JP2019169390A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2019169390A
JP2019169390A JP2018057167A JP2018057167A JP2019169390A JP 2019169390 A JP2019169390 A JP 2019169390A JP 2018057167 A JP2018057167 A JP 2018057167A JP 2018057167 A JP2018057167 A JP 2018057167A JP 2019169390 A JP2019169390 A JP 2019169390A
Authority
JP
Japan
Prior art keywords
placement surface
flow path
battery
battery cell
battery module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018057167A
Other languages
Japanese (ja)
Inventor
徳子 田口
Noriko Taguchi
徳子 田口
岡田 真一
Shinichi Okada
真一 岡田
克好 村松
Katsuyoshi Muramatsu
克好 村松
しおみ 藪本
Shiomi Yabumoto
しおみ 藪本
信吾 ▲高▼▲崎▼
信吾 ▲高▼▲崎▼
Shingo Takasaki
義幸 両國
Yoshiyuki Ryogoku
義幸 両國
健次 柳
Kenji Yanagi
健次 柳
裕太 塚田
Yuta Tsukada
裕太 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018057167A priority Critical patent/JP2019169390A/en
Publication of JP2019169390A publication Critical patent/JP2019169390A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

To provide a battery module that can reduce the temperature gradient of a plurality of battery cells.SOLUTION: A battery module includes a plurality of battery cells 10, a heat sink 20 having a mounting surface 40 on which the battery cells 10 are mounted, and a flow path member 30 attached to the heat sink 20 and through which a cooling water flows, and the heat sink 20 includes a first member 21 having a first mounting surface 41 that constitutes the mounting surface 40, and a second member 22 having a second mounting surface 42 that constitutes the mounting surface 40, and the first member 21 is provided with a flow path member 30, and the second member 22 is provided in a region between the first mounting surface 41 and the flow path member 30, and the second member 22 has thermal conductivity lower than that of the first member 21.SELECTED DRAWING: Figure 2

Description

本発明は、複数の電池セルの温度を均一化するための構造を有する電池モジュールに関する。   The present invention relates to a battery module having a structure for making the temperature of a plurality of battery cells uniform.

ハイブリッド自動車や電気自動車は、モータの電源となる電池モジュールを複数備えた電池パックを搭載している。電気自動車に搭載される電池モジュールは、走行に応じて電池セルの充放電が繰り返されて温度が上昇するため、冷却装置により冷却されている(例えば、特許文献1参照)。   Hybrid vehicles and electric vehicles are equipped with a battery pack including a plurality of battery modules that serve as a power source for the motor. The battery module mounted on the electric vehicle is cooled by a cooling device because the temperature rises due to repeated charging and discharging of the battery cells as the vehicle travels (see, for example, Patent Document 1).

このような電池モジュールは、電池ケース内に配置したヒートシンクに電池セルを載置し、ヒートシンクに冷却配管を取り付けた構造を有している。冷却配管に冷却水を流通させることで、ヒートシンクを介して電池セルが冷却される。   Such a battery module has a structure in which a battery cell is placed on a heat sink disposed in a battery case, and a cooling pipe is attached to the heat sink. By flowing the cooling water through the cooling pipe, the battery cell is cooled via the heat sink.

上記構成の電池モジュールの各電池セルは、冷却配管に近いほど温度が下がりやすいため、複数の電池セルに温度勾配が生じてしまう。このような温度勾配が生じると、冷却配管から遠い電池セルは十分に冷却されず、冷却配管から近い電池セルに比べてが劣化が早く進む。電池モジュールに充電された電力で航続可能な距離は、最も劣化が進んだ電池セルの状態に依存するため、複数の電池セルの温度を均一にすることが望まれている。なお、冷却の場合のみならず電池を加熱する場合についても同様の問題が存在する。   Since the temperature of each battery cell of the battery module having the above configuration is likely to decrease as it is closer to the cooling pipe, a temperature gradient is generated in the plurality of battery cells. When such a temperature gradient occurs, the battery cell far from the cooling pipe is not sufficiently cooled, and the deterioration proceeds faster than the battery cell close to the cooling pipe. Since the distance that can be traveled by the electric power charged in the battery module depends on the state of the battery cell that has been most deteriorated, it is desired to make the temperature of the plurality of battery cells uniform. Similar problems exist not only in the case of cooling but also in the case of heating the battery.

特開2005−349955号公報JP 2005-349955 A

本発明は、このような事情に鑑みてなされたものであり、複数の電池セルの温度勾配を低減することができる電池モジュールを提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the battery module which can reduce the temperature gradient of a some battery cell.

上記課題を解決する本発明の第1の態様は、複数の電池セルと、前記電池セルが載置される載置面を有する熱伝導部材と、前記熱伝導部材に取り付けられ、熱媒体が流通する流路部材と、を備え、前記熱伝導部材は、前記載置面を構成する第1の載置面を有する第1の部材と、前記載置面を構成する第2の載置面を有する第2の部材と、を備え、前記第1の部材には、前記流路部材が取り付けられ、前記第1の載置面と前記流路部材との間の領域に前記第2の部材が設けられ、前記第2の部材は、前記第1の部材よりも熱伝導率が低いことを特徴とする電池モジュールにある。   A first aspect of the present invention that solves the above problem is that a plurality of battery cells, a heat conduction member having a placement surface on which the battery cells are placed, and a heat medium that is attached to the heat conduction member and circulates. A flow path member, and the heat conducting member includes a first member having a first placement surface that constitutes the placement surface, and a second placement surface that constitutes the placement surface. A second member having the flow path member attached to the first member, and the second member is disposed in a region between the first placement surface and the flow path member. The battery module is provided, wherein the second member has a lower thermal conductivity than the first member.

第1の態様では、流路部材に近い第2の載置面に載置された電池セルは吸熱及び放熱されにくく、流路部材から遠い第1の載置面に載置された電池セルは吸熱及び放熱されやすい。したがって、流路部材に近い電池セルと、流路部材から遠い電池セルとで温度差が大きくなりにくい。すなわち、電池セル間の温度勾配を低減することができる。   In the first aspect, the battery cell placed on the second placement surface close to the flow path member is hardly absorbed and dissipated, and the battery cell placed on the first placement surface far from the flow path member is It is easy to absorb and dissipate heat. Therefore, the temperature difference between the battery cell close to the flow path member and the battery cell far from the flow path member is unlikely to increase. That is, the temperature gradient between battery cells can be reduced.

本発明の第2の態様は、第1の態様に記載の電池モジュールにおいて、前記第1の部材には、前記第1の載置面とは反対面側に、第3の部材が設けられ、前記第3の部材は、前記第1の部材よりも熱伝導率が低いことを特徴とする電池モジュールにある。   According to a second aspect of the present invention, in the battery module according to the first aspect, the first member is provided with a third member on the side opposite to the first placement surface, In the battery module, the third member has a lower thermal conductivity than the first member.

第2の態様では、熱伝導部材の第1の載置面とは反対側から電池セルへの熱を遮断することができる。   In the second aspect, heat to the battery cell can be blocked from the side opposite to the first placement surface of the heat conducting member.

本発明の第3の態様は、第1又は第2の態様に記載の電池モジュールにおいて、前記第2の部材には、前記流路部材が取り付けられていないことを特徴とする電池モジュールにある。   According to a third aspect of the present invention, in the battery module according to the first or second aspect, the flow path member is not attached to the second member.

第3の態様では、第1の載置面と第2の載置面のそれぞれに載置された電池セル間の温度差をより一層低減させることができる。   In the third aspect, the temperature difference between the battery cells placed on each of the first placement surface and the second placement surface can be further reduced.

本発明の第4の態様は、第1から第3の何れか一つの態様に記載の電池モジュールにおいて、前記電池セルの前記流路部材側の端部は、前記第2の載置面内に位置していることを特徴とする電池モジュールにある。   According to a fourth aspect of the present invention, in the battery module according to any one of the first to third aspects, the end of the battery cell on the flow path member side is within the second placement surface. It is in the battery module characterized by being located.

第4の態様では、電池セルが第2の載置面からはみ出して第1の部材に接触していない。このような構成によれば、電池セルを、第2の載置面を介して第2の部材により吸熱及び放熱させることができる。このため、電池セルの温度が低下しすぎて温度差が広がることを抑制し、電池セル間の温度差をより確実に低減させることができる。   In the fourth aspect, the battery cell protrudes from the second placement surface and is not in contact with the first member. According to such a configuration, the battery cell can be absorbed and radiated by the second member via the second placement surface. For this reason, it can suppress that the temperature of a battery cell falls too much and a temperature difference spreads, and can reduce the temperature difference between battery cells more reliably.

本発明によれば、複数の電池セルの温度勾配を低減することができる電池モジュールが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the battery module which can reduce the temperature gradient of a some battery cell is provided.

実施形態1に係る電池モジュールの分解斜視図である。1 is an exploded perspective view of a battery module according to Embodiment 1. FIG. 実施形態1に係る電池モジュールの側面図である。3 is a side view of the battery module according to Embodiment 1. FIG. 従来の電池セルの温度分布を示す図である。It is a figure which shows the temperature distribution of the conventional battery cell. 実施形態1に係る電池セルの温度分布を示す図である。It is a figure which shows the temperature distribution of the battery cell which concerns on Embodiment 1. FIG.

以下、本発明を実施するための形態について説明する。なお、実施形態の説明は例示であり、本発明は以下の説明に限定されない。   Hereinafter, modes for carrying out the present invention will be described. In addition, description of embodiment is an illustration and this invention is not limited to the following description.

〈実施形態1〉
図1は電池モジュールの分解斜視図であり、図2は電池モジュールの側面図である。本実施形態に係る電池モジュール1は、複数の電池セル10と、熱伝導部材の一例であるヒートシンク20と、流路部材30とを備えている。通常、複数個の電池モジュール1がケース(図示せず)に収容されて電池パックを構成し、電池パックは電動自動車やハイブリッド自動車に搭載される。
<Embodiment 1>
FIG. 1 is an exploded perspective view of the battery module, and FIG. 2 is a side view of the battery module. The battery module 1 according to the present embodiment includes a plurality of battery cells 10, a heat sink 20 that is an example of a heat conduction member, and a flow path member 30. Usually, a plurality of battery modules 1 are accommodated in a case (not shown) to form a battery pack, and the battery pack is mounted on an electric vehicle or a hybrid vehicle.

電池セル10は、一方向(X方向)に沿って複数個(本実施形態では6個)並設されている。各電池セルには、流路部材30に近い方から順に符号として10a、10b、10c、10d、10e、10fを付す。複数の電池セル10a〜10fを区別しない場合は、電池セル10と称する。   A plurality (six in this embodiment) of battery cells 10 are arranged in parallel along one direction (X direction). Each battery cell is given a reference numeral 10a, 10b, 10c, 10d, 10e, 10f in order from the side closer to the flow path member 30. When not distinguishing the plurality of battery cells 10a to 10f, they are referred to as battery cells 10.

電池セル10としては、特に限定はないが、例えば、ニッケル−水素バッテリ、リチウムイオンバッテリなどの二次電池を用いることができる。また、電池セル10には、上部に端子11が設けられており、図示しないバスバーにより並列又は直列接続されており、電池モジュールを構成している。   Although there is no limitation in particular as the battery cell 10, For example, secondary batteries, such as a nickel-hydrogen battery and a lithium ion battery, can be used. Further, the battery cell 10 is provided with a terminal 11 at the top, and is connected in parallel or in series by a bus bar (not shown) to constitute a battery module.

ヒートシンク20は、一方面側(図2のZ方向の上側)の載置面40に電池セル10が載置され、電池セル10の熱を放熱及び吸熱する部材である。本実施形態では、ヒートシンク20は矩形状の平板部材からなる。なお、本発明は、電池セル10がヒートシンク20に直接的に載置される構成の他に、電池セル10が他の部材を介してヒートシンク20に間接的に載置される構成も含む。後者の構成においては、間に介在する部材は熱伝導率が高いもの(例えば、ヒートシンク20の熱伝導率と同等以上)とすることが好ましい。   The heat sink 20 is a member on which the battery cell 10 is placed on the placement surface 40 on one side (the upper side in the Z direction in FIG. 2), and radiates and absorbs heat from the battery cell 10. In the present embodiment, the heat sink 20 is made of a rectangular flat plate member. The present invention includes a configuration in which the battery cell 10 is indirectly placed on the heat sink 20 via another member in addition to the configuration in which the battery cell 10 is directly placed on the heat sink 20. In the latter configuration, it is preferable that the intervening member has a high thermal conductivity (for example, equal to or higher than the thermal conductivity of the heat sink 20).

流路部材30は、熱媒体として冷却水が流通する管状部材である。特に図示しないが、流路部材30の全体としては、複数の電池モジュール1に亘って環状に設けられている。換言すれば、環状の流路部材30の一部に、各電池モジュール1のヒートシンク20が取り付けられている。本実施形態では、ヒートシンク20の一辺(電池セル10が並設されたX方向とは直交するY方向の一辺)に沿うように流路部材30が取り付けられている。   The flow path member 30 is a tubular member through which cooling water flows as a heat medium. Although not particularly illustrated, the entire flow path member 30 is provided in a ring shape across the plurality of battery modules 1. In other words, the heat sink 20 of each battery module 1 is attached to a part of the annular flow path member 30. In the present embodiment, the flow path member 30 is attached along one side of the heat sink 20 (one side in the Y direction perpendicular to the X direction in which the battery cells 10 are arranged in parallel).

また、特に図示しないが、流路部材30には、ラジエータやポンプなどの装置が設けられている。このような構成により、ラジエータで冷却された冷却水は、流路部材30を流通し、再びラジエータで冷却するように循環している。なお、上記ラジエータやポンプ等は、電池モジュールのケースに収容されている。   Although not particularly shown, the flow path member 30 is provided with devices such as a radiator and a pump. With such a configuration, the cooling water cooled by the radiator is circulated through the flow path member 30 and cooled again by the radiator. The radiator, the pump, and the like are accommodated in a battery module case.

ヒートシンク20は、第1の部材21、第2の部材22、及び第3の部材23から構成されている。これらの第1の部材21、第2の部材22、及び第3の部材23は、何れも矩形状の平板部材からなる。   The heat sink 20 includes a first member 21, a second member 22, and a third member 23. The first member 21, the second member 22, and the third member 23 are all formed of a rectangular flat plate member.

第1の部材21は、Z方向から見た平面視において、6個の電池セル10を載置可能な程度の大きさを有している。第1の部材21の表面(電池セル10が載置される面)の一部が第1の載置面41となっている。第1の部材21は、第1の載置面41と流路部材30との間に、第2の部材22が設けられる凹部24を備えている。   The first member 21 has such a size that six battery cells 10 can be placed in a plan view viewed from the Z direction. A part of the surface of the first member 21 (the surface on which the battery cell 10 is placed) is a first placement surface 41. The first member 21 includes a recess 24 in which the second member 22 is provided between the first placement surface 41 and the flow path member 30.

第2の部材22は、第1の部材21の表面のうち、第1の載置面41と、流路部材30との間の領域である凹部24に設けられている。具体的には、第2の部材22は、凹部24の開口形状に合わせた外形であり、凹部24の深さとほぼ同じ厚さを有する。このような第2の部材22が凹部24に嵌め込まれている。   The second member 22 is provided in the recess 24 which is a region between the first placement surface 41 and the flow path member 30 in the surface of the first member 21. Specifically, the second member 22 has an outer shape that matches the opening shape of the recess 24, and has substantially the same thickness as the depth of the recess 24. Such a second member 22 is fitted in the recess 24.

本実施形態では、第2の部材22の表面全体が第2の載置面42となっている。この第2の載置面42は、第1の載置面41とほぼ面一となっている。これらの第1の載置面41と第2の載置面42とから、ほぼ面一の載置面40が構成されている。電池セル10は、第1の載置面41と第2の載置面42とを跨がないように、載置面40に載置されている。ここでは、第1の載置面41と第2の載置面42のそれぞれに、3個ずつ電池セル10が載置されている。   In the present embodiment, the entire surface of the second member 22 is the second placement surface 42. The second placement surface 42 is substantially flush with the first placement surface 41. The first mounting surface 41 and the second mounting surface 42 constitute a substantially flush mounting surface 40. The battery cell 10 is placed on the placement surface 40 so as not to straddle the first placement surface 41 and the second placement surface 42. Here, three battery cells 10 are placed on each of the first placement surface 41 and the second placement surface 42.

第2の部材22は、第1の部材21よりも熱伝導率が低い。本実施形態では、第2の部材22はアルミニウムからなり、第1の部材21は銅からなる。もちろん、これらの部材は、異なる材料から構成されていてもよい。第1の部材21及び第2の部材22の材料としては、アルミニウム、銅の他に、鉄、ステンレスなどの金属材料や、酸化銅、酸化鉄などの酸化物を用いることができる。   The second member 22 has a lower thermal conductivity than the first member 21. In the present embodiment, the second member 22 is made of aluminum, and the first member 21 is made of copper. Of course, these members may be made of different materials. As materials for the first member 21 and the second member 22, in addition to aluminum and copper, metal materials such as iron and stainless steel, and oxides such as copper oxide and iron oxide can be used.

第3の部材23は、第1の部材21の裏面(第1の載置面41とは反対面側)に設けられている。本実施形態では、第3の部材23は、第1の部材21とほぼ同じ外形を有している。また、第3の部材23は、第1の部材21よりも熱伝導率が低い材料からなる。第3の部材23が第1の部材21の裏面に設けられていることにより、裏面側から電池セル10への熱を遮断することができる。第3の部材23の材料は特に限定はないが、金属材料、金属の酸化物、樹脂材料などを用いることができる。   The third member 23 is provided on the back surface (the surface opposite to the first placement surface 41) of the first member 21. In the present embodiment, the third member 23 has substantially the same outer shape as the first member 21. The third member 23 is made of a material having a lower thermal conductivity than that of the first member 21. Since the third member 23 is provided on the back surface of the first member 21, heat from the back surface side to the battery cell 10 can be blocked. The material of the third member 23 is not particularly limited, and a metal material, a metal oxide, a resin material, or the like can be used.

第1の部材21、第2の部材22、及び第3の部材23からなるヒートシンク20の製造方法については、公知の方法を適用できるので詳細は省略する。一例としては、平板状の銅板に凹部24を設けて第1の部材21とし、その凹部24にアルミニウムからなる第2の部材22を溶接により接合する。さらに、第1の部材21の裏面に、樹脂からなる第3の部材23を接着剤で接着したり、ボルトやリベットなどの締結手段により固定することで、ヒートシンク20を製造することができる。   The manufacturing method of the heat sink 20 including the first member 21, the second member 22, and the third member 23 is not described in detail because a known method can be applied. As an example, a concave portion 24 is provided in a flat copper plate to form the first member 21, and a second member 22 made of aluminum is joined to the concave portion 24 by welding. Furthermore, the heat sink 20 can be manufactured by adhering the third member 23 made of resin to the back surface of the first member 21 with an adhesive, or by fixing with a fastening means such as a bolt or a rivet.

上述した構成の電池モジュール1は、ヒートシンク20の平面視においては、第1の載置面41は流路部材30とは第2の載置面42により分断されているが、ヒートシンクの側面視(又は断面視)においては、流路部材30に繋がっている。また、第2の載置面42は流路部材30には直接繋がっていない。   In the battery module 1 having the above-described configuration, in the plan view of the heat sink 20, the first placement surface 41 is separated from the flow path member 30 by the second placement surface 42. (Or in a cross-sectional view), the flow path member 30 is connected. Further, the second mounting surface 42 is not directly connected to the flow path member 30.

このような構成により、第1の載置面41に載置された電池セル10は、第1の部材21を介して流路部材30の冷却水により放熱及び吸熱される。一方、第2の載置面42に載置された電池セル10は、第2の部材22及び第1の部材21を介して流路部材30の冷却水により放熱及び吸熱される。   With such a configuration, the battery cell 10 placed on the first placement surface 41 is radiated and absorbed by the cooling water of the flow path member 30 via the first member 21. On the other hand, the battery cell 10 placed on the second placement surface 42 is radiated and absorbed by the cooling water of the flow path member 30 via the second member 22 and the first member 21.

上述したように、第1の部材21は、第2の部材22よりも熱伝導率が高く、かつ、流路部材30に直接取り付けられている。また、第2の部材22は、第1の部材21よりも熱伝導率が低く、かつ、流路部材30に直接取り付けられていない。つまり、第1の載置面41に載置された電池セル10は、第2の載置面42に載置された電池セル10よりも吸熱及び放熱されやすくなっている。このようなヒートシンク20により、電池セル10間での温度差(温度勾配)を低減することが可能となっている。   As described above, the first member 21 has a higher thermal conductivity than the second member 22 and is directly attached to the flow path member 30. Further, the second member 22 has a lower thermal conductivity than the first member 21 and is not directly attached to the flow path member 30. That is, the battery cell 10 placed on the first placement surface 41 is more easily absorbed and radiated than the battery cell 10 placed on the second placement surface 42. Such a heat sink 20 can reduce a temperature difference (temperature gradient) between the battery cells 10.

図3及び図4を用いて、電池セル10の温度勾配を低減することができる機序について説明する。図3は従来の電池セルの温度分布を示す図であり、図4は電池セルの温度分布を示す図である。何れの図も、横軸は各電池セル10a〜10fの流路部材からの距離を表し、縦軸は各電池セル10a〜10fの温度を表す。   A mechanism that can reduce the temperature gradient of the battery cell 10 will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing a temperature distribution of a conventional battery cell, and FIG. 4 is a diagram showing a temperature distribution of the battery cell. In any of the figures, the horizontal axis represents the distance from the flow path member of each battery cell 10a to 10f, and the vertical axis represents the temperature of each battery cell 10a to 10f.

まず、図3を用いて、熱伝導性を有する一つの部材からなるヒートシンクにおける温度勾配について説明する。このような従来のヒートシンクは熱伝導率が一様である。このようなヒートシンクを用いた場合では、流路部材30に近い電池セル10ほど温度が下がりやすく、流路部材30から遠い電池セル10ほど温度が下がりにくい。すなわち、流路部材30に近い電池セル10と、流路部材30から遠い電池セル10とで温度差が大きくなる傾向にある。   First, a temperature gradient in a heat sink made of one member having thermal conductivity will be described with reference to FIG. Such a conventional heat sink has a uniform thermal conductivity. When such a heat sink is used, the temperature of the battery cell 10 closer to the flow path member 30 is more likely to decrease, and the temperature of the battery cell 10 farther from the flow path member 30 is less likely to decrease. That is, the temperature difference between the battery cell 10 close to the flow path member 30 and the battery cell 10 far from the flow path member 30 tends to increase.

従来の一つの部材からなるヒートシンクを用いた場合において、電池セル10a〜10fの温度をそれぞれTa’〜Tf’とする。最も低い電池セル10aの温度Ta’と、最も高い電池セル10fの温度Tf’との温度差を温度勾配TΔ’とする。   In the case of using a conventional heat sink made of one member, the temperatures of the battery cells 10a to 10f are Ta 'to Tf', respectively. A temperature difference between the temperature Ta ′ of the lowest battery cell 10a and the temperature Tf ′ of the highest battery cell 10f is defined as a temperature gradient TΔ ′.

一方、図4に示すように、本発明のヒートシンク20は、流路部材30に近い第2の載置面42に載置された電池セル10a〜10cは吸熱及び放熱されにくく、流路部材30から遠い第1の載置面41に載置された電池セル10d〜10fは吸熱及び放熱されやすい。したがって、流路部材30に近い電池セル10a〜10cと、流路部材30から遠い電池セル10d〜10fとで温度差が大きくなりにくい。   On the other hand, as shown in FIG. 4, in the heat sink 20 of the present invention, the battery cells 10 a to 10 c placed on the second placement surface 42 close to the flow path member 30 are difficult to absorb and dissipate heat, and the flow path member 30. The battery cells 10d to 10f placed on the first placement surface 41 far from the surface are likely to absorb heat and dissipate heat. Therefore, the temperature difference between the battery cells 10 a to 10 c close to the flow path member 30 and the battery cells 10 d to 10 f far from the flow path member 30 is difficult to increase.

本発明のヒートシンク20を用いた場合において、電池セル10a〜10fの温度をそれぞれTa〜Tfとする。最も低い電池セル10aの温度Taと、最も高い電池セル10fの温度Tfとの温度差を温度勾配TΔとする。このようなヒートシンク20を用いた電池モジュール1によれば、電池セル10間の温度勾配TΔを、従来のヒートシンクを用いた場合における電池セル10間の温度勾配TΔ’よりも低減することができる。   When the heat sink 20 of the present invention is used, the temperatures of the battery cells 10a to 10f are Ta to Tf, respectively. A temperature difference between the temperature Ta of the lowest battery cell 10a and the temperature Tf of the highest battery cell 10f is defined as a temperature gradient TΔ. According to the battery module 1 using such a heat sink 20, the temperature gradient TΔ between the battery cells 10 can be reduced more than the temperature gradient TΔ ′ between the battery cells 10 when a conventional heat sink is used.

また、本実施形態の電池モジュール1は、第2の部材22には流路部材30が直接取り付けられていない。このため、第2の部材22に流路部材30を直接取り付ける構成よりも、吸熱及び放熱しにくい構成とすることができる。これにより、上述したように、第1の載置面41と第2の載置面42のそれぞれに載置された電池セル10間の温度差をより一層低減させることができる。   In the battery module 1 of the present embodiment, the flow path member 30 is not directly attached to the second member 22. For this reason, it can be set as the structure which is hard to absorb heat and to heat radiation rather than the structure which attaches the flow-path member 30 to the 2nd member 22 directly. Thereby, as above-mentioned, the temperature difference between the battery cells 10 mounted in each of the 1st mounting surface 41 and the 2nd mounting surface 42 can be reduced further.

なお、本発明は、第2の部材22が流路部材30に直接取り付けられていてもよい。すなわち、第1の部材21の表面に設けられた第2の部材22を流路部材30に接触させるような構成としてもよい。このような構成であっても、第2の部材22は、第1の部材21よりも熱伝導率が低いので、上記した温度差の低減効果を奏する。   In the present invention, the second member 22 may be directly attached to the flow path member 30. In other words, the second member 22 provided on the surface of the first member 21 may be configured to contact the flow path member 30. Even in such a configuration, the second member 22 has a lower thermal conductivity than the first member 21, and thus exhibits the effect of reducing the temperature difference described above.

また、本実施形態の電池モジュール1は、電池セル10aの流路部材30側の端部12(図2参照)は、第2の載置面42内に位置している。換言すれば、電池セル10aが第2の載置面42からはみ出して第1の部材21に接触していない。このような構成によれば、電池セル10aを、第2の載置面42を介して第2の部材22により吸熱及び放熱させることができる。このため、電池セル10aの温度が低下しすぎて温度差が広がることを抑制し、上述した電池セル10間の温度差をより確実に低減させることができる。   Further, in the battery module 1 of the present embodiment, the end portion 12 (see FIG. 2) on the flow path member 30 side of the battery cell 10 a is located in the second placement surface 42. In other words, the battery cell 10 a protrudes from the second placement surface 42 and is not in contact with the first member 21. According to such a configuration, the battery cell 10 a can be absorbed and radiated by the second member 22 via the second placement surface 42. For this reason, it can suppress that the temperature of the battery cell 10a falls too much and a temperature difference spreads, and can reduce the temperature difference between the battery cells 10 mentioned above more reliably.

なお、本発明は、電池セル10aの端部12が第2の載置面42からはみ出して第1の部材21に接触していてもよい。   In the present invention, the end 12 of the battery cell 10 a may protrude from the second placement surface 42 and contact the first member 21.

〈他の実施形態〉
なお、本発明の実施形態について説明したが、勿論、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
<Other embodiments>
Although the embodiments of the present invention have been described, of course, the present invention is not limited to the above-described embodiments, and additions, omissions, substitutions, and the like of configurations may be made without departing from the spirit of the present invention. Other changes are possible.

上記各実施形態では、流路部材30に冷却水を流通させる構成であったが、これに限定されない。熱媒体としては流体であればよく、水の他に空気を用いてもよい。また、上記各実施形態では、電池セル10から吸熱及び放熱するために冷却水を用いたが、電池セル10を加熱するための熱媒体を流路部材30に流通させてもよい。このような熱媒体により電池セル10を加熱して所定温度に保つためにも本発明を適用することができる。   In each said embodiment, although it was the structure which distribute | circulates cooling water to the flow-path member 30, it is not limited to this. The heat medium may be a fluid, and air may be used in addition to water. Moreover, in each said embodiment, although the cooling water was used in order to absorb and radiate heat from the battery cell 10, you may distribute | circulate the heat medium for heating the battery cell 10 to the flow path member 30. FIG. The present invention can also be applied to heat the battery cell 10 with such a heat medium and maintain it at a predetermined temperature.

上記実施形態1では、第1の載置面41と第2の載置面42とはほぼ面一としていたが、これに限定されない。すなわち、第1の載置面41と第2の載置面42とのZ方向の高さは異なっていてもよい。この場合、電池セル10と第1の載置面41又は第2の載置面42との隙間を埋める、熱伝導性のよい部材を介在させればよい。   In the first embodiment, the first placement surface 41 and the second placement surface 42 are substantially flush, but the present invention is not limited to this. That is, the heights in the Z direction of the first placement surface 41 and the second placement surface 42 may be different. In this case, a member having good thermal conductivity that fills the gap between the battery cell 10 and the first placement surface 41 or the second placement surface 42 may be interposed.

上記実施形態1では、電池セル10は、第1の載置面41と第2の載置面42とを跨がないように配置されていたが、これに限定されない。電池セル10を第1の載置面41と第2の載置面42とを跨ぐように配置してもよい。この場合、一つの電池セル10内における温度勾配を低減することができる。   In the first embodiment, the battery cell 10 is disposed so as not to straddle the first placement surface 41 and the second placement surface 42, but is not limited thereto. You may arrange | position the battery cell 10 so that the 1st mounting surface 41 and the 2nd mounting surface 42 may be straddled. In this case, the temperature gradient in one battery cell 10 can be reduced.

1…電池モジュール、10、10a〜10f…電池セル、20…ヒートシンク(熱伝導部材)、21…第1の部材、22…第2の部材、23…第3の部材、30…流路部材、40…載置面、41…第1の載置面、42…第2の載置面 DESCRIPTION OF SYMBOLS 1 ... Battery module 10, 10a-10f ... Battery cell, 20 ... Heat sink (heat conduction member), 21 ... 1st member, 22 ... 2nd member, 23 ... 3rd member, 30 ... Channel member, 40 ... placement surface, 41 ... first placement surface, 42 ... second placement surface

Claims (4)

複数の電池セルと、
前記電池セルが載置される載置面を有する熱伝導部材と、
前記熱伝導部材に取り付けられ、熱媒体が流通する流路部材と、を備え、
前記熱伝導部材は、前記載置面を構成する第1の載置面を有する第1の部材と、前記載置面を構成する第2の載置面を有する第2の部材と、を備え、
前記第1の部材には、前記流路部材が取り付けられ、前記第1の載置面と前記流路部材との間の領域に前記第2の部材が設けられ、
前記第2の部材は、前記第1の部材よりも熱伝導率が低い
ことを特徴とする電池モジュール。
A plurality of battery cells;
A heat conducting member having a mounting surface on which the battery cell is mounted;
A flow path member that is attached to the heat conducting member and through which the heat medium flows, and
The heat conductive member includes a first member having a first placement surface that constitutes the placement surface, and a second member having a second placement surface that constitutes the placement surface. ,
The flow path member is attached to the first member, and the second member is provided in a region between the first placement surface and the flow path member,
The battery module, wherein the second member has a thermal conductivity lower than that of the first member.
請求項1に記載の電池モジュールにおいて、
前記第1の部材には、前記第1の載置面とは反対面側に、第3の部材が設けられ、
前記第3の部材は、前記第1の部材よりも熱伝導率が低い
ことを特徴とする電池モジュール。
The battery module according to claim 1,
The first member is provided with a third member on the side opposite to the first placement surface,
The battery module, wherein the third member has a lower thermal conductivity than the first member.
請求項1又は請求項2に記載の電池モジュールにおいて、
前記第2の部材には、前記流路部材が取り付けられていない
ことを特徴とする電池モジュール。
The battery module according to claim 1 or 2,
The battery module, wherein the flow path member is not attached to the second member.
請求項1から請求項3の何れか一項に記載の電池モジュールにおいて、
前記電池セルの前記流路部材側の端部は、前記第2の載置面内に位置している
ことを特徴とする電池モジュール。
In the battery module according to any one of claims 1 to 3,
An end of the battery cell on the flow path member side is located in the second placement surface. The battery module.
JP2018057167A 2018-03-23 2018-03-23 Battery module Pending JP2019169390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018057167A JP2019169390A (en) 2018-03-23 2018-03-23 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018057167A JP2019169390A (en) 2018-03-23 2018-03-23 Battery module

Publications (1)

Publication Number Publication Date
JP2019169390A true JP2019169390A (en) 2019-10-03

Family

ID=68108486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057167A Pending JP2019169390A (en) 2018-03-23 2018-03-23 Battery module

Country Status (1)

Country Link
JP (1) JP2019169390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564675A (en) * 2020-04-15 2020-08-21 吉利汽车研究院(宁波)有限公司 Battery thermal management system based on heat pipe and liquid cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564675A (en) * 2020-04-15 2020-08-21 吉利汽车研究院(宁波)有限公司 Battery thermal management system based on heat pipe and liquid cooling device

Similar Documents

Publication Publication Date Title
EP3163673B1 (en) Battery cell cooling device and battery module including same
JP6730526B2 (en) Battery pack with crash beam structure
JP5209036B2 (en) Battery assembly, electric vehicle, and battery housing
EP3376556A1 (en) Tray, power battery pack and electric vehicle
EP2405528B1 (en) Battery module
KR101589996B1 (en) Battery Pack Having Improved Safety against Leakage of Liquid Refrigerant
JP5540114B2 (en) Medium or large battery pack with improved cooling efficiency
EP2132823B1 (en) Electricity storage device
JP4325721B2 (en) Temperature control mechanism
KR20180113419A (en) Battery Pack having heat conductive medium of louver fin form
KR102058688B1 (en) Battery Module of Indirect Cooling
JP2006278330A (en) Secondary battery module
JP2013541133A (en) A small-sized battery module having excellent heat radiation characteristics, and a medium- or large-sized battery pack using the battery module
JP5725316B2 (en) Secondary battery and battery pack
JP5176682B2 (en) Assembled battery
CN110071238A (en) A kind of battery modules and power battery pack
JP2023509529A (en) Battery packs and devices containing them
JP2012243446A (en) Battery pack
KR102371850B1 (en) Battery Module Having Water-Cooled Type Cooling Structure composed of aluminium profile
JP2019169390A (en) Battery module
JP5906921B2 (en) Battery module and vehicle
JP2015204267A (en) battery pack
JP2019135707A (en) Battery module
KR102258175B1 (en) Battery Pack with means for cooling heat element
JP2019135706A (en) Battery module