JP2019172829A - Polyamide-based thermoplastic elastomer composition, molding, and hollow molding - Google Patents

Polyamide-based thermoplastic elastomer composition, molding, and hollow molding Download PDF

Info

Publication number
JP2019172829A
JP2019172829A JP2018062852A JP2018062852A JP2019172829A JP 2019172829 A JP2019172829 A JP 2019172829A JP 2018062852 A JP2018062852 A JP 2018062852A JP 2018062852 A JP2018062852 A JP 2018062852A JP 2019172829 A JP2019172829 A JP 2019172829A
Authority
JP
Japan
Prior art keywords
polyamide
thermoplastic elastomer
elastomer composition
aliphatic
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018062852A
Other languages
Japanese (ja)
Other versions
JP7289615B2 (en
Inventor
航介 寺田
Kosuke Terada
航介 寺田
洋平 椛島
Yohei Kabashima
洋平 椛島
洋平 宝谷
Yohei Takaraya
洋平 宝谷
竜弥 榎本
Tatsuya Enomoto
竜弥 榎本
晶規 天野
Akinori Amano
晶規 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2018062852A priority Critical patent/JP7289615B2/en
Publication of JP2019172829A publication Critical patent/JP2019172829A/en
Application granted granted Critical
Publication of JP7289615B2 publication Critical patent/JP7289615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a polyamide-based thermoplastic elastomer composition capable of giving a molding having high elongation at break while having flexibility and good tensile strength.SOLUTION: The polyamide-based thermoplastic elastomer composition is a crosslinked product of a rubber composition containing: two or more specific aliphatic polyamides [I] having a melting point (Tm) of 150-290°C; an ethylene/α-olefin/nonconjugated polyene copolymer rubber [II]; an olefinic polymer [III] containing 0.3-5.0 mass% of a functional group structural unit; and a phenolic resin-based crosslinking agent [IV].SELECTED DRAWING: None

Description

本発明は、ポリアミド系熱可塑性エラストマー組成物、成形体および中空成形体に関する。   The present invention relates to a polyamide-based thermoplastic elastomer composition, a molded body, and a hollow molded body.

熱可塑性エラストマーは、加硫ゴムとは異なり加硫工程が不要であり、通常の熱可塑性樹脂の成形機で加工が可能という利点から、自動車部品、機械部品などの様々な用途への適用が検討されている。   Thermoplastic elastomers, unlike vulcanized rubber, do not require a vulcanization process and can be processed with ordinary thermoplastic resin molding machines, so they are considered for use in various applications such as automotive parts and machine parts. Has been.

そのような熱可塑性エラストマーとして、ポリアミド[I]、共重合体ゴム[II]、オレフィン系重合体[III]、架橋剤[IV]および架橋助剤を含む組成物を動的架橋させて得られる熱可塑性エラストマー組成物が知られている(例えば特許文献1参照)。   As such a thermoplastic elastomer, it is obtained by dynamically crosslinking a composition containing polyamide [I], copolymer rubber [II], olefin polymer [III], crosslinking agent [IV] and a crosslinking aid. Thermoplastic elastomer compositions are known (see, for example, Patent Document 1).

国際公開第2015/083819号International Publication No. 2015/083819

特許文献1に示される熱可塑性エラストマー組成物は、柔軟性と良好な引張強度とを有するものの、破断伸びについてはさらなる改善が求められている。   Although the thermoplastic elastomer composition shown in Patent Document 1 has flexibility and good tensile strength, further improvement in breaking elongation is required.

本発明は、上記事情に鑑みてなされたものであり、柔軟性と良好な引張強度とを有しつつ、高い破断伸びを有する成形体を付与しうるポリアミド系熱可塑性エラストマー組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a polyamide-based thermoplastic elastomer composition capable of providing a molded article having high elongation at break while having flexibility and good tensile strength. With the goal.

[1] 示差走査熱量測定(DSC)で測定される融点(Tm)が150〜290℃であり、かつ組成が異なる少なくとも二種の脂肪族ポリアミド[I]と、エチレン構造単位[a]と、炭素原子数3〜20のα−オレフィン構造単位[b]と、メタロセン系触媒により重合可能な炭素−炭素二重結合を1分子内に1個以上有する非共役ポリエン構造単位[c]とを含むエチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]と、官能基構造単位を0.3〜5.0質量%含むオレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]とを含むゴム組成物の架橋物であるポリアミド系熱可塑性エラストマー組成物であって、前記少なくとも二種の脂肪族ポリアミド[I]の、ISO 1133による290℃、2.16kg荷重におけるメルトフローレート(MFR)の差が、30g/10分以下である、ポリアミド系熱可塑性エラストマー組成物。
[2] 前記少なくとも二種の脂肪族ポリアミド[I]は、炭素原子数6〜12のジカルボン酸単位と炭素原子数4〜12のジアミン単位とを含む脂肪族ポリアミド、炭素原子数6〜12のラクタムまたはアミノカルボン酸単位を含む脂肪族ポリアミドからなる群より選ばれる、[1]に記載のポリアミド系熱可塑性エラストマー組成物。
[3] 前記少なくとも二種の脂肪族ポリアミド[I]は、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド56、ポリアミド66、ポリアミド69、ポリアミド910、ポリアミド912、ポリアミド116、ポリアミド610、およびポリアミド612、ポリアミド1010からなる群より選ばれる、[1]または[2]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
[4] 前記少なくとも二種の脂肪族ポリアミド[I]は、前記メルトフローレート(MFR)が相対的に高い脂肪族ポリアミド[I]−Aと、前記メルトフローレート(MFR)が相対的に低い脂肪族ポリアミド[I]−Bとを含み、前記脂肪族ポリアミド[I]−Aは、前記脂肪族ポリアミド[I]−Bよりも多く含まれる、[1]〜[3]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
[5] 前記少なくとも二種の脂肪族ポリアミド[I]は、ポリアミド610とポリアミド66である、[1]〜[4]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
[6] 前記オレフィン系重合体[III]の官能基構造単位は、カルボン酸基、エステル基、エーテル基、アルデヒド基およびケトン基からなる群より選ばれる一以上の官能基由来の構造単位を含む、[1]〜[5]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
[7] 前記オレフィン系重合体[III]の官能基構造単位は、無水マレイン酸構造単位である、[6]に記載のポリアミド系熱可塑性エラストマー組成物。
[8] 前記少なくとも二種の脂肪族ポリアミド[I]、前記エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]、前記オレフィン系重合体[III]および前記フェノール樹脂系架橋剤[IV]の合計を100質量部としたとき、前記少なくとも二種の脂肪族ポリアミド[I]を合計10〜60質量部と、前記エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]を33〜86質量部と、前記オレフィン系重合体[III]を0.1〜30質量部と、前記フェノール樹脂系架橋剤[IV]を1〜10質量部とを含む、[1]〜[7]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物。
[9] [1]〜[8]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物から得られる、成形体。
[10] [1]〜[8]のいずれかに記載のポリアミド系熱可塑性エラストマー組成物から得られる、中空成形体。
[11] 前記中空成形体は、自動車関連部品である、[10]に記載の中空成形体。
[1] The melting point (Tm) measured by differential scanning calorimetry (DSC) is 150 to 290 ° C., and at least two aliphatic polyamides [I] having different compositions, ethylene structural unit [a], An α-olefin structural unit [b] having 3 to 20 carbon atoms and a non-conjugated polyene structural unit [c] having at least one carbon-carbon double bond polymerizable in a molecule by a metallocene catalyst. Ethylene / α-olefin / non-conjugated polyene copolymer rubber [II], olefin polymer [III] containing 0.3 to 5.0 mass% of functional group structural unit, and phenol resin crosslinker [IV] And a polyamide-based thermoplastic elastomer composition, which is a crosslinked product of a rubber composition, comprising: at least two aliphatic polyamides [I] at 290 ° C. and 2.16 kg load according to ISO 1133 Difference melt flow rate (MFR) in is not more than 30 g / 10 min, a polyamide-based thermoplastic elastomer composition.
[2] The at least two types of aliphatic polyamide [I] is an aliphatic polyamide containing a dicarboxylic acid unit having 6 to 12 carbon atoms and a diamine unit having 4 to 12 carbon atoms, and has 6 to 12 carbon atoms. The polyamide-based thermoplastic elastomer composition according to [1], which is selected from the group consisting of aliphatic polyamides containing lactam or aminocarboxylic acid units.
[3] The at least two kinds of aliphatic polyamides [I] are polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 56, polyamide 66, polyamide 69, polyamide 910, polyamide 912, polyamide 116, polyamide 610, and The polyamide thermoplastic elastomer composition according to any one of [1] or [2], which is selected from the group consisting of polyamide 612 and polyamide 1010.
[4] The at least two aliphatic polyamides [I] have a relatively low melt flow rate (MFR) and a relatively low melt flow rate (MFR). The aliphatic polyamide [I] -B is included, and the aliphatic polyamide [I] -A is included in a larger amount than the aliphatic polyamide [I] -B. A polyamide-based thermoplastic elastomer composition.
[5] The polyamide-based thermoplastic elastomer composition according to any one of [1] to [4], wherein the at least two types of aliphatic polyamide [I] are polyamide 610 and polyamide 66.
[6] The functional group structural unit of the olefin polymer [III] includes a structural unit derived from one or more functional groups selected from the group consisting of a carboxylic acid group, an ester group, an ether group, an aldehyde group, and a ketone group. The polyamide-based thermoplastic elastomer composition according to any one of [1] to [5].
[7] The polyamide-based thermoplastic elastomer composition according to [6], wherein the functional group structural unit of the olefin polymer [III] is a maleic anhydride structural unit.
[8] The at least two aliphatic polyamides [I], the ethylene / α-olefin / nonconjugated polyene copolymer rubber [II], the olefin polymer [III], and the phenol resin crosslinking agent [IV] ], The total of 10 to 60 parts by mass of the at least two aliphatic polyamides [I] and 33 of the ethylene / α-olefin / non-conjugated polyene copolymer rubber [II]. [1] to [7], comprising -86 parts by mass, 0.1-30 parts by mass of the olefin polymer [III], and 1-10 parts by mass of the phenol resin-based crosslinking agent [IV]. The polyamide-based thermoplastic elastomer composition according to any one of the above.
[9] A molded product obtained from the polyamide-based thermoplastic elastomer composition according to any one of [1] to [8].
[10] A hollow molded article obtained from the polyamide-based thermoplastic elastomer composition according to any one of [1] to [8].
[11] The hollow molded body according to [10], wherein the hollow molded body is an automobile-related part.

本発明によれば、柔軟性と良好な引張強度とを有しつつ、高い破断伸びを有する成形体を付与しうるポリアミド系熱可塑性エラストマー組成物を提供することができる。   According to the present invention, it is possible to provide a polyamide-based thermoplastic elastomer composition that can give a molded article having high elongation at break while having flexibility and good tensile strength.

本発明者らは、組成が異なる二種以上の脂肪族ポリアミドを組み合わせることで、得られる熱可塑性エラストマー組成物の破断伸びを、単独の脂肪族ポリアミドのそれぞれよりも飛躍的に高めうること、すなわち、二種以上の脂肪族ポリアミドの組み合わせから予想されるレベルよりもはるかに高めうることを見出した。それにより、柔軟性や引張強度を損なうことなく、破断伸びの良好なポリアミド系熱可塑性エラストマー組成物が得られることを見出した。   By combining two or more types of aliphatic polyamides having different compositions, the present inventors can dramatically increase the elongation at break of the resulting thermoplastic elastomer composition over each of the single aliphatic polyamides, that is, We have found that it can be much higher than expected from the combination of two or more aliphatic polyamides. As a result, it has been found that a polyamide-based thermoplastic elastomer composition having good elongation at break can be obtained without impairing flexibility and tensile strength.

この理由は明らかではないが、以下のように推測される。組成が異なる二種以上の脂肪族ポリアミドを溶融混練することにより、脂肪族ポリアミド同士の主鎖が入れ替わるアミド交換反応が生じると考えられる。この反応が生じることにより、脂肪族ポリアミドの分子構造が不規則となりやすく、結晶性が低下し、破断伸びが高まると考えられる。   The reason for this is not clear, but is presumed as follows. By melt-kneading two or more types of aliphatic polyamides having different compositions, it is considered that an amide exchange reaction occurs in which the main chains of the aliphatic polyamides are interchanged. When this reaction occurs, it is considered that the molecular structure of the aliphatic polyamide tends to be irregular, crystallinity is lowered, and elongation at break is increased.

特に、二種以上の脂肪族ポリアミド[I]のうち少なくとも二種の脂肪族ポリアミド[I]のメルトフローレート(MFR)の差は、一定以下(具体的には30g/10分以下)であることが好ましい。これは、組成が異なる少なくとも二種の脂肪族ポリアミド同士の粘度が適度に近いことにより、混ざり合いやすく、アミド交換反応がより生じやすくなるからであると考えられる。本発明はこのような知見に基づいてなされたものである。   In particular, the difference in melt flow rate (MFR) between at least two aliphatic polyamides [I] of two or more aliphatic polyamides [I] is not more than a certain value (specifically, not more than 30 g / 10 minutes). It is preferable. This is presumably because at least two types of aliphatic polyamides having different compositions have moderate viscosities, so that they are easily mixed together and an amide exchange reaction is more likely to occur. The present invention has been made based on such findings.

1.ポリアミド系熱可塑性エラストマー組成物
本発明のポリアミド系熱可塑性エラストマー組成物は、二種以上の脂肪族ポリアミド[I]と、エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]と、オレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]と、架橋助剤[V]とを含むゴム組成物の架橋物(動的架橋物)である。架橋物とは、部分架橋物または完全架橋物である。
1. Polyamide-based thermoplastic elastomer composition The polyamide-based thermoplastic elastomer composition of the present invention comprises two or more aliphatic polyamide [I], ethylene / α-olefin / non-conjugated polyene copolymer rubber [II], and olefin. A cross-linked product (dynamic cross-linked product) of a rubber composition containing a polymer [III], a phenol resin-based cross-linking agent [IV], and a cross-linking aid [V]. The crosslinked product is a partially crosslinked product or a completely crosslinked product.

1−1.二種以上の脂肪族ポリアミド[I]について
二種以上の脂肪族ポリアミド[I]は、それぞれ「アミド結合[−NH−C(=O)−]を含み、かつ芳香環を含まない構造単位」(芳香環を含まないアミド結合含有構造単位)を主成分として含む。ここで、「主成分として含む」とは、脂肪族ポリアミド[I]を構成するアミド結合含有構造単位の全モル数に対して、芳香環を含まないアミド結合含有構造単位の含有比率が80モル%以上、好ましくは90〜100モル%であることをいう。
1-1. About two or more types of aliphatic polyamide [I] Two or more types of aliphatic polyamide [I] are each “a structural unit containing an amide bond [—NH—C (═O) —] and no aromatic ring”. (An amide bond-containing structural unit not containing an aromatic ring) is included as a main component. Here, “including as a main component” means that the content ratio of the amide bond-containing structural unit not containing an aromatic ring is 80 moles relative to the total number of moles of the amide bond-containing structural unit constituting the aliphatic polyamide [I]. % Or more, preferably 90 to 100 mol%.

脂肪族ポリアミド[I]は、ジカルボン酸とジアミンを重縮合反応させて得られるものであってもよいし、ラクタムを開環重合反応させて得られるものであってもよいし、アミノカルボン酸を重縮合反応させたものであってもよい。すなわち、脂肪族ポリアミド[I]は、ジカルボン酸構造単位とジアミン構造単位とで構成されるアミド結合含有構造単位;ラクタム構造単位;およびアミノカルボン酸構造単位のうち少なくとも一種で構成される。   The aliphatic polyamide [I] may be obtained by polycondensation reaction of dicarboxylic acid and diamine, may be obtained by ring-opening polymerization reaction of lactam, or aminocarboxylic acid A product obtained by polycondensation reaction may be used. That is, the aliphatic polyamide [I] is composed of at least one of an amide bond-containing structural unit composed of a dicarboxylic acid structural unit and a diamine structural unit; a lactam structural unit; and an aminocarboxylic acid structural unit.

(ジカルボン酸構造単位/ジアミン構造単位)
ジカルボン酸構造単位は、脂肪族ジカルボン酸構造単位を含む。脂肪族ジカルボン酸構造単位は、脂肪族ジカルボン酸またはそのエステルに由来する構造単位である。脂肪族ジカルボン酸またはそのエステルは、炭素原子数が3〜20、好ましくは6〜12の直鎖状または分岐状の脂肪族ジカルボン酸(好ましくは飽和脂肪族ジカルボン酸)またはそのエステルである。
(Dicarboxylic acid structural unit / diamine structural unit)
The dicarboxylic acid structural unit includes an aliphatic dicarboxylic acid structural unit. The aliphatic dicarboxylic acid structural unit is a structural unit derived from an aliphatic dicarboxylic acid or an ester thereof. The aliphatic dicarboxylic acid or an ester thereof is a linear or branched aliphatic dicarboxylic acid (preferably a saturated aliphatic dicarboxylic acid) having 3 to 20 carbon atoms, preferably 6 to 12 carbon atoms, or an ester thereof.

脂肪族ジカルボン酸またはそのエステルの例には、マロン酸、ジメチルマロン酸、コハク酸、2,2−ジメチルコハク酸、2,3−ジメチルグルタル酸、2,2−ジエチルコハク酸、2,3−ジエチルグルタル酸、グルタル酸、2,2−ジメチルグルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、ジグリコール酸などが含まれる。脂肪族ジカルボン酸またはそのエステルは、一種類であってもよいし、二種類以上を組み合わせてもよい。   Examples of aliphatic dicarboxylic acids or esters thereof include malonic acid, dimethyl malonic acid, succinic acid, 2,2-dimethyl succinic acid, 2,3-dimethyl glutaric acid, 2,2-diethyl succinic acid, 2,3- Diethyl glutaric acid, glutaric acid, 2,2-dimethyl glutaric acid, adipic acid, 2-methyl adipic acid, trimethyl adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanediate Acids, octadecanedioic acid, eicosanedioic acid, diglycolic acid and the like are included. One type of aliphatic dicarboxylic acid or ester thereof may be used, or two or more types may be combined.

ジカルボン酸構造単位は、必要に応じて脂環族ジカルボン酸構造単位をさらに含んでもよい。脂環族ジカルボン酸の例には、1,4−シクロヘキサンジカルボン酸などが含まれる。脂環族ジカルボン酸は、置換基をさらに有してもよい。置換基の例には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基などの炭素原子数1〜4のアルキル基が含まれる。   The dicarboxylic acid structural unit may further include an alicyclic dicarboxylic acid structural unit as necessary. Examples of the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid. The alicyclic dicarboxylic acid may further have a substituent. Examples of the substituent include alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group.

脂肪族ジカルボン酸構造単位の含有比率は、ジカルボン酸構造単位の全モル数に対して80モル%以上であることが好ましい。脂肪族ジカルボン酸構造単位の含有比率が80モル%以上であると、脂肪族ポリアミド[I]の結晶化度が高まりやすく、成形体に十分な耐熱性や機械的強度(引張強度や破断伸びなど)を付与しうる。脂肪族ジカルボン酸構造単位の含有比率は、ジカルボン酸構造単位の全モル数に対して85〜100モル%であることがより好ましく、90〜100モル%であることがさらに好ましい。   The content ratio of the aliphatic dicarboxylic acid structural unit is preferably 80 mol% or more with respect to the total number of moles of the dicarboxylic acid structural unit. When the content ratio of the aliphatic dicarboxylic acid structural unit is 80 mol% or more, the degree of crystallinity of the aliphatic polyamide [I] tends to increase, and the molded article has sufficient heat resistance and mechanical strength (such as tensile strength and elongation at break). ). The content ratio of the aliphatic dicarboxylic acid structural unit is more preferably 85 to 100 mol%, and further preferably 90 to 100 mol%, based on the total number of moles of the dicarboxylic acid structural unit.

ジアミン構造単位は、脂肪族ジアミン構造単位を含む。脂肪族ジアミンは、炭素原子数2〜20、好ましくは4〜12の直鎖状の脂肪族ジアミン(好ましくは飽和脂肪族ジアミン)、あるいは炭素原子数3〜20、好ましくは4〜12の分岐状の脂肪族ジアミン(好ましくは飽和脂肪族ジアミン)である。分岐状の脂肪族ジアミンは、主鎖から分岐した基(側鎖)を有する。   The diamine structural unit includes an aliphatic diamine structural unit. The aliphatic diamine is a linear aliphatic diamine having 2 to 20 carbon atoms, preferably 4 to 12 carbon atoms (preferably a saturated aliphatic diamine) or a branched one having 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms. Aliphatic diamines (preferably saturated aliphatic diamines). The branched aliphatic diamine has a group (side chain) branched from the main chain.

炭素原子数2〜20、好ましくは4〜12の直鎖状の脂肪族ジアミンの例には、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミンなどが含まれる。炭素原子数3〜20、好ましくは4〜12の分岐状の脂肪族ジアミンの例には、2−メチルペンタメチレンジアミン(2−メチル−1,5−ジアミノペンタンとも記される)、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、2−メチルオクタメチレンジアミン、2,4−ジメチルオクタメチレンジアミンなどが含まれる。脂肪族ジアミンは、一種類であってもよいし、二種類以上を組み合わせてもよい。   Examples of linear aliphatic diamines having 2 to 20 carbon atoms, preferably 4 to 12 carbon atoms, include ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, Nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, tridecamethylene diamine and the like are included. Examples of branched aliphatic diamines having 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms include 2-methylpentamethylenediamine (also referred to as 2-methyl-1,5-diaminopentane), 2,2 , 4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyloctamethylenediamine, 2,4-dimethyloctamethylenediamine, and the like. One type of aliphatic diamine may be used, or two or more types may be combined.

脂肪族ジアミン構造単位の含有比率は、ジアミン構造単位の全モル数に対して80モル%以上であることが好ましい。脂肪族ジアミン構造単位の含有比率が80モル%以上であると、脂肪族ポリアミド[I]の結晶化度が高まりやすく、成形体に十分な耐熱性や機械的強度(引張強度や破断伸びなど)を付与しうる。脂肪族ジアミン構造単位の含有比率は、ジアミン構造単位の全モル数に対して85〜100モル%であることがより好ましく、90〜100モル%であることがさらに好ましい。   The content ratio of the aliphatic diamine structural unit is preferably 80 mol% or more with respect to the total number of moles of the diamine structural unit. If the content ratio of the aliphatic diamine structural unit is 80 mol% or more, the degree of crystallinity of the aliphatic polyamide [I] is likely to increase, and sufficient heat resistance and mechanical strength (tensile strength, elongation at break, etc.) for the molded product Can be given. The content ratio of the aliphatic diamine structural unit is more preferably from 85 to 100 mol%, and further preferably from 90 to 100 mol%, based on the total number of moles of the diamine structural unit.

ジアミン構造単位は、必要に応じて脂環族ジアミン構造単位をさらに含んでもよい。脂環族ジアミンの例には、1,4−シクロヘキサンジアミン、1,3−シクロヘキサンジアミン、1,3−シクロペンタンジアミンなどが含まれる。   The diamine structural unit may further include an alicyclic diamine structural unit as necessary. Examples of the alicyclic diamine include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,3-cyclopentanediamine, and the like.

(ラクタム構造単位)
ラクタム構造単位は、ラクタムに由来する構造単位である。ラクタムは、炭素原子数4〜14、好ましくは6〜12のラクタムでありうる。そのようなラクタムの例には、ブチロラクタム、ピバロラクタム、ε−カプロラクタム、カプリロラクタム、エナントラクタム、ウンデカノラクタム、およびラウロラクタム(ドデカノラクタム)などが含まれる。これらの中でも、得られる熱可塑性エラストマー組成物の破断伸び(靭性)を高めやすくする観点から、ε−カプロラクタム、およびラウロラクタムが好ましく、ε−カプロラクタムがより好ましい。ラクタムは、一種類だけ用いてもよいし、二種類以上を組み合わせてもよい。
(Lactam structural unit)
A lactam structural unit is a structural unit derived from a lactam. The lactam may be a lactam having 4 to 14 carbon atoms, preferably 6 to 12 carbon atoms. Examples of such lactams include butyrolactam, pivalolactam, epsilon-caprolactam, caprilactam, enantolactam, undecanolactam, laurolactam (dodecanolactam), and the like. Among these, ε-caprolactam and laurolactam are preferable, and ε-caprolactam is more preferable from the viewpoint of easily increasing the elongation at break (toughness) of the thermoplastic elastomer composition obtained. Only one type of lactam may be used, or two or more types may be combined.

(アミノカルボン酸構造単位)
アミノカルボン酸構造単位は、アミノカルボン酸に由来する構造単位である。アミノカルボン酸は、前述のラクタムが開環した化合物でありうる。アミノカルボン酸は、ω−アミノカルボン酸やα,ω−アミノカルボン酸などでありうる。中でも、結晶化度を高める観点から、ω−アミノカルボン酸が好ましい。
(Aminocarboxylic acid structural unit)
An aminocarboxylic acid structural unit is a structural unit derived from an aminocarboxylic acid. The aminocarboxylic acid may be a compound in which the aforementioned lactam is ring-opened. The aminocarboxylic acid can be ω-aminocarboxylic acid, α, ω-aminocarboxylic acid, or the like. Among them, ω-aminocarboxylic acid is preferable from the viewpoint of increasing the crystallinity.

ω−アミノカルボン酸は、ω位がアミノ基で置換された、炭素原子数4〜14、好ましくは6〜12の直鎖状または分岐状の脂肪族カルボン酸(好ましくは飽和脂肪族カルボン酸)である。そのような脂肪族カルボン酸の例には、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸などが含まれる。アミノカルボン酸は、一種類だけ用いてもよいし、二種類以上を組み合わせてもよい。   The ω-aminocarboxylic acid is a linear or branched aliphatic carboxylic acid (preferably a saturated aliphatic carboxylic acid) having 4 to 14 carbon atoms, preferably 6 to 12 carbon atoms, substituted at the ω position with an amino group. It is. Examples of such aliphatic carboxylic acids include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Only one type of aminocarboxylic acid may be used, or two or more types may be combined.

脂肪族ポリアミド[I]の例には、ポリアミド4(ポリα−ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド56(ポリペンタメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド116(ポリウンデカメチレンアジパミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、ポリアミド612(ポリヘキサメチレンドデカミド)、ポリアミド1010(ポリデカメチレンセバカミド)などが含まれる。   Examples of the aliphatic polyamide [I] include polyamide 4 (poly α-pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecanamide), polyamide 12 (polydodecanamide), polyamide 46 (polytetramethylene). Adipamide), polyamide 56 (polypentamethylene adipamide), polyamide 66 (polyhexamethylene adipamide), polyamide 116 (polyundecamethylene adipamide), polyamide 610 (polyhexamethylene sebacamide), Polyamide 612 (polyhexamethylene dodecamide), polyamide 1010 (polydecamethylene sebamide) and the like are included.

脂肪族ポリアミド[I]は、コンパウンドや成形時の熱安定性の観点から、少なくとも一部の分子鎖の末端基が末端封止剤により封止されていることが好ましい。特に、溶融安定性、耐熱性、耐加水分解性の観点から、脂肪族ポリアミド[I]の末端アミノ基量は、0.1〜300mmol/kgであることが好ましく、10〜300mmol/kgであることがより好ましく、20〜300mmol/kgであることがさらに好ましく、35〜300mmol/kgであることがさらに好ましく、35〜100mmol/kgであることが特に好ましい。   In the aliphatic polyamide [I], it is preferable that at least some of the end groups of the molecular chain are sealed with an end-capping agent from the viewpoint of the thermal stability during compounding and molding. In particular, from the viewpoints of melt stability, heat resistance, and hydrolysis resistance, the amount of terminal amino groups of the aliphatic polyamide [I] is preferably 0.1 to 300 mmol / kg, and preferably 10 to 300 mmol / kg. More preferably, it is more preferably 20 to 300 mmol / kg, further preferably 35 to 300 mmol / kg, and particularly preferably 35 to 100 mmol / kg.

末端封止剤は、脂肪族ポリアミド[I]の分子末端のアミノ基またはカルボキシル基と反応性を有する単官能性の化合物であれば特に制限はないが、反応性および封止末端の安定性などの観点から、モノカルボン酸またはモノアミンが好ましく、取扱いの容易さなどの観点から、モノカルボン酸がより好ましい。その他、酸無水物モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類なども使用できる。   The end-capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the molecular end of the aliphatic polyamide [I]. In view of the above, monocarboxylic acid or monoamine is preferred, and monocarboxylic acid is more preferred from the viewpoint of ease of handling. In addition, acid anhydride monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like can be used.

末端封止剤として用いられるモノカルボン酸は、アミノ基との反応性を有するものであれば特に制限はない。モノカルボン酸の例には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸などの脂肪族モノカルボン酸;シクロヘキサンカルボン酸などの脂環式モノカルボン酸;安息香酸、トルイル酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸などの芳香族モノカルボン酸が挙げられる。これらは二種以上併用することもできる。中でも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸がさらに好ましい。   The monocarboxylic acid used as a terminal blocking agent is not particularly limited as long as it has reactivity with an amino group. Examples of monocarboxylic acids include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. Acids: Alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid; aromatic monocarboxylic acids such as benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, and phenylacetic acid. Two or more of these may be used in combination. Above all, from the viewpoint of reactivity, stability of the sealing end, price, etc., acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, benzoic acid Acid is more preferred.

末端封止剤として用いられるモノアミンは、カルボキシル基との反応性を有するものであれば特に制限はない。モノアミンの例には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミンなどの脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミンなどの脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミンなどの芳香族モノアミンが含まれる。これらは二種以上併用することもできる。中でも、反応性、沸点、封止末端の安定性および価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンがより好ましい。   The monoamine used as a terminal blocking agent is not particularly limited as long as it has reactivity with a carboxyl group. Examples of monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine; cyclohexylamine, dicyclohexylamine, etc. And aromatic monoamines such as aniline, toluidine, diphenylamine, and naphthylamine. Two or more of these may be used in combination. Of these, butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are more preferable from the viewpoints of reactivity, boiling point, stability of the sealing end and price.

末端アミノ基量は、以下の方法で測定することができる。脂肪族ポリアミド[I]の末端アミノ基量は、脂肪族ポリアミド[I]を0.5〜0.7gを精秤し、m−クレゾール30mLに溶解させる。そして、指示薬である0.1%チモルブルー/m−クレゾール溶液を1〜2滴加えて試料溶液とする。当該試料溶液について、0.02規定のp−トルエンスルホン酸溶液で黄色から青紫色になるまで滴定を実施し、末端アミノ基含量([NH2]、単位:μ当量/g)を特定する。   The amount of terminal amino groups can be measured by the following method. As for the terminal amino group amount of the aliphatic polyamide [I], 0.5 to 0.7 g of the aliphatic polyamide [I] is precisely weighed and dissolved in 30 mL of m-cresol. Then, 1 to 2 drops of 0.1% thymol blue / m-cresol solution as an indicator is added to obtain a sample solution. The sample solution is titrated with a 0.02 normal p-toluenesulfonic acid solution until it turns yellow to blue-violet, and the terminal amino group content ([NH 2], unit: μ equivalent / g) is specified.

脂肪族ポリアミド[I]の融点は、特に限定されないが、150℃以上であることが好ましく、200℃以上であることがより好ましく、240℃以上であることがさらに好ましい。脂肪族ポリアミド[I]の融点を上記下限値以上とすることで、得られる熱可塑性エラストマー組成物の耐熱性をより高めうる。また、脂肪族ポリアミド[I]の融点は、好ましくは290℃以下である。脂肪族ポリアミド[I]の融点を上記上限値以下とすることで、溶融加工中の脂肪族ポリアミド[I]の熱分解や劣化をより効果的に抑制しうる。   Although melting | fusing point of aliphatic polyamide [I] is not specifically limited, It is preferable that it is 150 degreeC or more, It is more preferable that it is 200 degreeC or more, It is further more preferable that it is 240 degreeC or more. By setting the melting point of the aliphatic polyamide [I] to the above lower limit value or more, the heat resistance of the resulting thermoplastic elastomer composition can be further improved. The melting point of the aliphatic polyamide [I] is preferably 290 ° C. or lower. By making the melting point of the aliphatic polyamide [I] not more than the above upper limit value, thermal decomposition and deterioration of the aliphatic polyamide [I] during melt processing can be more effectively suppressed.

脂肪族ポリアミド[I]の融点(Tm)は、以下の条件で測定することができる。DSC(示差走査型熱量測定法)を用いて、脂肪族ポリアミド[I]の試料を加熱して一旦320℃で5分間保持し、次いで10℃/分の速度で23℃まで降温し、その後10℃/分の速度で昇温する。このときの融解に基づく吸熱ピークの温度を、ポリアミドの融点(Tm)とする。   The melting point (Tm) of the aliphatic polyamide [I] can be measured under the following conditions. Using DSC (Differential Scanning Calorimetry), a sample of the aliphatic polyamide [I] is heated and held at 320 ° C. for 5 minutes, then lowered to 23 ° C. at a rate of 10 ° C./min, and then 10 ° C. The temperature is raised at a rate of ° C / min. The temperature of the endothermic peak based on melting at this time is defined as the melting point (Tm) of the polyamide.

脂肪族ポリアミド[I]の融点(Tm)は、例えばモノマー組成によって調整することができる。脂肪族ポリアミド[I]の融点(Tm)を高めるためには、例えば脂肪族ポリアミド[I]を構成するジカルボン酸やジアミン、ラクタムやアミノカルボン酸の炭素原子数を一定以下とすることが好ましい。   The melting point (Tm) of the aliphatic polyamide [I] can be adjusted by, for example, the monomer composition. In order to increase the melting point (Tm) of the aliphatic polyamide [I], for example, the number of carbon atoms of the dicarboxylic acid, diamine, lactam, or aminocarboxylic acid constituting the aliphatic polyamide [I] is preferably set to a certain value or less.

脂肪族ポリアミド[I]の、ISO 1133による290℃、2.16kg荷重におけるメルトフローレート(MFR)は、コンパウンド時の共重合体ゴム[II]との粘度を合わせて微分散させやすく観点から、0.1〜500g/10分であることが好ましく、0.1〜300g/10分であることがより好ましく、0.1〜100g/10分であることがさらに好ましく、1〜100g/10分であることが特に好ましい。   The melt flow rate (MFR) of the aliphatic polyamide [I] at 290 ° C. under a load of 2.16 kg according to ISO 1133 is easy to finely disperse together with the viscosity of the copolymer rubber [II] at the time of compounding, It is preferably 0.1 to 500 g / 10 minutes, more preferably 0.1 to 300 g / 10 minutes, further preferably 0.1 to 100 g / 10 minutes, and 1 to 100 g / 10 minutes. It is particularly preferred that

脂肪族ポリアミド[I]のメルトフローレート(MFR)は、例えば脂肪族ポリアミド[I]の分子量や、末端アミノ基量などで調整することができる。脂肪族ポリアミド[I]のMFRを低くするためには、分子量は大きくし、末端アミノ基量は多くすることが好ましい。   The melt flow rate (MFR) of the aliphatic polyamide [I] can be adjusted by, for example, the molecular weight of the aliphatic polyamide [I] or the amount of terminal amino groups. In order to lower the MFR of the aliphatic polyamide [I], it is preferable to increase the molecular weight and increase the amount of terminal amino groups.

脂肪族ポリアミド[I]の末端アミノ基量は、0.1〜300mmol/kgであることが好ましく、1〜200mmol/kgであることがより好ましく、1〜100mmol/kgであることがさらに好ましく、5〜60mmol/kgであることがさらに好ましい。脂肪族ポリアミド[I]の末端アミノ基量が上記範囲内であると、溶融混練が過度に高まりすぎないため、成形性を高めやすい。   The amount of terminal amino groups of the aliphatic polyamide [I] is preferably 0.1 to 300 mmol / kg, more preferably 1 to 200 mmol / kg, still more preferably 1 to 100 mmol / kg, More preferably, it is 5-60 mmol / kg. When the amount of terminal amino group of the aliphatic polyamide [I] is within the above range, melt kneading is not excessively increased, and thus moldability is easily improved.

(二種以上の脂肪族ポリアミド[I]の組み合わせについて)
前述の通り、本発明のポリアミド系熱可塑性エラストマー組成物は、組成が異なる二種以上の脂肪族ポリアミド[I]を含む。「組成が異なる」とは、脂肪族ポリアミドのモノマー組成が異なることをいう。
(Combination of two or more aliphatic polyamides [I])
As described above, the polyamide-based thermoplastic elastomer composition of the present invention contains two or more aliphatic polyamides [I] having different compositions. “Different composition” means that the monomer composition of the aliphatic polyamide is different.

二種以上の脂肪族ポリアミド[I]のうち少なくとも二種の、ISO 1133による290℃、2.16kg荷重におけるメルトフローレート(MFR)の差ΔMFRは、30g/10分以下である。少なくとも二種の脂肪族ポリアミド[I]のメルトフローレート(MFR)の差が一定以下であると、脂肪族ポリアミド同士の分子量が類似し、混ざりやすくなるため、アミド交換反応が生じやすくなり、結晶性が低下するため、得られる熱可塑性エラストマー組成物の破断伸びを高めやすいと考えられる。   The difference ΔMFR in melt flow rate (MFR) at 290 ° C. under a load of 2.16 kg according to ISO 1133 of at least two of the two or more types of aliphatic polyamide [I] is 30 g / 10 min or less. If the difference in melt flow rate (MFR) between at least two types of aliphatic polyamides [I] is below a certain level, the aliphatic polyamides have similar molecular weights and are likely to mix with each other. Therefore, it is considered that the elongation at break of the resulting thermoplastic elastomer composition is likely to be increased.

少なくとも二種の脂肪族ポリアミド[I]は、得られる熱可塑性エラストマー組成物の破断伸びを高めやすくする観点では、炭素原子数6〜12の脂肪族ジカルボン酸構造単位と炭素原子数4〜12の脂肪族ジアミン構造単位とを含む脂肪族ポリアミド、および炭素原子数6〜12のアミドカルボン酸構造単位または炭素原子数6〜12のラクタム構造単位を含む脂肪族ポリアミドからなる群より選ばれることが好ましい。   At least two types of aliphatic polyamides [I] are aliphatic dicarboxylic acid structural units having 6 to 12 carbon atoms and carbon atoms having 4 to 12 carbon atoms from the viewpoint of easily increasing the elongation at break of the resulting thermoplastic elastomer composition. It is preferably selected from the group consisting of an aliphatic polyamide containing an aliphatic diamine structural unit and an aliphatic polyamide containing an amidocarboxylic acid structural unit having 6 to 12 carbon atoms or a lactam structural unit having 6 to 12 carbon atoms. .

具体的には、少なくとも二種の脂肪族ポリアミド[I]は、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド56、ポリアミド66、ポリアミド116、ポリアミド610、およびポリアミド612からなる群より選ばれることが好ましい。   Specifically, at least two kinds of aliphatic polyamide [I] are selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 56, polyamide 66, polyamide 116, polyamide 610, and polyamide 612. It is preferable.

少なくとも二種の脂肪族ポリアミド[I]のメルトフローレート(MFR)は、メルトフローレート(MFR)の差ΔMFRが前述した範囲を満たす範囲であれば、同じであってもよいし、異なっていてもよい。得られる熱可塑性エラストマー組成物の破断伸びを高めやすくする観点では、少なくとも二種の脂肪族ポリアミド[I]のメルトフローレート(MFR)は異なっていることが好ましい。   The melt flow rate (MFR) of at least two aliphatic polyamides [I] may be the same or different as long as the difference ΔMFR in the melt flow rate (MFR) satisfies the above-mentioned range. Also good. From the viewpoint of easily increasing the elongation at break of the resulting thermoplastic elastomer composition, it is preferable that the melt flow rate (MFR) of at least two kinds of aliphatic polyamides [I] are different.

例えば、少なくとも二種の脂肪族ポリアミド[I]が、メルトフローレートが相対的に高い脂肪族ポリアミド[I]−Aと、メルトフローレートが相対的に低い脂肪族ポリアミド[I]−Bである場合、脂肪族ポリアミド[I]−Aと脂肪族ポリアミド[I]−Bの含有比率は、得られる熱可塑性エラストマー組成物の破断伸びを高めやすくする観点では、脂肪族ポリアミド[I]−A/脂肪族ポリアミド[I]−B=10/90〜80/20(質量比)であることが好ましく、60/40〜80/20(質量比)であることがより好ましい。   For example, at least two types of aliphatic polyamide [I] are aliphatic polyamide [I] -A having a relatively high melt flow rate and aliphatic polyamide [I] -B having a relatively low melt flow rate. In this case, the content ratio of the aliphatic polyamide [I] -A and the aliphatic polyamide [I] -B is aliphatic polyamide [I] -A / from the viewpoint of easily increasing the elongation at break of the resulting thermoplastic elastomer composition. It is preferable that it is aliphatic polyamide [I] -B = 10 / 90-80 / 20 (mass ratio), and it is more preferable that it is 60 / 40-80 / 20 (mass ratio).

少なくとも二種の脂肪族ポリアミド[I]の融点(Tm)は、同じであってもよいし、異なってもよい。例えば、脂肪族ポリアミド[I]−Aの融点(Tm)は、脂肪族ポリアミド[I]−Bの融点(Tm)よりも低くてもよい。その場合、脂肪族ポリアミド[I]−Bと脂肪族ポリアミド[I]−Aの融点(Tm)の差は、100℃以下でありうる。   The melting points (Tm) of at least two types of aliphatic polyamide [I] may be the same or different. For example, the melting point (Tm) of the aliphatic polyamide [I] -A may be lower than the melting point (Tm) of the aliphatic polyamide [I] -B. In that case, the difference in melting point (Tm) between the aliphatic polyamide [I] -B and the aliphatic polyamide [I] -A may be 100 ° C. or less.

特に、得られる熱可塑性エラストマー組成物の破断伸びを高めやすい観点から、少なくとも二種の脂肪族ポリアミド[I]の組み合わせは、ポリアミド66(脂肪族ポリアミド[I]−B)とポリアミド610(脂肪族ポリアミド[I]−A)の組み合わせ、およびポリアミド610(脂肪族ポリアミド[I]−A)とポリアミド6(脂肪族ポリアミド[I]−B)の組み合わせが好ましい。   In particular, from the viewpoint of easily increasing the elongation at break of the resulting thermoplastic elastomer composition, the combination of at least two aliphatic polyamides [I] is polyamide 66 (aliphatic polyamide [I] -B) and polyamide 610 (aliphatic). A combination of polyamide [I] -A) and a combination of polyamide 610 (aliphatic polyamide [I] -A) and polyamide 6 (aliphatic polyamide [I] -B) are preferred.

二種以上の脂肪族ポリアミド[I]の合計含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計質量に対して10〜60質量%であることが好ましい。二種以上の脂肪族ポリアミド[I]の合計含有量が10質量%以上であると、得られる熱可塑性エラストマー組成物に十分な耐熱性や機械的強度(引張強度や破断伸びなど)を付与しやすく、60質量%以下であると、得られる熱可塑性エラストマー組成物の柔軟性が損なわれにくい。二種以上の脂肪族ポリアミド[I]の合計含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計に対して20〜60質量%であることがより好ましく、25〜60質量%であることがさらに好ましい。   The total content of the two or more aliphatic polyamides [I] is 10 to 60% by mass with respect to the total mass of the [I] component, [II] component, [III] component and [IV] component. preferable. When the total content of two or more types of aliphatic polyamide [I] is 10% by mass or more, sufficient heat resistance and mechanical strength (such as tensile strength and elongation at break) are imparted to the resulting thermoplastic elastomer composition. It is easy and the flexibility of the resulting thermoplastic elastomer composition is less likely to be impaired when it is 60% by mass or less. The total content of the two or more aliphatic polyamides [I] is more preferably 20 to 60% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component. Preferably, the content is 25 to 60% by mass.

1−2.エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]
エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]は、エチレン構造単位[a]と、炭素原子数3〜20のα−オレフィン構造単位[b]と、非共役ポリエン構造単位[c]とを含む共重合体ゴムである。
1-2. Ethylene / α-olefin / non-conjugated polyene copolymer rubber [II]
The ethylene / α-olefin / nonconjugated polyene copolymer rubber [II] comprises an ethylene structural unit [a], an α-olefin structural unit [b] having 3 to 20 carbon atoms, and a nonconjugated polyene structural unit [c]. ] Is a copolymer rubber containing.

(エチレン構造単位[a])
エチレン構造単位[a]の含有割合は、共重合体ゴム[II]を構成する全構造単位に対して50〜89質量%であることが好ましく、55〜83質量%であることがより好ましい。
(Ethylene structural unit [a])
The content ratio of the ethylene structural unit [a] is preferably 50 to 89% by mass, and more preferably 55 to 83% by mass with respect to all the structural units constituting the copolymer rubber [II].

(炭素原子数3〜20のα−オレフィン構造単位[b])
共重合体ゴム[II]を構成する炭素原子数3〜20のα−オレフィンの例には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−エイコセンなどが含まれる。中でも、プロピレン、1−ブテン、1−ヘキセン、1−オクテンなどの炭素原子数3〜8のα−オレフィンが好ましい。α−オレフィンは、一種類であってもよいし、二種類以上を組み合わせてもよい。これらのα−オレフィン[b]は、原料コストが比較的安価で共重合性に優れると共に、共重合体ゴム[II]に優れた機械的性質と良好な柔軟性を付与するので好ましい。
(C-C20 α-olefin structural unit [b])
Examples of the α-olefin having 3 to 20 carbon atoms constituting the copolymer rubber [II] include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene and 1-heptene. 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-eicosene and the like. Among these, α-olefins having 3 to 8 carbon atoms such as propylene, 1-butene, 1-hexene and 1-octene are preferable. One type of α-olefin may be used, or two or more types may be combined. These α-olefins [b] are preferable because the raw material costs are relatively low and the copolymerization is excellent, and the mechanical properties and good flexibility are imparted to the copolymer rubber [II].

炭素原子数3〜20のα−オレフィン構造単位[b]の含有割合は、共重合体ゴム[II]を構成する全構造単位に対して10〜49質量%であることが好ましく、15〜43質量%であることがより好ましい。   The content of the α-olefin structural unit [b] having 3 to 20 carbon atoms is preferably 10 to 49% by mass with respect to all the structural units constituting the copolymer rubber [II]. More preferably, it is mass%.

(非共役ポリエン構造単位[c])
共重合体ゴム[II]を構成する非共役ポリエンは、メタロセン系触媒により重合可能な炭素・炭素二重結合を1分子内に1個以上有する非共役ポリエンであり、その例には、脂肪族ポリエンや脂環族ポリエンが含まれる。
(Non-conjugated polyene structural unit [c])
The non-conjugated polyene constituting the copolymer rubber [II] is a non-conjugated polyene having at least one carbon / carbon double bond in one molecule that can be polymerized by a metallocene catalyst. Polyene and alicyclic polyene are included.

脂肪族ポリエンの例には、1,4−ヘキサジエン、1,5−ヘプタジエン、1,6−オクタジエン、1,7−ノナジエン、1,8−デカジエン、1,12−テトラデカジエン、3−メチル−1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4−エチル−1,4−ヘキサジエン、3,3−ジメチル−1,4−ヘキサジエン、5−メチル−1,4−ヘプタジエン、5−エチル−1,4−ヘプタジエン、5−メチル−1,5−ヘプタジエン、6−メチル−1,5−ヘプタジエン、5−エチル−1,5−ヘプタジエン、4−メチル−1,4−オクタジエン、5−メチル−1,4−オクタジエン、4−エチル−1,4−オクタジエン、5−エチル−1,4−オクタジエン、5−メチル−1,5−オクタジエン、6−メチル−1,5−オクタジエン、5−エチル−1,5−オクタジエン、6−エチル−1,5−オクタジエン、6−メチル−1,6−オクタジエン、7−メチル−1,6−オクタジエン、6−エチル−1,6−オクタジエン、6−プロピル−1,6−オクタジエン、6−ブチル−1,6−オクタジエン、4−メチル−1,4−ノナジエン、5−メチル−1,4−ノナジエン、4−エチル−1,4−ノナジエン、5−エチル−1,4−ノナジエン、5−メチル−1,5−ノナジエン、6−メチル−1,5−ノナジエン、5−エチル−1,5−ノナジエン、6−エチル−1,5−ノナジエン、6−メチル−1,6−ノナジエン、7−メチル−1,6−ノナジエン、6−エチル−1,6−ノナジエン、7−エチル−1,6−ノナジエン、7−メチル−1,7−ノナジエン、8−メチル−1,7−ノナジエン、7−エチル−1,7−ノナジエン、5−メチル−1,4−デカジエン、5−エチル−1,4−デカジエン、5−メチル−1,5−デカジエン、6−メチル−1,5−デカジエン、5−エチル−1,5−デカジエン、6−エチル−1,5−デカジエン、6−メチル−1,6−デカジエン、6−エチル−1,6−デカジエン、7−メチル−1,6−デカジエン、7−エチル−1,6−デカジエン、7−メチル−1,7−デカジエン、8−メチル−1,7−デカジエン、7−エチル−1,7−デカジエン、8−エチル−1,7−デカジエン、8−メチル−1,8−デカジエン、9−メチル−1,8−デカジエン、8−エチル−1,8−デカジエン、6−メチル−1,6−ウンデカジエン、9−メチル−1,8−ウンデカジエン、さらには1,7−オクタジエン、1,9−デカジエンなどのα,ω−ジエンが含まれる。中でも、7−メチル−1,6−オクタジエンが好ましい。   Examples of aliphatic polyenes include 1,4-hexadiene, 1,5-heptadiene, 1,6-octadiene, 1,7-nonadiene, 1,8-decadiene, 1,12-tetradecadiene, 3-methyl- 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4-ethyl-1,4-hexadiene, 3,3-dimethyl-1,4-hexadiene, 5- Methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 5-ethyl-1,5-heptadiene, 4- Methyl-1,4-octadiene, 5-methyl-1,4-octadiene, 4-ethyl-1,4-octadiene, 5-ethyl-1,4-octadiene, 5-methyl-1,5-octadiene, 6- Methyl-1,5-o Tadiene, 5-ethyl-1,5-octadiene, 6-ethyl-1,5-octadiene, 6-methyl-1,6-octadiene, 7-methyl-1,6-octadiene, 6-ethyl-1,6- Octadiene, 6-propyl-1,6-octadiene, 6-butyl-1,6-octadiene, 4-methyl-1,4-nonadiene, 5-methyl-1,4-nonadiene, 4-ethyl-1,4- Nonadiene, 5-ethyl-1,4-nonadiene, 5-methyl-1,5-nonadiene, 6-methyl-1,5-nonadiene, 5-ethyl-1,5-nonadiene, 6-ethyl-1,5- Nonadiene, 6-methyl-1,6-nonadiene, 7-methyl-1,6-nonadiene, 6-ethyl-1,6-nonadiene, 7-ethyl-1,6-nonadiene, 7-methyl-1,7- Nonadiene, 8-methyl-1,7-nonadiene 7-ethyl-1,7-nonadiene, 5-methyl-1,4-decadiene, 5-ethyl-1,4-decadiene, 5-methyl-1,5-decadiene, 6-methyl-1,5- Decadiene, 5-ethyl-1,5-decadiene, 6-ethyl-1,5-decadiene, 6-methyl-1,6-decadiene, 6-ethyl-1,6-decadiene, 7-methyl-1,6- Decadiene, 7-ethyl-1,6-decadiene, 7-methyl-1,7-decadiene, 8-methyl-1,7-decadiene, 7-ethyl-1,7-decadiene, 8-ethyl-1,7- Decadiene, 8-methyl-1,8-decadiene, 9-methyl-1,8-decadiene, 8-ethyl-1,8-decadiene, 6-methyl-1,6-undecadiene, 9-methyl-1,8- Undecadiene, and also 1,7-octadiene, 1,9-decadiene Α, ω-dienes such as ene are included. Of these, 7-methyl-1,6-octadiene is preferable.

脂環族ポリエンの例には、5−エチリデン−2−ノルボルネン(ENB)、5−プロピリデン−2−ノルボルネン、5−ブチリデン−2−ノルボルネン、5−ビニル−2−ノルボルネン(VNB);5−アリル−2−ノルボルネンなどの5−アルケニル−2−ノルボルネン;2,5−ノルボルナジエン、ジシクロペンタジエン(DCPD)、ノルボルナジエン、テトラシクロ[4,4,0,12.5,17.10]デカ−3,8−ジエン、2−メチル−2,5−ノルボルナジエン、2−エチル−2,5−ノルボルナジエンなどが含まれる。中でも、5−エチリデン−2−ノルボルネン(ENB)が好ましい。非共役ポリエン構造単位[c]は、一種類であってもよいし、二種類以上を併用してもよい。   Examples of alicyclic polyenes include 5-ethylidene-2-norbornene (ENB), 5-propylidene-2-norbornene, 5-butylidene-2-norbornene, 5-vinyl-2-norbornene (VNB); 2-alkenyl-2-norbornene such as 2-norbornene; 2,5-norbornadiene, dicyclopentadiene (DCPD), norbornadiene, tetracyclo [4,4,0,12.5,17.10] dec-3,8 -Diene, 2-methyl-2,5-norbornadiene, 2-ethyl-2,5-norbornadiene and the like are included. Of these, 5-ethylidene-2-norbornene (ENB) is preferable. One type of nonconjugated polyene structural unit [c] may be used, or two or more types may be used in combination.

非共役ポリエン構造単位[c]の含有割合は、共重合体ゴム[II]を構成する全構造単位に対して1〜20質量%であることが好ましく、2〜15質量%であることがより好ましい。   The content ratio of the non-conjugated polyene structural unit [c] is preferably 1 to 20% by mass and more preferably 2 to 15% by mass with respect to all the structural units constituting the copolymer rubber [II]. preferable.

共重合体ゴム[II]の極限粘度[η]は、0.5〜5.0dl/gであることが好ましく、1.0〜4.5dl/gであることがより好ましく、1.5〜4.0dl/gであることが特に好ましい。この極限粘度[η]は、温度135℃、デカリン中で測定した値であり、ASTM D 1601に従って測定することにより求めることができる。   The intrinsic viscosity [η] of the copolymer rubber [II] is preferably 0.5 to 5.0 dl / g, more preferably 1.0 to 4.5 dl / g, and 1.5 to Particularly preferred is 4.0 dl / g. This intrinsic viscosity [η] is a value measured in decalin at a temperature of 135 ° C. and can be determined by measuring according to ASTM D 1601.

共重合体ゴム[II]の含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計に対して33〜86質量%であることが好ましい。共重合体ゴム[II]の含有量が33質量%以上であると、得られる熱可塑性エラストマー組成物に十分な柔軟性を付与しやすく、86質量%以下であると、得られる熱可塑性エラストマー組成物の耐熱性や機械的強度(引張強度や破断伸びなど)が損なわれにくい。共重合体ゴム[II]の含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計に対して33〜55質量%であることがより好ましく、33〜50質量%であることがさらに好ましく、40〜50質量%であることが特に好ましい。   It is preferable that content of copolymer rubber [II] is 33-86 mass% with respect to the sum total of [I] component, [II] component, [III] component, and [IV] component. When the content of the copolymer rubber [II] is 33% by mass or more, sufficient flexibility can be easily imparted to the obtained thermoplastic elastomer composition, and when it is 86% by mass or less, the obtained thermoplastic elastomer composition The heat resistance and mechanical strength (tensile strength, elongation at break, etc.) of the object are not easily impaired. The content of the copolymer rubber [II] is more preferably 33 to 55% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component. More preferably, it is 50 mass%, and it is especially preferable that it is 40-50 mass%.

共重合体ゴム[II]と脂肪族ポリアミド[I]の質量比([II]/[I])は、コンパウンド時の両者の粘度を合わせて微分散させやすくする観点では、例えば20/80〜70/30であることが好ましく、30/70〜60/40であることがより好ましい。共重合体ゴム[II]の質量比が一定以上であると、得られる熱可塑性エラストマー組成物に十分な柔軟性を付与しやすく、共重合体ゴム[II]の質量比が一定以下であると、得られる熱可塑性エラストマー組成物の機械的強度(引張強度や破断伸びなど)が損なわれにくい。   The mass ratio ([II] / [I]) of the copolymer rubber [II] and the aliphatic polyamide [I] is, for example, 20/80 to 20% from the viewpoint of facilitating fine dispersion by combining the viscosities at the time of compounding. 70/30 is preferable, and 30/70 to 60/40 is more preferable. When the mass ratio of the copolymer rubber [II] is not less than a certain value, it is easy to impart sufficient flexibility to the resulting thermoplastic elastomer composition, and the mass ratio of the copolymer rubber [II] is not more than a certain value. The mechanical strength (tensile strength, elongation at break, etc.) of the resulting thermoplastic elastomer composition is not easily impaired.

1−3.オレフィン系重合体[III]
オレフィン系重合体[III]は、官能基構造単位を0.3〜5.0質量%含むオレフィン系重合体である。官能基構造単位とは、官能基を有する化合物または官能基を有するモノマー由来の構造単位である。官能基構造単位における官能基の例には、カルボン酸基(酸無水物基を含む)、エステル基、エーテル基、アルデヒド基、およびケトン基などが含まれる。そのような官能基構造単位を有するオレフィン系重合体[III]は、官能基を有することにより脂肪族ポリアミド[I]との親和性を有し、かつオレフィン系骨格を有することにより共重合体ゴム[II]との親和性を有することから、両者の相溶性を高めうる。
1-3. Olefin polymer [III]
The olefin polymer [III] is an olefin polymer containing 0.3 to 5.0% by mass of a functional group structural unit. The functional group structural unit is a structural unit derived from a compound having a functional group or a monomer having a functional group. Examples of functional groups in the functional group structural unit include carboxylic acid groups (including acid anhydride groups), ester groups, ether groups, aldehyde groups, and ketone groups. The olefin polymer [III] having such a functional group structural unit has an affinity for the aliphatic polyamide [I] by having a functional group, and has a copolymer structure rubber by having an olefin skeleton. Since it has an affinity with [II], the compatibility of both can be improved.

オレフィン系重合体[III]は、官能基を有する化合物を反応させることによりポリオレフィン分子鎖に官能基を導入した変性ポリオレフィン[III]−1、オレフィンモノマーと官能基を有するモノマーを共重合させて得られる官能基含有オレフィン系共重合体[III]−2が含まれる。   The olefin polymer [III] is obtained by copolymerizing a modified polyolefin [III] -1, in which a functional group is introduced into a polyolefin molecular chain, and an olefin monomer and a monomer having a functional group by reacting a compound having a functional group. Functional group-containing olefin copolymer [III] -2.

変性ポリオレフィン[III]−1を構成するポリオレフィンの例には、炭素数2〜18のオレフィンの単独重合体または共重合体であり、その例には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン・α−オレフィン共重合体が含まれる。中でも、エチレン・α−オレフィン共重合体が好ましい。エチレン・α−オレフィン共重合体におけるα−オレフィンは、炭素数3〜10のα−オレフィンであることが好ましく、その例には、プロピレン、1−ブテンなどが含まれる。エチレン・α−オレフィン共重合体の例には、エチレン−プロピレン共重合体、エチレン−ブテン共重合体が含まれる。   Examples of the polyolefin constituting the modified polyolefin [III] -1 are homopolymers or copolymers of olefins having 2 to 18 carbon atoms, such as low density polyethylene, medium density polyethylene, and high density polyethylene. , Polypropylene, and ethylene / α-olefin copolymers. Among these, an ethylene / α-olefin copolymer is preferable. The α-olefin in the ethylene / α-olefin copolymer is preferably an α-olefin having 3 to 10 carbon atoms, and examples thereof include propylene and 1-butene. Examples of the ethylene / α-olefin copolymer include an ethylene-propylene copolymer and an ethylene-butene copolymer.

変性ポリオレフィン[III]−1を構成する官能基を有する化合物の例には、官能基を有する不飽和カルボン酸またはその誘導体が含まれる。官能基を有する不飽和カルボン酸またはその誘導体の例には、アクリル酸、メタクリル酸、α−エチルアクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、エンドシス−ビシクロ〔2,2,1〕ヘプト−5−エン−2,3−ジカルボン酸(ナジック酸)などの不飽和カルボン酸、およびこれらの酸ハライド、アミド、イミド、酸無水物、エステル等の誘導体が挙げられる。中でも、不飽和ジカルボン酸またはその酸無水物が好ましく、マレイン酸、ナジック酸またはこれらの酸無水物がより好ましく、無水マレイン酸が特に好ましい。無水マレイン酸は、変性前のポリオレフィンとの反応性が比較的高く、無水マレイン酸同士の重合などが生じにくく、基本構造として安定な傾向がある。このため、安定した品質の変性ポリオレフィン[III]−1が得られやすい。   Examples of the compound having a functional group constituting the modified polyolefin [III] -1 include an unsaturated carboxylic acid having a functional group or a derivative thereof. Examples of unsaturated carboxylic acids having functional groups or derivatives thereof include acrylic acid, methacrylic acid, α-ethylacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, endocis -Unsaturated carboxylic acids such as bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic acid (nadic acid), and derivatives of these acid halides, amides, imides, acid anhydrides, esters, etc. Is mentioned. Among these, unsaturated dicarboxylic acids or acid anhydrides thereof are preferable, maleic acid, nadic acid or acid anhydrides thereof are more preferable, and maleic anhydride is particularly preferable. Maleic anhydride has a relatively high reactivity with the polyolefin before modification, polymerization of maleic anhydrides hardly occurs, and the basic structure tends to be stable. For this reason, it is easy to obtain modified polyolefin [III] -1 having stable quality.

変性ポリオレフィン[III]−1の例には、変性エチレン・α−オレフィン共重合体が含まれる。この変性エチレン・α−オレフィン共重合体の密度は、好ましくは0.80〜0.95g/cm、より好ましくは0.85〜0.90g/cmである。 Examples of the modified polyolefin [III] -1 include a modified ethylene / α-olefin copolymer. The density of the modified ethylene / α-olefin copolymer is preferably 0.80 to 0.95 g / cm 3 , more preferably 0.85 to 0.90 g / cm 3 .

官能基含有オレフィン系共重合体[III]−2を構成するオレフィンモノマーは、炭素数2〜18のオレフィンモノマーであることが好ましく、その例には、エチレン、プロピレンが含まれ、好ましくはエチレンである。   The olefin monomer constituting the functional group-containing olefin copolymer [III] -2 is preferably an olefin monomer having 2 to 18 carbon atoms, and examples thereof include ethylene and propylene, preferably ethylene. is there.

官能基含有オレフィン系共重合体[III]−2を構成する官能基を有するモノマーの例には、アクリル系モノマーやビニルモノマーなどが含まれる。   Examples of the monomer having a functional group constituting the functional group-containing olefin copolymer [III] -2 include an acrylic monomer and a vinyl monomer.

官能基含有オレフィン系共重合体[III]−2の例には、エチレン・酢酸ビニル・無水マレイン酸共重合体(アルケマ社製Orevac(登録商標)など)、エチレン・アクリル酸エステル・官能性アクリル酸エステル(例えばグリシジルアクリレートまたはグリシジルメタクリレート)共重合体(アルケマ社製Lotader(登録商標)など)が含まれる。   Examples of the functional group-containing olefin copolymer [III] -2 include ethylene / vinyl acetate / maleic anhydride copolymer (such as Orevac (registered trademark) manufactured by Arkema), ethylene / acrylic acid ester / functional acrylic. Acid ester (for example, glycidyl acrylate or glycidyl methacrylate) copolymers (such as Lotader (registered trademark) manufactured by Arkema) are included.

オレフィン系重合体[III]の官能基構造単位の含有率は、0.3〜5.0質量%であることが好ましく、0.4〜4.0質量%であることがより好ましい。官能基構造単位が0.3質量%以上であると、脂肪族ポリアミド[I]に対するエチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]の分散性が向上しやすいだけでなく、機械的強度が損なわれにくい。一方、官能基構造単位が5.0質量%以下であると、脂肪族ポリアミド[I]との過剰な反応が生じにくいので、ゲル化による溶融流動性の低下が生じにくく、成形性が損なわれにくい。   The content of the functional group structural unit of the olefin polymer [III] is preferably 0.3 to 5.0% by mass, and more preferably 0.4 to 4.0% by mass. When the functional group structural unit is 0.3% by mass or more, not only the dispersibility of the ethylene / α-olefin / non-conjugated polyene copolymer rubber [II] in the aliphatic polyamide [I] is easily improved, but also the machine The mechanical strength is not easily lost. On the other hand, when the functional group structural unit is 5.0% by mass or less, excessive reaction with the aliphatic polyamide [I] is unlikely to occur, so that the melt fluidity is hardly reduced due to gelation, and the moldability is impaired. Hateful.

官能基構造単位の含有率は、オレフィン系重合体[III]を構成する官能基を有しないモノマー由来の構造単位の合計質量に対する官能基を有する化合物または官能基を有するモノマー由来の構造単位の含有割合(質量%)である。   The content of the functional group structural unit is the content of the compound having a functional group or the structural unit derived from a monomer having a functional group with respect to the total mass of the structural unit derived from the monomer having no functional group constituting the olefin polymer [III]. It is a ratio (mass%).

オレフィン系重合体[III]の官能基構造単位の含有率は、13C-NMR測定またはH-NMR測定により測定できる。具体的な測定条件は、以下の通りである。 The content of the functional group structural unit of the olefin polymer [III] can be measured by 13 C-NMR measurement or 1 H-NMR measurement. Specific measurement conditions are as follows.

H-NMR測定の場合、日本電子(株)製ECX400型核磁気共鳴装置を用い、溶媒は、重水素化オルトジクロロベンゼンとし、試料濃度は20mg/0.6mL、測定温度は120℃、観測核はH(400MHz)、シーケンスはシングルパルス、パルス幅は5.12μ秒(45°パルス)、繰り返し時間は7.0秒、積算回数は500回以上とする。基準のケミカルシフトは、テトラメチルシランの水素を0ppmとするが、例えば、重水素化オルトジクロロベンゼンの残存水素由来のピークを7.10ppmとしてケミカルシフトの基準値とすることでも同様の結果を得ることができる。官能基含有化合物由来の1Hなどのピークは、常法によりアサインしうる。 In the case of 1 H-NMR measurement, an ECX400 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used, the solvent is deuterated orthodichlorobenzene, the sample concentration is 20 mg / 0.6 mL, the measurement temperature is 120 ° C., observation The nucleus is 1 H (400 MHz), the sequence is a single pulse, the pulse width is 5.12 μs (45 ° pulse), the repetition time is 7.0 seconds, and the number of integrations is 500 times or more. The standard chemical shift is tetramethylsilane hydrogen of 0 ppm, but the same result can be obtained by setting the peak derived from residual hydrogen of deuterated orthodichlorobenzene to 7.10 ppm and setting the standard value for chemical shift. be able to. A peak such as 1H derived from the functional group-containing compound can be assigned by a conventional method.

13C-NMR測定の場合、測定装置は日本電子(株)製ECP500型核磁気共鳴装置を用い、溶媒としてオルトジクロロベンゼン/重ベンゼン(80/20容量%)混合溶媒、測定温度は120℃、観測核は13C(125MHz)、シングルパルスプロトンデカップリング、45°パルス、繰り返し時間は5.5秒、積算回数は1万回以上、27.50ppmをケミカルシフトの基準値とする。各種シグナルのアサインは常法を基にして行い、シグナル強度の積算値を基に定量を行うことができる。 In the case of 13 C-NMR measurement, an ECP500 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. is used as a measurement apparatus, a mixed solvent of orthodichlorobenzene / heavy benzene (80/20 vol%), a measurement temperature is 120 ° C., The observation nucleus is 13 C (125 MHz), single pulse proton decoupling, 45 ° pulse, repetition time is 5.5 seconds, integration number is 10,000 times or more, and 27.50 ppm is a reference value for chemical shift. Assignment of various signals is performed based on a conventional method, and quantification can be performed based on an integrated value of signal intensity.

オレフィン系重合体[III]の135℃デカリン(デカヒドロナフタレン)溶液中で測定される極限粘度[η]は、0.5〜4.0dl/gであることが好ましく、0.7〜
3.0dl/gであることがより好ましく、0.8〜2.5dl/gであることがさらに好ましい。極限粘度[η]が上記の範囲内であれば、得られるゴム組成物の溶融流動性と、得られる熱可塑性エラストマー組成物の靱性とを高いレベルで両立できる。
The intrinsic viscosity [η] measured in a 135 ° C. decalin (decahydronaphthalene) solution of the olefin polymer [III] is preferably 0.5 to 4.0 dl / g, preferably 0.7 to
It is more preferably 3.0 dl / g, and further preferably 0.8 to 2.5 dl / g. When the intrinsic viscosity [η] is within the above range, the melt fluidity of the obtained rubber composition and the toughness of the obtained thermoplastic elastomer composition can be compatible at a high level.

オレフィン系重合体[III]の極限粘度[η]は、常法に基づき、以下の方法で測定することができる。
サンプル20mgをデカリン15mlに溶解し、ウベローデ粘度計を用い、135℃雰囲気にて比粘度(ηsp)を測定する。このデカリン溶液に更にデカリン5mlを加えて希釈後、同様の比粘度測定を行う。この希釈操作と粘度測定を更に2度繰り返した測定結果を基に、濃度(:C)をゼロに外挿したときの「ηsp/C」値を極限粘度[η]とする。
The intrinsic viscosity [η] of the olefin polymer [III] can be measured by the following method based on a conventional method.
20 mg of a sample is dissolved in 15 ml of decalin, and the specific viscosity (ηsp) is measured in an atmosphere of 135 ° C. using an Ubbelohde viscometer. After adding 5 ml of decalin to the decalin solution and diluting, the same specific viscosity is measured. Based on the measurement result obtained by repeating this dilution operation and viscosity measurement twice more, the “ηsp / C” value when the concentration (: C) is extrapolated to zero is defined as the intrinsic viscosity [η].

オレフィン系重合体[III]の市販品の例には、三井化学(株)のタフマーシリーズ(無水マレイン酸変性エチレン−プロピレンゴム、無水マレイン酸変性エチレン−ブテンゴムなど)、アドマー(無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン);(株)クラレのクラプレン(無水マレイン酸変性イソプレンゴム、マレイン酸モノメチルエステル変性イソプレンゴム)、セプトン(無水マレイン酸変性SEPS);三井デュポンポリケミカル(株)のニュクレル(エチレン-メタクリル酸共重合体)、HPR(無水マレイン酸変性EEA、無水マレイン酸変性EVA);Chemtura社のRoyaltuf(無水マレイン酸変性EPDM);Kraton社のクレイトンFG(無水マレイン酸変性SEBS);JX日鉱日石エネルギー(株)の日石ポリブテン(無水マレイン酸変性ポリブテン);Arkema社のボンダイン(無水マレイン酸変性EEA);旭化成(株)のタフテックM(無水マレイン酸変性SEBS);日本ポリエチレン(株)のレクスパールET(無水マレイン酸変性EEA);三菱化学(株)のモディック(無水マレイン酸変性EVA、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン);住友化学(株)のボンドファースト(E−GMA);LANXESS社のクライナック(カルボキシ変性ニトリルゴム);日本製紙(株)のアウローレン(無水マレイン酸変性EEA)などが含まれる(以上、全て商品名)。これらは、一種類で用いてもよいし、二種以上を併用してもよい。   Examples of commercially available olefin polymer [III] include Tafmer series (maleic anhydride modified ethylene-propylene rubber, maleic anhydride modified ethylene-butene rubber, etc.), Admer (maleic anhydride modified). Polypropylene, maleic anhydride modified polyethylene); Kuraray's kraprene (maleic anhydride modified isoprene rubber, maleic acid monomethyl ester modified isoprene rubber), Septon (maleic anhydride modified SEPS); Mitsui DuPont Polychemical Co., Ltd. (Ethylene-methacrylic acid copolymer), HPR (maleic anhydride modified EEA, maleic anhydride modified EVA); Chemtura Royaltuf (maleic anhydride modified EPDM); Kraton Kraton FG (maleic anhydride modified SEBS); JX Nippon Mining & Energy Co., Ltd. Nippon Polybutene (maleic anhydride modified polybutene); Arkema Bondine (maleic anhydride modified EEA); Asahi Kasei Co., Ltd. Tuftec M (maleic anhydride modified SEBS); Lexpearl ET (maleic anhydride modified EEA) from Mitsubishi Chemical Corporation Modic (maleic anhydride modified EVA, maleic anhydride modified polypropylene, maleic anhydride modified polyethylene); Sumitomo Chemical Co., Ltd. Bond First ( E-GMA); LANACESS Clinac (carboxy-modified nitrile rubber); Nippon Paper Industries Co., Ltd. aurorene (maleic anhydride-modified EEA) and the like (all are trade names). These may be used alone or in combination of two or more.

オレフィン系重合体[III]の含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計に対して0.1〜30質量%であることが好ましい。オレフィン系重合体[III]の含有量が0.1質量%以上であると、[I]成分と[II]成分との相溶性を十分に高めうるので、得られる熱可塑性エラストマー組成物に十分な機械的強度を付与しやすく、30質量%以下であると、[I]成分や[II]成分の特性が損なわれにくい。オレフィン系重合体[III]の含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計に対して3〜30質量%であることがより好ましく、3〜20質量%であることがさらに好ましい。   It is preferable that content of olefin polymer [III] is 0.1-30 mass% with respect to the sum total of [I] component, [II] component, [III] component, and [IV] component. If the content of the olefin polymer [III] is 0.1% by mass or more, the compatibility between the [I] component and the [II] component can be sufficiently increased, and thus sufficient for the obtained thermoplastic elastomer composition. When it is 30% by mass or less, the properties of the [I] component and the [II] component are not easily impaired. The content of the olefin polymer [III] is more preferably 3 to 30% by mass based on the total of the [I] component, the [II] component, the [III] component and the [IV] component, More preferably, it is 20 mass%.

また、オレフィン系重合体[III]と共重合体ゴム[II]の質量比([III]/[II])は、1/500〜1/1であることが好ましい。オレフィン系重合体[III]の質量比が一定以上であると、脂肪族ポリアミド[I]と共重合体ゴム[II]の相溶性が損なわれにくいので、得られる熱可塑性エラストマー組成物に十分な機械的強度を付与しやすく、一定以下であると、脂肪族ポリアミド[I]と共重合体ゴム[II]の特性が損なわれにくい。オレフィン系重合体[III]と共重合体ゴム[II]の質量比は、1/20〜1/1であることがより好ましく、1/20〜1/2であることがさらに好ましい。   Moreover, it is preferable that mass ratio ([III] / [II]) of olefin polymer [III] and copolymer rubber [II] is 1/500-1/1. If the mass ratio of the olefin polymer [III] is a certain value or more, the compatibility between the aliphatic polyamide [I] and the copolymer rubber [II] is difficult to be impaired, and thus sufficient for the resulting thermoplastic elastomer composition. When the mechanical strength is easily imparted and is below a certain level, the characteristics of the aliphatic polyamide [I] and the copolymer rubber [II] are not easily impaired. The mass ratio of the olefin polymer [III] and the copolymer rubber [II] is more preferably 1/20 to 1/1, and further preferably 1/20 to 1/2.

1−4.フェノール樹脂系架橋剤[IV]
フェノール樹脂系架橋剤[IV]は、代表的には、アルキル置換または非置換のフェノールを、アルカリ触媒存在下でアルデヒド(好ましくはホルムアルデヒド)と縮合して得られるレゾ−ル樹脂である。アルキル置換フェノールのアルキル基は、炭素原子数1〜10のアルキル基であることが好ましい。特に、炭素原子数1〜10のアルキル基で置換されたジメチロールフェノール類またはフェノール樹脂が好ましい。
1-4. Phenolic resin crosslinking agent [IV]
The phenol resin-based crosslinking agent [IV] is typically a resole resin obtained by condensing an alkyl-substituted or unsubstituted phenol with an aldehyde (preferably formaldehyde) in the presence of an alkali catalyst. The alkyl group of the alkyl-substituted phenol is preferably an alkyl group having 1 to 10 carbon atoms. Particularly preferred are dimethylolphenols or phenol resins substituted with an alkyl group having 1 to 10 carbon atoms.

フェノール樹脂系架橋剤[IV]の例には、下記式[IV−1]で表される化合物が含まれる。

Figure 2019172829
Examples of the phenol resin-based crosslinking agent [IV] include a compound represented by the following formula [IV-1].
Figure 2019172829

式[IV−1]中、Rは、アルキル基などの有機基であり、好ましくは炭素原子数20未満の有機基、より好ましくは炭素原子数4〜12の有機基である。R'は、水素原子または−CH−OHである。n、mは、0〜20の整数であり、好ましくは0〜15の整数、より好ましくは0〜10の整数である。 In formula [IV-1], R is an organic group such as an alkyl group, preferably an organic group having less than 20 carbon atoms, more preferably an organic group having 4 to 12 carbon atoms. R ′ is a hydrogen atom or —CH 2 —OH. n and m are integers of 0 to 20, preferably an integer of 0 to 15, more preferably an integer of 0 to 10.

フェノール樹脂系架橋剤[IV]の他の例には、メチロール化アルキルフェノール樹脂、ハロゲン化アルキルフェノール樹脂が含まれる。ハロゲン化アルキルフェノール樹脂とは、分子鎖末端の水酸基が臭素などのハロゲン原子で置換されたアルキルフェノール樹脂であり、その例には、下記式[IV−2]で表される化合物が含まれる。

Figure 2019172829
Other examples of the phenol resin-based crosslinking agent [IV] include methylolated alkylphenol resins and halogenated alkylphenol resins. The halogenated alkylphenol resin is an alkylphenol resin in which a hydroxyl group at a molecular chain terminal is substituted with a halogen atom such as bromine, and examples thereof include a compound represented by the following formula [IV-2].
Figure 2019172829

式[IV−2]中のn、mおよびRは、式[IV−1]中のn、mおよびRとそれぞれ同義である。式[IV−2]のR'は、水素原子、−CHまたは−CH−Brである。 N, m and R in the formula [IV-2] have the same meanings as n, m and R in the formula [IV-1], respectively. R ′ in the formula [IV-2] is a hydrogen atom, —CH 3 or —CH 2 —Br.

フェノール樹脂系架橋剤[IV]の市販品の例には、田岡化学工業(株)のタッキロール201、タッキロール250−I、タッキロール250−III;SI Group社のSP1045、SP1055、SP1056;昭和電工(株)の ショウノールCRM;荒川化学工業(株)のタマノル531;住友ベークライト(株)社のスミライトレジンPR;群栄化学工業(株)のレジトップ(以上、全て商品名)などが含まれる。これらは、一種類で用いてもよいし、二種以上を併用してもよい。中でも、田岡化学工業(株)のタッキロール250−III(臭素化アルキルフェノールホルムアルデヒド樹脂)やSI Group社のSP1055(臭素化アルキルフェノールホルムアルデヒド樹脂)が好ましい。   Examples of commercially available phenolic resin-based cross-linking agents [IV] include Takuro Chemical Industry Co., Ltd. Tacco Roll 201, Tacco Roll 250-I, Tacic Roll 250-III; SI Group SP1045, SP1055, SP1056; Showa Denko Co., Ltd. ) Shounol CRM; Amanagawa Chemical Industry Co., Ltd. Tamanoru 531; Sumitomo Bakelite Co., Ltd. Sumitrite Resin PR; Gunei Chemical Industry Co., Ltd. cash register top (all trade names). These may be used alone or in combination of two or more. Among them, Takiroll 250-III (brominated alkylphenol formaldehyde resin) manufactured by Taoka Chemical Industries, Ltd. and SP1055 (brominated alkylphenol formaldehyde resin) manufactured by SI Group are preferable.

これらの中でも、ハロゲン化アルキルフェノール樹脂が特に好ましい。ハロゲンアルキルフェノール樹脂は、共重合体ゴム[II]との相溶性に優れるとともに、反応性に富んでおり、架橋反応開始時間を比較的早くできるので好ましい。   Among these, halogenated alkylphenol resins are particularly preferable. The halogen alkylphenol resin is preferable because it is excellent in compatibility with the copolymer rubber [II], has high reactivity, and can relatively quickly start the crosslinking reaction.

フェノール樹脂系架橋剤[IV]が粉体状の架橋剤である場合、その平均粒径は、好ましくは0.1μm〜3mm、より好ましくは1μm〜1mm、特に好ましくは5μm〜0.5mmである。フレーク状の硬化剤は、ジェットミル、粉砕刃付粉砕機などの粉砕機により粉体状にしてから使用することが好ましい。   When the phenol resin crosslinking agent [IV] is a powdery crosslinking agent, the average particle size is preferably 0.1 μm to 3 mm, more preferably 1 μm to 1 mm, particularly preferably 5 μm to 0.5 mm. . The flaky curing agent is preferably used after being powdered by a pulverizer such as a jet mill or a pulverizer with a pulverizing blade.

フェノール樹脂系架橋剤[IV]の含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計に対して1〜10質量%であることが好ましい。フェノール樹脂系架橋剤[IV]の含有量が1質量%以上であると、[II]成分を十分に架橋させやすいので、得られる熱可塑性エラストマー組成物に十分な耐熱性や機械的強度(引張強度や破断伸びなど)を付与しやすく、フェノール樹脂系架橋剤[IV]の含有量が10質量%以下であると、[I]成分や[II]成分の特性が損なわれにくい。フェノール樹脂系架橋剤[IV]の含有量は、[I]成分、[II]成分、[III]成分および[IV]成分の合計に対して、1〜8質量%であることがより好ましく、2〜6質量%であることがさらに好ましい。   The content of the phenol resin-based crosslinking agent [IV] is preferably 1 to 10% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component. When the content of the phenol resin-based crosslinking agent [IV] is 1% by mass or more, the [II] component is sufficiently easily cross-linked, so that the resulting thermoplastic elastomer composition has sufficient heat resistance and mechanical strength (tensile Strength and elongation at break) are easily imparted, and when the content of the phenol resin-based crosslinking agent [IV] is 10% by mass or less, the properties of the [I] component and the [II] component are not easily impaired. The content of the phenol resin crosslinking agent [IV] is more preferably 1 to 8% by mass with respect to the total of the [I] component, [II] component, [III] component and [IV] component, More preferably, it is 2-6 mass%.

1−5.他の成分
ポリアミド系熱可塑性エラストマー組成物を得るためのゴム組成物は、本発明の効果を損なわない範囲で、必要に応じて[I]〜[IV]成分以外の他の成分をさらに含んでいてもよい。他の成分の例には、フェノール樹脂系架橋剤[IV]以外の他の架橋剤や架橋助剤、可塑剤、酸化防止剤、着色剤、帯電防止剤(導電剤)、充填剤などが含まれる。他の成分の合計含有量は、ポリアミド系熱可塑性エラストマー組成物(またはゴム組成物)に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
1-5. Other Components The rubber composition for obtaining the polyamide-based thermoplastic elastomer composition further includes other components other than the components [I] to [IV] as necessary, as long as the effects of the present invention are not impaired. May be. Examples of other components include cross-linking agents and cross-linking aids other than phenol resin cross-linking agents [IV], plasticizers, antioxidants, colorants, antistatic agents (conductive agents), fillers, etc. It is. The total content of other components is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the polyamide-based thermoplastic elastomer composition (or rubber composition).

他の架橋剤は、前述のゴム組成物の動的架橋が可能な架橋剤であればよく、その例には、硫黄系架橋剤が含まれる。ただし、他の架橋剤は、有機過酸化物を含まないことが好ましい。他の架橋剤として有機過酸化物を使用した場合、本発明のポリアミド系熱可塑性エラストマー組成物に適した溶融混練温度が比較的高いことから、有機過酸化物の分解速度が速くなりすぎる場合がある。その結果、ゴム成分([II]成分、[III]成分)の架橋反応が急激に進みやすく、脂肪族ポリアミド[I]と十分には混練できず、分散が不十分となる場合がある。そのため、ポリアミド系熱可塑性エラストマー組成物の物性が著しく低下する場合がある。   The other crosslinking agent should just be a crosslinking agent which can perform dynamic crosslinking of the above-mentioned rubber composition, and the sulfur type crosslinking agent is contained in the example. However, it is preferable that the other crosslinking agent does not contain an organic peroxide. When an organic peroxide is used as the other cross-linking agent, the decomposition rate of the organic peroxide may become too fast because the melt kneading temperature suitable for the polyamide-based thermoplastic elastomer composition of the present invention is relatively high. is there. As a result, the crosslinking reaction of the rubber component ([II] component, [III] component) is likely to proceed rapidly, and may not be sufficiently kneaded with the aliphatic polyamide [I], resulting in insufficient dispersion. Therefore, the physical properties of the polyamide-based thermoplastic elastomer composition may be significantly reduced.

架橋助剤の例には、水酸化マグネシウム、水酸化カルシウム、酸化マグネシウム、酸化亜鉛などが含まれる。   Examples of the crosslinking aid include magnesium hydroxide, calcium hydroxide, magnesium oxide, zinc oxide and the like.

2.ポリアミド系熱可塑性エラストマー組成物の製造方法
本発明のポリアミド系熱可塑性エラストマー組成物は、前述の脂肪族ポリアミド[I]と、エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]と、オレフィン系重合体[III]と、フェノール樹脂系架橋剤[IV]とを含むゴム組成物の少なくとも一部を動的に架橋させること、具体的には溶融流動状態(動的状態)で架橋させて得ることができる。
2. Process for Producing Polyamide-Based Thermoplastic Elastomer Composition The polyamide-based thermoplastic elastomer composition of the present invention comprises the above-mentioned aliphatic polyamide [I], ethylene / α-olefin / non-conjugated polyene copolymer rubber [II], Dynamically crosslinking at least a part of the rubber composition containing the olefin polymer [III] and the phenol resin crosslinking agent [IV], specifically, in a melt flow state (dynamic state). Can be obtained.

このような動的架橋反応は、通常、前述の組成物を溶融混練装置に供給し、所定温度に加熱して溶融混練することにより行う。   Such a dynamic cross-linking reaction is usually performed by supplying the above-described composition to a melt-kneading apparatus, heating to a predetermined temperature, and melt-kneading.

溶融混練は、[I]成分、[II]成分、[III]成分、および[IV]成分を同時に混練してもよいし;[I]成分、[II]成分、および[III]成分を混練した後、[IV]成分を添加してさらに混練してもよい。   In the melt-kneading, the [I] component, [II] component, [III] component, and [IV] component may be kneaded simultaneously; the [I] component, [II] component, and [III] component are kneaded. Then, the component [IV] may be added and further kneaded.

溶融混練装置は、例えば二軸押出機、単軸押出機、ニーダー、バンバリーミキサーなどを用いることができる。中でも、剪断力や連続生産性が良好である点から、二軸押出機が好ましい。溶融混練温度は、通常、200〜320℃である。溶融混練時間は、通常、0.5〜30分である。   As the melt kneading apparatus, for example, a twin screw extruder, a single screw extruder, a kneader, a Banbury mixer, or the like can be used. Among these, a twin screw extruder is preferable from the viewpoint of good shearing force and continuous productivity. The melt kneading temperature is usually 200 to 320 ° C. The melt kneading time is usually 0.5 to 30 minutes.

この動的架橋によって、ポリアミド系熱可塑性エラストマー組成物中で、エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]が架橋される。つまり、ポリアミド系熱可塑性エラストマー組成物は、脂肪族ポリアミド[I]と、フェノール樹脂系架橋剤[IV]で架橋された共重合体ゴム[II]と、官能基構造単位を0.3〜5.0質量%含むオレフィン系重合体[III]と、架橋助剤[V]とを含みうる。そして、脂肪族ポリアミド[I]を主成分とする海相(マトリクス相)と、架橋された共重合体ゴム[II]と、オレフィン系重合体[III]とを主成分とする島相(分散相)とを有する海島構造が形成される。脂肪族ポリアミド[I]を主成分とする海相(マトリックス相)は、熱可塑性を発現しうる。一方、架橋した共重合体ゴム[II]と、オレフィン系重合体[III]とを主成分とする島相(分散相)は、ゴム弾性を発現しうる。そして、島相(分散相)の平均粒径は比較的小さく、微分散している。そのような熱可塑性エラストマー組成物は、良好な柔軟性を有しつつ、良好な引張強度と破断伸びを有しうる。   By this dynamic crosslinking, the ethylene / α-olefin / non-conjugated polyene copolymer rubber [II] is crosslinked in the polyamide-based thermoplastic elastomer composition. That is, the polyamide-based thermoplastic elastomer composition includes an aliphatic polyamide [I], a copolymer rubber [II] crosslinked with a phenol resin-based crosslinking agent [IV], and a functional group structural unit of 0.3 to 5 Olefin polymer [III] containing 0.0 mass% and crosslinking aid [V] may be included. Then, an island phase (dispersion) mainly composed of a sea phase (matrix phase) mainly composed of aliphatic polyamide [I], a crosslinked copolymer rubber [II], and an olefin polymer [III]. A sea-island structure is formed. The sea phase (matrix phase) containing aliphatic polyamide [I] as a main component can exhibit thermoplasticity. On the other hand, the island phase (dispersed phase) composed mainly of the crosslinked copolymer rubber [II] and the olefin polymer [III] can exhibit rubber elasticity. The average particle size of the island phase (dispersed phase) is relatively small and finely dispersed. Such a thermoplastic elastomer composition may have good tensile strength and elongation at break while having good flexibility.

3.成形体とその用途
前述のポリアミド系熱可塑性エラストマー組成物を成形して得られる成形体は、種々の用途に用いることができ、例えば自動車部品、建材部品、スポーツ用品、医療器具部品、工業部品など、各種用途の成形体として有用である。
3. Molded products and their uses Molded products obtained by molding the above-mentioned polyamide-based thermoplastic elastomer composition can be used for various applications, such as automobile parts, building material parts, sports equipment, medical instrument parts, industrial parts, etc. It is useful as a molded article for various uses.

中でも、前述のポリアミド系熱可塑性エラストマー組成物から得られる成形体は、良好な柔軟性を有しつつ、高い引張強度と破断伸びを有することから、中空成形体(産業用チューブ)や、特定の成形方法(ブロー成形および二色成形など)で得られる成形体に好適である。   Among them, the molded body obtained from the above-mentioned polyamide-based thermoplastic elastomer composition has high tensile strength and elongation at break while having good flexibility, so that it is a hollow molded body (industrial tube) or a specific one. Suitable for molded products obtained by molding methods (blow molding, two-color molding, etc.).

<中空成形体(産業用チューブ)>
産業用チューブは、前述のポリアミド系熱可塑性エラストマー組成物を含む層を少なくとも含む。産業用チューブとは、特に産業機器に使用されるチューブを意味する。産業用チューブの例には、車両(例えば自動車)、空圧・油圧機器、塗装機器、医療機器などの産業機器に必要な流体(燃料、溶剤、薬品、ガスなど)を通すチューブが挙げられる。特に、車両配管用チューブ(例えば燃料系チューブ、吸気系チューブ、冷却系チューブ)、空圧チューブ、油圧チューブ、ペイントスプレーチューブ、医療用チューブ(例えばカテーテル)などの用途において非常に有用である。
<Hollow molding (industrial tube)>
The industrial tube includes at least a layer containing the above-described polyamide-based thermoplastic elastomer composition. An industrial tube means a tube used in particular for industrial equipment. Examples of industrial tubes include tubes through which fluids (fuel, solvent, chemicals, gas, etc.) necessary for industrial equipment such as vehicles (for example, automobiles), pneumatic / hydraulic equipment, painting equipment, medical equipment, and the like are passed. In particular, it is very useful in applications such as tubes for vehicle piping (for example, fuel system tubes, intake system tubes, cooling system tubes), pneumatic tubes, hydraulic tubes, paint spray tubes, medical tubes (for example, catheters).

<射出成形、ブロー成形または二色成形により得られる成形体>
射出成形、ブロー成形または二色成形により得られる成形体は、そのような物性が要求される各種用途(例えば自動車、電気製品)に広く利用可能である。射出成形、ブロー成形または二色成形により得られる成形体の例には、等速ジョイントブーツ、ダストカバーなどのブーツ部品、オイルシール、ガスケット、パッキン、ダストカバー、バルブ、ストッパ、精密シールゴム、ウェザストリップなどが挙げられる。中でも、自動車用等速ジョイントブーツが好ましい。自動車用等速ジョイントブーツの製造方法としては、例えば射出成形法、ブロー成形法(インジェクションブロー成形法、プレスブロー成形法)など、公知の方法を採用できる。
<Molded body obtained by injection molding, blow molding or two-color molding>
Molded articles obtained by injection molding, blow molding or two-color molding can be widely used in various applications (for example, automobiles and electrical products) that require such physical properties. Examples of molded products obtained by injection molding, blow molding or two-color molding include constant velocity joint boots, boot parts such as dust covers, oil seals, gaskets, packing, dust covers, valves, stoppers, precision seal rubber, weather strips Etc. Among them, a constant velocity joint boot for automobiles is preferable. As a method for producing a constant velocity joint boot for automobiles, a known method such as an injection molding method or a blow molding method (an injection blow molding method or a press blow molding method) can be employed.

これらの中でも、前述のポリアミド系熱可塑性エラストマー組成物を成形して得られる成形体は、自動車関連部品である吸気・排気系部品や自動車用等速ジョイントブーツ、ダストカバー、各種ブーツ部品などの樹脂製フレキシブルブーツの材料として、好ましくは吸気・排気系部品として特に有用である。   Among these, molded articles obtained by molding the above-mentioned polyamide-based thermoplastic elastomer composition are resins such as intake / exhaust system parts, automobile constant velocity joint boots, dust covers, and various boot parts. It is particularly useful as a material for the flexible boot made, preferably as an intake / exhaust system part.

吸気・排気系部品の例には、エアホース、エアダクト、ターボダクト、ターボホース、インテークマニホールド、またはエグゾ−ストマニホールドなどが含まれる。   Examples of the intake / exhaust system parts include an air hose, an air duct, a turbo duct, a turbo hose, an intake manifold, or an exhaust manifold.

以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。   In the following, the invention will be described in more detail with reference to examples. These examples do not limit the scope of the present invention.

1.材料
<脂肪族ポリアミド[I]>
I−1:脂肪族ポリアミド(ナイロン66、旭化成社製、レオナ1700S、融点:265℃、末端アミノ基量:6mmol/kg、MFR:5g/10分)
I−2:脂肪族ポリアミド(ナイロン610、Dupont社製、Zytel RS LC3060、融点:225℃、末端アミノ基量:52mmol/kg、MFR:31g/10分)
I−3:脂肪族ポリアミド(ナイロン6、東レ社製、アラミン CM1061、融点225℃、末端アミノ基量:30mmol/kg、MFR:2g/10分)
I−4:脂肪族ポリアミド(ナイロン610、Arkema社製、Rilsan SMVO F、融点225℃、末端アミノ基量:17mmol/kg、MFR:92g/10分)
1. Material <Aliphatic polyamide [I]>
I-1: Aliphatic polyamide (nylon 66, manufactured by Asahi Kasei Corporation, Leona 1700S, melting point: 265 ° C., terminal amino group amount: 6 mmol / kg, MFR: 5 g / 10 minutes)
I-2: Aliphatic polyamide (nylon 610, manufactured by Dupont, Zytel RS LC3060, melting point: 225 ° C., terminal amino group amount: 52 mmol / kg, MFR: 31 g / 10 min)
I-3: Aliphatic polyamide (nylon 6, manufactured by Toray Industries, Inc., Alamin CM1061, melting point 225 ° C., terminal amino group amount: 30 mmol / kg, MFR: 2 g / 10 min)
I-4: Aliphatic polyamide (nylon 610, manufactured by Arkema, Rilsan SMVO F, melting point 225 ° C., terminal amino group amount: 17 mmol / kg, MFR: 92 g / 10 min)

脂肪族ポリアミド[I]の融点、末端アミノ基量およびMFR(ISO 1133に準拠した290℃、2.16kg荷重でのメルトフローレート)は、それぞれ前述した方法で測定した値である。   The melting point, terminal amino group amount, and MFR (melt flow rate at 290 ° C. and 2.16 kg load according to ISO 1133) of the aliphatic polyamide [I] are values measured by the methods described above.

<エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]>
共重合体ゴム[II]として、エチレン・プロピレン・5−エチリデン−2−ノルボルネン共重合体ゴム([η]=2.4dl/g、エチレン含量65質量%、ジエン含量4.6質量%)を用意した。
<Ethylene / α-olefin / non-conjugated polyene copolymer rubber [II]>
As copolymer rubber [II], ethylene / propylene / 5-ethylidene-2-norbornene copolymer rubber ([η] = 2.4 dl / g, ethylene content 65 mass%, diene content 4.6 mass%) is used. Prepared.

<オレフィン系重合体[III]>
オレフィン系重合体[III]として、以下のように合成した変性ポリオレフィンを用意した。
<Olefin polymer [III]>
As the olefin polymer [III], a modified polyolefin synthesized as follows was prepared.

まず、十分に窒素置換したガラス製フラスコに、ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.63mg入れ、メチルアミノキサンのトルエン溶液(Al:0.13ミリモル/リットル)1.57mlおよびトルエン2.43mlをさらに添加して、触媒溶液を得た。
充分に窒素置換した内容積2リットルのステンレス製オートクレーブに、ヘキサン912mlと1−ブテン320mlを導入し、系内の温度を80℃に昇温した。引き続き、トリイソブチルアルミニウム0.9ミリモルおよび上記触媒溶液2.0ml(Zrとして0.0005ミリモル)をエチレンで圧入することにより重合を開始した。
エチレンを連続的に供給することにより全圧を8.0kg/cm−Gに保ち、80℃で30分間重合を行った。少量のエタノールを系中に導入して重合を停止させた後、未反応のエチレンをパージした。得られた溶液を大過剰のメタノール中に投入することにより、白色固体を析出させた。
この白色固体を濾過により回収し、減圧下で一晩乾燥し、白色固体状のエチレン・1−ブテン共重合体を得た。このエチレン・1−ブテン共重合体の密度は、0.862g/cm、MFR(ASTM D1238規格、190℃、2160g荷重)は、0.5g/10分、1−ブテン構造単位含有率は4モル%であった。
このエチレン・1−ブテン共重合体100質量部に、無水マレイン酸1.0質量部と過酸化物(日油(株)製、商品名パーヘキシン25B)0.04質量部とを混合し、得られた混合物を230℃に設定した1軸押出機で溶融グラフト変性することによって、上記の無水マレイン酸変性エチレン・1−ブテン共重合体を得た。
First, 0.63 mg of bis (1,3-dimethylcyclopentadienyl) zirconium dichloride is placed in a glass flask sufficiently substituted with nitrogen, and a toluene solution of methylaminoxan (Al: 0.13 mmol / liter). An additional 57 ml and 2.43 ml of toluene were added to obtain a catalyst solution.
912 ml of hexane and 320 ml of 1-butene were introduced into a 2 liter stainless steel autoclave sufficiently purged with nitrogen, and the temperature inside the system was raised to 80 ° C. Subsequently, polymerization was started by injecting 0.9 mmol of triisobutylaluminum and 2.0 ml of the above catalyst solution (0.0005 mmol as Zr) with ethylene.
By continuously supplying ethylene, the total pressure was kept at 8.0 kg / cm 2 -G, and polymerization was carried out at 80 ° C. for 30 minutes. A small amount of ethanol was introduced into the system to stop the polymerization, and then unreacted ethylene was purged. The obtained solution was put into a large excess of methanol to precipitate a white solid.
The white solid was collected by filtration and dried overnight under reduced pressure to obtain a white solid ethylene / 1-butene copolymer. The density of this ethylene / 1-butene copolymer is 0.862 g / cm 3 , the MFR (ASTM D1238 standard, 190 ° C., 2160 g load) is 0.5 g / 10 minutes, and the 1-butene structural unit content is 4 Mol%.
100 parts by mass of this ethylene / 1-butene copolymer was mixed with 1.0 part by mass of maleic anhydride and 0.04 parts by mass of peroxide (trade name Perhexin 25B, manufactured by NOF Corporation). The obtained mixture was melt-grafted with a single screw extruder set at 230 ° C. to obtain the maleic anhydride-modified ethylene / 1-butene copolymer.

得られた無水マレイン酸変性エチレン・1−ブテン共重合体の無水マレイン酸グラフト変性量(官能基構造単位含有率)は0.97質量%であり、135℃デカリン溶液中で測定した極限粘度[η]1.98dl/gであった。官能基構造単位の含有率は、前述の13CNMR法で測定し、極限粘度[η]は前述の方法で測定した。 The maleic anhydride-modified ethylene / 1-butene copolymer obtained had a maleic anhydride graft modification amount (functional group structural unit content) of 0.97% by mass, and the intrinsic viscosity measured in a 135 ° C. decalin solution [ η] was 1.98 dl / g. The content of the functional group structural unit was measured by the 13 CNMR method described above, and the intrinsic viscosity [η] was measured by the method described above.

<フェノール樹脂系架橋剤[IV]>
フェノール樹脂系架橋剤[IV]として、フレーク状の臭素化アルキルフェノールホルムアルデヒド樹脂(田岡化学工業(株)製、商品名タッキロール250−III)をヘンシェルミキサーにて10秒間攪拌して粉状にしたものを用意した。
<Phenolic resin crosslinking agent [IV]>
As a phenol resin-based cross-linking agent [IV], a flake brominated alkylphenol formaldehyde resin (manufactured by Taoka Chemical Industry Co., Ltd., trade name Tackol 250-III) is stirred for 10 seconds with a Henschel mixer and powdered. Prepared.

<架橋助剤[V]>
ハクスイテック社製、酸化亜鉛二種
<Crosslinking aid [V]>
2 types of zinc oxide manufactured by Hakusui Tech Co., Ltd.

2.ポリアミド系熱可塑性エラストマー組成物の調製
<実施例1>
脂肪族ポリアミド[I]−Aとして、脂肪族ポリアミド[I−2](ポリアミド610)を30質量%、脂肪族ポリアミド[I]−Bとして、脂肪族ポリアミド[I−1](ポリアミド66)を10質量%、共重合体ゴム[II]として、上記エチレン・プロピレン・5−エチリデン−2−ノルボルネン共重合体ゴムを45質量%、オレフィン系重合体[III]として、上記合成した無水マレイン酸変性エチレン・1−ブテン共重合体を12質量%、フェノール樹脂系架橋剤[IV]として、上記臭素化アルキルフェノールホルムアルデヒド樹脂を、ヘンシェルミキサーにて10秒間攪拌して粉状にしたものを3質量%、および少量の架橋助剤[V]として、上記酸化亜鉛二種を予備混合し、これを二軸押出機((株)日本製鋼所製、TEX−30)に供給し、シリンダー温度280℃、スクリュー回転数300rpmで、溶融混練した。この二軸押出機から押出されたストランドを切断して、ポリアミド系熱可塑性エラストマー組成物のペレットを得た。
2. Preparation of polyamide-based thermoplastic elastomer composition <Example 1>
As aliphatic polyamide [I] -A, 30% by mass of aliphatic polyamide [I-2] (polyamide 610) and as aliphatic polyamide [I] -B, aliphatic polyamide [I-1] (polyamide 66) 10% by mass of the copolymer rubber [II], 45% by mass of the ethylene / propylene / 5-ethylidene-2-norbornene copolymer rubber, and the synthesized maleic anhydride modified as the olefin polymer [III]. 12% by mass of an ethylene / 1-butene copolymer, 3% by mass of the brominated alkylphenol formaldehyde resin, which was stirred for 10 seconds with a Henschel mixer as a phenol resin-based crosslinking agent [IV], And as a small amount of crosslinking aid [V], two types of the above zinc oxide were premixed, and this was mixed with a twin-screw extruder (manufactured by Nippon Steel Works, TEX). Supplied to 30), a cylinder temperature of 280 ° C., at a screw rotation speed 300 rpm, and melt-kneaded. Strands extruded from this twin-screw extruder were cut to obtain polyamide thermoplastic elastomer composition pellets.

<実施例2〜4、比較例1〜6>
表1に示される組成に変更した以外は実施例1と同様にしてポリアミド系熱可塑性エラストマー組成物のペレットを得た。
<Examples 2-4, Comparative Examples 1-6>
Except having changed into the composition shown in Table 1, it carried out similarly to Example 1, and obtained the pellet of the polyamide-type thermoplastic elastomer composition.

実施例1〜4および比較例1〜6で得られたポリアミド系熱可塑性エラストマー組成物の、曲げ特性(曲げ強度、曲げ弾性率)および引張特性(引張強度および引張伸び)を、それぞれ以下の方法で測定した。   The bending properties (bending strength, bending elastic modulus) and tensile properties (tensile strength and tensile elongation) of the polyamide-based thermoplastic elastomer compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 6 were respectively determined by the following methods. Measured with

(曲げ強度・曲げ弾性率)
ポリアミド系熱可塑性エラストマー樹脂組成物を、下記射出成型機を用いて、下記成形条件で成形し、長さ63.5mm、幅12.5mm、厚さ3.2mmの試験片を得た。
成形機:日精樹脂工業(株) EP5型射出成形機
成形機シリンダー温度:280℃
金型温度:80℃
得られた試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で曲げ試験を行い、曲げ強度(MPa)および曲げ弾性率(MPa)を測定した。
(Bending strength / flexural modulus)
The polyamide-based thermoplastic elastomer resin composition was molded under the following molding conditions using the following injection molding machine to obtain a test piece having a length of 63.5 mm, a width of 12.5 mm, and a thickness of 3.2 mm.
Molding machine: Nissei Plastic Industry Co., Ltd. EP5 injection molding machine Molding machine cylinder temperature: 280 ° C
Mold temperature: 80 ℃
The obtained test piece was allowed to stand for 24 hours in a nitrogen atmosphere at a temperature of 23 ° C. Next, a bending test was performed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%, and bending strength (MPa) and bending elastic modulus (MPa) were measured.

(引張強度・引張伸び)
ポリアミド系熱可塑性エラストマー樹脂組成物を、下記射出成型機を用いて、下記成形条件で成形し、長さ63.5mm、幅3mm、厚さ3.2mmのダンベル試験片を得た。
成形機:日精樹脂工業(株) EP5型射出成形機
成形機シリンダー温度:280℃
金型温度:80℃
得られた試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で引張試験を行い、引張強度(MPa)および伸び率(%)を測定した。
(Tensile strength / tensile elongation)
The polyamide-based thermoplastic elastomer resin composition was molded under the following molding conditions using the following injection molding machine to obtain a dumbbell test piece having a length of 63.5 mm, a width of 3 mm, and a thickness of 3.2 mm.
Molding machine: Nissei Plastic Industry Co., Ltd. EP5 type injection molding machine Molding machine cylinder temperature: 280 ° C
Mold temperature: 80 ℃
The obtained test piece was allowed to stand for 24 hours in a nitrogen atmosphere at a temperature of 23 ° C. Next, a tensile test was performed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%, and the tensile strength (MPa) and the elongation (%) were measured.

実施例1〜4および比較例1〜6の評価結果を表1に示す。   The evaluation results of Examples 1 to 4 and Comparative Examples 1 to 6 are shown in Table 1.

Figure 2019172829
Figure 2019172829

表1に示されるように、MFRの差が30g/10分以下の、組成が異なる二種類の脂肪族ポリアミドを組み合わせた実施例1〜3の熱可塑性エラストマー組成物は、そのうち1種類の脂肪族ポリアミドを用いた比較例1および2の熱可塑性エラストマー組成物やΔMFRの差が30g/10分を超える二種類の脂肪族ポリアミドを組み合わせた比較例5の熱可塑性エラストマー組成物と同等の曲げ強度や引張強度を有しつつ、高い破断伸びを有することがわかる。
同様に、MFRの差が30g/10分以下の、組成が異なる二種類の脂肪族ポリアミドを組み合わせた実施例4の熱可塑性エラストマー組成物は、そのうち1種類の脂肪族ポリアミドを用いた比較例2および3の熱可塑性エラストマー組成物や、ΔMFRの差が30g/10分を超える二種類の脂肪族ポリアミドを組み合わせた比較例6の熱可塑性エラストマー組成物と同等の曲げ強度や引張強度を有しつつ、それらよりも高い破断伸びを有することがわかる。
As shown in Table 1, the thermoplastic elastomer compositions of Examples 1 to 3 in which two types of aliphatic polyamides having different compositions with an MFR difference of 30 g / 10 min or less were combined were one type of aliphatic Bending strength equivalent to the thermoplastic elastomer composition of Comparative Examples 1 and 2 using polyamide and the thermoplastic elastomer composition of Comparative Example 5 in which two types of aliphatic polyamides having a difference in ΔMFR exceeding 30 g / 10 min are combined It can be seen that it has a high elongation at break while having a tensile strength.
Similarly, the thermoplastic elastomer composition of Example 4 in which two types of aliphatic polyamides having different compositions with an MFR difference of 30 g / 10 min or less were combined was used in Comparative Example 2 in which one type of aliphatic polyamide was used. While having the same bending strength and tensile strength as the thermoplastic elastomer composition of Comparative Example 6 and the thermoplastic elastomer composition of Comparative Example 6 in which two types of aliphatic polyamides having a difference in ΔMFR of more than 30 g / 10 minutes are combined. It can be seen that they have higher elongation at break than those.

特に、メルトフローレート(MFR)が相対的に高い脂肪族ポリアミド[I]−Aが、メルトフローレート(MFR)が相対的に低い脂肪族ポリアミド[I]−Bよりも多く含まれていると、得られる熱可塑性エラストマー組成物の破断伸びがさらに高まることがわかる(実施例1〜3の対比)。   In particular, when aliphatic polyamide [I] -A having a relatively high melt flow rate (MFR) is contained more than aliphatic polyamide [I] -B having a relatively low melt flow rate (MFR). It can be seen that the elongation at break of the resulting thermoplastic elastomer composition is further increased (contrast with Examples 1 to 3).

本発明によれば、柔軟性と良好な引張強度とを有しつつ、高い破断伸びを有する成形体を付与しうるポリアミド系熱可塑性エラストマー組成物を提供することができる。   According to the present invention, it is possible to provide a polyamide-based thermoplastic elastomer composition that can give a molded article having high elongation at break while having flexibility and good tensile strength.

Claims (11)

示差走査熱量測定(DSC)で測定される融点(Tm)が150〜290℃であり、かつ組成が異なる少なくとも二種の脂肪族ポリアミド[I]と、
エチレン構造単位[a]と、炭素原子数3〜20のα−オレフィン構造単位[b]と、メタロセン系触媒により重合可能な炭素−炭素二重結合を1分子内に1個以上有する非共役ポリエン構造単位[c]とを含むエチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]と、
官能基構造単位を0.3〜5.0質量%含むオレフィン系重合体[III]と、
フェノール樹脂系架橋剤[IV]と
を含むゴム組成物の架橋物であるポリアミド系熱可塑性エラストマー組成物であって、
前記少なくとも二種の脂肪族ポリアミド[I]の、ISO 1133による290℃、2.16kg荷重におけるメルトフローレート(MFR)の差が、30g/10分以下である、
ポリアミド系熱可塑性エラストマー組成物。
At least two aliphatic polyamides [I] having a melting point (Tm) measured by differential scanning calorimetry (DSC) of 150 to 290 ° C. and different compositions;
Non-conjugated polyene having an ethylene structural unit [a], an α-olefin structural unit [b] having 3 to 20 carbon atoms, and at least one carbon-carbon double bond polymerizable by a metallocene catalyst in one molecule. An ethylene / α-olefin / non-conjugated polyene copolymer rubber [II] containing a structural unit [c];
An olefin polymer [III] containing 0.3 to 5.0% by mass of a functional group structural unit;
A polyamide-based thermoplastic elastomer composition which is a crosslinked product of a rubber composition containing a phenol resin-based crosslinking agent [IV],
The difference in melt flow rate (MFR) at 290 ° C. under a load of 2.16 kg according to ISO 1133 between the at least two aliphatic polyamides [I] is 30 g / 10 minutes or less.
A polyamide-based thermoplastic elastomer composition.
前記少なくとも二種の脂肪族ポリアミド[I]は、炭素原子数6〜12のジカルボン酸単位と炭素原子数4〜12のジアミン単位とを含む脂肪族ポリアミド、炭素原子数6〜12のラクタムまたはアミノカルボン酸単位を含む脂肪族ポリアミドからなる群より選ばれる、
請求項1に記載のポリアミド系熱可塑性エラストマー組成物。
The at least two kinds of aliphatic polyamides [I] are aliphatic polyamides containing dicarboxylic acid units having 6 to 12 carbon atoms and diamine units having 4 to 12 carbon atoms, lactams having 6 to 12 carbon atoms, or amino acids. Selected from the group consisting of aliphatic polyamides containing carboxylic acid units,
The polyamide-based thermoplastic elastomer composition according to claim 1.
前記少なくとも二種の脂肪族ポリアミド[I]は、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド56、ポリアミド66、ポリアミド69、ポリアミド910、ポリアミド912、ポリアミド116、ポリアミド610、およびポリアミド612、ポリアミド1010からなる群より選ばれる、
請求項1または2に記載のポリアミド系熱可塑性エラストマー組成物。
The at least two aliphatic polyamides [I] are polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 56, polyamide 66, polyamide 69, polyamide 910, polyamide 912, polyamide 116, polyamide 610, and polyamide 612. Selected from the group consisting of polyamide 1010,
The polyamide-based thermoplastic elastomer composition according to claim 1 or 2.
前記少なくとも二種の脂肪族ポリアミド[I]は、前記メルトフローレート(MFR)が相対的に高い脂肪族ポリアミド[I]−Aと、前記メルトフローレート(MFR)が相対的に低い脂肪族ポリアミド[I]−Bとを含み、
前記脂肪族ポリアミド[I]−Aは、前記脂肪族ポリアミド[I]−Bよりも多く含まれる、
請求項1〜3のいずれか一項に記載のポリアミド系熱可塑性エラストマー組成物。
The at least two types of aliphatic polyamides [I] include the aliphatic polyamide [I] -A having a relatively high melt flow rate (MFR) and the aliphatic polyamide having a relatively low melt flow rate (MFR). [I] -B,
The aliphatic polyamide [I] -A is contained more than the aliphatic polyamide [I] -B.
The polyamide-type thermoplastic elastomer composition as described in any one of Claims 1-3.
前記少なくとも二種の脂肪族ポリアミド[I]は、ポリアミド610とポリアミド66である、
請求項1〜4のいずれか一項に記載のポリアミド系熱可塑性エラストマー組成物。
The at least two aliphatic polyamides [I] are polyamide 610 and polyamide 66.
The polyamide-type thermoplastic elastomer composition as described in any one of Claims 1-4.
前記オレフィン系重合体[III]の官能基構造単位は、カルボン酸基、エステル基、エーテル基、アルデヒド基およびケトン基からなる群より選ばれる一以上の官能基由来の構造単位を含む、
請求項1〜5のいずれか一項に記載のポリアミド系熱可塑性エラストマー組成物。
The functional group structural unit of the olefin polymer [III] includes a structural unit derived from one or more functional groups selected from the group consisting of a carboxylic acid group, an ester group, an ether group, an aldehyde group, and a ketone group.
The polyamide-type thermoplastic elastomer composition as described in any one of Claims 1-5.
前記オレフィン系重合体[III]の官能基構造単位は、無水マレイン酸構造単位である、
請求項6に記載のポリアミド系熱可塑性エラストマー組成物。
The functional group structural unit of the olefin polymer [III] is a maleic anhydride structural unit.
The polyamide-based thermoplastic elastomer composition according to claim 6.
前記少なくとも二種の脂肪族ポリアミド[I]、前記エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]、前記オレフィン系重合体[III]および前記フェノール樹脂系架橋剤[IV]の合計を100質量部としたとき、
前記少なくとも二種の脂肪族ポリアミド[I]を合計10〜60質量部と、
前記エチレン・α−オレフィン・非共役ポリエン共重合体ゴム[II]を33〜86質量部と、
前記オレフィン系重合体[III]を0.1〜30質量部と、
前記フェノール樹脂系架橋剤[IV]を1〜10質量部とを含む、
請求項1〜7のいずれか一項に記載のポリアミド系熱可塑性エラストマー組成物。
The total of the at least two aliphatic polyamides [I], the ethylene / α-olefin / non-conjugated polyene copolymer rubber [II], the olefin polymer [III], and the phenol resin crosslinking agent [IV]. Is 100 parts by mass,
A total of 10 to 60 parts by mass of the at least two aliphatic polyamides [I],
33 to 86 parts by mass of the ethylene / α-olefin / non-conjugated polyene copolymer rubber [II],
0.1 to 30 parts by mass of the olefin polymer [III],
Including 1 to 10 parts by mass of the phenol resin-based crosslinking agent [IV],
The polyamide-type thermoplastic elastomer composition as described in any one of Claims 1-7.
請求項1〜8のいずれか一項に記載のポリアミド系熱可塑性エラストマー組成物から得られる、
成形体。
Obtained from the polyamide-based thermoplastic elastomer composition according to any one of claims 1 to 8,
Molded body.
請求項1〜8のいずれか一項に記載のポリアミド系熱可塑性エラストマー組成物から得られる、
中空成形体。
Obtained from the polyamide-based thermoplastic elastomer composition according to any one of claims 1 to 8,
Hollow molded body.
前記中空成形体は、自動車関連部品である、
請求項10に記載の中空成形体。
The hollow molded body is an automobile-related part.
The hollow molded body according to claim 10.
JP2018062852A 2018-03-28 2018-03-28 Polyamide-based thermoplastic elastomer composition, molded article and hollow molded article Active JP7289615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062852A JP7289615B2 (en) 2018-03-28 2018-03-28 Polyamide-based thermoplastic elastomer composition, molded article and hollow molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062852A JP7289615B2 (en) 2018-03-28 2018-03-28 Polyamide-based thermoplastic elastomer composition, molded article and hollow molded article

Publications (2)

Publication Number Publication Date
JP2019172829A true JP2019172829A (en) 2019-10-10
JP7289615B2 JP7289615B2 (en) 2023-06-12

Family

ID=68170005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062852A Active JP7289615B2 (en) 2018-03-28 2018-03-28 Polyamide-based thermoplastic elastomer composition, molded article and hollow molded article

Country Status (1)

Country Link
JP (1) JP7289615B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034375A (en) * 1998-07-21 2000-02-02 Sumitomo Rubber Ind Ltd Crosslinked rubber composition, and rubber roller and production of the same rubber composition
JP2000159936A (en) * 1998-11-25 2000-06-13 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition and pneumatic tire and hose using the same
JP2003096245A (en) * 2001-09-26 2003-04-03 Mitsui Chemicals Inc Thermoplastic elastomer composition, its manufacturing method, and molding from the composition
JP2007297581A (en) * 2006-04-06 2007-11-15 Toyobo Co Ltd Polyamide resin composition excellent in rigidity and molded article therefrom
JP2008231406A (en) * 2007-02-23 2008-10-02 Toray Ind Inc Polyamide resin composition
JP2009191871A (en) * 2008-02-12 2009-08-27 Ube Ind Ltd Hydrogen tank liner material and hydrogen tank liner
WO2015083819A1 (en) * 2013-12-06 2015-06-11 三井化学株式会社 Polyamide thermoplastic elastomer composition and molded article thereof
JP2016501301A (en) * 2012-12-04 2016-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Heat resistant hydrocarbon elastomer composition
WO2018084256A1 (en) * 2016-11-04 2018-05-11 三井化学株式会社 Polyamide-based thermoplastic elastomer composition, molded body and blow molded body
JP2019163360A (en) * 2018-03-19 2019-09-26 三井化学株式会社 Polyamide-based thermoplastic elastomer composition, molding, and hollow molding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034375A (en) * 1998-07-21 2000-02-02 Sumitomo Rubber Ind Ltd Crosslinked rubber composition, and rubber roller and production of the same rubber composition
JP2000159936A (en) * 1998-11-25 2000-06-13 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition and pneumatic tire and hose using the same
JP2003096245A (en) * 2001-09-26 2003-04-03 Mitsui Chemicals Inc Thermoplastic elastomer composition, its manufacturing method, and molding from the composition
JP2007297581A (en) * 2006-04-06 2007-11-15 Toyobo Co Ltd Polyamide resin composition excellent in rigidity and molded article therefrom
JP2008231406A (en) * 2007-02-23 2008-10-02 Toray Ind Inc Polyamide resin composition
JP2009191871A (en) * 2008-02-12 2009-08-27 Ube Ind Ltd Hydrogen tank liner material and hydrogen tank liner
JP2016501301A (en) * 2012-12-04 2016-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Heat resistant hydrocarbon elastomer composition
WO2015083819A1 (en) * 2013-12-06 2015-06-11 三井化学株式会社 Polyamide thermoplastic elastomer composition and molded article thereof
WO2018084256A1 (en) * 2016-11-04 2018-05-11 三井化学株式会社 Polyamide-based thermoplastic elastomer composition, molded body and blow molded body
JP2019163360A (en) * 2018-03-19 2019-09-26 三井化学株式会社 Polyamide-based thermoplastic elastomer composition, molding, and hollow molding

Also Published As

Publication number Publication date
JP7289615B2 (en) 2023-06-12

Similar Documents

Publication Publication Date Title
CN105899586B (en) Thermoplastic polyamide elastomer composition and its products formed
KR101479800B1 (en) Polyamide blend molding compound
US4755552A (en) Impact-resistant polyamide molding compounds
EP2121842B1 (en) Polyamide resin composition having superior extensibility and flexing fatigue and pneumatic tire and hose using the same
JP6721576B2 (en) Thermoplastic polymer composition having improved mechanical properties
TWI240737B (en) Heat-and-oil resistant polymer blends
JP6603346B2 (en) Heat resistant hydrocarbon elastomer composition
JP2019530766A (en) POLYAMIDE RESIN, PROCESS FOR PRODUCING THE SAME, AND BONDED BODY WITH METAL
JP2018109199A (en) Heat resistant hydrocarbon elastomer compositions
US5777033A (en) Co-cured rubber-thermoplastic elastomer compositions
EP0128775B1 (en) Resinous composition
JP2019059059A (en) Laminated structure
JP6876715B2 (en) Polyamide-based thermoplastic elastomer compositions, moldings and hollow moldings
JP7289615B2 (en) Polyamide-based thermoplastic elastomer composition, molded article and hollow molded article
JP2019163360A (en) Polyamide-based thermoplastic elastomer composition, molding, and hollow molding
CN1214349A (en) Copolymides and polyamide compositions, process of manufacture and applications
JP7061513B2 (en) Resin composition and molded product, and method for manufacturing the resin composition
JP7336858B2 (en) Resin composition, molded article, and method for producing resin composition
KR20140087907A (en) Thermoplastic resin composition and molded product including same
JP2023145813A (en) polyamide resin composition
KR20210056335A (en) Thermoplastic resin composition
JP2019059058A (en) Laminated structure
JPS648660B2 (en)
ES2886124T3 (en) Heat resistant ethylene vinyl acetate copolymer composition and process for its production
JPH0782477A (en) Polyamide resin composition

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230531

R150 Certificate of patent or registration of utility model

Ref document number: 7289615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150