JP2019171234A - Regeneration method of zeolite membrane for hydrogen sulfide separation - Google Patents

Regeneration method of zeolite membrane for hydrogen sulfide separation Download PDF

Info

Publication number
JP2019171234A
JP2019171234A JP2018059546A JP2018059546A JP2019171234A JP 2019171234 A JP2019171234 A JP 2019171234A JP 2018059546 A JP2018059546 A JP 2018059546A JP 2018059546 A JP2018059546 A JP 2018059546A JP 2019171234 A JP2019171234 A JP 2019171234A
Authority
JP
Japan
Prior art keywords
zeolite membrane
hydrogen sulfide
zeolite
separation
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018059546A
Other languages
Japanese (ja)
Inventor
篤 摩庭
Atsushi Maniwa
篤 摩庭
雅人 内田
Masato Uchida
雅人 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2018059546A priority Critical patent/JP2019171234A/en
Publication of JP2019171234A publication Critical patent/JP2019171234A/en
Priority to JP2022127033A priority patent/JP7363994B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

To provide a method for regenerating a zeolite membrane for separating highly selectively hydrogen sulfide from hydrocarbon gas accompanied by hydrogen sulfide, which is a method for regenerating hydrogen sulfide separation performance of the zeolite membrane by removing a sulfur portion in the zeolite.SOLUTION: A regeneration method of a zeolite membrane for hydrogen sulfide separation includes a heat treatment process for performing heat treatment of the zeolite membrane containing a sulfur portion under vacuum at the temperature of 30°C or higher and 500°C or lower. Preferably, the heating process is performed at the pressure of 0.01 Pa or higher and 100 kPa or lower.SELECTED DRAWING: None

Description

本発明は、硫化水素等の硫黄化合物により分離性能が低下した硫化水素分離用ゼオライト膜の再生方法に関する。   The present invention relates to a method for regenerating a zeolite membrane for hydrogen sulfide separation whose separation performance is reduced by a sulfur compound such as hydrogen sulfide.

天然ガスの精製プラントでは液化工程での配管閉塞を回避するために、天然ガス中に含まれる硫化水素や有機硫黄化合物の分離が必要である。これまではアミンなどの塩基を用いた化学吸収法が用いられてきたが、吸収した硫化水素を脱離するためのエネルギーが大きく、硫化水素の分離に莫大なエネルギーが必要であったため、省エネルギーかつ簡素化が可能な分離膜による硫化水素分離方法の確立が望まれていた。   In a natural gas refining plant, it is necessary to separate hydrogen sulfide and organic sulfur compounds contained in natural gas in order to avoid clogging of pipes in the liquefaction process. Until now, chemical absorption methods using bases such as amines have been used, but energy is high for desorbing absorbed hydrogen sulfide, and enormous energy is required for separation of hydrogen sulfide. It has been desired to establish a hydrogen sulfide separation method using a separation membrane that can be simplified.

近年、無機多孔質支持体表面に形成させたゼオライト膜を用いた硫化水素分離方法が報告されている。ゼオライトからなる膜は、分子のサイズや形状の違いにより選択的に分子を通過させる性質を有するため、分子ふるいとして広く利用されている。特許文献1ではFAU型、DDR型、LTA型、LTL型、MOR型、MFI型、SOD型、及びBEA型ゼオライト膜が硫化水素分離膜として提案されている。   In recent years, a hydrogen sulfide separation method using a zeolite membrane formed on the surface of an inorganic porous support has been reported. Membranes made of zeolite are widely used as molecular sieves because they have the property of selectively passing molecules depending on the size and shape of the molecules. In Patent Document 1, FAU type, DDR type, LTA type, LTL type, MOR type, MFI type, SOD type, and BEA type zeolite membranes have been proposed as hydrogen sulfide separation membranes.

特開2012−236142号公報JP 2012-236142 A 特公昭62−020848号公報Japanese Examined Patent Publication No. 62-020848 特許5706126号公報Japanese Patent No. 5706126

特許文献1に記載の方法は、従来知られていたゼオライト吸着剤による吸着とは異なり、ゼオライトの分子篩い機能と、膜の透過前後の差圧を利用して、分子径の異なる成分を分離する方法である。しかしながら、硫化水素や有機硫黄化合物はゼオライトと反応し、細孔内に硫黄成分が生成するため、ゼオライト膜の分離性能が低下する課題がある。特許文献2に記載された吸着剤の再生方法では、ジメチルスルホキシドを含有する炭化水素を流通させ飽和させたタイプ13X分子ふるいに対して、高純度水素流通下で段階的に加熱を行っている。特許文献3に記載された吸着剤の再生方法では、メルカプタンを含むNaX型ゼオライトに対して、被処理ガス流通下で段階的に加熱を行っている。   The method described in Patent Document 1 separates components having different molecular diameters using the molecular sieving function of zeolite and the differential pressure before and after permeation of the membrane, unlike the conventionally known adsorption by a zeolite adsorbent. Is the method. However, since hydrogen sulfide and organic sulfur compounds react with zeolite and sulfur components are generated in the pores, there is a problem that the separation performance of the zeolite membrane is lowered. In the method for regenerating an adsorbent described in Patent Document 2, a type 13X molecular sieve in which a hydrocarbon containing dimethyl sulfoxide is circulated and saturated is heated stepwise under a high-purity hydrogen flow. In the adsorbent regeneration method described in Patent Document 3, NaX-type zeolite containing mercaptan is heated stepwise under the flow of the gas to be treated.

本発明の目的は、分離性能の低下した硫化水素分離用ゼオライト膜を再生させる方法を提供するものである。   An object of the present invention is to provide a method for regenerating a zeolite membrane for separating hydrogen sulfide having a reduced separation performance.

本発明者らは、鋭意検討を行った結果、真空下で加熱処理をすることでゼオライト膜の炭化水素−硫化水素の分離性能を回復できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the hydrocarbon-hydrogen sulfide separation performance of the zeolite membrane can be recovered by heat treatment under vacuum, and the present invention has been completed.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、硫黄分を含有するゼオライト膜を真空下で30℃以上500℃以下の温度で加熱処理する加熱工程を備えた、硫化水素分離用ゼオライト膜の再生方法である。   The present invention is a method for regenerating a zeolite membrane for hydrogen sulfide separation, comprising a heating step of heat-treating a zeolite membrane containing a sulfur content at a temperature of 30 ° C. to 500 ° C. under vacuum.

以下、本発明で再生するゼオライト膜について説明する。   Hereinafter, the zeolite membrane regenerated by the present invention will be described.

本発明で用いるゼオライト膜は、Y型ゼオライトであることが好ましい。これにより炭化水素と硫化水素を効率的に分離することができる。   The zeolite membrane used in the present invention is preferably Y-type zeolite. Thereby, hydrocarbon and hydrogen sulfide can be separated efficiently.

多孔質支持体表面に形成されたゼオライト膜の結晶相は、X線回折法などにより確認することができる。   The crystal phase of the zeolite membrane formed on the porous support surface can be confirmed by an X-ray diffraction method or the like.

本発明で用いるゼオライト膜は、1.5より大きく3.0以下のSi/Alモル比を有し、かつ、FAU型の結晶相を有する。これにより、ゼオライト膜が高い耐熱性を有し、かつ、選択的に硫化水素を透過させる。ここで、膜部分のSi/Alモル比は、X線回折方により格子定数を算出し、それに基づき評価を行った。   The zeolite membrane used in the present invention has a Si / Al molar ratio of more than 1.5 and 3.0 or less, and has a FAU type crystal phase. Thereby, the zeolite membrane has high heat resistance and selectively allows hydrogen sulfide to permeate. Here, the Si / Al molar ratio of the film portion was evaluated based on the lattice constant calculated by the X-ray diffraction method.

本発明で用いるゼオライト膜は、アルカリ金属、アルカリ土類金属、遷移金属、希土類からなる群の少なくとも1種を含有することが好ましく、さらに好ましくはナトリウム(Na)を含有する。   The zeolite membrane used in the present invention preferably contains at least one member selected from the group consisting of alkali metals, alkaline earth metals, transition metals, and rare earths, and more preferably contains sodium (Na).

本発明で用いるゼオライト膜の硫黄含有量は、4wt%以上の時に再生の効果が著しい。ここで、硫黄含有量は、イオンクロマト法やEDS等の一般的な組成分析法により測定することができる。イオンクロマト法を用いる場合、粉砕した試料を燃焼し、燃焼ガスをSO分として吸収液に吹き込むことでSO濃度をイオンクロマト法により定量することができる。 When the sulfur content of the zeolite membrane used in the present invention is 4 wt% or more, the regeneration effect is remarkable. Here, the sulfur content can be measured by a general composition analysis method such as ion chromatography or EDS. When ion chromatography is used, the pulverized sample is combusted, and the SO 4 concentration can be quantified by ion chromatography by blowing the combustion gas into the absorbing solution as SO 4 minutes.

本発明で用いるゼオライト膜の膜厚は100μm以下が好ましく、50μm以下がさらに好ましい。これにより硫化水素をより透過させる。また、ゼオライト膜の膜厚は0.1μm以上が好ましく、1μm以上がさらに好ましい。これにより、膜の強度がより高く、かつ、より選択的に硫化水素を透過させる。   The thickness of the zeolite membrane used in the present invention is preferably 100 μm or less, and more preferably 50 μm or less. Thereby, hydrogen sulfide is further permeated. Further, the thickness of the zeolite membrane is preferably 0.1 μm or more, more preferably 1 μm or more. Thereby, the strength of the membrane is higher, and hydrogen sulfide permeates more selectively.

本発明で用いるゼオライト膜は、膜表面をシリル化剤等で修飾していても良い。   In the zeolite membrane used in the present invention, the membrane surface may be modified with a silylating agent or the like.

本発明で用いるゼオライト膜は、多孔質支持体上に形成されていることが好ましい。多孔質支持体としては、圧力差に耐える強度や、耐熱性を有するもの、更に硫化水素に対する耐腐食性があれば特に限定するものではなく、例えば、無機系多孔質支持体、又は無機有機ハイブリッド多孔質支持体等が挙げられる。   The zeolite membrane used in the present invention is preferably formed on a porous support. The porous support is not particularly limited as long as it has strength to withstand a pressure difference, heat resistance, and corrosion resistance to hydrogen sulfide. For example, an inorganic porous support or an inorganic organic hybrid Examples thereof include a porous support.

無機系多孔質支持体としては、多孔質であれば特に制限されるものではなく、例えば、シリカ、アルミナ、ムライト、ジルコニア、チタニア、窒化珪素、もしくは炭化珪素などのセラミックス焼結体、もしくはステンレスなどの焼結金属、ガラス、カーボン成形体等を用いることができる。   The inorganic porous support is not particularly limited as long as it is porous. For example, a ceramic sintered body such as silica, alumina, mullite, zirconia, titania, silicon nitride, or silicon carbide, or stainless steel is used. Sintered metal, glass, carbon molded body, and the like can be used.

多孔質支持体表面層の細孔径は、0.05μm以上1.5μm以下、さらに0.10μm以上1.5μm以下の範囲であることが好ましい。当該支持体の細孔径の評価は、バブルポイント法や水銀圧入法などで行うことができる。尚、多孔質支持体表面層とは、ゼオライト膜を形成する支持体表面部分を指す。また、ゼオライト膜を形成する支持体表面層以外の部分の細孔径は特に制限されないが、0.05μm以上1.5μm以下、さらに0.30μm以上0.80μm以下であることが例示できる。また、支持体の気孔率は硫化水素を透過させる際の透過流量を左右するため、20%以上60%以下の気孔率を有するものが好ましい。   The pore diameter of the surface layer of the porous support is preferably in the range from 0.05 μm to 1.5 μm, and more preferably from 0.10 μm to 1.5 μm. The pore diameter of the support can be evaluated by a bubble point method, a mercury intrusion method, or the like. The porous support surface layer refers to a support surface portion that forms a zeolite membrane. Further, the pore diameter of the portion other than the support surface layer forming the zeolite membrane is not particularly limited, but it may be 0.05 μm or more and 1.5 μm or less, more preferably 0.30 μm or more and 0.80 μm or less. Moreover, since the porosity of a support body influences the permeation | transmission flow volume at the time of permeate | transmitting hydrogen sulfide, what has a porosity of 20% or more and 60% or less is preferable.

多孔質支持体の形状は、気体混合物を有効に分離できる形状であれば制限されるものではなく、例えば、平板状、波板状、管状、円柱状、円錐状、円錐台状、円筒状、角柱状、角筒状、角錐状、角錐台状、又は円柱状、若しくは角柱状の孔が多数存在するハニカム状などが挙げられる。波板状、管状、円柱状、円錐状、円錐台状、円筒状、角柱状、角筒状、角錐状、角錐台状、又は円柱状の多孔質支持体については、中心がくり抜かれた筒状のものが好ましく、筒は貫通しているものでもよいし、試験管状の貫通していないものであってもよい。   The shape of the porous support is not limited as long as the gas mixture can be effectively separated.For example, the shape of the porous support is flat, corrugated, tubular, cylindrical, conical, frustoconical, cylindrical, Examples thereof include a prismatic shape, a rectangular tube shape, a pyramid shape, a truncated pyramid shape, a cylindrical shape, or a honeycomb shape in which a large number of prismatic holes are present. For corrugated, tubular, columnar, conical, frustoconical, cylindrical, prismatic, prismatic, pyramidal, truncated pyramidal, or cylindrical porous supports, a cylinder with a hollow center The tube is preferable, and the tube may be penetrated, or the test tube may not be penetrated.

本発明の再生方法の対象となるゼオライト膜は、炭化水素と硫化水素との分離に使用したものである。分離は、ゼオライト膜に炭化水素と硫化水素を含むガスを接触させて行う。より詳細には、少なくとも一方の表面がFAU型ゼオライト膜で被覆された多孔質支持体からなる分離膜2つの表面のうち一方の表面に硫化水素/炭化水素混合ガスを接触させることによって行われる。硫化水素の分離は、ゼオライト膜の温度を−60℃以上110℃以下に保持して行う。硫化水素/炭化水素混合ガスにおける炭化水素は、少なくともメタンを含む。メタンは天然ガス等の主成分であることから、本発明の分離方法を工業的に実施することが可能となる。炭化水素は特に限定するものではなく、例えば、メタン、エタン、プロパン、ブタン、ペンタン、エチレン、アセチレン、プロピレン、プロパジエン、ブテン、ブタジエンからなる群の少なくとも1種が挙げられ、2種以上を含んでいてもよい。また、硫化水素/炭化水素混合ガスは、前記ガスのほか、二酸化炭素、水、窒素、酸素、希ガス等の第三成分を含んでいてもよい。   The zeolite membrane to be subjected to the regeneration method of the present invention is used for separation of hydrocarbons and hydrogen sulfide. Separation is performed by bringing a gas containing hydrocarbon and hydrogen sulfide into contact with the zeolite membrane. More specifically, it is carried out by bringing a hydrogen sulfide / hydrocarbon mixed gas into contact with one of the two surfaces of the separation membrane made of a porous support having at least one surface coated with a FAU type zeolite membrane. The separation of hydrogen sulfide is carried out while maintaining the temperature of the zeolite membrane at -60 ° C or higher and 110 ° C or lower. The hydrocarbon in the hydrogen sulfide / hydrocarbon mixed gas contains at least methane. Since methane is a main component such as natural gas, the separation method of the present invention can be implemented industrially. The hydrocarbon is not particularly limited, and examples thereof include at least one member selected from the group consisting of methane, ethane, propane, butane, pentane, ethylene, acetylene, propylene, propadiene, butene, and butadiene. May be. In addition to the gas, the hydrogen sulfide / hydrocarbon mixed gas may contain a third component such as carbon dioxide, water, nitrogen, oxygen, and a rare gas.

次いで、本発明である、ゼオライト膜の再生方法について説明する。   Next, a method for regenerating a zeolite membrane according to the present invention will be described.

ゼオライト膜が含有している硫黄分を除去することで、低下した硫化水素の分離性能を再生することが可能となり、ゼオライト膜を用いて継続的に硫化水素を高選択的に分離することができる。   By removing the sulfur content contained in the zeolite membrane, it is possible to regenerate the reduced hydrogen sulfide separation performance, and the hydrogen sulfide can be continuously and selectively separated using the zeolite membrane. .

加熱工程における温度は30℃以上500℃以下である。短時間で除去できる点で100℃以上が好ましい。ゼオライトの構造を維持する点で400℃以下が好ましい。   The temperature in a heating process is 30 degreeC or more and 500 degrees C or less. 100 degreeC or more is preferable at the point which can be removed in a short time. 400 degreeC or less is preferable at the point which maintains the structure of a zeolite.

加熱工程における昇温速度及び降温速度は、2℃/min以下であることが好ましい。これにより、熱膨張係数に起因する、ゼオライト膜と多孔質支持体のひずみを最小限に抑えることができる。多孔質支持体がアルミナの場合、1℃/min以下であることがさらに好ましい。   It is preferable that the temperature increase rate and the temperature decrease rate in the heating step be 2 ° C./min or less. Thereby, the distortion | strain of a zeolite membrane and a porous support body resulting from a thermal expansion coefficient can be suppressed to the minimum. When the porous support is alumina, it is more preferably 1 ° C./min or less.

加熱工程における保持時間は4時間以上であることが好ましい。   The holding time in the heating step is preferably 4 hours or longer.

加熱工程における真空下とは、例えば真空ポンプで減圧した開放系を表す。減圧は、短時間で硫黄分を除去できる点で100kPa以下が好ましい。簡便な減圧装置により短時間で加熱工程を行える点で0.01Pa以上が好ましい。   Under vacuum in the heating step represents, for example, an open system reduced in pressure by a vacuum pump. The reduced pressure is preferably 100 kPa or less in that the sulfur content can be removed in a short time. 0.01 Pa or more is preferable in that the heating process can be performed in a short time with a simple decompression device.

本発明のゼオライト膜の再生方法は、硫化水素を含有する炭化水素ガスから硫化水素を高選択的に透過分離するためのゼオライト膜に関して、その低下した分離性能を回復して再利用する方法を提供することができる。   The method for regenerating a zeolite membrane according to the present invention provides a method for recovering and reusing the reduced separation performance of a zeolite membrane for highly selectively separating hydrogen sulfide from a hydrocarbon gas containing hydrogen sulfide. can do.

ゼオライト膜を用いた硫化水素の分離性能評価装置の模式図である。It is a schematic diagram of the hydrogen sulfide separation performance evaluation apparatus using a zeolite membrane.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to these Examples at all.

(X線回折測定)
一般的なXRD装置(装置名:RINT UltimaIII、理学電機製)を使用し、試料のXRD測定を行った。測定条件は以下のとおりとした。
線源 : CuKα線(λ=1.54Å)
測定モード : ステップスキャン
スキャン条件: 毎分4°
発散スリット: 2/3deg
散乱スリット: 2/3deg
受光スリット: 0.3mm
ステップ幅 : 0.02°
測定範囲 : 2θ=5〜40°
(X-ray diffraction measurement)
A general XRD apparatus (apparatus name: RINT Ultimate III, manufactured by Rigaku Corporation) was used to perform XRD measurement of the sample. The measurement conditions were as follows.
Radiation source: CuKα ray (λ = 1.54mm)
Measurement mode: Step scan
Scanning conditions: 4 ° per minute
Divergent slit: 2/3 deg
Scattering slit: 2/3 deg
Receiving slit: 0.3mm
Step width: 0.02 °
Measurement range: 2θ = 5-40 °

(組成分析)
ゼオライト膜のSi/Alモル比は、XRD法により格子定数を算出し、非特許文献(T.Takaishi,The Journal of Physical Chemistry 99(1995)10982−10987)を参考に評価した。硫黄含有量は、エネルギー分散型X線分光法(EDS)で測定した。測定には一般的なSEM−EDS装置(装置名:JSM−IT100 InTouchScope、日本電子(株)製)を用いた。
(Composition analysis)
The Si / Al molar ratio of the zeolite membrane was evaluated with reference to non-patent literature (T. Takaishi, The Journal of Physical Chemistry 99 (1995) 10982-10987) by calculating the lattice constant by the XRD method. The sulfur content was measured by energy dispersive X-ray spectroscopy (EDS). A general SEM-EDS device (device name: JSM-IT100 InTouchScope, manufactured by JEOL Ltd.) was used for the measurement.

(硫化水素の分離評価)
図1に示す分離性能評価装置を用いて、ゼオライト膜の分離性能を評価した。硫化水素/メタンのモル比が20/80の混合ガスとなるように、ゼオライト膜表面へ硫化水素を20mL/min、メタンを80mL/minで供給した。膜を透過したガスをスィープガス(He 50mL/min)により回収し、ガスクロマトグラフィーにより定量分析を実施した。測定には一般的なガスクロマトグラフ装置(装置名:Agilent 7890B、アジレント・テクノロジー(株)製、TCD検出器)を用いた。硫化水素分離性能を示す分離係数は次式により算出した。
分離係数=(透過ガス中の硫化水素濃度/透過ガス中のメタン濃度)
/(供給ガス中の硫化水素濃度/供給ガス中のメタン濃度)
(Separation evaluation of hydrogen sulfide)
The separation performance of the zeolite membrane was evaluated using the separation performance evaluation apparatus shown in FIG. Hydrogen sulfide was supplied to the zeolite membrane surface at a rate of 20 mL / min and methane at a rate of 80 mL / min so that the hydrogen sulfide / methane molar ratio was 20/80. The gas that permeated through the membrane was collected with a sweep gas (He 50 mL / min), and quantitative analysis was performed by gas chromatography. A general gas chromatograph apparatus (apparatus name: Agilent 7890B, manufactured by Agilent Technologies, Inc., TCD detector) was used for the measurement. The separation factor indicating the hydrogen sulfide separation performance was calculated by the following equation.
Separation factor = (hydrogen sulfide concentration in the permeate gas / methane concentration in the permeate gas)
/ (Hydrogen sulfide concentration in the supply gas / methane concentration in the supply gas)

参考例1
非特許文献(H.Kita,K.Fuchida,T.Horita,H.Asamura,and K.Okamoto,Separation and Purification Technology 25(2001)261−268)を参考にしてY型ゼオライト膜を作製した。
Reference example 1
A Y-type zeolite membrane was prepared with reference to non-patent literature (H. Kita, K. Fuchida, T. Horita, H. Asamura, and K. Okamoto, Separation and Purification Technology 25 (2001) 261-268).

<種晶付多孔質支持体の作製>
FAU型ゼオライトとして東ソー(株)製HSZ−360HUA12.5gを50mlの純水に分散させ、ボールミルで24時間かけて粉砕した。得られたスラリーに円筒型多孔質支持体(材質:αアルミナ、平均細孔径:0.7μm(表面側:0.15μm)、気孔率:35〜45%、長さ:3cm、外径:1cm、内径:0.7cm)を浸漬し、これを乾燥させることで支持体外表面に種晶を担持した。
<Preparation of seed crystal-attached porous support>
As a FAU type zeolite, 12.5 g of HSZ-360HUA manufactured by Tosoh Corporation was dispersed in 50 ml of pure water and pulverized with a ball mill for 24 hours. Cylindrical porous support (material: α alumina, average pore diameter: 0.7 μm (surface side: 0.15 μm), porosity: 35 to 45%, length: 3 cm, outer diameter: 1 cm , Inner diameter: 0.7 cm) was immersed and dried to support seed crystals on the outer surface of the support.

<ゼオライト膜付多孔質支持体の作製>
水酸化ナトリウム(関東化学製特級)2.6g、蒸留水26g、及びアルミン酸ソーダ(和光純薬工業株式会社製)0.13gを室温で5min撹拌混合した(溶液1)。また、ケイ酸ナトリウム溶液(3号)(キシダ化学株式会社製)14g及び蒸留水26gを室温で5min撹拌混合した(溶液2)。溶液1と溶液2を混合し、80℃で4h撹拌混合した。得られた混合溶液に種晶付多孔質支持体を浸漬し、85℃で24h水熱合成した。次いで、混合溶液から取り出した支持体を蒸留水で洗浄、乾燥してゼオライト膜付多孔質支持体を得た。得られた多孔質支持体のゼオライト膜部分に対して、XRDによって構成相の同定を行い、当該ゼオライト膜部分のSi/Alの比が1.6であり、その結晶相がNaY型ゼオライトであることを確認した。
<Production of porous support with zeolite membrane>
2.6 g of sodium hydroxide (special grade manufactured by Kanto Chemical), 26 g of distilled water, and 0.13 g of sodium aluminate (manufactured by Wako Pure Chemical Industries, Ltd.) were stirred and mixed at room temperature for 5 minutes (solution 1). In addition, 14 g of sodium silicate solution (No. 3) (manufactured by Kishida Chemical Co., Ltd.) and 26 g of distilled water were stirred and mixed at room temperature for 5 minutes (solution 2). Solution 1 and solution 2 were mixed and stirred and mixed at 80 ° C. for 4 h. The seeded porous support was immersed in the obtained mixed solution and hydrothermally synthesized at 85 ° C. for 24 hours. Next, the support taken out from the mixed solution was washed with distilled water and dried to obtain a porous support with zeolite membrane. The constituent phase is identified by XRD with respect to the zeolite membrane portion of the obtained porous support, the Si / Al ratio of the zeolite membrane portion is 1.6, and the crystal phase is NaY-type zeolite. It was confirmed.

得られたNaY型ゼオライト膜付多孔質支持体を、図1に示す評価装置の恒温槽内へ取り付け、脱水処理(150℃、30min、He 50mL/min)を実施した。脱水処理後、恒温槽の温度を30℃へ保持した状態で、硫化水素を2h供給した後の硫化水素分離性能評価を実施した。硫化水素透過度、メタン透過度、及び分離係数を表1に示す。   The obtained porous support with NaY-type zeolite membrane was attached to the thermostat of the evaluation apparatus shown in FIG. 1, and dehydration treatment (150 ° C., 30 min, He 50 mL / min) was performed. After the dehydration treatment, the hydrogen sulfide separation performance was evaluated after supplying hydrogen sulfide for 2 hours with the temperature of the thermostatic bath maintained at 30 ° C. Table 1 shows the hydrogen sulfide permeability, methane permeability, and separation factor.

参考例2
参考例1と同様の方法で、NaY型ゼオライト膜付多孔質支持体を作製し、硫化水素の供給時間を6hとした以外は参考例1と同様の方法で硫化水素分離性能評価を実施した。硫化水素透過度、メタン透過度、及び分離係数を表1に示す。ゼオライト膜の硫黄含有量は7wt%であった。
Reference example 2
A porous support with NaY-type zeolite membrane was prepared in the same manner as in Reference Example 1, and the hydrogen sulfide separation performance was evaluated in the same manner as in Reference Example 1 except that the supply time of hydrogen sulfide was set to 6 h. Table 1 shows the hydrogen sulfide permeability, methane permeability, and separation factor. The sulfur content of the zeolite membrane was 7 wt%.

実施例1
参考例1と同様の方法で、NaY型ゼオライト膜付多孔質支持体を作製し、硫化水素を6h供給後、ゼオライト膜の硫黄含有量を評価した。ゼオライト膜の硫黄含有量は7wt%であった。その後、NaY型ゼオライト膜付多孔質支持体を真空加熱用装置内にアルミナボートを用いて設置し、40Paの真空下(開放系)で200℃、6hの条件でゼオライト膜の硫黄分除去処理を実施した。昇温速度及び降温速度は0.5℃/minとした。硫黄分除去処理後の硫黄含有量は3wt%であった。次いで、硫化水素供給時間を1.5hとした以外は参考例1と同様の方法で硫化水素分離性能評価を実施した。硫化水素透過度、メタン透過度、及び分離係数を表1に示す。
Example 1
A porous support with NaY-type zeolite membrane was prepared in the same manner as in Reference Example 1, and after supplying hydrogen sulfide for 6 hours, the sulfur content of the zeolite membrane was evaluated. The sulfur content of the zeolite membrane was 7 wt%. Thereafter, the porous support with NaY-type zeolite membrane is placed in an apparatus for vacuum heating using an alumina boat, and the sulfur content of the zeolite membrane is removed under conditions of 200 ° C. and 6 hours under a vacuum of 40 Pa (open system). Carried out. The temperature increase rate and temperature decrease rate were 0.5 ° C./min. The sulfur content after the sulfur removal treatment was 3 wt%. Subsequently, the hydrogen sulfide separation performance evaluation was performed in the same manner as in Reference Example 1 except that the hydrogen sulfide supply time was 1.5 h. Table 1 shows the hydrogen sulfide permeability, methane permeability, and separation factor.

比較例1
参考例1と同様の方法で、NaY型ゼオライト膜付多孔質支持体を作製し、硫化水素の供給時間を7.5hとした以外は参考例1と同様の方法で硫化水素分離性能評価を実施した。硫化水素透過度、メタン透過度、及び分離係数を表1に示す。
Comparative Example 1
A porous support with NaY-type zeolite membrane was prepared in the same manner as in Reference Example 1, and the hydrogen sulfide separation performance was evaluated in the same manner as in Reference Example 1 except that the supply time of hydrogen sulfide was set to 7.5 h. did. Table 1 shows the hydrogen sulfide permeability, methane permeability, and separation factor.

Figure 2019171234
Figure 2019171234

以上の実施例から、本発明のゼオライト膜の再生方法を用いることにより、硫化水素の分離性能が低下したゼオライト膜の硫黄含有量を低下させることで、硫化水素の分離性能を回復させることが可能であることが分かる。   From the above examples, by using the zeolite membrane regeneration method of the present invention, it is possible to recover the hydrogen sulfide separation performance by lowering the sulfur content of the zeolite membrane with reduced hydrogen sulfide separation performance. It turns out that it is.

本発明のゼオライト膜の再生方法は、天然ガス等の硫化水素含有炭化水素ガスに含まれる硫化水素を除去することで硫化水素の分離性能が低下した膜の再生が可能である。天然ガスの他、農業廃棄物、食品廃棄物等の嫌気性発酵により発生するバイオガスに含まれる有機硫黄化合物を除去する際に分離性能が低下したゼオライト膜を再生することが可能である。   The method for regenerating a zeolite membrane of the present invention can regenerate a membrane having reduced hydrogen sulfide separation performance by removing hydrogen sulfide contained in a hydrogen sulfide-containing hydrocarbon gas such as natural gas. In addition to natural gas, it is possible to regenerate a zeolite membrane with reduced separation performance when removing organic sulfur compounds contained in biogas generated by anaerobic fermentation such as agricultural waste and food waste.

1 硫化水素ガス
2 炭化水素ガス
3 ヘリウム
4 マスフローコントローラー
5 マスフローコントローラー
6 マスフローコントローラー
7 恒温槽
8 モジュール
9 ゼオライト膜付多孔質支持体
10 排気
11 ガスクロマトグラフ
12 排気
13 圧力計
14 真空ポンプ
15 排気
DESCRIPTION OF SYMBOLS 1 Hydrogen sulfide gas 2 Hydrocarbon gas 3 Helium 4 Mass flow controller 5 Mass flow controller 6 Mass flow controller 7 Thermostatic bath 8 Module 9 Porous support body 10 with a zeolite membrane Exhaust 11 Gas chromatograph 12 Exhaust 13 Pressure gauge 14 Vacuum pump 15 Exhaust

Claims (5)

硫黄分を含有するゼオライト膜を真空下で30℃以上500℃以下の温度で加熱処理する加熱工程を備えた、硫化水素分離用ゼオライト膜の再生方法。   A method for regenerating a zeolite membrane for hydrogen sulfide separation, comprising a heating step of heat-treating a zeolite membrane containing a sulfur content at a temperature of 30 ° C to 500 ° C under vacuum. ゼオライト膜がY型ゼオライトの結晶相を有する請求項1に記載のゼオライト膜の再生方法。   The method for regenerating a zeolite membrane according to claim 1, wherein the zeolite membrane has a Y-type zeolite crystal phase. ゼオライト膜が硫黄分を4wt%以上含有している請求項1または2に記載のゼオライト膜の再生方法。   The method for regenerating a zeolite membrane according to claim 1 or 2, wherein the zeolite membrane contains 4 wt% or more of a sulfur content. ゼオライト膜の多孔質支持体がアルミナである請求項1乃至3いずれか一項に記載のゼオライト膜の再生方法。   The method for regenerating a zeolite membrane according to any one of claims 1 to 3, wherein the porous support of the zeolite membrane is alumina. 0.01Pa以上100kPa以下で加熱工程を行う請求項1乃至4いずれか一項に記載のゼオライト膜の再生方法。   The method for regenerating a zeolite membrane according to any one of claims 1 to 4, wherein the heating step is performed at 0.01 Pa to 100 kPa.
JP2018059546A 2018-03-27 2018-03-27 Regeneration method of zeolite membrane for hydrogen sulfide separation Pending JP2019171234A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018059546A JP2019171234A (en) 2018-03-27 2018-03-27 Regeneration method of zeolite membrane for hydrogen sulfide separation
JP2022127033A JP7363994B2 (en) 2018-03-27 2022-08-09 Method for regenerating zeolite membrane for hydrogen sulfide separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059546A JP2019171234A (en) 2018-03-27 2018-03-27 Regeneration method of zeolite membrane for hydrogen sulfide separation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022127033A Division JP7363994B2 (en) 2018-03-27 2022-08-09 Method for regenerating zeolite membrane for hydrogen sulfide separation

Publications (1)

Publication Number Publication Date
JP2019171234A true JP2019171234A (en) 2019-10-10

Family

ID=68167399

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018059546A Pending JP2019171234A (en) 2018-03-27 2018-03-27 Regeneration method of zeolite membrane for hydrogen sulfide separation
JP2022127033A Active JP7363994B2 (en) 2018-03-27 2022-08-09 Method for regenerating zeolite membrane for hydrogen sulfide separation

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022127033A Active JP7363994B2 (en) 2018-03-27 2022-08-09 Method for regenerating zeolite membrane for hydrogen sulfide separation

Country Status (1)

Country Link
JP (2) JP2019171234A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556060U (en) * 1978-06-28 1980-01-16
JPS60232234A (en) * 1984-03-27 1985-11-18 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Removal of hydrogen sulfide from gas and absorbent used therein
JPS6135821A (en) * 1984-07-28 1986-02-20 Mitsubishi Heavy Ind Ltd Treatment of gas containing hydrogen sulfide
JPH03143520A (en) * 1989-10-27 1991-06-19 Mitsubishi Kakoki Kaisha Ltd Method for regenerating adsorption body and adsorbent
JP2006335866A (en) * 2005-06-01 2006-12-14 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for producing low-sulfur light hydrocarbon oil
JP2009024079A (en) * 2007-07-19 2009-02-05 Taiyo Nippon Sanso Corp Biogas generation system
JP2009167233A (en) * 2008-01-11 2009-07-30 Kyuchaku Gijutsu Kogyo Kk Process for recovery and purification of methane from biofermentation gas utilizing adsorbent
JP2012236142A (en) * 2011-05-11 2012-12-06 Hitachi Zosen Corp Zeolite membrane for atmospheric pollutant removal and method for purifying exhaust gas using the membrane
JP2014046267A (en) * 2012-08-31 2014-03-17 Mitsubishi Chemicals Corp Method for separating hydrogen sulfide
WO2016027713A1 (en) * 2014-08-21 2016-02-25 日本碍子株式会社 Separation device and regeneration method
JP2018505048A (en) * 2015-02-02 2018-02-22 アルケマ フランス Zeolite adsorbent with a large external surface area and use of the zeolite adsorbent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243108A1 (en) * 2006-04-13 2007-10-18 Siemens Power Generation, Inc. Sulfur detector for gaseous fuels
EP2915577B1 (en) * 2012-11-01 2022-10-05 NGK Insulators, Ltd. Zeolite membrane regeneration method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556060U (en) * 1978-06-28 1980-01-16
JPS60232234A (en) * 1984-03-27 1985-11-18 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Removal of hydrogen sulfide from gas and absorbent used therein
JPS6135821A (en) * 1984-07-28 1986-02-20 Mitsubishi Heavy Ind Ltd Treatment of gas containing hydrogen sulfide
JPH03143520A (en) * 1989-10-27 1991-06-19 Mitsubishi Kakoki Kaisha Ltd Method for regenerating adsorption body and adsorbent
JP2006335866A (en) * 2005-06-01 2006-12-14 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for producing low-sulfur light hydrocarbon oil
JP2009024079A (en) * 2007-07-19 2009-02-05 Taiyo Nippon Sanso Corp Biogas generation system
JP2009167233A (en) * 2008-01-11 2009-07-30 Kyuchaku Gijutsu Kogyo Kk Process for recovery and purification of methane from biofermentation gas utilizing adsorbent
JP2012236142A (en) * 2011-05-11 2012-12-06 Hitachi Zosen Corp Zeolite membrane for atmospheric pollutant removal and method for purifying exhaust gas using the membrane
JP2014046267A (en) * 2012-08-31 2014-03-17 Mitsubishi Chemicals Corp Method for separating hydrogen sulfide
WO2016027713A1 (en) * 2014-08-21 2016-02-25 日本碍子株式会社 Separation device and regeneration method
JP2018505048A (en) * 2015-02-02 2018-02-22 アルケマ フランス Zeolite adsorbent with a large external surface area and use of the zeolite adsorbent

Also Published As

Publication number Publication date
JP2022169625A (en) 2022-11-09
JP7363994B2 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
Mei et al. High-flux CHA zeolite membranes for H2 separations
Yu et al. Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO 2/CH 4 separation
Zheng et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation
Arruebo et al. Separation of hydrocarbons from natural gas using silicalite membranes
Shirazian et al. Synthesis of substrate-modified LTA zeolite membranes for dehydration of natural gas
Kusakabe et al. Formation of a Y-type zeolite membrane on a porous α-alumina tube for gas separation
Algieri et al. Permeation properties of a thin silicalite-1 (MFI) membrane
Zong et al. Highly permeable AlPO-18 membranes for N2/CH4 separation
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties
Rodrigues et al. Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin
Chen et al. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties
JP6748104B2 (en) Crystalline silica membrane composite, method for producing the same, and fluid separation method
Li et al. High-performance SSZ-13 membranes prepared using ball-milled nanosized seeds for carbon dioxide and nitrogen separations from methane
Xu et al. Fast synthesis of thin all-silica DDR zeolite membranes with inorganic base as mineralizing agent for CO2-CH4 separation
Shahrestani et al. High performance dehydration of ethyl acetate/water mixture by pervaporation using NaA zeolite membrane synthesized by vacuum seeding method
Li et al. Pervaporation and vapor permeation dehydration of Fischer–Tropsch mixed-alcohols by LTA zeolite membranes
JP2015174081A (en) Olefin separation method, and zeolite membrane composite
Zhang et al. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures
Vaezi et al. Synthesis, modification and gas permeation properties of DD3R zeolite membrane for separation of natural gas impurities (N2 and CO2)
JP6270685B2 (en) Separation method of normal paraffin
JP2008188564A (en) Separation membrane for organic mixed solution and manufacturing method for this separation membrane
EA021262B1 (en) Method of making a gas separation molecular sieve membrane
Wang et al. FAU zeolite membranes synthesized using nanoseeds—Separation mechanism and optimization for the pervaporation dehydration of various organic solvents
Zhang et al. Preparation and optimization of mordenite nanocrystal-layered membrane for dehydration by pervaporation
Soydaş et al. Separation of gas and organic/water mixtures by MFI type zeolite membranes synthesized in a flow system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510