JP2019173338A - Control device and system for water flow management - Google Patents

Control device and system for water flow management Download PDF

Info

Publication number
JP2019173338A
JP2019173338A JP2018061318A JP2018061318A JP2019173338A JP 2019173338 A JP2019173338 A JP 2019173338A JP 2018061318 A JP2018061318 A JP 2018061318A JP 2018061318 A JP2018061318 A JP 2018061318A JP 2019173338 A JP2019173338 A JP 2019173338A
Authority
JP
Japan
Prior art keywords
water level
water
control
intake gate
opening operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018061318A
Other languages
Japanese (ja)
Other versions
JP6586480B1 (en
Inventor
孝和 小泉
Takakazu Koizumi
孝和 小泉
侑治 福田
Yuji Fukuda
侑治 福田
伸二 中川
Shinji Nakagawa
伸二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Generation Co Inc
Original Assignee
Tokyo Electric Generation Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Generation Co Inc filed Critical Tokyo Electric Generation Co Inc
Priority to JP2018061318A priority Critical patent/JP6586480B1/en
Application granted granted Critical
Publication of JP6586480B1 publication Critical patent/JP6586480B1/en
Publication of JP2019173338A publication Critical patent/JP2019173338A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a control device and a system for water flow management which can be easily applied to an existing control device through simple control and allows effective utilization of water as maintaining a quantity of water intake at a level lower or equal to a maximum permitted quantity.SOLUTION: A closing operation part 24 of a water intake gate performs closing operation on a water intake gate to decrease a water level of an intake channel 13 below or equal to a maximum control water level HWL when the water level is above or equal to the maximum control water level HWL. A first opening operation part 25 of the water intake gate performs opening operation on the water intake gate to keep a water level between the maximum control water level HWL and a middle upper control water level HS when the water level of a channel is below or equal to a lowest control water level LWL, a second opening operation part 26 of the water intake gate performs opening operation on the water intake gate to keep the water level between the maximum control water level HWL and the middle upper control water level HS when the water level of the water channel is in a rage between the middle upper control water level HS and a middle lower control water level LS; and a third opening operation part 27 of the water intake gate performs opening operation on the water intake gate to keep the water level between the middle upper control water level HS and the middle lower control water level LS when the water level of the water channel is in a rage between the middle lower control water level LS and the lowest control water level LWL.SELECTED DRAWING: Figure 1

Description

本発明は、水源から取水ゲートの開度を調整して水路を経由して水利用設備への取水量が認可最大値を超えないように管理制御する水量管理制御装置及びシステムに関する。   The present invention relates to a water amount management control apparatus and system for adjusting and controlling the opening of a water intake gate from a water source so that the water intake amount to a water utilization facility via a water channel does not exceed an authorized maximum value.

水利用設備では取水量の管理制御が行われている。例えば、水力発電所で使用する取水量、工場で使用する用水や貯水設備から放水される取水量の管理制御は、認可最大値を超えないように管理制御されている。以下の説明では、取水量の管理制御が行われている水利用設備として水力発電設備の場合について説明する。   In the water utilization facility, management control of the amount of water intake is performed. For example, the management control of the amount of water used at a hydroelectric power plant, the amount of water used at a factory and the amount of water discharged from a water storage facility is managed and controlled so as not to exceed the authorized maximum value. In the following description, the case of a hydroelectric power generation facility will be described as a water utilization facility in which management control of water intake is performed.

水力発電設備では、水源である河川から取水する取水量に最大値が設定されており、その最大値を超過しないように取水を行うことが求められている。従って、水力発電設備での取水量は認可最大値以下で運用しなければならない。   In hydroelectric power generation facilities, a maximum value is set for the amount of water taken from a river, which is a water source, and it is required to take water so that the maximum value is not exceeded. Therefore, the water intake at the hydroelectric power generation facility must be operated below the approved maximum value.

そこで、水力発電設備では、制御水位上限値HWLと制御水位下限値LWLとを設け、水路の水位WLを制御水位上限値HWLと制御水位下限値LWLとの間に維持することで、取水量が認可最大値以下とすること、かつ水資源を最大限有効利用できるよう運用している。   Therefore, in the hydroelectric power generation facility, the control water level upper limit value HWL and the control water level lower limit value LWL are provided, and the water level WL is maintained between the control water level upper limit value HWL and the control water level lower limit value LWL. It is operated so that it is below the authorized maximum value and water resources can be used as effectively as possible.

制御水位上限値HWLは水利用設備での認可最大値の取水量を水位で示したものであり、水路の水位WLを制御水位上限値HWL以下に維持することによって、水利用設備への取水量を認可最大値以下に維持している。つまり、制御水位上限値HWLは取水量を認可最大値以下に維持する放水路の水位である。   The control water level upper limit value HWL indicates the water intake level of the approved maximum value in the water use facility in terms of the water level. By maintaining the water level WL in the water channel below the control water level upper limit value HWL, the water intake amount to the water use facility Is maintained below the authorized maximum. That is, the control water level upper limit value HWL is the water level of the discharge channel that maintains the water intake amount below the authorized maximum value.

一方、制御水位下限値LWLは水の有効利用を図るため河川流量が認可取水量以上ある場合にこれを下回らないようにするための水位であり、水力発電設備が有効利用できる取水量を確保するための水路の水位である。   On the other hand, the control water level lower limit value LWL is a water level for preventing the water flow rate from being below when the river flow rate is greater than or equal to the authorized water intake amount in order to make effective use of water, and ensures the water intake amount that can be effectively used by the hydroelectric power generation facility. It is the water level of the canal.

図6は水力発電設備の一例を示す構成図であり、図6(a)は水源から水路に取水している状態が通常時である場合を示す概略縦断面図、図6(b)は増水時である場合を示す概略縦断面図である。   FIG. 6 is a block diagram showing an example of a hydroelectric power generation facility, FIG. 6 (a) is a schematic longitudinal sectional view showing a case where water is taken from a water source into a water channel, and FIG. It is a schematic longitudinal cross-sectional view which shows the case where it is time.

図6(a)に示すように、水源である河川には堰11が設けられ、通常時には河川の水は堰11を越流することなく、取水ゲート12を介して水路13に取水される。水路13に取水された水は、図示省略の水車に導かれ水車発電機を駆動して発電する。水路13への取水量の調整は、取水ゲート12の開度を水量制御装置14及び巻上機操作盤15で制御することにより行われる。すなわち、水量制御装置14は水位計16で検出された水路13の水位WLを入力し、水路13への取水量が認可最大値を超えないように巻上機17を駆動制御して取水ゲート12の開度を調整する。一方、増水時においても、水量制御装置14は通常時と同様に水路13への取水量が認可最大値を超えないように取水ゲート12の開度を制御する。従って、増水時には、図6(b)に示すように河川の水は堰11を越流することがある。   As shown in FIG. 6A, a river that is a water source is provided with a weir 11, and in normal times the river water is taken into the water channel 13 through the intake gate 12 without flowing over the weir 11. The water taken into the water channel 13 is led to a water wheel (not shown) to drive a water turbine generator to generate power. Adjustment of the water intake amount to the water channel 13 is performed by controlling the opening degree of the water intake gate 12 with the water amount control device 14 and the hoisting machine operation panel 15. That is, the water amount control device 14 inputs the water level WL of the water channel 13 detected by the water level gauge 16, and drives and controls the hoisting machine 17 so that the water intake amount to the water channel 13 does not exceed the authorized maximum value. Adjust the opening. On the other hand, even at the time of water increase, the water amount control device 14 controls the opening of the water intake gate 12 so that the water intake amount to the water channel 13 does not exceed the authorized maximum value, as in the normal time. Therefore, when the water increases, the river water may overflow the weir 11 as shown in FIG.

図7は、従来の水量制御装置14により行われる水路13への取水量調整の制御内容の説明図である。取水路13への取水量調整は取水路13の水位WLを調整することにより行われる。図7に示すように、水路13の水位WLは制御水位上限値HWLと制御水位下限値LWLとの範囲(水位制御幅WLD)に調整される。   FIG. 7 is an explanatory diagram of the control content of the water intake amount adjustment to the water channel 13 performed by the conventional water amount control device 14. The intake amount adjustment to the intake channel 13 is performed by adjusting the water level WL of the intake channel 13. As shown in FIG. 7, the water level WL of the water channel 13 is adjusted to a range (water level control width WLD) between the control water level upper limit value HWL and the control water level lower limit value LWL.

水路13の水位WLが制御水位上限値HWL以上となったときは、水路13の水位WLが制御水位上限値HWLと制御水位下限値LWLとの水位幅(水位制御幅WLD)内に水位WLが下がるように、巻上機17の単位動作量α(m/min)にて水位下げ制御時間Tdだけ取水ゲート12を閉操作する。この場合の取水ゲート閉操作開度Odは、Od=α・Tdである。   When the water level WL of the water channel 13 becomes equal to or higher than the control water level upper limit value HWL, the water level WL is within the water level width (water level control width WLD) between the control water level upper limit value HWL and the control water level lower limit value LWL. The intake gate 12 is closed for the water level lowering control time Td with the unit operation amount α (m / min) of the hoisting machine 17 so as to lower. In this case, the intake gate closing operation opening degree Od is Od = α · Td.

一方、水路13の水位WLが制御水位下限値LWL以下となったときは水路13の水位WLが水位制御幅WLDに復帰するように、巻上機17の単位動作量α(m/min)にて水位上げ制御時間Tuだけ取水ゲート12を開操作する。この場合の取水ゲート開操作開度Ouは、Ou=α・Tuとなる。   On the other hand, when the water level WL of the water channel 13 becomes equal to or lower than the control water level lower limit LWL, the unit operation amount α (m / min) of the hoisting machine 17 is set so that the water level WL of the water channel 13 returns to the water level control width WLD. Then, the intake gate 12 is opened for the water level raising control time Tu. The intake gate opening operation opening degree Ou in this case is Ou = α · Tu.

水位下げ制御時間Tdは水位上げ制御時間Tuより大きくしている。これは、水路13の水位WLが速やかに制御水位上限水位を下回るようにするためであり,上げ方向に対しては緩慢に作用するようにし、制御水位上限値HWLを超えないように調整制御するためである。   The water level lowering control time Td is longer than the water level raising control time Tu. This is to make the water level WL of the water channel 13 quickly fall below the control water level upper limit water level, to act slowly in the raising direction, and to perform adjustment control so as not to exceed the control water level upper limit value HWL. Because.

図8は従来の水量制御装置で調整された水路水位及び堰水位のグラフであり、図8(a)は水路水位のグラフ、図8(b)は堰水位のグラフである。図8(a)は水量制御装置が水路13の水位WLを所定の制御周期(例えば7分間隔)で制御している場合を示している。   FIG. 8 is a graph of a water channel level and a weir water level adjusted by a conventional water amount control device, FIG. 8 (a) is a graph of a water channel level, and FIG. 8 (b) is a graph of a weir water level. FIG. 8A shows a case where the water amount control device controls the water level WL of the water channel 13 at a predetermined control cycle (for example, every 7 minutes).

図8(a)において、折線C1は水路13の水位WL、折線C2は取水ゲート12の開度を示している。図8(b)において、折線C2は取水ゲート12の開度、曲線C3は堰水位を示している。堰水位の0.00が堰11の天端であり、0.00を越えた状態では水が堰11を越流している状態である。図8(b)では0.00を越えた部分の堰水位を示しているが、この部分の堰水位は堰11の越流量を示している。   8A, the broken line C1 indicates the water level WL of the water channel 13, and the broken line C2 indicates the opening degree of the intake gate 12. In FIG. 8B, the broken line C2 indicates the opening of the intake gate 12, and the curve C3 indicates the weir water level. The weir water level of 0.00 is the top of the weir 11, and when it exceeds 0.00, the water overflows the weir 11. In FIG. 8B, the dam water level in a portion exceeding 0.00 is shown, but the dam water level in this portion shows the overflow rate of the weir 11.

図8(a)、図8(b)において、時点t1以前においては、水路13の水位WLは制御水位下限値LWL以下であるので、折線C2に示すように取水ゲート12の開度は大きく開いている。従って、水源である河川から取水ゲート12を通って水路13に水が流れ込み水路13の水位WLは上昇している。   8A and 8B, before the time point t1, the water level WL of the water channel 13 is equal to or lower than the control water level lower limit LWL, so that the opening of the intake gate 12 is greatly opened as indicated by the broken line C2. ing. Accordingly, water flows from the river that is the water source through the intake gate 12 to the water channel 13 and the water level WL of the water channel 13 is rising.

そして、時点t2で水路13の水位WLが制御水位上限値HWL以上となると、曲線C3に示すように、河川自流(水源)が豊富にあり水が堰11を越流していても、制御水位上限値HWLを超過しないよう取水ゲート12は閉操作される。従って、折線C2に示すように取水ゲート12の開度は所定時間間隔で閉じていき小さくなる。時点t3で水路13の水位WLが制御水位上限値HWL以下となると、取水ゲート12の閉操作は停止するので、取水ゲート12の開度は時点t3での小さい開度で保持される。時点t3以降の取水ゲート12の開度は小さい開度であるので、曲線C3に示すように、河川自流(水源)が豊富にあり水が堰越流していても、水路13に流れ込む水は少なくなり、折線C1に示すように水路13の水位WLは下降していく。   Then, when the water level WL of the water channel 13 becomes equal to or higher than the control water level upper limit value HWL at the time point t2, the control water level upper limit is exceeded even if there is abundant river flow (water source) and water overflows the weir 11 as shown by the curve C3. The intake gate 12 is closed so as not to exceed the value HWL. Therefore, as shown by the broken line C2, the opening of the water intake gate 12 is closed at a predetermined time interval and becomes smaller. When the water level WL of the water channel 13 becomes equal to or lower than the control water level upper limit value HWL at time t3, the closing operation of the water intake gate 12 is stopped, so that the opening of the water intake gate 12 is held at a small opening at time t3. Since the opening of the intake gate 12 after time t3 is a small opening, as shown by the curve C3, even if there is abundant river self-current (water source) and water is overflowing the weir, less water flows into the water channel 13 Thus, the water level WL of the water channel 13 is lowered as indicated by the broken line C1.

時点t4で水路13の水位WLが制御水位下限値LWL以下となったときは、取水ゲート12は開操作されるので、折線C2に示すように取水ゲート12の開度は所定の制御周期で開いていき徐々に大きくなるが、制御水位上限値HWLと制御水位下限値LWLとの間は制御不感帯であることから、曲線C3つまり堰越流水位の減少と同じ傾向で水路13の水位WLも低下し、かつ制御水位下限値LWL以上あれば、その付近で水路13の水位は、推移してしまい、水資源の有効利用ができていない状態となる。   When the water level WL of the water channel 13 becomes equal to or lower than the control water level lower limit LWL at the time t4, the intake gate 12 is opened, so that the opening of the intake gate 12 is opened at a predetermined control cycle as indicated by the broken line C2. The water level WL of the water channel 13 also decreases with the same tendency as the decrease of the curve C3, that is, the weir overflow water level, since the control water level upper limit value HWL and the control water level lower limit value LWL are between the control dead zone. And if it is more than control water level lower limit LWL, the water level of waterway 13 will change in the neighborhood, and it will be in the state where effective use of water resources cannot be performed.

そこで、取水量は認可最大値以下に維持しつつ水資源の有効利用を図るべく、さらに取水ゲート12の開度を調整することにより、取水路を通して取水を行う水利用設備の取水量を調整し、所定時間範囲における取水路の平均水位を理想水位に一致させる制御を行うようにしたものがある(例えば、特許文献1参照)。   Therefore, in order to make effective use of water resources while maintaining the intake amount below the approved maximum value, the intake amount of the water utilization facility for taking water through the intake channel is adjusted by further adjusting the opening of the intake gate 12. In some cases, control is performed so that the average water level of the intake channel in a predetermined time range matches the ideal water level (see, for example, Patent Document 1).

これは、所定時間範囲を所定の分割割合で分割された前時間帯と後時間帯とに分割し、前時間帯では、連続的に取水路の水位を記憶しながら取水路の実際の水位を理想水位に一致させるように、取水ゲートの開度の調整制御を実行し、後時間帯では、前時間帯における実際の取水路の平均水位に基づいて、所定時間範囲の全体における平均水位を理想水位に一致させるために後時間帯における平均水位として与えられるべき平均水位を導出して目標平均水位として設定し、取水路の実際の水位を目標平均水位に一致させるように、取水ゲートの開度の調整制御を実行するものである。   This divides a predetermined time range into a previous time zone and a later time zone divided by a predetermined division ratio, and in the previous time zone, the water level of the intake channel is continuously stored and the actual water level of the intake channel is determined. In order to match the ideal water level, adjustment control of the opening of the intake gate is executed, and in the later time zone, the average water level in the entire predetermined time range is ideal based on the average water level of the actual intake channel in the previous time zone. In order to match the water level, the average water level that should be given as the average water level in the later time zone is derived and set as the target average water level, and the intake gate opening is set so that the actual water level of the intake channel matches the target average water level The adjustment control is executed.

特許第5976507号公報Japanese Patent No. 5976507

しかし、特許文献1のものは、取水ゲートの開度を調整するにあたり、既存の一定動作量を与える方式から最適動作量を与える方式へ改良したものであり、理論と実測の関係式より必要な取水ゲート動作量を求め、ダム水位の変化を予測しその変化に対応する動作量を求め、さらに、取水路の1時間平均水位が目標水位となるように制御するものであるので、1時間平均の取水路の水位は目標水位に対して数mm程度の誤差で制御することが可能となるが、制御が複雑となる。また、これを達成する取水量制御プログラムを制御装置に新たにインストール、あるいは制御装置そのものを更新しなければならないので、既存制御装置に適用することが困難である。   However, the one in Patent Document 1 is an improvement from the existing method of giving a constant operation amount to the method of giving an optimum operation amount in adjusting the opening of the intake gate, which is necessary from the relational expression between theory and measurement. The amount of intake gate operation is obtained, the change in the dam water level is predicted, the amount of operation corresponding to the change is obtained, and further, the hourly average water level of the intake channel is controlled so as to become the target water level. Although the water level of the intake channel can be controlled with an error of several millimeters relative to the target water level, the control becomes complicated. In addition, a water intake amount control program for achieving this must be newly installed in the control device, or the control device itself must be updated, so that it is difficult to apply it to the existing control device.

本発明の目的は、制御がシンプルで既存制御装置に容易に適用でき、しかも取水量は認可最大値以下に維持しつつ水の有効利用を図ることができる水量管理制御装置及びシステムを提供することである。   An object of the present invention is to provide a water volume management control device and system that can be easily applied to an existing control device with simple control, and that can effectively use water while keeping the water intake amount below the authorized maximum value. It is.

本発明は、制御水位上限値HWLと制御水位下限値LWLとに加え、制御水位中間上値HSと制御水位中間下値LSとを予め制御水位設定部に設定しておき、取水ゲート操作部は、水路の水位WLを制御水位上限値HWLと制御水位下限値LWLとの間に維持するとともに、水路の水位が制御水位上限値HWLと制御水位下限値LWLとの範囲内であっても、水路の水位WLが制御水位中間上値HSと制御水位中間下値LSとの範囲内や制御水位中間下値LSと制御水位下限値LWLとの範囲内にあるときは、水路の水位が制御水位上限値HWLと制御水位中間上値HSとの間の水位になるように制御することを特徴とする。   In the present invention, in addition to the control water level upper limit value HWL and the control water level lower limit value LWL, the control water level intermediate upper value HS and the control water level intermediate lower value LS are set in the control water level setting unit in advance, The water level WL is maintained between the control water level upper limit value HWL and the control water level lower limit value LWL, and even if the water level in the water channel is within the range between the control water level upper limit value HWL and the control water level lower limit value LWL, When WL is in the range of the control water level intermediate high value HS and the control water level intermediate low value LS or in the range of the control water level intermediate low value LS and the control water level lower limit value LWL, the water level of the water channel is the control water level upper limit value HWL and the control water level. Control is performed so that the water level is between the upper intermediate value HS.

本発明によれば、制御水位中間上値HSと制御水位中間下値LSとを設け、取水ゲート操作部により、取水路13の水位WLが制御水位上限値LWLと制御水位中間上値HSとの範囲内で推移するように制御するだけであるので、制御がシンプルで既存制御装置に容易に適用できるので既存制御装置を有効活用できる。しかも取水量は認可最大値以下に維持しつつ、取水路13の水位WLが制御水位下限値LWL付近で推移してしまい水の有効利用ができていない状態となることを防止できる。   According to the present invention, the control water level intermediate upper value HS and the control water level intermediate lower value LS are provided, and the water level WL of the intake channel 13 is within the range between the control water level upper limit value LWL and the control water level intermediate upper value HS by the intake gate operation unit. Since the control is only performed so as to change, the control is simple and can be easily applied to the existing control device, so that the existing control device can be effectively used. Moreover, it is possible to prevent the water level WL of the intake channel 13 from changing near the control water level lower limit value LWL and preventing the water from being effectively used while maintaining the water intake amount below the authorized maximum value.

本発明の第1実施形態に係る水量管理制御装置の一例を示す構成図。The block diagram which shows an example of the water quantity management control apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る水量管理制御装置により行われる水路への取水量調整の制御内容の説明図。Explanatory drawing of the control content of the water intake amount adjustment to the water channel performed by the water quantity management control apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る水量管理制御装置の他の一例を示す構成図。The block diagram which shows another example of the water quantity management control apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る水量管理制御装置で調整された水路水位及び発電出力を従来の水量管理制御装置で調整したものと比較したグラフ。The graph compared with what adjusted the waterway water level and power generation output adjusted with the water quantity management control apparatus which concerns on 1st Embodiment of this invention with the conventional water quantity management control apparatus. 本発明の第2実施形態に係る水量管理制御システムの構成図。The block diagram of the water quantity management control system which concerns on 2nd Embodiment of this invention. 水力発電設備の取水口の一例を示す構成図。The block diagram which shows an example of the water intake of a hydroelectric power generation facility. 従来の水量制御装置により行われる水路への取水量調整の制御内容の説明図。Explanatory drawing of the control content of the water intake amount adjustment to the water channel performed by the conventional water amount control apparatus. 従来の水量制御装置で調整された水路水位及び堰水位のグラフ。The graph of the waterway level and dam water level adjusted with the conventional water quantity control apparatus.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係る水量管理制御装置の構成図である。図1では図6(a)に示した水力発電設備に水量管理制御装置18を適用した場合を示している。図6(a)と同一要素には同一符号を付し重複する説明は省略する。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a water volume management control device according to the first embodiment of the present invention. FIG. 1 shows a case where the water amount management control device 18 is applied to the hydroelectric power generation facility shown in FIG. The same elements as those in FIG. 6A are denoted by the same reference numerals, and redundant description is omitted.

図1に示すように、水量管理制御装置18は制御水位設定部19を有している。制御水位設定部19は、第1制御水位設定部20及び第2制御水位設定部21を有し、各制御水位の上下限値や設定値が予め設定されている。第1制御水位設定部20には制御水位上限値HWL及び制御水位上限値HWLが設定されている。前述したように、制御水位上限値HWLは水利用設備での認可最大値の取水量を水位に示したものであり、制御水位下限値LWLは、水路13を経由して水利用設備に取水できる取水量を示す水路13の水位WLである。一方、制御水位下限値LWLは水の有効利用を図るため河川流量が認可取水量以上ある場合にこれを下回らないようにするための水位であり、水力発電設備が有効利用できる取水量を確保するための水路の水位である。   As shown in FIG. 1, the water amount management control device 18 has a control water level setting unit 19. The control water level setting unit 19 includes a first control water level setting unit 20 and a second control water level setting unit 21, and upper and lower limit values and set values of the respective control water levels are set in advance. A control water level upper limit value HWL and a control water level upper limit value HWL are set in the first control water level setting unit 20. As described above, the control water level upper limit value HWL indicates the water intake amount of the authorized maximum value in the water use facility, and the control water level lower limit value LWL can be taken into the water use facility via the water channel 13. It is the water level WL of the water channel 13 which shows the amount of water intake. On the other hand, the control water level lower limit value LWL is a water level for preventing the water flow rate from being below when the river flow rate is greater than or equal to the authorized water intake amount in order to make effective use of water, and ensures the water intake amount that can be effectively used by the hydroelectric power generation facility. It is the water level of the canal.

また、制御水位設定部19の第2制御水位設定部21には、制御水位中間上値HS及び制御水位中間下値LSが設定されている。制御水位中間上値HS及び制御水位中間下値LSは、水路13の水位WLが制御水位下限値LWL付近で推移してしまうことを防止するために設けられた設定値である。図2に示すように、制御水位上限値HWLと制御水位下限値LWLとの範囲(水位制御幅WLD)内において、制御水位上限値HWLと制御水位下限値LWLとの中間値から上下に均等幅で設けられ、上方向が制御水位中間上値HS、下方向が制御水位中間下値LSである。制御水位中間上値HS及び制御水位中間下値LSについては後述する。   Further, the control water level intermediate upper value HS and the control water level intermediate lower value LS are set in the second control water level setting unit 21 of the control water level setting unit 19. The control water level intermediate upper value HS and the control water level intermediate lower value LS are set values provided to prevent the water level WL of the water channel 13 from changing near the control water level lower limit LWL. As shown in FIG. 2, within the range (water level control width WLD) between the control water level upper limit value HWL and the control water level lower limit value LWL, the width is evenly spaced vertically from the intermediate value between the control water level upper limit value HWL and the control water level lower limit value LWL. The upper direction is the control water level intermediate upper value HS, and the lower direction is the control water level intermediate lower value LS. The control water level middle upper value HS and the control water level middle lower value LS will be described later.

水力発電設備の取水路13の水位WLは水位計16で検出され、水量管理制御装置18の入力部22に入力される。入力部22に入力された取水路13の水位WLは、取水ゲート操作部23に入力される。取水ゲート操作部23は、取水ゲート閉操作部24、取水ゲート第1開操作部25、取水ゲート第2開操作部26、取水ゲート第3開操作部27を有している。   The water level WL of the intake channel 13 of the hydroelectric power generation facility is detected by the water level gauge 16 and input to the input unit 22 of the water amount management control device 18. The water level WL of the intake channel 13 input to the input unit 22 is input to the intake gate operation unit 23. The intake gate operation unit 23 includes an intake gate closing operation unit 24, an intake gate first opening operation unit 25, an intake gate second opening operation unit 26, and an intake gate third opening operation unit 27.

取水ゲート操作部23の取水ゲート閉操作部24は、水路13の水位WLが制御水位上限値HWL以上となったとき、水路13の水位WLが制御水位上限値HWL以下となるように取水ゲート12を閉操作するものである。これによって水路13の水位WLを下降させる。これについての詳細は後述する。なお、取水ゲート操作部23からの閉操作指令は、出力部28から巻上機操作盤15を介して巻上機17に出力され、巻上機17は取水ゲート12を閉操作する。   The intake gate closing operation unit 24 of the intake gate operation unit 23 is configured such that when the water level WL of the water channel 13 becomes equal to or higher than the control water level upper limit value HWL, the water intake gate 12 is set so that the water level WL of the water channel 13 becomes equal to or lower than the control water level upper limit value HWL. Is closed. As a result, the water level WL of the water channel 13 is lowered. Details of this will be described later. The closing operation command from the intake gate operation unit 23 is output from the output unit 28 to the hoisting machine 17 via the hoisting machine operation panel 15, and the hoisting machine 17 closes the intake gate 12.

次に、取水ゲート操作部23の取水ゲート第1開操作部25は、水路13の水位WLが制御水位下限値LWL以下となったとき、水路13の水位WLが制御水位上限値HWLと制御水位下限値LWLとの範囲になるように取水ゲート12を開操作するものである。これによって水路13の水位WLを上昇させる。これについての詳細は後述する。なお、取水ゲート第1開操作部25からの第1開操作指令は、出力部28から巻上機操作盤15を介して巻上機17に出力され、巻上機17は取水ゲート12を開操作する。   Next, when the water level WL of the water channel 13 becomes equal to or lower than the control water level lower limit value LWL, the water intake gate first opening operation unit 25 of the water intake gate operation unit 23 sets the water level WL of the water channel 13 to the control water level upper limit value HWL and the control water level. The intake gate 12 is opened so as to be in the range with the lower limit LWL. Thereby, the water level WL of the water channel 13 is raised. Details of this will be described later. The first opening operation command from the intake gate first opening operation unit 25 is output from the output unit 28 to the hoisting machine 17 via the hoisting machine operation panel 15, and the hoisting machine 17 opens the intake gate 12. Manipulate.

次に、取水ゲート操作部23の取水ゲート第2開操作部26及び取水ゲート第3開操作部27は、水路13の水位WLが制御水位下限値LWL付近で推移してしまうことを防止するために取水ゲート12を開操作するものである。まず、取水ゲート第2開操作部26は、水路13の水位WLが制御水位中間上値HSと制御水位中間下値LSとの範囲内にあるとき、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの間の水位になるように取水ゲート12を開操作する。これについての詳細は後述する。なお、取水ゲート第2開操作部26からの第2開操作指令は、出力部28から巻上機操作盤15を介して巻上機17に出力され巻上機17は取水ゲート12を開操作する。   Next, the intake gate second opening operation unit 26 and the intake gate third opening operation unit 27 of the intake gate operation unit 23 prevent the water level WL of the water channel 13 from changing near the control water level lower limit LWL. The water intake gate 12 is opened. First, when the water level WL of the water channel 13 is within the range between the control water level middle upper value HS and the control water level middle lower value LS, the intake gate second opening operation unit 26 controls the water level WL of the water channel 13 to be the control water level upper limit value HWL. The intake gate 12 is opened so that the water level is between the water level intermediate high value HS. Details of this will be described later. The second opening operation command from the intake gate second opening operation unit 26 is output from the output unit 28 to the hoisting machine 17 via the hoisting machine operation panel 15, and the hoisting machine 17 opens the intake gate 12. To do.

次に、取水ゲート操作部23の取水ゲート第3開操作部27も、取水ゲート操作部23の取水ゲート第2開操作部26と同様に、水路13の水位WLが制御水位下限値LWL付近で推移してしまうことを防止するために取水ゲート12を開操作するものである。取水ゲート第3開操作部27は、水路13の水位WLが制御水位中間下値LSと制御水位下限値LWLとの範囲内にあるとき、水路13の水位WLが制御水位中間上値HSと制御水位中間下値LSとの間の水位になるように、取水ゲート12を開操作する。これについての詳細は後述する。なお、取水ゲート第3開操作部27からの第3開操作指令は、出力部28から巻上機操作盤15を介して巻上機17に出力され巻上機17は取水ゲート12を開操作する。   Next, similarly to the intake gate second opening operation unit 26 of the intake gate operation unit 23, the intake gate third opening operation unit 27 of the intake gate operation unit 23 also has a water level WL in the vicinity of the control water level lower limit LWL. In order to prevent the transition, the intake gate 12 is opened. When the water level WL of the water channel 13 is in the range between the control water level middle lower value LS and the control water level lower limit value LWL, the water intake gate third opening operation unit 27 sets the water level WL of the water channel 13 to the control water level middle upper value HS and the control water level middle. The water intake gate 12 is opened so that the water level is between the lower price LS. Details of this will be described later. The third opening operation command from the intake gate third opening operation unit 27 is output from the output unit 28 to the hoisting machine 17 via the hoisting machine operation panel 15, and the hoisting machine 17 operates to open the intake gate 12. To do.

取水ゲート第3開操作部27によって、水路13の水位WLが制御水位中間上値HSと制御水位中間下値LSとの間の水位になると、取水ゲート第2開操作部26により、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの間の水位になるように制御されるので、結果的には、水路13の水位WLが制御水位中間下値LSと制御水位下限値LWLとの範囲内にあるときも、取水ゲート第2開操作部26及び取水ゲート第3開操作部27により、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの間の水位になるように制御される。   When the water level WL of the water channel 13 becomes a water level between the control water level intermediate upper value HS and the control water level intermediate lower value LS by the intake gate third opening operation unit 27, the water level WL of the water channel 13 is acquired by the intake gate second opening operation unit 26. Is controlled so that the water level is between the control water level upper limit value HWL and the control water level intermediate upper value HS. As a result, the water level WL of the water channel 13 is between the control water level intermediate lower value LS and the control water level lower limit value LWL. Even within the range, the water level WL in the water channel 13 becomes a water level between the control water level upper limit value HWL and the control water level intermediate upper value HS by the intake gate second opening operation unit 26 and the intake gate third opening operation unit 27. To be controlled.

図2は、本発明の第1実施形態に係る水量管理制御装置18により行われる水路13への取水量調整の制御内容の説明図である。図2に示すように、水路13の水位WLに対し、制御水位上限値HWLと制御水位下限値LWLとに加え、制御水位中間上値HSと制御水位中間下値LSとが追加して設けられている。制御水位中間上値HS及び制御水位中間下値LSは、前述したように、水路13の水位WLが制御水位下限値LWL付近で推移してしまうことを防止するために設けられた設定値であり、制御水位上限値HWLと制御水位下限値LWLとの範囲(水位制御幅WLD)内において、制御水位上限値HWLと制御水位下限値LWLとの中間値から上下に均等幅で設けられ、上方向が制御水位中間上値HSであり、下方向が制御水位中間下値LSである。   FIG. 2 is an explanatory diagram of the control content of the water intake amount adjustment to the water channel 13 performed by the water amount management control device 18 according to the first embodiment of the present invention. As shown in FIG. 2, in addition to the control water level upper limit value HWL and the control water level lower limit value LWL, a control water level intermediate upper value HS and a control water level intermediate lower value LS are additionally provided for the water level WL of the water channel 13. . The control water level intermediate upper value HS and the control water level intermediate lower value LS are set values provided to prevent the water level WL of the water channel 13 from changing near the control water level lower limit LWL, as described above. Within the range (water level control width WLD) between the water level upper limit value HWL and the control water level lower limit value LWL, the upper level is controlled with an equal width from the intermediate value between the control water level upper limit value HWL and the control water level lower limit value LWL. The water level intermediate upper value HS is indicated, and the downward direction is the control water level intermediate lower value LS.

いま、制御水位上限値HWLと制御水位下限値LWLとの幅を水位制御幅WLD、制御水位上限値HWLと制御水位中間上値HSとの幅を上方水位幅WLDu、制御水位中間上値HSと制御水位中間下値LSとの幅を中間水位幅WLDm、制御水位中間下値LSと制御水位下限値LWLとの幅を下方水位幅WLDdとする。以下、例えば、水位制御幅WLDは5cm、上方水位幅WLDuは2cm、中間水位幅WLDmは1cm、下方水位幅WLDdは2cmである場合について説明する。   Now, the width between the control water level upper limit value HWL and the control water level lower limit value LWL is the water level control width WLD, the width between the control water level upper limit value HWL and the control water level intermediate upper value HS is the upper water level width WLDu, the control water level intermediate upper value HS and the control water level. The width between the intermediate lower value LS and the control water level intermediate lower value LS and the control water level lower limit LWL is defined as the lower water level width WLDd. Hereinafter, for example, a case where the water level control width WLD is 5 cm, the upper water level width WLDu is 2 cm, the intermediate water level width WLDm is 1 cm, and the lower water level width WLDd is 2 cm will be described.

水路13の水位WLが制御水位上限値HWL以上となったときは、取水ゲート操作部23の取水ゲート閉操作部24により、水路13の水位WLが制御水位上限値HWLと制御水位下限値LWLとの水位幅(水位制御幅WLD)内に下がるように、巻上機17の単位動作量α(m/min)にて水位下げ制御時間Tdだけ取水ゲート12を閉操作する。この動作は従来の水量制御装置14と同様な動作であり、取水ゲート閉操作開度Odは(1)式で示される。   When the water level WL of the water channel 13 becomes equal to or higher than the control water level upper limit value HWL, the water level WL of the water channel 13 is set to the control water level upper limit value HWL and the control water level lower limit value LWL by the intake gate closing operation unit 24 of the intake gate operation unit 23. The intake gate 12 is closed for the water level lowering control time Td with the unit operation amount α (m / min) of the hoisting machine 17 so as to fall within the water level width (water level control width WLD). This operation is the same as that of the conventional water amount control device 14, and the intake gate closing operation opening degree Od is expressed by the equation (1).

Od=α・Td …(1)
いま、巻上機17の単位動作量αは、標準仕様で0.3m/min(=0.5cm/s)、水位下げ制御時間Tdは10sであるとすると、水路13の水位WLが制御水位上限値HWL以上となったときの取水ゲート閉操作開度Odは、5cm/sだけ取水ゲート12を閉操作することとなる。
Od = α · Td (1)
Now, assuming that the unit operation amount α of the hoisting machine 17 is 0.3 m / min (= 0.5 cm / s) in the standard specification and the water level lowering control time Td is 10 s, the water level WL of the water channel 13 is the control water level. When the intake gate closing operation opening degree Od becomes equal to or higher than the upper limit value HWL, the intake gate 12 is closed by 5 cm / s.

一方、水路13の水位WLが制御水位下限値LWL以下となったときは、取水ゲート操作部23の取水ゲート第1開操作部25により、水路13の水位が制御水位上限値HWLと制御水位下限値LWLとの水位幅(水位制御幅WLD)内に上がるように、巻上機17の単位動作量α(m/min)にて水位上げ制御時間Tuだけ取水ゲート12を開操作する。この動作は従来の水量制御装置14と同様な動作であり、取水ゲート開操作開度Ouは(2)式で示される。   On the other hand, when the water level WL in the water channel 13 becomes equal to or lower than the control water level lower limit value LWL, the water level in the water channel 13 is set to the control water level upper limit value HWL and the control water level lower limit value by the intake gate first opening operation unit 25 of the intake gate operation unit 23. The intake gate 12 is opened for the water level raising control time Tu by the unit operation amount α (m / min) of the hoisting machine 17 so as to rise within the water level width (water level control width WLD) with the value LWL. This operation is the same operation as that of the conventional water amount control device 14, and the intake gate opening operation opening degree Ou is expressed by equation (2).

Ou=α・Tu …(2)
いま、巻上機17の単位動作量αは、標準仕様で0.3m/min(=0.5cm/s)、水位上げ制御時間Tuは7sであるとすると、取水ゲート開操作開度Ouは、(2)式のαに0.5cm/s、Tuに7sを代入すると、3.5cmとなる。つまり、変化率α(0.5cm/s)で水位上げ制御時間Tu(7s)だけ取水ゲート12を開操作すると、取水ゲート開操作開度Ouは3.5cmとなる。
Ou = α · Tu (2)
Now, if the unit operation amount α of the hoisting machine 17 is 0.3 m / min (= 0.5 cm / s) in the standard specification and the water level raising control time Tu is 7 s, the intake gate opening operation opening degree Ou is Substituting 0.5 cm / s for α in equation (2) and 7 s for Tu yields 3.5 cm. That is, when the intake gate 12 is opened for the water level raising control time Tu (7 s) at the rate of change α (0.5 cm / s), the intake gate opening operation opening degree Ou becomes 3.5 cm.

次に、水路13の水位WLが制御水位中間上値HSと制御水位中間下値LSとの範囲(中間水位幅WLDm)内となったときは、取水ゲート操作部23の取水ゲート第2開操作部26により、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの間の水位になるように、巻上機17の単位動作量α(m/min)にて中間水位上げ時間Tumだけ取水ゲート12を開操作する。この場合の取水ゲート12の中間開操作開度Oumは(3)式で示される。   Next, when the water level WL in the water channel 13 falls within the range (intermediate water level width WLDm) between the control water level intermediate high value HS and the control water level intermediate low value LS, the intake gate second opening operation unit 26 of the intake gate operation unit 23 is provided. Accordingly, the intermediate water level raising time Tum at the unit operation amount α (m / min) of the hoisting machine 17 so that the water level WL of the water channel 13 becomes a water level between the control water level upper limit value HWL and the control water level intermediate upper value HS. Only the intake gate 12 is opened. In this case, the intermediate opening operation amount Oum of the water intake gate 12 is expressed by equation (3).

Oum=α・Tum …(3)
いま、巻上機17の単位動作量αは、標準仕様で0.3m/min(=0.5cm/s)、中間水位上げ時間Tumは3sであるとすると、取水ゲート12の中間開操作開度Oumは、(3)式のαに0.5cm/s、Tumに3sを代入すると、1.5cmとなる。つまり、変化率α(0.5cm/s)で中間水位上げ時間Tum(3s)だけ取水ゲート12を開操作すると、取水ゲート12の中間開操作開度Oumは1.5cmとなる。
Oum = α · Tum (3)
Now, assuming that the unit operation amount α of the hoisting machine 17 is 0.3 m / min (= 0.5 cm / s) in the standard specification and the intermediate water level raising time Tum is 3 s, the intermediate opening operation of the intake gate 12 is opened. The degree Oum is 1.5 cm when 0.5 cm / s is substituted for α in Equation (3) and 3 s is substituted for Tum. That is, when the intake gate 12 is opened for the intermediate water level raising time Tum (3 s) at the change rate α (0.5 cm / s), the intermediate opening operation opening degree Oum of the intake gate 12 becomes 1.5 cm.

また、水路13の水位WLが制御水位中間下値LSと制御水位下限値LWLとの範囲(下方水位幅WLDd)内となったときは、取水ゲート操作部23の取水ゲート第3開操作部27により、水路13の水位WLが制御水位中間上値HSと制御水位中間下値LSとの間の水位になるように、巻上機17の単位動作量α(m/min)にて中間水位上げ時間Tuaだけ取水ゲート12を開操作する。この場合の取水ゲート12の中間開操作開度Ouaは(4)式で示される。   When the water level WL of the water channel 13 falls within the range (lower water level width WLDd) between the control water level intermediate lower value LS and the control water level lower limit value LWL, the intake gate third opening operation unit 27 of the intake gate operation unit 23 , Only the intermediate water level raising time Tua at the unit operation amount α (m / min) of the hoisting machine 17 so that the water level WL of the water channel 13 becomes a water level between the control water level intermediate high value HS and the control water level intermediate low value LS. The intake gate 12 is opened. In this case, the intermediate opening operation opening degree Oua of the intake gate 12 is expressed by the equation (4).

Oua=α・Tua …(4)
いま、巻上機17の単位動作量αは、標準仕様で0.3m/min(=0.5cm/s)、中間水位上げ時間Tuaは5sであるとすると、取水ゲート12の中間開操作開度Ouaは、(4)式のαに0.5cm/s、Tuaに5sを代入すると、2.5cmとなる。つまり、変化率α(0.5cm/s)で中間水位上げ時間Tud(5s)だけ取水ゲート12を開操作すると、取水ゲート12の下方開操作開度Oudは2.5cmとなる。
Oua = α · Tua (4)
Now, assuming that the unit operation amount α of the hoisting machine 17 is 0.3 m / min (= 0.5 cm / s) in the standard specification and the intermediate water level raising time Tua is 5 s, the intermediate opening operation of the intake gate 12 is opened. The degree Oua becomes 2.5 cm when 0.5 cm / s is substituted for α in Equation (4) and 5 s is substituted for Tua. That is, when the intake gate 12 is opened at the rate of change α (0.5 cm / s) for the intermediate water level raising time Tud (5 s), the downward opening operation opening degree Oud of the intake gate 12 becomes 2.5 cm.

また、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの範囲(上方水位幅WLDu)内となったときは、取水ゲート操作部23の取水ゲート第1開操作部25、取水ゲート第2開操作部26、取水ゲート第3開操作部27はいずれも動作しない。
つまり、制御の不感帯領域である。水路13の水位WLが上方水位幅WLDuにあるときは、水路13の水位WLは制御水位上限値HWL付近で推移している状態であり、水路13の取水量を有効活用できている状態であるからである。
Further, when the water level WL of the water channel 13 falls within the range (upper water level width WLDu) between the control water level upper limit value HWL and the control water level intermediate upper value HS, the intake gate first opening operation unit 25 of the intake gate operation unit 23, Neither the intake gate second opening operation portion 26 nor the intake gate third opening operation portion 27 operates.
That is, it is a control dead zone region. When the water level WL of the water channel 13 is in the upper water level width WLDu, the water level WL of the water channel 13 is in a state of changing near the control water level upper limit value HWL, and the water intake amount of the water channel 13 can be effectively utilized. Because.

ここで、取水ゲート操作部23の取水ゲート閉操作部24及び取水ゲート第1開操作部25は、所定の制御周期で水路13の水位WLを入力し、水路13の水位WLを制御する。所定の制御周期は、水路13の水位WLの制御に支障を来さない周期とする。本発明の第1実施形態では、所定の制御周期として第1時間間隔(例えば7分間隔)で水路13の水位WLを入力し制御する。   Here, the intake gate closing operation unit 24 and the intake gate first opening operation unit 25 of the intake gate operation unit 23 input the water level WL of the water channel 13 at a predetermined control cycle, and control the water level WL of the water channel 13. The predetermined control cycle is a cycle that does not hinder the control of the water level WL of the water channel 13. In the first embodiment of the present invention, the water level WL of the water channel 13 is input and controlled at a first time interval (for example, every 7 minutes) as a predetermined control cycle.

また、取水ゲート操作部23の取水ゲート第2開操作部26及び取水ゲート第3開操作部27も、同様に、所定の制御周期で水路13の水位WLを入力し、水路13の水位WLを制御する。所定の制御周期は、水路13の水位WLが制御水位下限値LWL付近で推移してしまうことを防止する制御に支障を来さない周期とする。本発明の第1実施形態では、所定の制御周期として第2時間間隔(例えば3分間隔)で水路13の水位WLを入力し制御する。第2時間間隔を第1時間間隔より短くしているのは、取水ゲート操作部23の取水ゲート第2開操作部26及び取水ゲート第3開操作部27による制御は、制御水位上限値HWLと制御水位下限値LWLとの範囲内での水路13の水位WLでありきめ細かく制御するためである。このように、本発明の第1実施形態では、所定の制御周期は時間単位での設定であるので、取水ゲート操作部23の演算処理の軽減が図れる。   Similarly, the intake gate second opening operation unit 26 and the intake gate third opening operation unit 27 of the intake gate operation unit 23 also input the water level WL of the water channel 13 at a predetermined control cycle, and the water level WL of the water channel 13 is changed. Control. The predetermined control cycle is a cycle that does not hinder the control for preventing the water level WL of the water channel 13 from changing near the control water level lower limit LWL. In the first embodiment of the present invention, the water level WL of the water channel 13 is input and controlled at a second time interval (for example, every 3 minutes) as a predetermined control cycle. The reason why the second time interval is shorter than the first time interval is that the control by the intake gate second opening operation portion 26 and the intake gate third opening operation portion 27 of the intake gate operation portion 23 is the control water level upper limit value HWL. This is because the water level WL of the water channel 13 within the range of the control water level lower limit value LWL is finely controlled. As described above, in the first embodiment of the present invention, since the predetermined control cycle is set in units of time, the calculation processing of the intake gate operation unit 23 can be reduced.

次に、図3は、第1実施形態に係る水量管理制御装置の他の一例を示す構成図である。この他の一例は、図1に示した第1実施形態に係る水量管理制御装置の一例に対し、取水ゲート第2開操作部26及び取水ゲート第3開操作部27に代えて、取水ゲート第4開操作部29を設けたものである。   Next, FIG. 3 is a configuration diagram illustrating another example of the water amount management control device according to the first embodiment. Another example is that, instead of the water intake gate second opening operation unit 26 and the water intake gate third opening operation unit 27, an example of the water amount management control device according to the first embodiment shown in FIG. A four-open operation unit 29 is provided.

取水ゲート第4開操作部29は、水路13の水位WLが制御水位中間下値LSと制御水位下限値LWLとの範囲内にあるときは、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの間の水位になるように、取水ゲート12を開操作するための第4開操作指令を出力するものである。この場合も、図1に示した本発明の第1実施形態の一例の場合と同様に水路13の水位WLを制御できる。   When the water level WL of the water channel 13 is in the range between the control water level middle lower value LS and the control water level lower limit value LWL, the water intake gate fourth opening operation unit 29 sets the water level WL of the water channel 13 to the control water level upper limit value HWL and the control water level. A fourth opening operation command for opening the intake gate 12 is output so that the water level is between the upper intermediate value HS. Also in this case, the water level WL of the water channel 13 can be controlled as in the case of the example of the first embodiment of the present invention shown in FIG.

図4は本発明の第1実施形態に係る水量管理制御装置18で調整された水路水位及び発電出力を従来の水量管理制御装置で調整したものとを比較したグラフであり、図4(a)は水路水位のグラフ、図4(b)は発電出力のグラフである。図4では、水位制御幅WLDは5cm、上方水位幅WLDuは2cm、中間水位幅WLDmは1cm、下方水位幅WLDdは2cmで運用している水力発電設備の運用データである。図4では、従来の水量制御装置で調整された水路13の水位WLを所定の制御周期(例えば7分間隔)で制御している場合を示している。   FIG. 4 is a graph comparing the water level and power generation output adjusted by the water amount management control device 18 according to the first embodiment of the present invention with those adjusted by a conventional water amount management control device. Is a graph of the water channel level, and FIG. 4B is a graph of the power generation output. In FIG. 4, the operational data of the hydroelectric power generation equipment is operated with a water level control width WLD of 5 cm, an upper water level width WLDu of 2 cm, an intermediate water level width WLDm of 1 cm, and a lower water level width WLDd of 2 cm. FIG. 4 shows a case where the water level WL of the water channel 13 adjusted by the conventional water amount control device is controlled at a predetermined control cycle (for example, every 7 minutes).

図4(a)において、折線C11は本発明の第1実施形態に係る水量管理制御装置18で制御した場合の水路13の水位WL、折線C12は従来の水量制御装置14で制御した場合の水路13の水位WLを示している。図4(b)において、折線P11は本発明の第1実施形態に係る水量管理制御装置18で制御した場合の発電出力(改善発電出力)、折線P12は従来の水量制御装置14で制御した場合の発電出力(従前発電出力)を示している。改善発電出力は、取水ゲート第2開操作部26及び取水ゲート第3開操作部27、または、取水ゲート第4開操作部29を使用したときの発電出力であり、従前発電出力は、取水ゲート第2開操作部26及び取水ゲート第3開操作部27、または、取水ゲート第4開操作部29を使用しないときの発電出力である。   In FIG. 4A, the broken line C11 is the water level WL of the water channel 13 when controlled by the water amount management control device 18 according to the first embodiment of the present invention, and the broken line C12 is the water channel when controlled by the conventional water amount control device 14. 13 water levels WL are shown. In FIG. 4B, the broken line P11 is a power generation output (improved power generation output) when controlled by the water amount management control device 18 according to the first embodiment of the present invention, and the broken line P12 is controlled by the conventional water amount control device 14. The power generation output (former power generation output) is shown. The improved power generation output is a power generation output when the intake gate second opening operation unit 26 and the intake gate third opening operation unit 27 or the intake gate fourth opening operation unit 29 is used, and the previous power generation output is the intake gate. This is a power generation output when the second opening operation portion 26 and the intake gate third opening operation portion 27 or the intake gate fourth opening operation portion 29 are not used.

従来においては、図4(a)の折線C12に示すように、水路13の水位WLが制御水位下限値LWL付近で推移してしまい水の有効利用ができていない状態となるが、本発明の第1実施形態では、図4(a)の折線C11に示すように、水路13の水位WLは上方水位幅WLDu内でほぼ推移しているので、水路13の水を有効活用できている。また、従来においては、図4(b)の折線P12に示すように、発電出力が約(P0+150)kWであるが、本発明の第1実施形態では、図4(b)の曲線P11に示すように、発電出力が約(P0+186)kWとなり、発電出力は約36kWだけ増加している。これは、水路13への水を有効活用できているからである。   Conventionally, as shown by a broken line C12 in FIG. 4 (a), the water level WL of the water channel 13 changes in the vicinity of the control water level lower limit LWL, and the water cannot be effectively used. In the first embodiment, as shown by the broken line C11 in FIG. 4A, the water level WL of the water channel 13 is substantially changed within the upper water level width WLDu, so that the water of the water channel 13 can be effectively utilized. In the prior art, the power generation output is about (P0 + 150) kW as shown by the broken line P12 in FIG. 4B, but in the first embodiment of the present invention, it is shown by the curve P11 in FIG. 4B. Thus, the power generation output is about (P0 + 186) kW, and the power generation output is increased by about 36 kW. This is because the water to the water channel 13 can be effectively utilized.

本発明の第1実施形態によれば、制御水位上限値HWLと制御水位下限値LWLとの範囲(水位制御幅WLD)内で、制御水位上限値HWLと制御水位下限値LWL(水位制御幅WLD)との中間値から上下に均等幅で上方向に制御水位中間上値HSと制御水位中間下値LSとを設け、取水ゲート操作部23の取水ゲート第2開操作部26及び取水ゲート第3開操作部27により、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの範囲(上方水位幅WLDu)内で推移するように制御するだけであるので、制御がシンプルで既存制御装置に容易に適用できる。また、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの範囲(上方水位幅WLDu)内に維持できるので、水路13への取水量を認可最大値以下に維持しつつ水路13への水の有効利用を図ることができる。   According to the first embodiment of the present invention, the control water level upper limit value HWL and the control water level lower limit value LWL (water level control width WLD) are within the range (water level control width WLD) of the control water level upper limit value HWL and the control water level lower limit value LWL. The control water level intermediate upper value HS and the control water level intermediate lower value LS are provided in the upward direction with a uniform width up and down from the intermediate value)), and the intake gate second opening operation unit 26 and the intake gate third opening operation of the intake gate operation unit 23 are provided. Since the control unit 27 only controls the water level WL of the water channel 13 to change within the range (upper water level width WLDu) between the control water level upper limit value HWL and the control water level intermediate upper value HS, the control is simple and the existing control device Easy to apply to. Further, since the water level WL of the water channel 13 can be maintained within the range (upper water level width WLDu) between the control water level upper limit value HWL and the control water level intermediate upper value HS, the water channel while maintaining the water intake amount to the water channel 13 below the authorized maximum value. Effective use of water to 13 can be achieved.

次に、本発明の第2実施形態を説明する。図5は本発明の第2実施形態に係る水量管理制御システムの構成図である。この第2実施形態は、図1に示した第1実施形態の一例に対し、水量管理制御装置18と水車発電機設備を監視する監視装置30とを有した水量管理制御システムにおいて、水量管理制御システムの監視装置30に、発電出力記憶部31と増分電力量計算部32とを設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   Next, a second embodiment of the present invention will be described. FIG. 5 is a configuration diagram of a water volume management control system according to the second embodiment of the present invention. This second embodiment is different from the example of the first embodiment shown in FIG. 1 in a water amount management control system having a water amount management control device 18 and a monitoring device 30 for monitoring the turbine generator facility. The system monitoring device 30 is provided with a power generation output storage unit 31 and an incremental power amount calculation unit 32. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

発電出力記憶部31には、水量管理制御装置18の制御対象である水車発電機設備の発電出力(改善発電出力)が記憶される。すなわち、監視装置30には、水車発電機設備の図示省略の水車発電機で発電した発電出力データが水車発電機設備から伝送され、監視装置30の発電出力記憶部31に記憶される。これにより、水車発電機設備の所定期間の発電出力(改善発電出力)が監視装置30内の発電出力記憶部31に記憶される。また、増分電力量計算部32の図示省略の記憶装置には、予め、従前発電出力が設定されている。従前発電出力は、前述したように、取水ゲート第2開操作部26及び取水ゲート第3開操作部27、または、取水ゲート第4開操作部29を使用しないときの発電出力である。増分電力量計算部32は、改善発電出力と充電発電出力との差分を演算し、その差分に対象時間を乗じて増分電力量を算出する。   The power generation output storage unit 31 stores the power generation output (improved power generation output) of the water turbine generator facility that is the control target of the water volume management control device 18. That is, the power generation output data generated by the water turbine generator (not shown) of the water turbine generator facility is transmitted from the water turbine generator facility to the monitoring device 30 and stored in the power generation output storage unit 31 of the monitoring device 30. Thereby, the power generation output (improved power generation output) of the water turbine generator facility for a predetermined period is stored in the power generation output storage unit 31 in the monitoring device 30. In addition, a conventional power generation output is set in advance in a storage device (not shown) of the incremental power amount calculation unit 32. As described above, the conventional power generation output is a power generation output when the intake gate second opening operation portion 26 and the intake gate third opening operation portion 27 or the intake gate fourth opening operation portion 29 is not used. The incremental power amount calculation unit 32 calculates the difference between the improved power generation output and the charging power generation output, and multiplies the difference by the target time to calculate the incremental power amount.

以上の説明では、図1に示した第1実施形態の一例に対し、水量管理制御装置18と水車発電機設備を監視する監視装置30とを有した水量管理制御システムについて説明したが、図示は省略するが、図3に示した第1実施形態の他の一例に対しても適用できる。   In the above description, the water amount management control system having the water amount management control device 18 and the monitoring device 30 for monitoring the water turbine generator facility is described with respect to the example of the first embodiment shown in FIG. Although omitted, the present invention can be applied to another example of the first embodiment shown in FIG.

本発明の第2実施形態によれば、改善発電出力及び増分電力量が得られるので、認可取水量範囲内における水の有効活量及び水車発電機設備の管理が向上する。特に、増分電力量に対して得られる経済的利益(電力料)については、水車発電機設備の所有者と本発明に関係した発明関係者(例えば、発明者、発明を譲り受けた者、資金提供者など)とで案分することが可能となる。   According to the second embodiment of the present invention, the improved power generation output and the incremental power amount are obtained, so that the effective activity of water within the authorized water intake range and the management of the water turbine generator facility are improved. In particular, with regard to the economic benefits (electricity charges) obtained for the incremental power consumption, the owner of the water turbine generator equipment and the inventor related to the present invention (for example, the inventor, the person who has inherited the invention, the provision of funds) Etc.).

以上の説明では、水利用設備として水力発電設備の場合について説明したが、工場で使用する用水の取水量が認可最大値を超えないように管理制御する水利用設備や、貯水設備から認可最大値を超えないように放水される取水量の管理制御を行う水利用設備にも適用できる。この場合の取水量の増分による経済的利益を算出し、水利用設備の所有者と水利用設備の管理制御者とで取水量の増分による経済的利益を案分することができる。   In the above description, the case of a hydroelectric power generation facility was explained as the water utilization facility, but the authorized maximum value from the water utilization facility or storage facility that manages and controls so that the amount of water used in the factory does not exceed the authorized maximum value. It can also be applied to water-use facilities that manage and control the amount of water discharged so as not to exceed. In this case, the economic profit due to the increase in the amount of water intake can be calculated, and the economic profit due to the increase in the amount of water intake can be apportioned between the owner of the water utilization facility and the management controller of the water utilization facility.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…堰、12…取水ゲート、13…水路、14…水量制御装置、15…巻上機操作盤、16…水位計、17…巻上機、18…水量管理制御装置、19…制御水位設定部、20…第1制御水位設定部、21…第2制御水位設定部、22…入力部、23…取水ゲート操作部、24…取水ゲート閉操作部、25…取水ゲート第1開操作部、26…取水ゲート第2開操作部、27…取水ゲート第3開操作部、28…出力部、29…取水ゲート第4開操作部、30…監視装置、31…発電出力記憶部、32…増分電力量計算部 DESCRIPTION OF SYMBOLS 11 ... Weir, 12 ... Intake gate, 13 ... Water channel, 14 ... Water quantity control apparatus, 15 ... Hoisting machine operation panel, 16 ... Water level meter, 17 ... Hoisting machine, 18 ... Water quantity management control apparatus, 19 ... Control water level setting , 20 ... first control water level setting unit, 21 ... second control water level setting unit, 22 ... input unit, 23 ... intake gate operation unit, 24 ... intake gate closing operation unit, 25 ... intake gate first opening operation unit, 26 ... Intake gate second opening operation section, 27 ... Intake gate third opening operation section, 28 ... Output section, 29 ... Intake gate fourth opening operation section, 30 ... Monitoring device, 31 ... Power generation output storage section, 32 ... Increment Electric energy calculation part

図1に示すように、水量管理制御装置18は制御水位設定部19を有している。制御水位設定部19は、第1制御水位設定部20及び第2制御水位設定部21を有し、各制御水位の上下限値や設定値が予め設定されている。第1制御水位設定部20には制御水位上限値HWL及び制御水位下限値LWLが設定されている。前述したように、制御水位上限値HWLは水利用設備での認可最大値の取水量を水位に示したものであり、水路13を経由して水利用設備に取水できる取水量を示す水路13の水位WLである。一方、制御水位下限値LWLは水の有効利用を図るため河川流量が認可取水量以上ある場合にこれを下回らないようにするための水位であり、水力発電設備が有効利用できる取水量を確保するための水路の水位である。 As shown in FIG. 1, the water amount management control device 18 has a control water level setting unit 19. The control water level setting unit 19 includes a first control water level setting unit 20 and a second control water level setting unit 21, and upper and lower limit values and set values of the respective control water levels are set in advance. A control water level upper limit value HWL and a control water level lower limit value LWL are set in the first control water level setting unit 20. As described above, the control water level upper limit HWL is limited to showing water intake authorization maximum at water utilization facility water level, the water channel 13 showing the water intake amount via the water channel 13 can intake water utilization facility Water level WL. On the other hand, the control water level lower limit value LWL is a water level for preventing the water flow rate from being below when the river flow rate is greater than or equal to the authorized water intake amount in order to make effective use of water, and ensures the water intake amount that can be effectively used by the hydroelectric power generation facility. It is the water level of the canal.

また、水路13の水位WLが制御水位上限値HWLと制御水位中間上値HSとの範囲(上方水位幅WLDu)内となったときは、取水ゲート操作部23の取水ゲート第1開操作部25、取水ゲート第2開操作部26、取水ゲート第3開操作部27はいずれも動作しない。つまり、制御の不感帯領域である。水路13の水位WLが上方水位幅WLDuにあるときは、水路13の水位WLは制御水位上限値HWL付近で推移している状態であり、水路13の取水量を有効活用できている状態であるからである。 Further, when the water level WL of the water channel 13 falls within the range (upper water level width WLDu) between the control water level upper limit value HWL and the control water level intermediate upper value HS, the intake gate first opening operation unit 25 of the intake gate operation unit 23, Neither the intake gate second opening operation portion 26 nor the intake gate third opening operation portion 27 operates . That is, it is a control dead zone region. When the water level WL of the water channel 13 is in the upper water level width WLDu, the water level WL of the water channel 13 is in a state of changing near the control water level upper limit value HWL, and the water intake amount of the water channel 13 can be effectively utilized. Because.

図4は本発明の第1実施形態に係る水量管理制御装置18で調整された水路水位及び発電出力を従来の水量管理制御装置で調整したものとを比較したグラフであり、図4(a)は水路水位のグラフ、図4(b)は発電出力のグラフである。図4では、水位制御幅WLDは5cm、上方水位幅WLDuは2cm、中間水位幅WLDmは1cm、下方水位幅WLDdは2cmで運用している水力発電設備の運用データである。図4では、水路13の水位WLを所定の制御周期(例えば第1時間間隔は7分間隔、第2時間間隔は3分)で制御している場合を示している。 FIG. 4 is a graph comparing the water level and power generation output adjusted by the water amount management control device 18 according to the first embodiment of the present invention with those adjusted by a conventional water amount management control device. Is a graph of the water channel level, and FIG. 4B is a graph of the power generation output. In FIG. 4, the operational data of the hydroelectric power generation equipment is operated with a water level control width WLD of 5 cm, an upper water level width WLDu of 2 cm, an intermediate water level width WLDm of 1 cm, and a lower water level width WLDd of 2 cm. FIG. 4 shows a case where the water level WL of the water channel 13 is controlled at a predetermined control cycle (for example, the first time interval is 7 minutes and the second time interval is 3 minutes) .

Claims (6)

水源から取水ゲートの開度を調整して水路を経由して水利用設備への取水量が認可最大値を超えないように管理制御する水利用設備の水量管理制御装置において、
前記取水路を経由して前記水利用設備への取水量が認可最大値以下となる制御水位上限値HWL及び前記水利用設備での水の有効利用を図るための最低限の取水量を確保するための制御水位下限値LWLを予め記憶した第1制御水位設定部と、
前記制御水位上限値HWLと前記制御水位下限値LWLとの範囲内で前記制御水位上限値HWLと前記制御水位下限値LWLとの中間値から上下に均等幅で上方向に設けられた制御水位中間上値HSと下方向に設けられた制御水位中間下値LSとを予め記憶した第2制御水位設定部と、
前記水路の水位が前記制御水位上限値HWL以上となったとき前記水路の水位が前記制御水位上限値HWL以下に下がるように前記取水ゲートを閉操作するための閉操作指令を出力する取水ゲート閉操作部と、
前記水路の水位が前記制御水位下限値LWL以下となったとき前記水路の水位が前記制御水位上限値HWLと前記制御水位中間上値HSとの間の水位になるように前記取水ゲートを開操作するための第1開操作指令を出力する取水ゲート第1開操作部と、
前記水路の水位が前記制御水位中間上値HSと制御水位中間下値LSとの範囲内にあるときは前記水路の水位が前記制御水位上限値HWLと前記制御水位中間上値HSとの間の水位になるように前記取水ゲートを開操作するための第2開操作指令を出力する取水ゲート第2開操作部と、
前記水路の水位が前記制御水位中間下値LSと前記制御水位下限値LWLとの範囲内にあるときは前記水路の水位が前記制御水位中間上値HSと前記制御水位中間下値LSとの間の水位になるように前記取水ゲートを開操作するための第3開操作指令を出力する取水ゲート第3開操作部を備えたことを特徴とする水利用設備の水量管理制御装置。
In the water volume management control device of the water use facility that controls the intake amount from the water source so that the water intake amount to the water use facility does not exceed the authorized maximum value via the water channel,
A control water level upper limit value HWL at which the amount of water intake to the water use facility is equal to or lower than the approved maximum value via the intake channel and a minimum water intake amount for effective use of water in the water use facility are secured. A first control water level setting unit that previously stores a control water level lower limit LWL for
Within the range of the control water level upper limit value HWL and the control water level lower limit value LWL, the control water level intermediate provided in the upward direction with a uniform width up and down from the intermediate value between the control water level upper limit value HWL and the control water level lower limit value LWL A second control water level setting unit that stores in advance an upper value HS and a control water level intermediate lower value LS provided in the downward direction;
When the water level in the water channel becomes equal to or higher than the control water level upper limit value HWL, the water intake gate is closed for outputting a closing operation command for closing the water intake gate so that the water level in the water channel falls below the control water level upper limit value HWL. An operation unit;
When the water level of the water channel becomes equal to or lower than the control water level lower limit value LWL, the water intake gate is opened so that the water level of the water channel becomes a water level between the control water level upper limit value HWL and the control water level intermediate upper value HS. A water intake gate first opening operation section for outputting a first opening operation command for
When the water level of the water channel is within the range between the control water level intermediate high value HS and the control water level intermediate low value LS, the water level of the water channel becomes a water level between the control water level upper limit value HWL and the control water level intermediate high value HS. A water intake gate second opening operation unit that outputs a second opening operation command for opening the water intake gate,
When the water level of the water channel is within the range between the control water level intermediate lower value LS and the control water level lower limit value LWL, the water level of the water channel is a water level between the control water level intermediate upper value HS and the control water level intermediate lower value LS. A water volume management control device for water utilization equipment, comprising a water intake gate third opening operation unit that outputs a third opening operation command for opening the water intake gate.
前記取水ゲート第2開操作部26及び前記取水ゲート第3開操作部27に代えて、前記水路の水位が前記制御水位中間下値LSと前記制御水位下限値LWLとの範囲内にあるときは前記水路の水位が前記制御水位上限値HWLと前記制御水位中間上値HSとの間の水位になるように前記取水ゲートを開操作するための第4開操作指令を出力する取水ゲート第4開操作部を設けたことを特徴とする請求項1記載の水利用設備の水量管理制御装置。   Instead of the intake gate second opening operation portion 26 and the intake gate third opening operation portion 27, when the water level of the water channel is within the range between the control water level intermediate lower value LS and the control water level lower limit value LWL, the Intake gate fourth opening operation unit for outputting a fourth opening operation command for opening the intake gate so that the water level of the water channel becomes a water level between the control water level upper limit value HWL and the control water level intermediate upper value HS. The water amount management control device for water utilization equipment according to claim 1, wherein: 前記取水ゲート閉操作部及び前記取水ゲート第1開操作部は、予め定めた第1時間間隔で前記水路の水位を入力し、前記水路の水位を制御することを特徴とする請求項1または請求項2に記載の水利用設備の水量管理制御装置。   The said intake gate closing operation part and the said intake gate 1st opening operation part input the water level of the said water channel at predetermined 1st time intervals, and control the water level of the said water channel. Item 3. A water volume management control device for water-use equipment according to item 2. 前記取水ゲート第2開操作部及び前記取水ゲート第3開操作部、または、前記取水ゲート第4開操作部は、前記第1時間間隔より短い第2時間間隔で前記水路の水位を入力し、前記水路の水位を制御することを特徴とする請求項3に記載の水利用設備の水量管理制御装置。   The intake gate second opening operation portion and the intake gate third opening operation portion, or the intake gate fourth opening operation portion inputs the water level of the water channel at a second time interval shorter than the first time interval, The water level management control device for water-use equipment according to claim 3, wherein the water level of the water channel is controlled. 前記水利用設備は水車発電機設備であり、請求項1乃至請求項4のいずれか1項に記載の水量管理制御装置と前記水車発電機設備を監視する監視装置とを備え、前記監視装置に前記水車発電機設備の発電出力を記憶した発電出力記憶部を設けたことを特徴とする水量管理制御システム。   The water utilization facility is a turbine generator facility, and includes the water volume management control device according to any one of claims 1 to 4 and a monitoring device that monitors the turbine generator facility, and the monitoring device includes A water volume management control system comprising a power generation output storage unit storing a power generation output of the water turbine generator facility. 前記監視装置は、前記取水ゲート第2開操作部及び前記取水ゲート第3開操作部を使用したときの前記水車発電機設備の発電出力と前記取水ゲート第2開操作部及び前記取水ゲート第3開操作部を使用しないときの前記水車発電機設備の発電出力との差分から増分電力量を算出する増分電力量計算部を備えたことを特徴とする請求項5に記載の水量管理制御システム。   The monitoring device includes a power generation output of the water turbine generator facility when the intake gate second opening operation portion and the intake gate third opening operation portion are used, the intake gate second opening operation portion, and the intake gate third. The water amount management control system according to claim 5, further comprising an incremental power amount calculation unit that calculates an incremental power amount from a difference from a power generation output of the water turbine generator facility when the opening operation unit is not used.
JP2018061318A 2018-03-28 2018-03-28 Water volume management control device and system Active JP6586480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061318A JP6586480B1 (en) 2018-03-28 2018-03-28 Water volume management control device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061318A JP6586480B1 (en) 2018-03-28 2018-03-28 Water volume management control device and system

Publications (2)

Publication Number Publication Date
JP6586480B1 JP6586480B1 (en) 2019-10-02
JP2019173338A true JP2019173338A (en) 2019-10-10

Family

ID=68095419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061318A Active JP6586480B1 (en) 2018-03-28 2018-03-28 Water volume management control device and system

Country Status (1)

Country Link
JP (1) JP6586480B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521940A (en) * 1975-06-23 1977-01-08 Ebara Mfg Method of controlling waterway gate
JPH04347711A (en) * 1991-05-24 1992-12-02 Ishikawajima Harima Heavy Ind Co Ltd Water level control method in dam water discharge equipment
US20140018963A1 (en) * 2006-06-23 2014-01-16 Hans Christian Behm Adjustable weir for hydroelectric dam installations
JP2016075039A (en) * 2014-10-03 2016-05-12 株式会社シーテック Adjustment method for discharged water volume into river from discharge means at water storage facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521940A (en) * 1975-06-23 1977-01-08 Ebara Mfg Method of controlling waterway gate
JPH04347711A (en) * 1991-05-24 1992-12-02 Ishikawajima Harima Heavy Ind Co Ltd Water level control method in dam water discharge equipment
US20140018963A1 (en) * 2006-06-23 2014-01-16 Hans Christian Behm Adjustable weir for hydroelectric dam installations
JP2016075039A (en) * 2014-10-03 2016-05-12 株式会社シーテック Adjustment method for discharged water volume into river from discharge means at water storage facility

Also Published As

Publication number Publication date
JP6586480B1 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CN109272245B (en) Method and system for automatically distributing opening of flood discharge gate of cascade hydropower station in real time
CN104181895A (en) Strategy for optimizing short-term and ultra-short-term coordination rolling schedules adapting to access of new energy resources
CN104595885B (en) Station boiler Minimum Flowrate of Feed Pump recycle valve control method
CN110360540B (en) Boiler main steam temperature control method for power grid AGC load instruction frequent fluctuation
CN106548269B (en) Rapid gate operation method under emergency generator tripping condition of step hydropower station
CN108181940A (en) It meets an urgent need the regulation and control method of the gate in the case of cutting off the water supply suitable for series connection channel downstream
CN108519783B (en) Pre-gate control point variable target water level control system and method based on channel pool storage balance
CN105449698A (en) Novel hydroelectric generating set load and frequency controller
JP6730305B2 (en) Method, system and apparatus for adjusting voltage fluctuations induced by at least one renewable energy source
JP6586480B1 (en) Water volume management control device and system
JP2002209336A (en) Power system load frequency control method and system, and computer-readable storage medium
Montazar et al. Centralized controller for the Narmada main canal
JP2020109233A (en) Overflow adjusting device and overflow adjusting method
US10119518B2 (en) Control system for flow of turbined water from a plurality of hydroelectric plants
KR20050037825A (en) Power system supervisory controller of upfc
JP2008052508A (en) Control system of water treatment plant
CN115271399A (en) Intelligent regulation and control method for whole reservoir flood dispatching process
JP5084549B2 (en) Intake control system at the inflow power plant
JP2017015267A (en) Control method for power control unit, power control unit and power control system
JP2017201443A (en) Operation plan creating device, program and operation plan creating method
JP7271969B2 (en) Flow control device
CN104635769B (en) A kind of Hydropower Stations power station flood season optimum water level range control method
KR102188207B1 (en) Hierarchical multi-time scale look-ahead CVR framework system for smart distribution system and apparatus therefor
Wang et al. Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity
CN112186778B (en) Primary frequency modulation optimization control method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6586480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250