JP2019172804A - Epoxy resin powder coating - Google Patents

Epoxy resin powder coating Download PDF

Info

Publication number
JP2019172804A
JP2019172804A JP2018062291A JP2018062291A JP2019172804A JP 2019172804 A JP2019172804 A JP 2019172804A JP 2018062291 A JP2018062291 A JP 2018062291A JP 2018062291 A JP2018062291 A JP 2018062291A JP 2019172804 A JP2019172804 A JP 2019172804A
Authority
JP
Japan
Prior art keywords
epoxy resin
powder coating
coating
powder
resin powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018062291A
Other languages
Japanese (ja)
Other versions
JP7101008B2 (en
Inventor
関谷 勝則
Katsunori Sekiya
勝則 関谷
篠原 周也
Shuya Shinohara
周也 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2018062291A priority Critical patent/JP7101008B2/en
Publication of JP2019172804A publication Critical patent/JP2019172804A/en
Application granted granted Critical
Publication of JP7101008B2 publication Critical patent/JP7101008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an epoxy resin powder coating capable of providing good coating appearance with uniform coated film thickness even in a coating method by depositing the same on an inner surface of a hollow body pre-heated under reduced pressure, without heating and temperature rising, and suitable for a tube inner surface or the like.SOLUTION: There is provided an epoxy resin powder coating used in a coating method including aspirating and depositing the powder coating to an inner surface of a hollow article to be coated which is heated in a specific pre-heating temperature in a range of 150 to 280°C, and curing as it is to form a cured coated film, containing an epoxy resin (A), a curing agent (B), and a pigment (C), and having D10 in particle size distribution of 5 μm or more and D90 of 200 μm, bulk density of 0.4 to 0.8 g/cm, and gel time at the pre-heating temperature of 20 to 60 sec.SELECTED DRAWING: None

Description

本発明は管内面用に適したエポキシ樹脂粉体塗料に関する。詳しくは、貯蔵安定性、放冷硬化性に優れ、塗装外観、耐食性、機械強度に優れた塗膜を得ることのできる管内面用に適した粉体塗料に関する。   The present invention relates to an epoxy resin powder coating suitable for pipe inner surfaces. More specifically, the present invention relates to a powder coating suitable for the inner surface of a pipe, which is excellent in storage stability and coolability, and can obtain a coating film having excellent coating appearance, corrosion resistance and mechanical strength.

現在産業・生活施設として埋設されているガス、水道、石油、ケーブル保護管等は、管内面を防食処理されているが、中でも上下水道用に使用される管の内面には、その防食性の高さからエポキシ樹脂脂粉塗料が使用されている。   Gas, water, oil, cable protection pipes, etc., which are currently buried as industrial and living facilities, have anti-corrosion treatment on the inner surfaces of the pipes. Epoxy resin powder paint is used because of its height.

埋設管に対するエポキシ樹脂粉体塗料の塗装方法としては、回転吹き付け法、静電塗装法、流動浸漬法、溶射法が用いられる。直管には回転吹き付け法が一般的であり、異形管、バルブ等には静電塗装法、流動浸漬法が一般的に使用される。静電塗装法は、被塗物であるダクタイル鋳鉄異形管を150〜250℃に予熱し、塗装台に設置又は吊り下げた状態で、空気搬送した粉体塗料をその内面に吹き付ける事により塗膜層を形成し、同温度で10〜20分程度の後加熱、或いは後加熱なしの放冷により硬化塗膜を得るものである。   As a coating method of the epoxy resin powder coating on the buried pipe, a rotary spraying method, an electrostatic coating method, a fluid immersion method, or a thermal spraying method is used. A rotary spraying method is generally used for straight pipes, and an electrostatic coating method and a fluid immersion method are generally used for deformed pipes and valves. In the electrostatic coating method, a ductile cast iron deformed pipe, which is the object to be coated, is preheated to 150 to 250 ° C., and is installed or suspended on a coating table, and then the airborne powder coating is sprayed onto the inner surface of the coating film. A layer is formed, and a cured coating film is obtained by post-heating at the same temperature for about 10 to 20 minutes or by cooling without post-heating.

異形管は、口径の異なる直管の接続や分岐部分に使用されるため、形状や大きさが多岐にわたる。曲管や甲切管などは構造上ローラー回転による塗装は困難で、被塗物である異形管を吊り下げた状態で内面に塗装する。塗装には手作業による塗装ガンをもちいたスプレーや、近年ロボットによるスプレー塗装も行われている。   The deformed pipes are used for connecting and branching straight pipes having different diameters, and thus have various shapes and sizes. Curved pipes and cut-off pipes are difficult to paint by rotating the rollers because of the structure, and the inside of the deformed pipe that is the object to be coated is hung on the inner surface. For painting, spray using a manual painting gun, and recently, spray painting by a robot is also performed.

一方、従来の回転吹き付け塗装方法や塗装ガンを用いたスプレー塗装方法では、塗装時に吐出する全ての粉体粒子が被塗物に塗着、塗膜形成するわけでない。塗装時の余剰分は集塵され一部が再塗装に用いられるに留まり、その多くは廃棄される。また作業環境中に滞留後系外へ放出されるものも無視できないのが現状である。   On the other hand, in the conventional rotary spray coating method and spray coating method using a coating gun, not all powder particles discharged at the time of coating are applied to the object to be coated and a coating film is not formed. The surplus at the time of painting is collected and only a part is used for repainting, most of which is discarded. In addition, what is released outside the system after staying in the work environment cannot be ignored.

近年、そういった作業効率及び作業環境や、エネルギーコスト削減の観点からからも、粉体塗料の歩留まり向上を目的とした塗装方法も行われつつある。   In recent years, from the viewpoint of such work efficiency and work environment and energy cost reduction, a coating method for improving the yield of powder paint is also being performed.

特許文献1〜3で粉体塗装方法及び粉体塗装装置として、真空下及び減圧下で粉体塗料を塗装する方法及び装置が提案されているが、エポキシ樹脂粉体塗料を用いて管の内面に塗装し塗膜外観及び塗膜物性を満足する粉体塗料の具体的提案には至っていない。   In Patent Documents 1 to 3, as a powder coating method and a powder coating apparatus, a method and an apparatus for applying a powder coating under vacuum and reduced pressure are proposed, but an inner surface of a pipe using an epoxy resin powder coating is proposed. No specific proposal has been made for a powder coating material that has been applied to the surface and satisfies the appearance and physical properties of the coating film.

この分野では、工業的にも、平滑な膜厚を確保し、管内面の予熱雰囲気下を通過することによる貯蔵安定性を満足する粉体塗料がないことが課題となっている。   In this field, industrially, there is a problem that there is no powder coating material that ensures a smooth film thickness and satisfies storage stability by passing through a preheating atmosphere on the inner surface of the tube.

特開平7−328494号公報JP 7-328494 A 特開平2003−33699号公報Japanese Patent Laid-Open No. 2003-33699 特開平10−337515号公報JP-A-10-337515

本発明は、減圧下において予熱された中空体の内面に塗着させ、その後加熱昇温することない塗装方法であっても、均一な塗膜厚で良好な塗膜外観を得ることができ、かつ防食性、機械特性、衛生性等基本的な塗膜物性を得られる管内面用等として適したエポキシ樹脂粉体塗料を提供するものである。   The present invention can be applied to the inner surface of a hollow body preheated under reduced pressure, and can obtain a good coating appearance with a uniform coating thickness even in a coating method without heating and heating thereafter. In addition, the present invention provides an epoxy resin powder coating suitable for use on the inner surface of a pipe and the like that can obtain basic coating film properties such as anticorrosion, mechanical properties, and hygiene.

本発明者らは、特定のゲルタイム、特定の粒度分布と嵩密度を有する粉体塗料が上記課題を解決できることを見いだし、本発明に至った。   The present inventors have found that a powder coating material having a specific gel time, a specific particle size distribution, and a bulk density can solve the above problems, and has reached the present invention.

すなわち、本発明は、150〜280℃の範囲の一定の予熱温度に加熱された中空の被塗物内面に、減圧下に粉体塗料を吸引、塗着させ、それを硬化させて硬化塗膜を形成する塗装方法で使用する粉体塗料であって、上記粉体塗料がエポキシ樹脂(A)、硬化剤(B)及び顔料(C)を含み、粉体塗料の粒度分布におけるD10が5μm以上及びD90が200μm以下であり、嵩密度が0.4〜0.8g/cmであり、上記予熱温度におけるゲルタイムが20〜60秒であることを特徴とするエポキシ樹脂粉体塗料である。 That is, the present invention is a cured coating film in which a powder coating material is sucked and applied under reduced pressure to a hollow inner surface heated to a constant preheating temperature in the range of 150 to 280 ° C. and cured. A powder coating used in a coating method for forming a powder, wherein the powder coating contains an epoxy resin (A), a curing agent (B), and a pigment (C), and D10 in the particle size distribution of the powder coating is 5 μm or more. And D90 is 200 μm or less, the bulk density is 0.4 to 0.8 g / cm 3 , and the gel time at the preheating temperature is 20 to 60 seconds.

上記エポキシ樹脂(A)としては、ビスフェノール類のエピクロルヒドリンによるエポキシ化物であり、エポキシ当量が700〜3000g/eq.であり、軟化点が70〜130℃であるエポキシ樹脂が好ましく挙げられる。
また、上記ビスフェノール類としては、テトラメチルビスフェノールF、ビスフェノールF、テトラメチルビスフェノールA又はビスフェノールA挙げられる。
The epoxy resin (A) is an epoxidized product of bisphenols with epichlorohydrin and has an epoxy equivalent of 700 to 3000 g / eq. An epoxy resin having a softening point of 70 to 130 ° C. is preferred.
Examples of the bisphenols include tetramethyl bisphenol F, bisphenol F, tetramethyl bisphenol A, and bisphenol A.

上記硬化剤(B)としては、イミダゾリン誘導体及び/又はイミダゾール誘導体が好ましく挙げられる。   As said hardening | curing agent (B), an imidazoline derivative and / or an imidazole derivative are mentioned preferably.

上記顔料(C)としては、酸化鉄、黄色酸化鉄、シリカ粉、石英系粉、酸化チタン、炭酸カルシウム、硫酸バリウム及びカーボンブラックから選ばれる少なくとも1つが好ましく挙げられる。   Preferred examples of the pigment (C) include at least one selected from iron oxide, yellow iron oxide, silica powder, quartz-based powder, titanium oxide, calcium carbonate, barium sulfate, and carbon black.

上記被塗物としては、直管又は異形管がある。
また、本発明は上記のエポキシ樹脂粉体塗料で塗装された直管又は異形管である。
Examples of the object to be coated include a straight pipe and a deformed pipe.
Moreover, this invention is a straight pipe or a deformed pipe painted with said epoxy resin powder coating material.

更に本発明は、150〜280℃の範囲内の一定温度に予熱した中空の被塗物を架台上に配置し、被塗物内部を減圧下において塗料供給槽から粉体塗料を吸引して被塗物内面に塗着させ、そのまま硬化塗膜を形成することができる塗装方法であって、上記粉体塗料として、上記エポキシ樹脂粉体塗料を使用することを特徴とする塗装方法である。
また、本発明は上記の塗装方法で塗装された直管又は異形管である。
Furthermore, in the present invention, a hollow article to be preheated to a constant temperature within a range of 150 to 280 ° C. is placed on a gantry, and the inside of the article to be coated is sucked in from the paint supply tank under reduced pressure. A coating method in which a cured coating film can be formed as it is by being applied to the inner surface of a coating, wherein the epoxy resin powder coating is used as the powder coating.
Moreover, this invention is a straight pipe or a deformed pipe painted by said coating method.

本発明のエポキシ樹脂粉体塗料は、減圧下の塗装方法において中空被塗物の内面にピンホール、タレ等のない塗膜外観に優れ、また、耐食性、機械強度に優れた塗膜を得ることができる。更に、防食性、機械特性、衛生性等基本的な塗膜物性を得ることができる。   The epoxy resin powder coating of the present invention provides a coating film having no pinholes, sagging, etc. on the inner surface of the hollow article in a coating method under reduced pressure, and also having a coating film with excellent corrosion resistance and mechanical strength. Can do. Furthermore, basic coating film properties such as anticorrosion, mechanical properties and hygiene can be obtained.

以下、本発明を具体的に説明する。
本発明のエポキシ樹脂粉体塗料は、エポキシ樹脂(A)、硬化剤(B)及び顔料(C)を必須成分として含有する。
The present invention will be specifically described below.
The epoxy resin powder coating of the present invention contains an epoxy resin (A), a curing agent (B), and a pigment (C) as essential components.

エポキシ樹脂粉体塗料の粒度分布は、D10が5μm以上、D90が200μm以下の範囲であり、好ましくはD10が10μm以上、D90が150μm以下の範囲であり、より好ましくはD10が20μm以上、D90が130μm以下の範囲である。粒度分布でD10が小さいと、塗装中に余剰分が管内を通過回収される前に硬化しやすく、内面に付着すると塗膜がザラつく要因となりやすく、D90が大きすぎると塗装前の塗料貯蔵槽での対流が不均一になりやすく、不安定な吐出になる恐れがある。ここで、D10は重量通過百分率であり、その目開きで10wt%が通過する。   The particle size distribution of the epoxy resin powder coating is such that D10 is 5 μm or more and D90 is 200 μm or less, preferably D10 is 10 μm or more, D90 is 150 μm or less, more preferably D10 is 20 μm or more, and D90 is D90. The range is 130 μm or less. If D10 is small in the particle size distribution, it is easy to harden before the extra portion passes through the pipe and is collected during painting, and if it adheres to the inner surface, the coating tends to become rough, and if D90 is too large, the paint storage tank before painting The convection in the water tends to be non-uniform and may cause unstable discharge. Here, D10 is a weight passing percentage, and 10 wt% passes through the opening.

エポキシ樹脂粉体塗料の嵩密度は、0.4〜0.8g/cmの範囲であり、好ましくは0.45〜0.75g/cmの範囲であり、より好ましくは0.5〜0.7g/cmの範囲である。嵩密度は使用する材料の比重にもよるが、嵩密度が小さすぎると塗装前の流動時に浮遊する粒子が多くなり、予熱した被塗物を設置した時に塗着してしまい膜厚の均一性に不利になる可能性があり、嵩密度が大きすぎると塗装前の塗料貯蔵槽で対流させるときに不安定になる恐れがある。 The bulk density of the epoxy resin powder coating is in the range of 0.4 to 0.8 g / cm 3, preferably in the range from 0.45~0.75g / cm 3, more preferably 0.5 to 0 The range is 0.7 g / cm 3 . Although the bulk density depends on the specific gravity of the material used, if the bulk density is too small, more particles will float during the flow before coating, and the film will be coated when a preheated object is installed, resulting in film thickness uniformity. If the bulk density is too high, it may become unstable when convection is performed in the paint storage tank before painting.

エポキシ樹脂粉体塗料の被塗物の予熱温度におけるゲルタイムは、20秒〜80秒の範囲であり、好ましくは30秒〜70秒の範囲であり、より好ましくは40秒〜60秒の範囲である。ゲルタイムが早いと塗膜が溶融し平滑になる前に硬化、流動性を損ない、塗膜外観が凹凸になる恐れやざらつく恐れがあり、遅いと塗装終了後硬化が不十分となり、管の端部等にタレを生じ、膜厚が不均一となる恐れがあり、また後加熱を施さないと十分な塗膜物性を発現しない恐れがある。予熱温度に対するゲルタイムが20秒〜80秒であると塗装後の加熱がなくとも、塗膜外観が良好で、機械特性、防食性等の基本物性も良好な塗膜が得られる。   The gel time at the preheating temperature of the coating object of the epoxy resin powder coating is in the range of 20 seconds to 80 seconds, preferably in the range of 30 seconds to 70 seconds, and more preferably in the range of 40 seconds to 60 seconds. . If the gel time is early, the coating will melt and become smooth before the coating melts and becomes smooth, and the coating may appear uneven or rough. The film thickness may be uneven and the film thickness may be non-uniform, and sufficient physical properties of the coating film may not be exhibited unless post-heating is performed. When the gel time with respect to the preheating temperature is from 20 seconds to 80 seconds, a coating film having good coating film appearance and excellent basic physical properties such as mechanical properties and anticorrosion properties can be obtained even without heating after coating.

次に、エポキシ樹脂(A)について説明する。
エポキシ樹脂(A)のエポキシ当量(g/eq.)は、好ましくは700〜3000の範囲であり、より好ましくは900〜2500の範囲であり、更に好ましくは1000〜2000の範囲である。エポキシ当量が小さいと粉体塗料とした場合の貯蔵安定性が悪くなり、長期保管したときブロッキングをおこし、塗料として使用できなくなる恐れがある。エポキシ当量が大きいと溶融粘度が高くなり、粉体塗料とした場合ゲルタイムを調整しても流動性が悪く外観が凹凸等の不良になる恐れがある。エポキシ当量が700〜3000の範囲であれば、粉体塗料とした場合、貯蔵安定性に問題のない粉体塗料が得られ、塗膜外観が良好で、機械特性、防食性等の基本物性も良好な塗膜が得られる。
Next, the epoxy resin (A) will be described.
The epoxy equivalent (g / eq.) Of the epoxy resin (A) is preferably in the range of 700 to 3000, more preferably in the range of 900 to 2500, and still more preferably in the range of 1000 to 2000. If the epoxy equivalent is small, the storage stability in the case of a powder coating is deteriorated, and when it is stored for a long period of time, it may be blocked and cannot be used as a coating. When the epoxy equivalent is large, the melt viscosity becomes high, and in the case of a powder coating, even if the gel time is adjusted, the fluidity is poor and the appearance may be defective such as irregularities. When the epoxy equivalent is in the range of 700 to 3000, when a powder coating is used, a powder coating having no problem in storage stability is obtained, the coating film appearance is good, and the basic physical properties such as mechanical properties and anticorrosion properties are also obtained. A good coating film is obtained.

エポキシ樹脂(A)の軟化点は、好ましくは70〜130℃の範囲であり、より好ましくは90〜120℃の範囲であり、更に好ましくは100〜115℃の範囲である。軟化点が低いと粉体塗料のブロッキング性が悪くなる恐れがあり、軟化点が高いと粉体塗料とした場合ゲルタイムが早くなり、塗料の流動性が悪くなる恐れがあり、ゲルタイムを調整しても流動性が悪く塗膜表面の平滑性が損なわれる恐れがある。軟化点が70〜130℃の範囲であれば、粉体塗料とした場合、ブロッキング性に問題のない粉体塗料が得られ、塗膜外観が良好で、機械特性、防食性等の基本物性も良好な塗膜が得られる。   The softening point of an epoxy resin (A) becomes like this. Preferably it is the range of 70-130 degreeC, More preferably, it is the range of 90-120 degreeC, More preferably, it is the range of 100-115 degreeC. If the softening point is low, the blocking property of the powder coating may be deteriorated. If the softening point is high, the gel time may be increased when the powder coating is used, and the fluidity of the coating may be deteriorated. However, the fluidity is poor and the smoothness of the coating film surface may be impaired. When the softening point is in the range of 70 to 130 ° C., when a powder coating is used, a powder coating having no blocking property is obtained, the coating film appearance is good, and the basic physical properties such as mechanical properties and anticorrosion properties are also obtained. A good coating film is obtained.

本発明で使用するエポキシ樹脂(A)としては、固形であれば特に制限は無いが、ビスフェノール型エポキシ樹脂が好ましく、置換基を有していてもよい。置換基としては、アルキル基、フェニル基又はα−メチルベンジル基が好ましく、メチル基又はα−メチルベンジル基がより好ましい。置換基の数としてはフェノール環に対し、1又は2個がよい。エポキシ樹脂(A)としては、具体的にはビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂等が挙げられる。これらの中でもビスフェノールF型エポキシ樹脂が好ましい。   The epoxy resin (A) used in the present invention is not particularly limited as long as it is solid, but is preferably a bisphenol-type epoxy resin and may have a substituent. As the substituent, an alkyl group, a phenyl group or an α-methylbenzyl group is preferable, and a methyl group or an α-methylbenzyl group is more preferable. The number of substituents is preferably 1 or 2 with respect to the phenol ring. Specific examples of the epoxy resin (A) include bisphenol F-type epoxy resins, tetramethylbisphenol F-type epoxy resins, bisphenol A-type epoxy resins, and tetramethylbisphenol A-type epoxy resins. Among these, bisphenol F type epoxy resin is preferable.

ビスフェノール型エポキシ樹脂には、通常ビスフェノール類とエピクロルヒドリンの縮重合反応によって得られる直接法エポキシ樹脂と、ビスフェノール類と大過剰のエピクロルヒドリンの縮合反応によって得られる液状ビスフェノール型エポキシ樹脂を、更にビスフェノール類と付加重合させて得られる間接法エポキシ樹脂がある。
本発明で使用するエポキシ樹脂(A)としては、直接法エポキシ樹脂及び間接法エポキシ樹脂のいずれでもよいが、直接法エポキシ樹脂が好ましい。直接法エポキシ樹脂は、間接法エポキシ樹脂に比較して分子量分布が狭く、硬化前には溶融粘度の低い粉体塗料が得られる。
Bisphenol-type epoxy resins are usually added by direct polymerization epoxy resin obtained by condensation polymerization reaction of bisphenols and epichlorohydrin, liquid bisphenol-type epoxy resin obtained by condensation reaction of bisphenols and a large excess of epichlorohydrin, and bisphenols. There is an indirect epoxy resin obtained by polymerization.
The epoxy resin (A) used in the present invention may be either a direct method epoxy resin or an indirect method epoxy resin, but a direct method epoxy resin is preferred. The direct process epoxy resin has a narrower molecular weight distribution than the indirect process epoxy resin, and a powder coating having a low melt viscosity is obtained before curing.

なお、ビスフェノール類には市販のビスフェノールFのように、2つのフェノール環を有する2核体の他に、3つ以上のフェノール環を有する多核体を含有するものが存在する。そのため、ビスフェノール類の2核体純度はゲルパーミエイションクロマトグラフィー測定で、70面積%以上が好ましく、90面積%以上がより好ましい。特に間接法エポキシ樹脂の製造には、95面積%以上の高純度のビスフェノール類を使用することが好ましい。   Some bisphenols, such as commercially available bisphenol F, contain a polynuclear body having three or more phenol rings in addition to a binuclear body having two phenol rings. Therefore, the binuclear purity of bisphenols is preferably 70 area% or more, more preferably 90 area% or more, as measured by gel permeation chromatography. In particular, in the production of an indirect epoxy resin, it is preferable to use high-purity bisphenols of 95 area% or more.

次に、硬化剤(B)について説明する。
本発明で使用する硬化剤(B)としては、イミダゾリン誘導体、イミダゾール誘導体又はこれらの混合物が好ましい。イミダゾリン誘導体としては、例えば、メチルイミダゾリン、2−フェニルイミダゾリン等が挙げられる。イミダゾール誘導体としては、例えば、メチルイミダゾール、ドデシルイミダゾール、フェニルイミダゾール等や、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド等の四級塩類や、2−メチルイミダゾールのイソシアヌル酸付加物や、2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1’))−エチル−s−トリアジン等のトリアジン環含有物等が挙げられる。
これらの中では、イミダゾリン誘導体としては、2−フェニルイミダゾリンが、イミダゾール誘導体としては、2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1’))−エチル−s−トリアジン又は2−フェニルイミダゾールが特に好ましい。これらの硬化剤であれば、粉体塗料とした場合、特定のゲルタイムを効果が得られる範囲にする調整が簡単にできるので、塗膜外観が良好で、機械特性、防食性等の基本物性も良好な塗膜が得られる。
また、特性を損なわない範囲で、有機酸ヒドラジド、変性芳香族アミンアダクト、トリメリット酸とエチレングリコールを主体とした酸無水物の併用を妨げるものではない。
Next, the curing agent (B) will be described.
As the curing agent (B) used in the present invention, an imidazoline derivative, an imidazole derivative or a mixture thereof is preferable. Examples of the imidazoline derivative include methyl imidazoline and 2-phenylimidazoline. Examples of the imidazole derivatives include methyl imidazole, dodecyl imidazole, phenyl imidazole, quaternary salts such as 1-dodecyl-2-methyl-3-benzylimidazolium chloride, isocyanuric acid adducts of 2-methyl imidazole, Examples include triazine ring-containing materials such as 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine.
Among these, 2-phenylimidazoline is used as an imidazoline derivative, and 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine or 2-imidazole is used as an imidazole derivative. Phenylimidazole is particularly preferred. If these hardeners are used as powder coatings, the specific gel time can be easily adjusted within the range where the effect can be obtained, so the appearance of the coating film is good, and the basic physical properties such as mechanical properties and anticorrosion properties are also obtained. A good coating film is obtained.
In addition, the use of organic acid hydrazide, modified aromatic amine adducts, trimellitic acid and acid anhydrides mainly composed of ethylene glycol is not prohibited as long as the characteristics are not impaired.

硬化剤(B)の配合量は、エポキシ樹脂(A)100質量部に対して、0.1〜10質量部の範囲がこの好ましく、1〜6質量部の範囲がより好ましい。配合量が少ないと粉体塗料とした場合のゲルタイムが遅くなり、硬化が不十分な塗膜になる恐れがある。配合量が多いと粉体塗料とした場合のゲルタイムが速くなり、得られる塗膜もシワ、ザラツキ等外観不良を起こす恐れがあり、また貯蔵安定性が悪くなる恐れがある。硬化剤(B)の配合量が0.1〜10質量部の範囲であれば、粉体塗料とした場合のゲルタイムが適切な範囲となり、貯蔵安定性に問題のない粉体塗料が得られる。そして、機械特性、防食性等の基本物性も良好な塗膜が得られる。粉体塗料のゲルタイムと硬化時の溶融粘度を調整するために2種以上の硬化剤を混合して使用することができる。   The blending amount of the curing agent (B) is preferably in the range of 0.1 to 10 parts by mass and more preferably in the range of 1 to 6 parts by mass with respect to 100 parts by mass of the epoxy resin (A). When the blending amount is small, the gel time in the case of a powder coating becomes slow, and there is a fear that the coating film is insufficiently cured. When the blending amount is large, the gel time in the case of a powder coating becomes fast, the resulting coating film may cause appearance defects such as wrinkles and roughness, and storage stability may be deteriorated. When the blending amount of the curing agent (B) is in the range of 0.1 to 10 parts by mass, the gel time in the case of a powder coating is in an appropriate range, and a powder coating having no problem in storage stability is obtained. And a coating film with good basic physical properties such as mechanical properties and anticorrosion properties can be obtained. In order to adjust the gel time of the powder coating material and the melt viscosity at the time of curing, two or more kinds of curing agents can be mixed and used.

次に、顔料(C)について説明する。
顔料(C)としては、粉体塗料で一般的に使用される着色顔料、体質顔料、光輝顔料、及び防錆顔料等が使用できる。これらの顔料は単独で使用してもよいし、同一系の顔料を2種類以上併用しても良く、また、異なる系の顔料を組み合わせて使用してもよい。
Next, the pigment (C) will be described.
As the pigment (C), a color pigment, an extender pigment, a bright pigment, a rust preventive pigment and the like generally used in powder coatings can be used. These pigments may be used alone, or two or more of the same pigments may be used in combination, or different pigments may be used in combination.

着色顔料としては、例えば、酸化チタン、黄色酸化鉄、チタン黄、ベンガラ、リトポン、及び酸化アンチモン等の無機系顔料や、ハンザイエロー5G、パーマネントエローFGL、シアニンブルー、フタロシアニンブルー、インダンスレンブルーRS、パーマネントレッドF5RK、ブリリアントファーストスカーレットG、シアニングリーン、カルバゾール、キナクリドンレッド、及びカーボンブラック等の有機顔料等が挙げられる。   Examples of the color pigment include inorganic pigments such as titanium oxide, yellow iron oxide, titanium yellow, Bengala, lithopone, and antimony oxide, Hansa Yellow 5G, Permanent Yellow FGL, Cyanine Blue, Phthalocyanine Blue, Indanthrene Blue RS And organic pigments such as Permanent Red F5RK, Brilliant First Scarlet G, Cyanine Green, Carbazole, Quinacridone Red, and Carbon Black.

体質顔料としては、例えば、硫酸バリウム、炭酸バリウム、炭酸カルシウム、クレー、シリカ粉、石英系粉、珪藻土、酸化亜鉛、タルク、塩基性炭酸マグネシウム、及びアルミナ等の無機顔料や、内部構造が多孔質、中空構造又は架橋タイプ等の樹脂ビーズを代表とするプラスチック顔料が挙げられる。   Examples of extender pigments include inorganic pigments such as barium sulfate, barium carbonate, calcium carbonate, clay, silica powder, quartz powder, diatomaceous earth, zinc oxide, talc, basic magnesium carbonate, and alumina, and porous internal structures. And plastic pigments typified by resin beads having a hollow structure or a crosslinked type.

光輝顔料としては、例えば、アルミニウム粉、ニッケル粉、ステンレス粉、銅粉、ブロンズ粉、金粉、銀粉、マイカ(雲母)、グラファイト、ガラスフレーク、金属コーティングした硝子粉、金属コーティングしたマイカ粉、金属コーティングしたプラスチック粉、薄片化加工したプラスチック粉、及び鱗片状酸化鉄等が挙げられる。   As bright pigments, for example, aluminum powder, nickel powder, stainless steel powder, copper powder, bronze powder, gold powder, silver powder, mica, graphite, glass flake, metal-coated glass powder, metal-coated mica powder, metal coating Plastic powder, thinned plastic powder, and flaky iron oxide.

防錆顔料としては、例えば、縮合リン酸カルシウム、リン酸アルミニウム、縮合リン酸アルミニウム、リン酸亜鉛、亜リン酸アルミニウム、亜リン酸亜鉛、亜リン酸カルシウム、モリブデン酸亜鉛、モリブデン酸カルシウム、モリブデン酸マンガン等が挙げられる。   Examples of rust preventive pigments include condensed calcium phosphate, aluminum phosphate, condensed aluminum phosphate, zinc phosphate, aluminum phosphite, zinc phosphite, calcium phosphite, zinc molybdate, calcium molybdate, and manganese molybdate. Can be mentioned.

これらの顔料の内、酸化鉄、黄色酸化鉄、シリカ粉、石英系粉、酸化チタン、炭酸カルシウム、硫酸バリウム及びカーボンブラックが好ましく、石英系粉、酸化チタン及びカーボンブラックがより好ましい。また、顔料の平均粒径は1〜50μmが好ましく、5〜50μmがより好ましい。   Of these pigments, iron oxide, yellow iron oxide, silica powder, quartz powder, titanium oxide, calcium carbonate, barium sulfate and carbon black are preferable, and quartz powder, titanium oxide and carbon black are more preferable. Moreover, 1-50 micrometers is preferable and, as for the average particle diameter of a pigment, 5-50 micrometers is more preferable.

顔料(C)の配合量は、エポキシ樹脂(A)100質量部に対して、10〜100質量部の範囲が好ましく、20〜80質量部の範囲がより好ましく、30〜70質量部の範囲が更に好ましく、40〜60質量部に範囲が特に好ましい。配合量が少ないと、硬化過程での溶融粘度が低く、硬化過程での溶融粘度が低く、ピンホールの発生制御の効果が得られない恐れがあり、また放冷による硬化性が不足し、塗膜の機械特性、防食性等、基本物性も悪くなる恐れがある。配合量が多いと、塗料の流動性が悪く、平滑な塗膜を得られない恐れがあり、更にピンホール発生をはじめとする塗膜外観不良を防ぐことが困難になる恐れがある。顔料の配合量が10〜100質量部の範囲であれば、平塗膜外観が良好で、機械特性、防食性等の基本物性も良好な塗膜が得られる。また、粉体塗料の嵩密度を調整するために2種以上の顔料を混合して使用することができる。   The blending amount of the pigment (C) is preferably in the range of 10 to 100 parts by mass, more preferably in the range of 20 to 80 parts by mass, and in the range of 30 to 70 parts by mass with respect to 100 parts by mass of the epoxy resin (A). More preferred is a range of 40-60 parts by mass. If the blending amount is small, the melt viscosity in the curing process is low, the melt viscosity in the curing process is low, and there is a possibility that the effect of controlling the generation of pinholes may not be obtained. The basic physical properties such as mechanical properties and corrosion resistance of the film may be deteriorated. If the blending amount is large, the fluidity of the paint is poor, and a smooth coating film may not be obtained. Further, it may be difficult to prevent coating film appearance defects such as pinholes. When the blending amount of the pigment is in the range of 10 to 100 parts by mass, a flat coating film appearance is good, and a coating film having good basic physical properties such as mechanical properties and corrosion resistance can be obtained. Moreover, in order to adjust the bulk density of a powder coating material, 2 or more types of pigments can be mixed and used.

本発明のエポキシ樹脂粉体塗料には、本発明の目的を阻害しない限り、一般塗料用添加剤として、可塑剤、硬化促進剤、架橋促進触媒、紫外線吸収剤、光安定剤、タレ止剤、酸化防止剤、表面調整剤、流れ性調整剤、及び消泡剤等を必要に応じで配合してもよい。酸化防止剤としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナート]等のフェノール系酸化防止剤、ジラウリル−3,3’−チオジプロピオネート等の硫黄系酸化防止剤、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のリン系酸化防止剤等が挙げられる。流れ性調整剤や表面調整剤としては、アクリル系重合体等が挙げられる。   In the epoxy resin powder paint of the present invention, as long as the object of the present invention is not impaired, as general paint additives, plasticizers, curing accelerators, crosslinking accelerators, ultraviolet absorbers, light stabilizers, sagging inhibitors, You may mix | blend antioxidant, a surface regulator, a flowability regulator, an antifoamer, etc. as needed. Examples of antioxidants include phenolic antioxidants such as pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], dilauryl-3,3′-thiodipropionate, and the like. And sulfur-based antioxidants such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. Examples of the flow conditioner and the surface conditioner include acrylic polymers.

本発明のエポキシ樹脂粉体塗料は、中空の被塗物の内面、好ましくは管内面の塗装に適用される。この場合、プロバック法、サクション法等で使用される。すなわち、所定の管を150〜280℃、好ましくは170〜250℃、より好ましくは180〜230℃の範囲のうちの一定の温度に予熱した後、架台上に設置し、管内部を減圧にし、塗料流動槽等の塗料供給槽から粉体塗料を管内部に吸引させることで、管内面に塗着する。そして、その予熱温度でそのまま硬化塗膜を形成する塗装方法に適する。
塗着しなかった粉体塗料は塗料供給槽に戻され、循環使用される。この塗装方法では、粉体塗料が被塗物表面に付着する力は被塗物表面に形成された溶融層の粘着力によるもののため、良好な硬化塗膜を得るためには、粉体塗料の粒度分布、嵩密度とともに、予熱温度での硬化速度(ゲルタイム)を管理することが重要になる。本発明のエポキシ樹脂粉体塗料であれば、厚みの均一性、防食性等の基本的な塗膜物性を備え、ピンホールの発生等の無い良好な硬化塗膜を得ることができるとともに、リサイクル使用も可能である。
The epoxy resin powder coating of the present invention is applied to the inner surface of a hollow article, preferably the inner surface of a tube. In this case, it is used in the Probak method, the suction method, or the like. That is, a predetermined pipe is preheated to a constant temperature within a range of 150 to 280 ° C., preferably 170 to 250 ° C., more preferably 180 to 230 ° C., then placed on a gantry, the inside of the pipe is decompressed, The powder paint is sucked into the pipe from a paint supply tank such as a paint fluid tank, and is applied to the inner surface of the pipe. And it is suitable for the coating method which forms a cured coating film as it is at the preheating temperature.
The powder paint that has not been applied is returned to the paint supply tank and recycled. In this coating method, the force with which the powder coating adheres to the surface of the object to be coated is due to the adhesive force of the molten layer formed on the surface of the object to be coated. It is important to manage the curing rate (gel time) at the preheating temperature as well as the particle size distribution and bulk density. If it is the epoxy resin powder coating of the present invention, it has basic coating film properties such as uniformity of thickness and anticorrosion, and can obtain a good cured coating film without occurrence of pinholes, and can be recycled. Use is also possible.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例等に限定されるものではない。また、実施例において、特に断りがない限り、「部」及び「%」は質量基準によるものである。エポキシ当量の単位は、g/eq.である。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples. In the examples, “parts” and “%” are based on mass unless otherwise specified. The unit of epoxy equivalent is g / eq. It is.

エポキシ樹脂の評価は次の方法による。
(1)エポキシ当量:JIS K7236に準拠して測定した。
(2)軟化点:JIS K7234に準拠して測定した。
Evaluation of an epoxy resin is based on the following method.
(1) Epoxy equivalent: Measured according to JIS K7236.
(2) Softening point: Measured according to JIS K7234.

実施例、比較例で得られた粉体塗料の評価方法を以下に示す。
(1)ゲルタイム:200℃に加熱したホットプレート上に粉体塗料0.1gを乗せ溶融した時点からフッ素樹脂製丸棒で掻き混ぜ、ゲル化するまでの時間を測定した。
(2)粒度分布D10,D90:粒度分布計による湿式レーザー回析法で測定した。
(3)嵩密度:パウダーテスターを用い100cmの容器に一定振動でロートから塗料を投入する、容器上部にあふれた塗料を擦切り、容器ごとの重量を測定して嵩密度(g/cm)を算出した。
(4)ブロッキング性:粉体塗料を40℃で2週間貯蔵した後の塗料の状態を以下の判定で表示した。
ブロッキングなし:○、 ブロッキングあり:×
The evaluation methods of the powder coatings obtained in the examples and comparative examples are shown below.
(1) Gel time: 0.1 g of the powder coating material was placed on a hot plate heated to 200 ° C., and the mixture was melted with a round bar made of a fluororesin and measured for gelation.
(2) Particle size distribution D10, D90: Measured by a wet laser diffraction method using a particle size distribution meter.
(3) Bulk density: A powder tester is used to put a paint from a funnel into a 100 cm 3 container with constant vibration. The paint overflowing on the top of the container is scraped, and the weight of each container is measured to determine the bulk density (g / cm 3 ). Was calculated.
(4) Blocking property: The state of the paint after storing the powder paint at 40 ° C. for 2 weeks was indicated by the following judgment.
Without blocking: ○, With blocking: ×

塗膜物性の評価方法を以下に示す。
(1)可撓性試験は、JIS Z 5528、5.4.4の規格に従い、JIS Z 2247でエリクセン試験を行い、可撓性を判断した。
3mm以上:○、 3mm未満:×
The evaluation method of coating film properties is shown below.
(1) The flexibility test was conducted according to the standards of JIS Z 5528 and 5.4.4, and the Ericksen test was performed according to JIS Z 2247 to determine the flexibility.
3 mm or more: ○, less than 3 mm: ×

(2)耐衝撃性試験は、JIS Z 5528、5.4.3の規格に従い、JIS K 5400、8.3.2でデュポン衝撃試験を行った。撃ち型は半径1/4インチで500gの錘を50cmの高さから落とした。
割れ、はがれなし:○、 割れ、はがれあり:×
(2) The impact resistance test was a DuPont impact test according to JIS K 5400, 8.3.2 according to the standards of JIS Z 5528, 54.3. The shooting mold had a radius of 1/4 inch and dropped a 500 g weight from a height of 50 cm.
No cracking or peeling: ○, cracking or peeling: ×

(3)塗膜外観試験
塗装管内面を目視にて塗膜外観異常を評価した。
異常なし:〇、 異常あり:×
異常ありの場合、異常の種類により次のように記した。
ザラツキ:×1
凹凸:×2
シワ:×3
(3) Coating film appearance test Abnormality of coating film appearance was evaluated by visual inspection of the inner surface of the coating tube.
No abnormality: Yes, Abnormal: ×
When there was an abnormality, it was written as follows according to the type of abnormality.
Salad: × 1
Concavity and convexity: × 2
Wrinkles: × 3

(4)MEKラビングテスト
硬化性の確認としてMEKラビングテスト(1kg荷重/10往復)を行い、以下の基準で判断した。
塗膜付着なし:○、 塗膜付着あり:×
(4) MEK rubbing test A MEK rubbing test (1 kg load / 10 reciprocation) was performed as a confirmation of curability and judged according to the following criteria.
No coating adhesion: ○, Coating adhesion: ×

合成例1
撹拌機、窒素導入管、側温抵抗体、滴下装置及び冷却コンデンサーを備えたセパラブルフラスコに49%苛性ソーダ水溶液110.6部と水399部を仕込み、撹拌しながら系内水分を窒素置換した。次にビスフェノールF(新日鉄住金化学株式会社製、2核体純度97面積%)を200部添加し、系内温度を50℃に制御して撹拌溶解した。次いで、エピクロルヒドリン110.5部を滴下ロートから投入した。投入後、系内温度を92℃に制御して2時間反応を行った。反応終了後、メチルイソブチルケトン330部を加え15分間撹拌後静置して、下層の水を除去した。次いでリン酸で中和、水洗を行い、水層を除去し、ろ過した後メチルイソブチルケトンを留去してエポキシ樹脂(A−1)を得た。エポキシ当量は1350、軟化点は92℃であった。
Synthesis example 1
A separable flask equipped with a stirrer, a nitrogen inlet tube, a side temperature resistor, a dropping device, and a cooling condenser was charged with 110.6 parts of a 49% aqueous sodium hydroxide solution and 399 parts of water, and the system moisture was replaced with nitrogen while stirring. Next, 200 parts of bisphenol F (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., binuclear purity 97 area%) was added, and the system temperature was controlled at 50 ° C. to dissolve with stirring. Next, 110.5 parts of epichlorohydrin was charged from the dropping funnel. After the addition, the system temperature was controlled at 92 ° C. and the reaction was carried out for 2 hours. After completion of the reaction, 330 parts of methyl isobutyl ketone was added, and the mixture was stirred for 15 minutes and allowed to stand to remove the lower layer water. Next, the mixture was neutralized with phosphoric acid and washed with water, the aqueous layer was removed, and after filtration, methyl isobutyl ketone was distilled off to obtain an epoxy resin (A-1). The epoxy equivalent was 1350 and the softening point was 92 ° C.

合成例2
250部のエピクロルヒドリンを使用した以外は合成例1と同様の装置、操作を行い、エポキシ樹脂(A−2)を得た。エポキシ当量は900、軟化点は84℃であった。
Synthesis example 2
Except for using 250 parts of epichlorohydrin, the same apparatus and operation as in Synthesis Example 1 were performed to obtain an epoxy resin (A-2). The epoxy equivalent was 900, and the softening point was 84 ° C.

合成例3
102部のエピクロルヒドリンを使用した以外は合成例1と同様の装置、操作を行い、エポキシ樹脂(A−3)を得た。エポキシ当量は2500、軟化点は119℃であった。
Synthesis example 3
Except for using 102 parts of epichlorohydrin, the same apparatus and operation as in Synthesis Example 1 were performed to obtain an epoxy resin (A-3). The epoxy equivalent was 2500, and the softening point was 119 ° C.

合成例4
撹拌機、窒素導入管、側温抵抗体、滴下装置及び冷却コンデンサーを備えたセパラブルフラスコに、YDF−8170(新日鉄住金化学株式会社製、液状ビスフェノールF型エポキシ樹脂、エポキシ当量159)500部とビスフェノールF126部を仕込み120℃で溶解した後、トリフェニルホスホニュウムブロマイド0.12部添加し160℃で2時間反応した。その後、ビスフェノールFを150部仕込み130℃で溶解しトリフェニルホスホニュウムブロマイドを0.15部添加し180℃で5時間加熱し反応を終了して、エポキシ樹脂(A−4)を得た。エポキシ当量は2500、軟化点は118℃であった。
Synthesis example 4
In a separable flask equipped with a stirrer, nitrogen introduction tube, side temperature resistor, dropping device and cooling condenser, 500 parts of YDF-8170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., liquid bisphenol F type epoxy resin, epoxy equivalent 159) After 126 parts of bisphenol F was charged and dissolved at 120 ° C., 0.12 part of triphenylphosphonium bromide was added and reacted at 160 ° C. for 2 hours. Thereafter, 150 parts of bisphenol F was charged and dissolved at 130 ° C., 0.15 part of triphenylphosphonium bromide was added, and the reaction was terminated by heating at 180 ° C. for 5 hours to obtain an epoxy resin (A-4). The epoxy equivalent was 2500 and the softening point was 118 ° C.

実施例及び比較例で使用した略号の説明は以下のとおりである。   The abbreviations used in Examples and Comparative Examples are as follows.

[エポキシ樹脂(A)]
合成例1〜4で得られたエポキシ樹脂(A−1)〜エポキシ樹脂(A−4)
[Epoxy resin (A)]
Epoxy resins (A-1) to epoxy resins (A-4) obtained in Synthesis Examples 1 to 4

[硬化剤(B)]
2PZL:2−フェニルイミダゾリン,四国化成工業株式会社製、キュアゾール2PZL
2MZ−A:2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1’))−エチル−s−トリアジン,四国化成工業株式会社製、キュアゾール2MZ−A
2PZ:2−フェニルイミダゾール,四国化成工業株式会社製、キュアゾール2PZ
[Curing agent (B)]
2PZL: 2-phenylimidazoline, manufactured by Shikoku Kasei Kogyo Co., Ltd., Curesol 2PZL
2MZ-A: 2,4-diamino-6- (2'-methylimidazolyl- (1 '))-ethyl-s-triazine, manufactured by Shikoku Chemicals Co., Ltd., Curesol 2MZ-A
2PZ: 2-Phenylimidazole, Shikoku Kasei Kogyo Co., Ltd., Curesol 2PZ

[顔料(C)]
珪石粉:平均粒径50μm,
酸化チタン:着色顔料、テイカ株式会社製、JR−301
カーボンブラック:着色顔料、三菱化学株式会社製、MA−100
[Pigment (C)]
Silica stone powder: average particle size 50μm,
Titanium oxide: Color pigment, manufactured by Teika Co., Ltd., JR-301
Carbon black: coloring pigment, manufactured by Mitsubishi Chemical Corporation, MA-100

[その他]
モダフロー:アクリル系重合体,日本モンサント株式会社製、モダフローIII
[Others]
Modaflow: Acrylic polymer, manufactured by Nippon Monsanto Co., Ltd., Modaflow III

実施例1
エポキシ樹脂(A)としてエポキシ樹脂(A−1)100部、硬化剤(B)として2PZL2.0部と2MZ−A0.2部と2PZ0.5部、顔料(C)として珪石粉50部と酸化チタン12部とカーボンブラック0.3部、その他の添加剤としてモダフロー0.4部を混合した。混合物をヘンシェルミキサー(三井三池化工機株式会社製、形式10B)を用いてドライブレンドし、次いでエクストルーダー(池貝鉄工株式会社製、PCM−30)を用いて100℃で溶融混練を行い、冷却ロールを用いて厚さ3〜5mmまでフレーキングし、常温まで冷却後に微粉砕、分級により粉体塗料を得た。塗料物性を表1に示した。
Example 1
100 parts of epoxy resin (A-1) as epoxy resin (A), 2.0 parts of 2PZL, 0.2 parts of 2MZ-A and 0.5 parts of 2PZ as curing agent (B), 50 parts of silica powder as pigment (C) and oxidation 12 parts of titanium, 0.3 part of carbon black, and 0.4 part of Modaflow as other additives were mixed. The mixture is dry blended using a Henschel mixer (Mitsui Miike Chemical Co., Ltd., type 10B), then melt kneaded at 100 ° C. using an extruder (Ikekai Tekko Co., Ltd., PCM-30), and cooled roll Was used to flake to a thickness of 3 to 5 mm, cooled to room temperature, finely pulverized and classified to obtain a powder coating material. The paint properties are shown in Table 1.

1.2mm×70mm×150mmのSPCC−SB鋼板を200℃の熱風循環オーブン中で30分間予熱した。予熱後取り出し垂直に吊るした状態で塗装ブースに設置して、塗装ガンで膜厚が200〜300μmになるように上下1往復半塗装した。塗装後、室温で常温になるまで放冷して、可撓性試験用の試験板を得た。評価結果を表1に示した。   A 1.2 mm × 70 mm × 150 mm SPCC-SB steel plate was preheated in a hot air circulating oven at 200 ° C. for 30 minutes. After preheating, it was taken out and hung vertically, installed in a painting booth, and painted with a painting gun so that the film thickness was 200 to 300 μm, and it was painted once and half a halfway. After coating, it was allowed to cool to room temperature at room temperature to obtain a test plate for flexibility test. The evaluation results are shown in Table 1.

2.0mm×70mm×150mmのSPCC−SB鋼板を200℃の熱風循環オーブン中で30分間予熱した。予熱後取り出し垂直に吊るした状態で塗装ブースに設置して、塗装ガンで膜厚が300μmになるように上下1往復半塗装した。塗装後、室温で常温になるまで放冷して、耐衝撃性試験用及びMEKラビングテスト用の試験板を得た。評価結果を表1に示した。   A 2.0 mm × 70 mm × 150 mm SPCC-SB steel plate was preheated in a hot air circulating oven at 200 ° C. for 30 minutes. After preheating, it was taken out and hung vertically, installed in a painting booth, and painted up and down half a half with a coating gun so that the film thickness was 300 μm. After coating, it was allowed to cool to room temperature at room temperature to obtain test plates for impact resistance test and MEK rubbing test. The evaluation results are shown in Table 1.

50mmφ×100mmLの鋼管を200℃の熱風循環オーブン中で30分間予熱した。予熱後取り出し、予熱した鋼管の両端に耐熱ホースを繋ぎ、片方にアスピレーターを設置し系内減圧にした後、もう片方のホースの先端を塗料供給槽に挿しこみ鋼管と供給層の間に設置したボールバルブを1秒間開放し鋼管内に塗料を通過させ、鋼管内面に塗料を塗着、そのまま塗膜を形成させ、室温まで放冷して、塗膜外観試験用の試験管を得た。この時、粉体塗料を2g/10秒で吐出できるよう減圧を調整した。塗膜の厚みは約300μmで均一な塗膜が形成されていた。評価結果を表1に示した。   A steel tube of 50 mmφ × 100 mmL was preheated for 30 minutes in a 200 ° C. hot air circulating oven. Take out after preheating, connect a heat resistant hose to both ends of the preheated steel pipe, install an aspirator on one side and reduce the pressure in the system, then insert the tip of the other hose into the paint supply tank and install it between the steel pipe and the supply layer The ball valve was opened for 1 second to allow the paint to pass through the steel pipe, and the paint was applied to the inner surface of the steel pipe to form a coating film as it was, and allowed to cool to room temperature to obtain a test tube for coating film appearance test. At this time, the reduced pressure was adjusted so that the powder coating material could be discharged at 2 g / 10 seconds. The thickness of the coating film was about 300 μm, and a uniform coating film was formed. The evaluation results are shown in Table 1.

実施例2〜8
表1の処方の配合量(部)で配合し、実施例1と同様の装置を使用して、同様の操作で、粉体塗料、試験板及び試験管を得た。実施例1と同様の試験を行い、その結果を表1に示した。
Examples 2-8
A powder paint, a test plate and a test tube were obtained in the same manner using the same apparatus as in Example 1 using the blending amount (parts) of the formulation shown in Table 1. The same test as in Example 1 was performed and the results are shown in Table 1.

比較例1〜5
表2の処方の配合量(部)で配合し、実施例1と同様の装置を使用して、同様の操作で、粉体塗料、試験板及び試験管を得た。実施例1と同様の試験を行い、その結果を表2に示した。
Comparative Examples 1-5
A powder paint, a test plate, and a test tube were obtained in the same manner using the same apparatus as in Example 1 using the blending amount (parts) of the formulation in Table 2. The same test as in Example 1 was performed and the results are shown in Table 2.

Figure 2019172804
Figure 2019172804

Figure 2019172804
Figure 2019172804

Claims (9)

150〜280℃の範囲の一定の予熱温度に加熱された中空の被塗物内面に、減圧下に粉体塗料を吸引、塗着させ、それを硬化させて硬化塗膜を形成する塗装方法で使用する粉体塗料であって、上記粉体塗料がエポキシ樹脂(A)、硬化剤(B)及び顔料(C)を含み、粉体塗料の粒度分布におけるD10が5μm以上及びD90が200μm以下であり、嵩密度が0.4〜0.8g/cmであり、上記予熱温度におけるゲルタイムが20〜60秒であることを特徴とするエポキシ樹脂粉体塗料。 A coating method in which a powder coating is sucked and applied under reduced pressure to a hollow inner surface heated to a constant preheating temperature in the range of 150 to 280 ° C., and then cured to form a cured coating film. A powder coating used, wherein the powder coating includes an epoxy resin (A), a curing agent (B), and a pigment (C), and D10 in the particle size distribution of the powder coating is 5 μm or more and D90 is 200 μm or less. An epoxy resin powder coating material having a bulk density of 0.4 to 0.8 g / cm 3 and a gel time of 20 to 60 seconds at the preheating temperature. エポキシ樹脂(A)が、ビスフェノール類のエピクロルヒドリンによるエポキシ化物であり、エポキシ当量が700〜3000g/eq.であり、軟化点が70〜130℃である請求項1に記載のエポキシ樹脂粉体塗料。   The epoxy resin (A) is an epoxidized product of bisphenols with epichlorohydrin, and the epoxy equivalent is 700 to 3000 g / eq. The epoxy resin powder paint according to claim 1, wherein the softening point is 70 to 130 ° C. ビスフェノール類が、テトラメチルビスフェノールF、ビスフェノールF、テトラメチルビスフェノールA及びビスフェノールAから選ばれる少なくとも1つである請求項2に記載のエポキシ樹脂粉体塗料。   The epoxy resin powder coating material according to claim 2, wherein the bisphenol is at least one selected from tetramethylbisphenol F, bisphenol F, tetramethylbisphenol A and bisphenol A. 硬化剤(B)が、イミダゾリン誘導体及び/又はイミダゾール誘導体である請求項1〜3のいずれか1項に記載のエポキシ樹脂粉体塗料。   The epoxy resin powder coating material according to any one of claims 1 to 3, wherein the curing agent (B) is an imidazoline derivative and / or an imidazole derivative. 顔料(C)が、酸化鉄、黄色酸化鉄、シリカ粉、石英系粉、酸化チタン、炭酸カルシウム、硫酸バリウム及びカーボンブラックから選ばれる少なくとも1つである請求項1〜4のいずれか1項に記載のエポキシ樹脂粉体塗料。   The pigment (C) is at least one selected from iron oxide, yellow iron oxide, silica powder, quartz powder, titanium oxide, calcium carbonate, barium sulfate, and carbon black. The epoxy resin powder coating described. 被塗物が、直管又は異形管である請求項1〜5のいずれか1項に記載のエポキシ樹脂粉体塗料。   The epoxy resin powder coating material according to any one of claims 1 to 5, wherein the article to be coated is a straight pipe or a modified pipe. 請求項1〜6のいずれか1項に記載のエポキシ樹脂粉体塗料で塗装された直管又は異形管。   A straight pipe or a deformed pipe coated with the epoxy resin powder paint according to any one of claims 1 to 6. 150〜280℃の範囲内の一定温度に予熱した中空の被塗物を架台上に配置し、被塗物内部を減圧下において塗料供給槽から粉体塗料を吸引して被塗物内面に塗着させ、そのまま硬化塗膜を形成することができる塗装方法であって、上記粉体塗料として、エポキシ樹脂(A)、硬化剤(B)及び顔料(C)を含み、粉体塗料の粒度分布におけるD10が5μm以上及びD90が200μm以下であり、嵩密度が0.4〜0.8g/cmであり、上記予熱温度におけるゲルタイムが20〜60秒であるエポキシ樹脂粉体塗料を使用することを特徴とする塗装方法。 A hollow object to be preheated to a constant temperature in the range of 150 to 280 ° C. is placed on a stand, and the inside of the object to be coated is sucked in from the paint supply tank under reduced pressure and applied to the inner surface of the object to be coated. It is a coating method in which a cured coating film can be formed as it is, and includes the epoxy resin (A), the curing agent (B) and the pigment (C) as the powder coating, and the particle size distribution of the powder coating Use an epoxy resin powder coating in which D10 is 5 μm or more and D90 is 200 μm or less, the bulk density is 0.4 to 0.8 g / cm 3 , and the gel time at the preheating temperature is 20 to 60 seconds. A painting method characterized by 請求項8に記載の塗装方法で塗装された直管又は異形管。
A straight pipe or a deformed pipe painted by the coating method according to claim 8.
JP2018062291A 2018-03-28 2018-03-28 Epoxy resin powder paint Active JP7101008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062291A JP7101008B2 (en) 2018-03-28 2018-03-28 Epoxy resin powder paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062291A JP7101008B2 (en) 2018-03-28 2018-03-28 Epoxy resin powder paint

Publications (2)

Publication Number Publication Date
JP2019172804A true JP2019172804A (en) 2019-10-10
JP7101008B2 JP7101008B2 (en) 2022-07-14

Family

ID=68168142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062291A Active JP7101008B2 (en) 2018-03-28 2018-03-28 Epoxy resin powder paint

Country Status (1)

Country Link
JP (1) JP7101008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888748B1 (en) * 2020-07-31 2021-06-16 住友ベークライト株式会社 Powder paint
WO2022024399A1 (en) * 2020-07-31 2022-02-03 住友ベークライト株式会社 Powder coating material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226760A (en) * 1996-12-10 1998-08-25 Kubota Corp Powder coating material for inner surface of cast iron pipe
JP2000281968A (en) * 1999-03-29 2000-10-10 Dainippon Ink & Chem Inc Powder coating for cast iron pipe
JP2000303029A (en) * 1996-03-12 2000-10-31 Kao Corp Production of powder coating composition
JP2011184658A (en) * 2010-03-11 2011-09-22 Nippon Steel Chem Co Ltd Epoxy resin composition for powder coating material and cured product of the same
JP2016069550A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Epoxy resin powder coating composition for inner surface of cast iron pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009013A (en) 2002-06-11 2004-01-15 Kubota Corp Coating method of epoxy powder paint on cast iron pipe
JP3946589B2 (en) 2002-07-15 2007-07-18 株式会社栗本鐵工所 Powder coating composition for pipes
JP2009035688A (en) 2007-08-03 2009-02-19 Kurimoto Ltd Powder coating for cast iron pipe and cast iron pipe
JP5613516B2 (en) 2010-09-29 2014-10-22 名神株式会社 Powder coating for cast iron pipe and cast iron pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303029A (en) * 1996-03-12 2000-10-31 Kao Corp Production of powder coating composition
JPH10226760A (en) * 1996-12-10 1998-08-25 Kubota Corp Powder coating material for inner surface of cast iron pipe
JP2000281968A (en) * 1999-03-29 2000-10-10 Dainippon Ink & Chem Inc Powder coating for cast iron pipe
JP2011184658A (en) * 2010-03-11 2011-09-22 Nippon Steel Chem Co Ltd Epoxy resin composition for powder coating material and cured product of the same
JP2016069550A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Epoxy resin powder coating composition for inner surface of cast iron pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888748B1 (en) * 2020-07-31 2021-06-16 住友ベークライト株式会社 Powder paint
WO2022024399A1 (en) * 2020-07-31 2022-02-03 住友ベークライト株式会社 Powder coating material

Also Published As

Publication number Publication date
JP7101008B2 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP6396649B2 (en) Epoxy resin powder coating composition for inner surface of cast iron pipe
JP6567783B1 (en) Powder coating composition and coating film forming method
JP4160970B2 (en) Corrosion prevention method for cast iron pipe
JP2019172804A (en) Epoxy resin powder coating
JP4514018B2 (en) Epoxy powder coating composition
JP6691760B2 (en) Epoxy resin powder coating composition
JP6479393B2 (en) Epoxy resin powder coating composition for inner surface of cast iron pipe
JP3511051B2 (en) Low temperature curing type powder coating composition and method for forming coating film on inner surface of metal tube using this powder coating composition
JP6937561B2 (en) Epoxy resin powder coating composition for inner surface of cast iron pipe
JP2021101005A (en) Epoxy resin powder coating and method for inhibiting thermal discoloration of coating film
JP2020105262A (en) Epoxy resin powder coating
JP2002233819A (en) Powder coating method of steel and powder coated steel
US7820239B2 (en) Method of manufacturing iron member
JP2000160063A (en) Low-temperature-curable powder coating composition and formation of coating film on inside surface of metallic pipe by using the same
US20210309881A1 (en) Low application temperature powder coating
JP2001152083A (en) Thermosetting epoxy powder coating for metal tube and coated metal tube using the same
JP2004263097A (en) Powder paint composition for waterline materials
JP2021169593A (en) Epoxy resin powder coating
JP3946589B2 (en) Powder coating composition for pipes
JP3572332B2 (en) Exterior painted cast iron tube
JPH09100425A (en) Powder paint for casting
JPH11172155A (en) Epoxy resin-based powder coating material
JPS5847064A (en) Epoxy resin powder paint composition
JPH08239599A (en) Poyphenylene sulfide for powder coating and its use
JP2002194289A (en) Powder coating composition and metallic material provided with powder coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7101008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150