JP2019173790A - Deep groove ball bearing - Google Patents

Deep groove ball bearing Download PDF

Info

Publication number
JP2019173790A
JP2019173790A JP2018059948A JP2018059948A JP2019173790A JP 2019173790 A JP2019173790 A JP 2019173790A JP 2018059948 A JP2018059948 A JP 2018059948A JP 2018059948 A JP2018059948 A JP 2018059948A JP 2019173790 A JP2019173790 A JP 2019173790A
Authority
JP
Japan
Prior art keywords
cage
inner ring
diameter
deep groove
groove ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018059948A
Other languages
Japanese (ja)
Inventor
櫻井 武仁
Takehito Sakurai
武仁 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018059948A priority Critical patent/JP2019173790A/en
Publication of JP2019173790A publication Critical patent/JP2019173790A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a deep groove ball bearing capable of improving assembling characteristic of a cage into a space between an outer ring and an inner ring while preventing an expansion of a claw at the cage under an application of high speed operation.SOLUTION: A deep groove ball bearing 10 used under environment of dmn value of a product between a pitch circle diameter dm(mm) and a revolution speed n(min) more than 70 thousands is set such that an outer diameter of a cage 14 is larger than a pitch circle diameter of a ball, a size of a clearance in a radial direction between an inner peripheral surface of the cage 14 and an inner peripheral surface of an outer ring is smaller than a size of a clearance in a radial direction between an outer peripheral surface of the cage 14 and an inner peripheral surface of the outer ring 12, an inlet side end part of the outer peripheral surface of the inner ring 11 when the cage 14 is assembled is formed with an inner ring 11 tapered surface 17 of which diameter is reduced as an outer diameter of the inner ring 11 is faced outside in an axial direction, and an extremity end side end part at the inner peripheral surface of the cage 14 is formed with a cage tapered surface 16 of which diameter is expanded to the outer ring 12 side as the inner diameter of the cage 14 is faced to the extremity end side of the cage.SELECTED DRAWING: Figure 1

Description

この発明は、高速使用環境下における変形を防止しつつ、保持器の組み込み性を向上した深溝玉軸受に関する。   The present invention relates to a deep groove ball bearing that improves the ease of assembling a cage while preventing deformation under a high-speed use environment.

近年、自動車の省燃費化を目的として、変速機の多段化が進められている。この多段化に伴って、図3に示す遊星歯車機構1が使用されることがある。この遊星歯車機構1は、回転軸心に配置されるサンギア2、最外周に配置されるリングギア3、及び、サンギア2とリングギア3の間に介在するプラネタリギア4とを有している。リングギア3が、大径の深溝玉軸受30によってギアボックス等のハウジング5で保持される。   In recent years, multistage transmissions have been promoted for the purpose of reducing the fuel consumption of automobiles. With this multistage operation, the planetary gear mechanism 1 shown in FIG. 3 may be used. The planetary gear mechanism 1 includes a sun gear 2 disposed on the rotational axis, a ring gear 3 disposed on the outermost periphery, and a planetary gear 4 interposed between the sun gear 2 and the ring gear 3. The ring gear 3 is held in a housing 5 such as a gear box by a large-diameter deep groove ball bearing 30.

この深溝玉軸受30は、複数の玉を周方向等間隔に保持するための樹脂製冠形保持器(以下、保持器と称する。)を有する。この深溝玉軸受30は、ピッチ円径dm(mm)と回転速度n(min−1)との積であるdmn値が70万以上の高速使用環境下で使用されることがある。このとき、保持器には大きな遠心力が作用し、この遠心力によって、爪部が径方向外向きに開く現象が生じることがある。爪部が径方向外向きに開くと、爪部と玉が干渉する虞がある。 The deep groove ball bearing 30 has a resin crown-shaped cage (hereinafter referred to as a cage) for holding a plurality of balls at equal intervals in the circumferential direction. The deep groove ball bearing 30 may be used in a high-speed use environment where the dmn value, which is the product of the pitch circle diameter dm (mm) and the rotational speed n (min −1 ), is 700,000 or more. At this time, a large centrifugal force acts on the cage, and the centrifugal force may cause a phenomenon in which the claw portion opens radially outward. If the claw portion opens radially outward, the claw portion and the ball may interfere with each other.

高速使用環境下における保持器の爪部の開きを防止するために、例えば下記特許文献1においては、樹脂製冠形保持器の外周面に突起を形成している。この突起で保持器を補強することによって剛性を高め、軸受高速回転時における爪部の外径側への開きを極力防止している。   In order to prevent the opening of the claw portion of the cage under a high-speed use environment, for example, in Patent Document 1 below, a protrusion is formed on the outer peripheral surface of the resin crown-shaped cage. By reinforcing the cage with this protrusion, the rigidity is increased and the opening of the claw portion to the outer diameter side during high-speed rotation of the bearing is prevented as much as possible.

特開2000−170772号公報JP 2000-170772 A

特許文献1に係る玉軸受においては、保持器の外周面に突起を形成しているため、この外周面と外輪の内周面との間の隙間が小さくなる。このため、保持器の爪部の変形を抑制できたとしても、保持器の爪部の外周面と外輪の内周面との干渉が生じやすく、保持器の損傷を引き起こす虞がある。   In the ball bearing according to Patent Document 1, since the protrusion is formed on the outer peripheral surface of the cage, the gap between the outer peripheral surface and the inner peripheral surface of the outer ring is reduced. For this reason, even if it can suppress a deformation | transformation of the nail | claw part of a holder | retainer, interference with the outer peripheral surface of the nail | claw part of a holder | retainer and the inner peripheral surface of an outer ring | wheel tends to arise, and there exists a possibility of causing damage to a holder | retainer.

また、高速回転時は、軸受の発熱により高温となりやすいが、この際、保持器を構成する樹脂の線膨張係数が、外輪を構成する鉄の線熱膨張係数よりも大きいため、保持器の外周面と外輪の内周面との間の径方向隙間が小さくなり、両者が干渉して保持器の損傷を引き起こす虞がある。   In addition, during high-speed rotation, the bearing tends to generate a high temperature due to heat generation. At this time, the linear expansion coefficient of the resin constituting the cage is larger than the linear thermal expansion coefficient of the iron constituting the outer ring. There is a possibility that the radial gap between the surface and the inner peripheral surface of the outer ring becomes small, and the two interfere with each other to cause damage to the cage.

しかも、近年は省スペース化の要求により軸受の薄肉化が進んでおり、軸受の停止時(常温時)における保持器の外径と外輪の内径の初期隙間自体が小さくなっているため、保持器と外輪との干渉が生じやすい状況となっている。   Moreover, in recent years, bearings have become thinner due to demands for space saving, and the initial clearance between the outer diameter of the cage and the inner diameter of the outer ring when the bearing is stopped (at room temperature) has become smaller. And the outer ring are likely to interfere with each other.

保持器と外輪の干渉を回避するために、図6に示すように、内輪21と、内輪21の径方向外側に設けられた外輪22と、内輪21と外輪22との間に介在して設けられた複数の玉23と、複数の玉23を周方向所定間隔で保持する転動体案内型の保持器24とを備えた深溝玉軸受20において、この保持器24を、一般的な転動体案内型の保持器と比較して、外径を変えることなく内径を縮径した形状とすることが考えられる。このように、保持器24の内径を縮径することにより、保持器24の径方向の肉厚を増大して剛性を高めることができ、深溝玉軸受20の高速回転時において、遠心力に起因する爪部25の変形を防止することが期待できる。   In order to avoid interference between the cage and the outer ring, as shown in FIG. 6, an inner ring 21, an outer ring 22 provided on the radially outer side of the inner ring 21, and an inner ring 21 and an outer ring 22 are provided. In the deep groove ball bearing 20 having a plurality of balls 23 and a rolling element guide type cage 24 that holds the plurality of balls 23 at predetermined intervals in the circumferential direction, the cage 24 is used as a general rolling element guide. Compared to the cage of the mold, it can be considered to have a shape with a reduced inner diameter without changing the outer diameter. Thus, by reducing the inner diameter of the cage 24, the thickness in the radial direction of the cage 24 can be increased to increase the rigidity, and the deep groove ball bearing 20 is caused by centrifugal force during high-speed rotation. It can be expected that the deformation of the claw portion 25 is prevented.

しかし、保持器24の内径を縮径すると、保持器24の組み込み性が低下する問題がある。すなわち、保持器24の内周面と内輪21の外周面との間の径方向隙間が小さいため、内輪21と外輪22との間に軸方向から保持器24を組み込む際には、図7に示すように、内輪21と保持器24の軸芯を高い精度で一致させなければならない。そして、両者の間に芯ずれがあると、図8に示すように、保持器24の爪部25の先端が内輪21の端面に当接して、スムーズに保持器24を組み込みできない問題が生じる。   However, when the inner diameter of the cage 24 is reduced, there is a problem that the assemblability of the cage 24 is lowered. That is, since the radial clearance between the inner circumferential surface of the cage 24 and the outer circumferential surface of the inner ring 21 is small, when the cage 24 is assembled between the inner ring 21 and the outer ring 22 from the axial direction, FIG. As shown, the axial centers of the inner ring 21 and the cage 24 must be matched with high accuracy. If there is a misalignment between the two, as shown in FIG. 8, the tip of the claw portion 25 of the retainer 24 comes into contact with the end surface of the inner ring 21, causing a problem that the retainer 24 cannot be assembled smoothly.

そこで、この発明は、高速使用環境下における保持器の爪部の拡がりを防止しつつ、内外輪間への保持器の組み込み性を向上することを課題とする。   Accordingly, an object of the present invention is to improve the assembling property of the cage between the inner and outer rings while preventing the claw portion of the cage from spreading in a high-speed use environment.

上記の課題を解決するために、この発明においては、内輪と、前記内輪の径方向外側に設けられた外輪と、前記内輪と前記外輪との間に介在して設けられた複数の玉と、前記内輪と前記外輪との間に組み込まれていて前記複数の玉を保持する保持器と、を備え、ピッチ円径dm(mm)と回転速度n(min−1)との積であるdmn値が70万以上の使用環境下で使用される深溝玉軸受において、前記保持器の外径は、前記玉のピッチ円直径よりも大きく、前記保持器の内周面と前記内輪の外周面との間の径方向隙間の大きさが、前記保持器の外周面と前記外輪の内周面との間の径方向隙間の大きさよりも小さく、前記内輪の外周面のうち前記保持器が組み込まれる際の入口側端部には、前記内輪の外径が軸方向外側に向かうにつれて縮径する内輪テーパ面が形成されていて、前記保持器の内周面のうち先端側端部には、前記保持器の内径が保持器先端側に向かうにつれて前記外輪側に拡径する保持器テーパ面が形成されていることを特徴とする深溝玉軸受を構成した。 In order to solve the above-described problems, in the present invention, an inner ring, an outer ring provided on the radially outer side of the inner ring, and a plurality of balls provided to be interposed between the inner ring and the outer ring, A dmn value that is a product of a pitch circle diameter dm (mm) and a rotational speed n (min −1 ), and a cage that is incorporated between the inner ring and the outer ring and holds the plurality of balls. Is a deep groove ball bearing used in a usage environment of 700,000 or more, the outer diameter of the cage is larger than the pitch circle diameter of the balls, and the inner circumferential surface of the cage and the outer circumferential surface of the inner ring When the size of the gap in the radial direction is smaller than the size of the gap in the radial direction between the outer circumferential surface of the cage and the inner circumferential surface of the outer ring, and the cage is incorporated in the outer circumferential surface of the inner ring The outer diameter of the inner ring shrinks toward the outer side in the axial direction. An inner ring taper surface is formed, and a cage taper surface that expands toward the outer ring side as the inner diameter of the cage moves toward the tip side of the cage at the tip side end portion of the inner circumferential surface of the cage A deep groove ball bearing characterized in that is formed.

このように、保持器の内周面と内輪の外周面との間の径方向隙間の大きさを、保持器の外周面と外輪の内周面との間の径方向隙間の大きさよりも小さくして、実質的に保持器の内径を縮径することにより、保持器の径方向の肉厚を増大して剛性を高めることができ、軸受の高速回転時において、遠心力に起因する爪部の変形を防止することができる。   Thus, the size of the radial gap between the inner peripheral surface of the cage and the outer peripheral surface of the inner ring is smaller than the size of the radial gap between the outer peripheral surface of the cage and the inner peripheral surface of the outer ring. In addition, by substantially reducing the inner diameter of the cage, the thickness in the radial direction of the cage can be increased and the rigidity can be increased. At the time of high-speed rotation of the bearing, the claw portion caused by centrifugal force Can be prevented from being deformed.

しかも、保持器に保持器テーパ面を、内輪に内輪テーパ面をそれぞれ形成することにより、内輪と外輪との間に軸方向から保持器を組み込む際に、両者の間に芯ずれがあったとしても、保持器テーパ面と内輪テーパ面が互いに当接しつつスライドすることによって、その芯ずれが修正される。これにより、初期の芯ずれ量に対する許容量が大きくなり、内外輪間に保持器をスムーズに組み込むことができる。   In addition, by forming the cage taper surface on the cage and the inner ring taper surface on the inner ring, when the cage is assembled from the axial direction between the inner ring and the outer ring, there is a misalignment between the two. Also, the center misalignment is corrected by sliding the cage taper surface and the inner ring taper surface in contact with each other. Thereby, the tolerance | permissible_quantity with respect to the initial amount of misalignment becomes large, and a holder | retainer can be smoothly integrated between an inner and outer ring | wheel.

前記構成においては、軸方向に対する前記保持器テーパ面のテーパ角が5度以上45度以下であるのが好ましい。また、軸方向に対する前記内輪テーパ面のテーパ角が5度以上45度以下であるのが好ましい。このように、両テーパ角の範囲を規定することにより、内輪テーパ面に対する保持器テーパ面のスライドがスムーズになり、内輪と保持器の芯ずれの修正を一層速やかに行うことができる。   In the said structure, it is preferable that the taper angle of the said retainer taper surface with respect to an axial direction is 5 to 45 degree | times. Moreover, it is preferable that the taper angle of the inner ring tapered surface with respect to the axial direction is not less than 5 degrees and not more than 45 degrees. Thus, by defining the range of both taper angles, the cage taper surface slides smoothly with respect to the inner ring taper surface, and the misalignment between the inner ring and the cage can be corrected more quickly.

前記各構成においては、軸方向に対する前記保持器テーパ面のテーパ角と、軸方向に対する前記内輪テーパ面のテーパ角を同一、又は、軸方向に対する前記保持器テーパ面のテーパ角と、軸方向に対する前記内輪テーパ面のテーパ角との差を3度以下とするのが好ましい。このように、両テーパ面のテーパ角を同一、又は、両テーパ角の差を3度以下とすることにより、内輪テーパ面に対する保持器テーパ面のスライドがスムーズになり、内輪と保持器の芯ずれの修正を一層速やかに行うことができる。   In each configuration, the taper angle of the cage taper surface with respect to the axial direction and the taper angle of the inner ring taper surface with respect to the axial direction are the same, or the taper angle of the cage taper surface with respect to the axial direction and the axial direction. The difference from the taper angle of the inner ring tapered surface is preferably 3 degrees or less. Thus, by making the taper angles of both tapered surfaces the same or making the difference between the two taper angles 3 degrees or less, the cage taper surface slides smoothly with respect to the inner ring taper surface, and the inner ring and the cage core The deviation can be corrected more rapidly.

前記各構成においては、前記保持器の軸方向寸法が、前記玉の直径の1.2〜2.0倍とするのが好ましい。これにより、保持器の背面を軸方向外側に延長することによって保持器の剛性を向上させ、高速回転時における保持器の変形を更に抑制することができる。   In each said structure, it is preferable that the axial direction dimension of the said holder shall be 1.2 to 2.0 times the diameter of the said ball | bowl. Thereby, the rigidity of the cage can be improved by extending the back surface of the cage outward in the axial direction, and deformation of the cage during high-speed rotation can be further suppressed.

この発明においては、高速使用環境下における保持器の爪部の拡がりを防止しつつ、内外輪間への保持器の組み込み性を向上することができる。   In the present invention, it is possible to improve the assembling property of the cage between the inner and outer rings while preventing the claw portion of the cage from spreading in a high-speed use environment.

この発明に係る深溝玉軸受の一実施形態を示す断面図Sectional drawing which shows one Embodiment of the deep groove ball bearing which concerns on this invention 図1に示す深溝玉軸受に採用される冠形保持器を示す斜視図The perspective view which shows the crown-shaped cage employ | adopted as the deep groove ball bearing shown in FIG. 図1に示す深溝玉軸受の遊星歯車機構への適用例を示す断面図Sectional drawing which shows the example of application to the planetary gear mechanism of the deep groove ball bearing shown in FIG. 図1に示す深溝玉軸受への保持器の組み込み過程(組み込み前)を示す断面図Sectional drawing which shows the assembly process (before assembly) of the cage to the deep groove ball bearing shown in FIG. 図1に示す深溝玉軸受への保持器の組み込み過程(組み込み中)を示す断面図Sectional drawing which shows the assembly process (during assembly) of the cage to the deep groove ball bearing shown in FIG. 従来技術に係る深溝玉軸受の一例を示す断面図Sectional drawing which shows an example of the deep groove ball bearing which concerns on a prior art 図6に示す深溝玉軸受への保持器の組み込み過程(組み込み前)を示す断面図Sectional drawing which shows the assembly process (before assembly) of the cage to the deep groove ball bearing shown in FIG. 図6に示す深溝玉軸受への保持器の組み込み過程(組み込み中)を示す断面図Sectional drawing which shows the assembly process (during assembly) of the cage to the deep groove ball bearing shown in FIG.

この発明に係る深溝玉軸受10の一実施形態を図1に示す。この深溝玉軸受は、内輪11と、内輪11の径方向外側に設けられた外輪12と、内輪11と外輪12との間に介在して設けられた複数の玉13と、複数の玉13を周方向所定間隔で保持する保持器14とを備えている。この深溝玉軸受10は、特にピッチ円径dm(mm)と回転速度n(min−1)との積であるdmn値が70万以上の高速使用環境下での使用を想定している。 An embodiment of a deep groove ball bearing 10 according to the present invention is shown in FIG. The deep groove ball bearing includes an inner ring 11, an outer ring 12 provided on the radially outer side of the inner ring 11, a plurality of balls 13 provided between the inner ring 11 and the outer ring 12, and a plurality of balls 13. And a retainer 14 that retains at predetermined intervals in the circumferential direction. The deep groove ball bearing 10 is assumed to be used in a high-speed use environment in which the dmn value, which is the product of the pitch circle diameter dm (mm) and the rotation speed n (min −1 ), is 700,000 or more.

なお、ここでは、深溝玉軸受10の回転軸と平行な方向を軸方向、前記回転軸に対し直交する方向を径方向、前記回転軸を中心とする円弧に沿う方向を周方向という。   Here, a direction parallel to the rotation axis of the deep groove ball bearing 10 is referred to as an axial direction, a direction orthogonal to the rotation axis is referred to as a radial direction, and a direction along an arc centered on the rotation axis is referred to as a circumferential direction.

この保持器14は、玉13によって案内される転動体案内型の冠形保持器である。保持器14の外径は、玉13のピッチ円直径(PCD)よりも大きい。また、保持器14の軸方向寸法は、玉13の直径の1.2〜2.0倍である。この保持器14の素材は、ポリアミド樹脂である。図2に示すように、この保持器14には、周方向の所定間隔ごとに、玉13を保持するポケット18が形成されている。ポケット18は、保持器14の半径方向に貫通するとともに保持器軸方向一方側に開口している。各ポケット18の開口の周方向両側には、一対の爪部15が形成されている。爪部15は、軸方向一方側に配置される環状部19から玉13に近づく側に軸方向に延びている。   The retainer 14 is a rolling element guide type crown retainer guided by the balls 13. The outer diameter of the cage 14 is larger than the pitch circle diameter (PCD) of the balls 13. The axial dimension of the cage 14 is 1.2 to 2.0 times the diameter of the ball 13. The material of the cage 14 is a polyamide resin. As shown in FIG. 2, the retainer 14 is formed with pockets 18 for holding the balls 13 at predetermined intervals in the circumferential direction. The pocket 18 penetrates in the radial direction of the cage 14 and opens to one side in the cage axial direction. A pair of claw portions 15 are formed on both sides in the circumferential direction of the opening of each pocket 18. The claw portion 15 extends in the axial direction from the annular portion 19 arranged on one side in the axial direction to the side approaching the ball 13.

この保持器14は、一般的な転動体案内型の保持器と比較して、外径を変えることなく内径を縮径した形状となっている。これにより、保持器14の内周面と内輪11の外周面との間の径方向隙間の大きさg1が、保持器14の外周面と外輪12の内周面との間の径方向隙間の大きさg2よりも小さくなっている。このように、保持器14の内径を縮径することにより、保持器14の径方向の肉厚を増大して剛性を高めることができ、深溝玉軸受10の高速回転時において、遠心力に起因する爪部15の変形を防止することができる。   The cage 14 has a shape in which the inner diameter is reduced without changing the outer diameter, compared to a general rolling element guide type cage. As a result, the size g1 of the radial gap between the inner peripheral surface of the cage 14 and the outer peripheral surface of the inner ring 11 is equal to the radial gap between the outer peripheral surface of the cage 14 and the inner peripheral surface of the outer ring 12. It is smaller than the size g2. Thus, by reducing the inner diameter of the cage 14, the thickness in the radial direction of the cage 14 can be increased and the rigidity can be increased, and due to the centrifugal force during the high-speed rotation of the deep groove ball bearing 10. It is possible to prevent the claw portion 15 from being deformed.

図1及び図2に示すように、保持器14の内周面のうち先端側端部には、保持器14の内径が保持器先端側に向かうにつれて外輪12側に拡径する保持器テーパ面16が形成されている。具体的には、保持器テーパ面16は、爪部15の内周面のうち先端側端部に設けられている。この保持器テーパ面16の軸方向に対するテーパ角はαである。この実施形態におけるテーパ角αの大きさは25度であるが、このテーパ角αの大きさは、5度以上45度以下の範囲内、好ましくは20度以上30度以下の範囲内で適宜変更することができる。   As shown in FIG. 1 and FIG. 2, a cage taper surface that expands toward the outer ring 12 as the inner diameter of the cage 14 moves toward the cage tip side at the tip side end portion of the inner circumferential surface of the cage 14. 16 is formed. Specifically, the cage taper surface 16 is provided on the tip side end portion of the inner peripheral surface of the claw portion 15. The taper angle of the cage taper surface 16 with respect to the axial direction is α. In this embodiment, the taper angle α is 25 degrees, but the taper angle α is appropriately changed within a range of 5 degrees to 45 degrees, preferably within a range of 20 degrees to 30 degrees. can do.

内輪11の外周面のうち保持器14が組み込まれる際の入口側端部には、内輪11の外径が軸方向外側(玉13から離れる側)に向かうにつれて縮径する内輪テーパ面17が形成されている。内輪テーパ面17の軸方向長さは、保持器テーパ面16の軸方向長さよりも長い。内輪テーパ面17の軸方向中央よりも軸方向外側に保持器14の背面14aが位置している。この内輪テーパ面17の軸方向に対するテーパ角はβである。この実施形態に係るテーパ角βの大きさは25度であるが、このテーパ角βの大きさは、5度以上45度以下の範囲内、好ましくは20度以上30度以下の範囲内で適宜変更することができる。   An inner ring tapered surface 17 whose diameter decreases as the outer diameter of the inner ring 11 moves outward in the axial direction (side away from the ball 13) is formed at the inlet side end of the inner ring 11 when the retainer 14 is incorporated. Has been. The axial length of the inner ring tapered surface 17 is longer than the axial length of the cage tapered surface 16. The back surface 14 a of the retainer 14 is located on the axially outer side from the axial center of the inner ring tapered surface 17. The taper angle of the inner ring tapered surface 17 with respect to the axial direction is β. The taper angle β according to this embodiment is 25 degrees, but the taper angle β is appropriately within a range of 5 degrees to 45 degrees, preferably within a range of 20 degrees to 30 degrees. Can be changed.

保持器テーパ面16のテーパ角αと、内輪テーパ面17のテーパ角βは、略同一とするのが好ましい。このようにすると、内輪テーパ面17に対する保持器テーパ面16のスライドがスムーズになり、内輪11と保持器14の芯ずれの修正を一層速やかに行うことができる。ここでいう「同一」とは、両テーパ角α、βが全く同一の場合だけでなく、両テーパ角α、βの差(α―β)が、例えば、±1度の範囲内、好ましくは±3度の範囲内、さらに好ましくは±5度の範囲内の場合も含む。   The taper angle α of the cage taper surface 16 and the taper angle β of the inner ring taper surface 17 are preferably substantially the same. In this way, the cage taper surface 16 slides smoothly with respect to the inner ring taper surface 17, and the misalignment between the inner ring 11 and the cage 14 can be corrected more quickly. Here, “same” means not only the case where both taper angles α and β are exactly the same, but also the difference (α−β) between both taper angles α and β is, for example, within a range of ± 1 degree, preferably Including the case of within the range of ± 3 degrees, more preferably within the range of ± 5 degrees.

この発明に係る深溝玉軸受10は、例えば、図3に示す遊星歯車機構1に適用することができる。この遊星歯車機構1は、回転軸心に配置されるサンギア2、最外周に配置されるリングギア3、及び、サンギア2とリングギア3の間に介在するプラネタリギア4とを有している。リングギア3が、大径の深溝玉軸受10によってギアボックス等のハウジング5で保持される。   The deep groove ball bearing 10 according to the present invention can be applied to, for example, the planetary gear mechanism 1 shown in FIG. The planetary gear mechanism 1 includes a sun gear 2 disposed on the rotational axis, a ring gear 3 disposed on the outermost periphery, and a planetary gear 4 interposed between the sun gear 2 and the ring gear 3. The ring gear 3 is held in a housing 5 such as a gear box by a large diameter deep groove ball bearing 10.

リングギア3を保持する深溝玉軸受10は、大径化に伴って高速回転する。このように、高速使用環境下での使用に際しても、上記のように深溝玉軸受10を構成したことにより、軸受の高速回転時における遠心力に起因する爪部15の変形を抑制して、その変形に伴う保持器14の損傷を防止することができる。   The deep groove ball bearing 10 that holds the ring gear 3 rotates at a high speed as the diameter increases. In this way, even when used in a high-speed environment, by configuring the deep groove ball bearing 10 as described above, the deformation of the claw portion 15 due to the centrifugal force at the time of high-speed rotation of the bearing is suppressed. Damage to the cage 14 due to deformation can be prevented.

この実施形態に係る保持器14は、その内径を縮径しており、保持器14の内周面と内輪11の外周面との間の径方向隙間が小さいため、内輪11と外輪12の間に軸方向から保持器14を組み込む際には、図4に示すように、本来は内輪11と保持器14の軸芯を高い精度で一致させる必要がある。   The cage 14 according to this embodiment has a reduced inner diameter, and since the radial gap between the inner circumferential surface of the cage 14 and the outer circumferential surface of the inner ring 11 is small, it is between the inner ring 11 and the outer ring 12. When the cage 14 is assembled in the axial direction, as shown in FIG. 4, it is originally necessary to align the axial centers of the inner ring 11 and the cage 14 with high accuracy.

この実施形態に係る深溝玉軸受10においては、保持器14に保持器テーパ面16を、内輪11に内輪テーパ面17をそれぞれ形成したので、図5に示すように、内輪11と外輪12との間に軸方向から保持器14を組み込む際に、両者の間に芯ずれがあったとしても、保持器テーパ面16と内輪テーパ面17が互いに当接しつつスライドすることによって、その芯ずれが修正される。これにより、初期の芯ずれ量に対する許容量が大きくなり、内外輪11、12間に保持器14をスムーズに組み込むことができる。   In the deep groove ball bearing 10 according to this embodiment, the cage taper surface 16 is formed on the cage 14 and the inner ring taper surface 17 is formed on the inner ring 11, so that as shown in FIG. When the cage 14 is assembled from the axial direction between the two, even if there is a misalignment between the two, the misalignment is corrected by sliding the retainer tapered surface 16 and the inner ring tapered surface 17 in contact with each other. Is done. Thereby, the tolerance | permissible_quantity with respect to the initial amount of misalignment becomes large, and the holder | retainer 14 can be smoothly integrated between the inner and outer rings 11 and 12.

上記の実施形態に示す深溝玉軸受10はあくまでも例示に過ぎず、高速使用環境下における保持器14の爪部15の拡がりを防止しつつ、内外輪11、12間への保持器14の組み込み性を向上する、というこの発明の課題を解決し得る限りにおいて、各部材の形状、数、配置、素材等を適宜変更することが許容される。   The deep groove ball bearing 10 shown in the above embodiment is merely an example, and it is possible to incorporate the cage 14 between the inner and outer rings 11 and 12 while preventing the claw portion 15 of the cage 14 from expanding in a high-speed use environment. As long as the problem of the present invention of improving can be solved, it is allowed to appropriately change the shape, number, arrangement, material, etc. of each member.

例えば、上記の実施形態においては、保持器14の素材としてポリアミド樹脂を採用したが、その素材として、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンスルフィド(PPS)樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ナイロン66樹脂、ナイロン46樹脂などのポリアミド樹脂等の樹脂も採用することができる。   For example, in the above embodiment, a polyamide resin is used as the material of the cage 14, but as the material, polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin, thermoplastic polyimide resin, polyamideimide resin A resin such as a polyamide resin such as nylon 66 resin or nylon 46 resin can also be used.

また、上記の構成に加え、保持器14の軸方向寸法は、玉13の直径の1.2〜2.0倍であることによって、保持器14の背面14aを軸方向外側に延長することによって、保持器14の剛性がさらに向上する。これにより、高速回転時における保持器14の変形をさらに抑制することができる。   Further, in addition to the above configuration, the axial dimension of the cage 14 is 1.2 to 2.0 times the diameter of the ball 13, so that the back surface 14a of the cage 14 is extended outward in the axial direction. The rigidity of the cage 14 is further improved. Thereby, the deformation | transformation of the holder | retainer 14 at the time of high speed rotation can further be suppressed.

10 深溝玉軸受
11 内輪
12 外輪
13 玉
14 保持器
15 爪部
16 保持器テーパ面
17 内輪テーパ面
α (保持器テーパ面の)テーパ角
β (内輪テーパ面の)テーパ角
DESCRIPTION OF SYMBOLS 10 Deep groove ball bearing 11 Inner ring 12 Outer ring 13 Ball 14 Cage 15 Claw part 16 Cage taper surface 17 Inner ring taper surface α Tapered angle β (of the taper surface of the cage) Taper angle (of the inner ring taper surface)

Claims (6)

内輪と、前記内輪の径方向外側に設けられた外輪と、前記内輪と前記外輪との間に介在して設けられた複数の玉と、前記内輪と前記外輪との間に組み込まれていて前記複数の玉を保持する保持器と、を備え、ピッチ円径dm(mm)と回転速度n(min−1)との積であるdmn値が70万以上の使用環境下で使用される深溝玉軸受において、
前記保持器の外径は、前記玉のピッチ円直径よりも大きく、
前記保持器の内周面と前記内輪の外周面との間の径方向隙間の大きさが、前記保持器の外周面と前記外輪の内周面との間の径方向隙間の大きさよりも小さく、
前記内輪の外周面のうち前記保持器が組み込まれる際の入口側端部には、前記内輪の外径が軸方向外側に向かうにつれて縮径する内輪テーパ面が形成されていて、
前記保持器の内周面のうち先端側端部には、前記保持器の内径が保持器先端側に向かうにつれて前記外輪側に拡径する保持器テーパ面が形成されていることを特徴とする深溝玉軸受。
An inner ring, an outer ring provided on the radially outer side of the inner ring, a plurality of balls provided between the inner ring and the outer ring, and the inner ring and the outer ring, A deep groove ball that is used in a usage environment having a dmn value that is a product of a pitch circle diameter dm (mm) and a rotation speed n (min −1 ) of 700,000 or more. In bearings,
The outer diameter of the cage is larger than the pitch circle diameter of the balls,
The size of the radial gap between the inner circumferential surface of the cage and the outer circumferential surface of the inner ring is smaller than the size of the radial gap between the outer circumferential surface of the cage and the inner circumferential surface of the outer ring. ,
An inner ring taper surface that is reduced in diameter as the outer diameter of the inner ring moves outward in the axial direction is formed at the inlet side end portion when the retainer is incorporated in the outer peripheral surface of the inner ring,
Of the inner peripheral surface of the retainer, a distal end side end portion is formed with a retainer taper surface that increases in diameter toward the outer ring as the inner diameter of the retainer moves toward the retainer distal end side. Deep groove ball bearing.
軸方向に対する前記保持器テーパ面のテーパ角が5度以上45度以下である請求項1に記載の深溝玉軸受。   The deep groove ball bearing according to claim 1, wherein a taper angle of the cage taper surface with respect to an axial direction is not less than 5 degrees and not more than 45 degrees. 軸方向に対する前記内輪テーパ面のテーパ角が5度以上45度以下である請求項2に記載の深溝玉軸受。   The deep groove ball bearing according to claim 2, wherein a taper angle of the inner ring taper surface with respect to the axial direction is not less than 5 degrees and not more than 45 degrees. 軸方向に対する前記保持器テーパ面のテーパ角と、軸方向に対する前記内輪テーパ面のテーパ角を同一とした請求項3に記載の深溝玉軸受。   The deep groove ball bearing according to claim 3, wherein a taper angle of the cage tapered surface with respect to the axial direction is the same as a taper angle of the inner ring tapered surface with respect to the axial direction. 軸方向に対する前記保持器テーパ面のテーパ角と、軸方向に対する前記内輪テーパ面のテーパ角との差が3度以下である請求項3に記載の深溝玉軸受。   The deep groove ball bearing according to claim 3, wherein a difference between a taper angle of the cage taper surface with respect to the axial direction and a taper angle of the inner ring taper surface with respect to the axial direction is 3 degrees or less. 前記保持器の軸方向寸法が、前記玉の直径の1.2〜2.0倍である請求項1乃至5のいずれか1項に記載の深溝玉軸受。   The deep groove ball bearing according to any one of claims 1 to 5, wherein an axial dimension of the cage is 1.2 to 2.0 times a diameter of the ball.
JP2018059948A 2018-03-27 2018-03-27 Deep groove ball bearing Pending JP2019173790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018059948A JP2019173790A (en) 2018-03-27 2018-03-27 Deep groove ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059948A JP2019173790A (en) 2018-03-27 2018-03-27 Deep groove ball bearing

Publications (1)

Publication Number Publication Date
JP2019173790A true JP2019173790A (en) 2019-10-10

Family

ID=68170103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059948A Pending JP2019173790A (en) 2018-03-27 2018-03-27 Deep groove ball bearing

Country Status (1)

Country Link
JP (1) JP2019173790A (en)

Similar Documents

Publication Publication Date Title
US20190368540A1 (en) Rolling bearing cage and rolling bearing
EP2787231A2 (en) Prong type cage for double row roller bearing and double row roller bearing
JP6565366B2 (en) Angular contact ball bearings
JP4326159B2 (en) Ball bearing
JP2017194141A (en) Ball bearing
US20180320593A1 (en) Bearing assembly for a turbocharger, comprising an anti-rotation element
US11248656B2 (en) Cage and roller assembly
JP6529209B2 (en) Angular contact ball bearings
US10634191B2 (en) Cage and roller assembly
US20180135693A1 (en) Tapered roller bearing
JP6556454B2 (en) Ball bearing cage
JP2015124796A (en) Tapered roller bearing
JP2019173790A (en) Deep groove ball bearing
JP7069577B2 (en) Crown type resin cage for deep groove ball bearings
JP5272737B2 (en) Crown type cage and ball bearing
US10655678B2 (en) Cage and roller assembly
JP4387162B2 (en) Cylindrical roller bearing
JP5764959B2 (en) Ball bearing
JP2008169936A (en) Deep-groove ball bearing
JP2009257593A (en) Cylindrical roller bearing
JP2006017180A (en) Crown retainer made of synthetic resin
JP2019132330A (en) Ball bearing
WO2018225720A1 (en) Holder for rolling bearing, and rolling bearing
JP4424092B2 (en) Synthetic resin crown cage
JP2006009816A (en) Synthetic resin retainer