置と対称な位置の第2超電導コイルと並列に設けられた前記第1スイッチ以外の前記一以上の第1スイッチを導通状態にする、
請求項1又は2に記載の超電導装置。
The control unit includes a first switch provided in parallel with the first superconducting coil, and a first position symmetrical to the position of the first superconducting coil with respect to a central position in a serial connection direction of the plurality of superconducting coils. 2 bringing the one or more first switches other than the first switch provided in parallel with the superconducting coil into a conductive state;
The superconducting device according to claim 1 or 2.
前記制御部は、前記複数の超電導コイルのうち前記第1超電導コイル及び前記第2超電導コイル以外の全ての前記超電導コイルと並列に設けられた前記一以上の第1スイッチを導通状態にする、
請求項3に記載の超電導装置。
The control unit makes the one or more first switches provided in parallel with all the superconducting coils other than the first superconducting coil and the second superconducting coil among the plurality of superconducting coils,
The superconducting device according to claim 3.
前記複数の超電導コイルのうち、前記複数の超電導コイルの直列接続方向の中央位置に近いほど、前記超電導コイルと並列に設けられている前記第1抵抗器の抵抗値が小さい、
請求項1から4のいずれか一項に記載の超電導装置。
Among the plurality of superconducting coils, the closer to the center position in the series connection direction of the plurality of superconducting coils, the smaller the resistance value of the first resistor provided in parallel with the superconducting coil,
The superconducting device according to any one of claims 1 to 4.
前記複数の超電導コイルと並列に設けられた第2抵抗器をさらに有し、
前記第1抵抗器の抵抗値が前記第2抵抗器の抵抗値よりも小さい、
請求項1から5のいずれか一項に記載の超電導装置。
A second resistor provided in parallel with the plurality of superconducting coils;
A resistance value of the first resistor is smaller than a resistance value of the second resistor;
The superconducting device according to any one of claims 1 to 5.
導通状態にする前記一以上の第1スイッチと直列接続された一以上の前記第1抵抗器の抵抗値の合計値が前記第2抵抗器の抵抗値よりも小さい、
請求項6に記載の超電導装置。
A total value of resistance values of the one or more first resistors connected in series with the one or more first switches to be in a conductive state is smaller than a resistance value of the second resistor;
The superconducting device according to claim 6.
前記複数の超電導コイルそれぞれと並列に設けられた、それぞれ抵抗値が異なる複数の前記第1抵抗器を有し、
前記制御部は、クエンチが発生した前記超電導コイルがどれであるかによって、前記複数の第1抵抗器のうち導通状態にする第1抵抗器を決定する、
請求項1から7のいずれか一項に記載の超電導装置。
A plurality of first resistors provided in parallel with each of the plurality of superconducting coils, each having a different resistance value;
The control unit determines a first resistor to be in a conductive state among the plurality of first resistors depending on which of the superconducting coils in which a quench occurs.
The superconducting device according to any one of claims 1 to 7.
直列に接続された複数の超電導コイルと、互いに直列に接続され、かつ前記複数の超電導コイルそれぞれと並列に設けられた第1抵抗器及び第1スイッチと、を有する装置を制御する方法であって、
前記複数の超電導コイルのいずれかにクエンチが発生したことを検出するステップと、
前記複数の超電導コイルのいずれかにクエンチが発生したことを検出した場合に、前記複数の超電導コイルのうちクエンチが発生した第1超電導コイル以外の一以上の超電導コイルと並列に設けられた一以上の前記第1スイッチを導通状態にするステップと、
を有する超電導コイル保護方法。



A method for controlling a device having a plurality of superconducting coils connected in series and a first resistor and a first switch connected in series with each other and provided in parallel with each of the plurality of superconducting coils. ,
Detecting that a quench has occurred in any of the plurality of superconducting coils;
One or more provided in parallel with one or more superconducting coils other than the first superconducting coil in which quenching occurred among the plurality of superconducting coils when it is detected that quenching has occurred in any of the plurality of superconducting coils. Bringing the first switch of the device into a conductive state;
A method of protecting a superconducting coil.



JP2018059024A 2018-03-26 2018-03-26 Superconducting device and superconducting coil protection method Active JP7104398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018059024A JP7104398B2 (en) 2018-03-26 2018-03-26 Superconducting device and superconducting coil protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059024A JP7104398B2 (en) 2018-03-26 2018-03-26 Superconducting device and superconducting coil protection method

Publications (2)

Publication Number Publication Date
JP2019175889A true JP2019175889A (en) 2019-10-10
JP7104398B2 JP7104398B2 (en) 2022-07-21

Family

ID=68167547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059024A Active JP7104398B2 (en) 2018-03-26 2018-03-26 Superconducting device and superconducting coil protection method

Country Status (1)

Country Link
JP (1) JP7104398B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121902A (en) * 1982-12-28 1984-07-14 Toshiba Corp Superconductive coil exciting electric power source system and operational control thereof
JPS62279608A (en) * 1986-05-28 1987-12-04 Toshiba Corp Split superconducting magnet
JP2006340418A (en) * 2005-05-31 2006-12-14 Toshiba Corp Protective device of superconducting coil
JP2007059920A (en) * 2005-08-25 2007-03-08 Bruker Biospin Ag Superconducting magnet structure comprising connectable resistor element
JP2010161398A (en) * 2010-03-03 2010-07-22 Railway Technical Res Inst Superconducting magnet protective unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121902A (en) * 1982-12-28 1984-07-14 Toshiba Corp Superconductive coil exciting electric power source system and operational control thereof
JPS62279608A (en) * 1986-05-28 1987-12-04 Toshiba Corp Split superconducting magnet
JP2006340418A (en) * 2005-05-31 2006-12-14 Toshiba Corp Protective device of superconducting coil
JP2007059920A (en) * 2005-08-25 2007-03-08 Bruker Biospin Ag Superconducting magnet structure comprising connectable resistor element
JP2010161398A (en) * 2010-03-03 2010-07-22 Railway Technical Res Inst Superconducting magnet protective unit

Also Published As

Publication number Publication date
JP7104398B2 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
CN108780995B (en) Voltage or impedance injection method for dynamic power flow control using a transformer with multiple secondary windings
ES2368577T3 (en) TAKE CHANGER WITH LOAD.
US8810978B2 (en) Superconducting fault current limiter for suppressing bus voltage drop in electric power system
Knott et al. Increasing energy efficiency of saturated-core fault current limiters with permanent magnets
JP2004531052A (en) Matrix type superconducting fault current limiter
JP2016528871A5 (en)
CN104052021A (en) Control Circuit For Electric Power Circuit Switch
Yamaguchi et al. Quench protection of DI-BSCCO coil
JP4583349B2 (en) Superconducting magnet structure with connectable resistive elements
KR101490420B1 (en) flux-lock type Superconducting Fault Current Limiter limiting the peak fault current Using two HTSC elements
Lim et al. Effect of peak current limiting in series-connection SFCL with two magnetically coupled circuits using EI core
EP1841035B1 (en) Fault current limiting
GB2431048A (en) Superconducting magnet coil system with quench protection
JP2019175889A (en) Superconducting device and superconducting coil protection method
US5216568A (en) Superconducting magnet device
US9866013B2 (en) Current limiting device
US10453632B2 (en) Direct current switching device and use thereof
KR20190002864A (en) Magnetic coupling type sfcl with current limiting and circuit breaking function
KR20180099431A (en) Double quench current limiting device for direct current and alternating current
Choi et al. Comparison of the unbalanced faults in three-phase resistive and matrix-type SFCLs
Kumar et al. Self-adaptive differential relaying for power transformers using FPGA
Modaresi et al. New method to determine optimum impedance of fault current limiters for symmetrical and/or asymmetrical faults in power systems
Nikulshin et al. Energy Storing and Fault Current Limiting in a Unified Superconducting Magnetic Device
Jung et al. Recovery characteristics of three-phase matrix-type SFCL in ground fault
JP2011078239A (en) Superconducting current limiting system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220701

R150 Certificate of patent or registration of utility model

Ref document number: 7104398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150