JP2019167302A - Akr1c3 selective inhibitor and use therefor - Google Patents

Akr1c3 selective inhibitor and use therefor Download PDF

Info

Publication number
JP2019167302A
JP2019167302A JP2018055182A JP2018055182A JP2019167302A JP 2019167302 A JP2019167302 A JP 2019167302A JP 2018055182 A JP2018055182 A JP 2018055182A JP 2018055182 A JP2018055182 A JP 2018055182A JP 2019167302 A JP2019167302 A JP 2019167302A
Authority
JP
Japan
Prior art keywords
group
akr1c3
cancer
dmso
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018055182A
Other languages
Japanese (ja)
Other versions
JP7178075B2 (en
Inventor
智史 遠藤
Tomohito Endo
智史 遠藤
俊之 松永
Toshiyuki Matsunaga
俊之 松永
彰 五十里
Akira Isori
彰 五十里
尚樹 豊岡
Naoki Toyooka
尚樹 豊岡
直浩 藤本
Naohiro Fujimoto
直浩 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
University of Occupational and Environmental Health Japan
Gifu City
Original Assignee
Toyama University
University of Occupational and Environmental Health Japan
Gifu City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University, University of Occupational and Environmental Health Japan, Gifu City filed Critical Toyama University
Priority to JP2018055182A priority Critical patent/JP7178075B2/en
Publication of JP2019167302A publication Critical patent/JP2019167302A/en
Application granted granted Critical
Publication of JP7178075B2 publication Critical patent/JP7178075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a novel, potent and selective AKR1C3 inhibitor and an application thereof.SOLUTION: The present invention provides a novel AKR1C3 inhibitor composed of a 8-hydroxy chromene derivative. The AKR1C3 can be used for e.g. treating castration resistant prostate cancer.SELECTED DRAWING: None

Description

本発明はAKR1C3(Aldo-Keto Reductase Family 1 Member C3)阻害剤に関する。詳しくは、選択性の高いAKR1C3阻害剤及びその用途(抗がん薬、がん治療等)に関する。   The present invention relates to an AKR1C3 (Aldo-Keto Reductase Family 1 Member C3) inhibitor. Specifically, it relates to highly selective AKR1C3 inhibitors and their uses (anticancer drugs, cancer treatment, etc.).

最近、欧米・アジア諸国で化学療法済治療の転移性去勢抵抗性前立腺がん(CRPC)に対する薬剤として、アンドロゲン合成に関与するCYP17の選択的阻害剤アビラテロン(ザイティガ(登録商標))とアンドロゲン受容体アンタゴニストエンザルタミド(イクスタンジ(登録商標)が承認され、使用されている。しかし、最近アビラテロンはグルココルチコイド合成も同時に阻害することから、グルココルチコイドの同時処方が必要となるほか、食事によるAUC変動により空腹時処方が必要であることから、臨床でも使いにくさが露見してきた。エクスタンジは高血圧や疲労、食欲不振、嘔吐といった副作用が大きいのが問題である。   Recently, abiraterone (Zytiga (registered trademark)) and androgen receptor, selective inhibitors of CYP17 involved in androgen synthesis, as drugs for metastatic castration-resistant prostate cancer (CRPC) that have been treated with chemotherapy in Western countries and Asia The antagonist enzalutamide (XTANDI® has been approved and used. However, since abiraterone also inhibits glucocorticoid synthesis at the same time, co-prescription of glucocorticoid is required, and dietary AUC changes The need for fasting prescriptions has made it difficult to use in the clinic, and problems with Extange include high blood pressure, fatigue, loss of appetite, and vomiting.

一方、AKR1C3はアンドロゲン代謝におけるCYP17の下流に位置することから、AKR1C3を標的にすればグルココルチコイドの合成を阻害することなしにアンドロゲン合成を阻害できる。また、AKR1C3はアンドロゲン合成のみならず、細胞増殖性のプロスタノイドやイソプレノイドの合成に関与することから、AKR1C3はホルモン依存性、非依存性に関わらず前立腺がん治療の有望な標的となる。これまでに多くのAKR1C3阻害剤が報告されており、nMレベルのIC50値を示す化合物も報告されているが(例えば非特許文献1を参照)、他のAKRアイソフォームに対する影響は精査されていない。尚、本発明者らの研究グループはバッカリンに選択的なAKR1C3阻害活性があることを報告するとともに(非特許文献2)、新たなAKR1C3阻害剤としてのバッカリン誘導体を見出している(特許文献1)。 On the other hand, since AKR1C3 is located downstream of CYP17 in androgen metabolism, targeting AKR1C3 can inhibit androgen synthesis without inhibiting glucocorticoid synthesis. In addition, AKR1C3 is involved not only in androgen synthesis, but also in the synthesis of cell proliferative prostanoids and isoprenoids. Therefore, AKR1C3 is a promising target for prostate cancer treatment regardless of whether it is hormone-dependent or independent. Many AKR1C3 inhibitors have been reported so far, and compounds exhibiting nM-level IC 50 values have also been reported (see, for example, Non-Patent Document 1), but the effects on other AKR isoforms have been investigated. Absent. In addition, the research group of the present inventors has reported that baccharin has selective AKR1C3 inhibitory activity (Non-patent Document 2), and has also found a baccaline derivative as a new AKR1C3 inhibitor (Patent Document 1). .

特開2015−020966号公報Japanese Patent Laying-Open No. 2015-020966

Endo S. et al. Bioorg. Med. Chem. 2014, 22, 5220-5233.Endo S. et al. Bioorg. Med. Chem. 2014, 22, 5220-5233. Endo S. et al. J. Nat. Prod. 2012, 75, 716-721.Endo S. et al. J. Nat. Prod. 2012, 75, 716-721.

AKR1C3に高次構造が類似するが、高いアンドロゲン作用を有する5α-ジヒドロアンドロステロンの不活性化に関わるAKR1C1とAKR1C2が存在する。したがって、AKR1C1とAKR1C2を阻害しないAKR1C3阻害剤の開発が望まれるが、未だ選択性と強力な阻害効果を兼ね備えたAKR1C3阻害剤に関する報告は少ない。そこで本発明の課題は、強力かつ選択的な新規AKR1C3阻害剤を提供するとともに、その応用(例えばがん治療への適用)を図ることにある。   AKR1C1 and AKR1C2 are involved in the inactivation of 5α-dihydroandrosterone, which is similar to AKR1C3 in higher order structure but has high androgenic activity. Therefore, development of an AKR1C3 inhibitor that does not inhibit AKR1C1 and AKR1C2 is desired, but there are still few reports on an AKR1C3 inhibitor that has both selectivity and a strong inhibitory effect. Thus, an object of the present invention is to provide a powerful and selective novel AKR1C3 inhibitor and to apply it (for example, application to cancer treatment).

これまでの研究の成果を踏まえ、クロメン骨格を有する化合物に注目し、当該化合物をリード化合物として構造の最適化を試みた。具体的には、様々な誘導体を合成し、そのAKR1C3阻害活性、選択性、抗がん薬としての有効性等を検討した。その結果、8-ヒドロキシクロメン誘導体が強力且つ選択的なAKR1C3阻害活性を示し、AKR1C3を標的とした抗がん薬又はその候補として有望であることが明らかとなった。特筆すべきは、8-ヒドロキシクロメン誘導体がARアンタゴニスト作用も示し、従来のAKR1C3阻害剤と比べて強力なPSA降下作用が期待できることである。一方、詳細な検討の結果、代表的な化合物についてin vivo(モデル動物実験)での前立腺がんに対する抗がん活性も確認され、前立腺がん(特にCRPC)に対する抗がん薬又はその候補として8-ヒドロキシクロメン誘導体が有効であることが裏付けられるとともに、既存薬との併用によって治療効果(がん細胞の増殖抑制)を増強できることや、作用メカニズム等、臨床応用する上で有益な情報も得られた。以下の発明は主として以上の成果及び考察に基づく。
[1]以下の化学式1で表されるAKR1C3阻害剤:

Figure 2019167302
但し、式中のR1は水素原子、ヒドロキシ基、ハロゲン原子、又は置換基を有していてもよい炭化水素基である。
[2]前記式中のR1が水素原子、フルオロ基、クロロ基、メチル基、エチル基、ヒドロキシ基(但し、2位及び4位を除く)、ジフルオロ基、トリフルオロ基、トリフルオロメチル基、ジトリフルオロメチル基又はイソプロピル基である、[1]に記載のAKR1C3阻害剤。
[3]前記式中のR1が水素原子、2-フルオロ、3-フルオロ、4-フルオロ、2-クロロ、3-クロロ、4-クロロ、2-メチル、3-メチル、4-メチル、2-エチル、3-エチル、4-エチル、3-ヒドロキシ、3,4-ジフルオロ、3,4,5-トリフルオロ、2-トリフルオロメチル、3-トリフルオロメチル、4-トリフルオロメチル、2,4-ジトリフルオロメチル、2-イソプロピル又は3-イソプロピルである、[1]に記載のAKR1C3阻害剤。
[4]以下の化学式2〜4のいずれかで表される、[1]に記載のAKR1C3阻害剤:
Figure 2019167302
Figure 2019167302
Figure 2019167302
[5][1]〜[4]のいずれか一項に記載のAKR1C3阻害剤又はその薬理学的に許容可能な塩を有効成分として含有する、抗がん薬。
[6]前立腺がん、乳がん、肝細胞がん、非小細胞肺がん又は白血病の治療又は予防に使用される、[5]に記載の抗がん薬。
[7]前立腺がんの治療又は予防に使用される、[5]に記載の抗がん薬。
[8]前立腺がんが、去勢抵抗性前立腺がんである、[7]に記載の抗がん薬。
[9]抗アンドロゲン薬と併用される、[7]又は[8]に記載の抗がん薬。
[10]がん患者に対して、[5]に記載の抗がん薬を治療上有効量投与するステップを含む、がんの治療又は予防法。
[11][1]〜[4]のいずれか一項に記載のAKR1C3阻害剤を含む研究用試薬。 Based on the results of previous studies, we focused on compounds with a chromene skeleton and attempted to optimize the structure using these compounds as lead compounds. Specifically, various derivatives were synthesized, and their AKR1C3 inhibitory activity, selectivity, effectiveness as anticancer drugs, etc. were examined. As a result, it was revealed that 8-hydroxychromene derivatives show potent and selective AKR1C3 inhibitory activity and are promising as anticancer drugs targeting AKR1C3 or candidates thereof. It should be noted that the 8-hydroxychromene derivative also exhibits an AR antagonistic action and can be expected to have a potent PSA lowering action compared to conventional AKR1C3 inhibitors. On the other hand, as a result of detailed studies, anti-cancer activity against prostate cancer in vivo (model animal experiment) was confirmed for representative compounds, and as an anti-cancer drug or candidate for prostate cancer (especially CRPC) In addition to supporting the effectiveness of 8-hydroxychromene derivatives, it is possible to enhance the therapeutic effect (inhibition of cancer cell growth) in combination with existing drugs and to obtain information useful for clinical application such as the mechanism of action. It was. The following invention is mainly based on the above results and considerations.
[1] AKR1C3 inhibitor represented by the following chemical formula 1:
Figure 2019167302
However, R1 in the formula is a hydrogen atom, a hydroxy group, a halogen atom, or a hydrocarbon group which may have a substituent.
[2] R1 in the above formula is a hydrogen atom, a fluoro group, a chloro group, a methyl group, an ethyl group, a hydroxy group (except for the 2nd and 4th positions), a difluoro group, a trifluoro group, a trifluoromethyl group, The AKR1C3 inhibitor according to [1], which is a ditrifluoromethyl group or an isopropyl group.
[3] R1 in the above formula is a hydrogen atom, 2-fluoro, 3-fluoro, 4-fluoro, 2-chloro, 3-chloro, 4-chloro, 2-methyl, 3-methyl, 4-methyl, 2- Ethyl, 3-ethyl, 4-ethyl, 3-hydroxy, 3,4-difluoro, 3,4,5-trifluoro, 2-trifluoromethyl, 3-trifluoromethyl, 4-trifluoromethyl, 2,4 -The AKR1C3 inhibitor according to [1], which is ditrifluoromethyl, 2-isopropyl or 3-isopropyl.
[4] The AKR1C3 inhibitor according to [1], represented by any one of the following chemical formulas 2 to 4:
Figure 2019167302
Figure 2019167302
Figure 2019167302
[5] An anticancer drug comprising the AKR1C3 inhibitor according to any one of [1] to [4] or a pharmacologically acceptable salt thereof as an active ingredient.
[6] The anticancer drug according to [5], which is used for treatment or prevention of prostate cancer, breast cancer, hepatocellular carcinoma, non-small cell lung cancer or leukemia.
[7] The anticancer drug according to [5], which is used for treatment or prevention of prostate cancer.
[8] The anticancer drug according to [7], wherein the prostate cancer is castration resistant prostate cancer.
[9] The anticancer drug according to [7] or [8], which is used in combination with an antiandrogen drug.
[10] A method for treating or preventing cancer, comprising a step of administering a therapeutically effective amount of the anticancer drug according to [5] to a cancer patient.
[11] A research reagent comprising the AKR1C3 inhibitor according to any one of [1] to [4].

前立腺がん22Rv1細胞の細胞増殖能に及ぼす影響。The effect on the proliferative capacity of prostate cancer 22Rv1 cells. 前立腺がん22Rv1細胞のアンドロゲンシグナルに及ぼす影響。Effect on prostate androgen signal of prostate cancer 22Rv1 cells. アンドロゲン非依存性前立腺がんPC3細胞の細胞増殖に及ぼす影響。Effect on androgen-independent prostate cancer PC3 cell proliferation. アンドロゲン受容体に対するアゴニスト活性 (A) とアンタゴニスト活性 (B) の評価。Assessment of androgen receptor agonist activity (A) and antagonist activity (B). CRPC治療薬の抗増殖能に及ぼすAKR1C3阻害剤の併用効果。The combined effect of an AKR1C3 inhibitor on the antiproliferative ability of CRPC therapeutics. AKR1C3阻害剤とエンザルタミドの併用によるアポトーシス誘導効果。Apoptosis-inducing effect by combined use of AKR1C3 inhibitor and enzalutamide. AKR1C3阻害剤によるアビラテロン誘導性アポトーシスの増強効果。The enhancement effect of abiraterone-induced apoptosis by AKR1C3 inhibitor. AKR1C3阻害剤2lによるCRPC治療薬誘導性アポトーシスの増強効果。Effect of AKR1C3 inhibitor 2l on CRPC therapeutic drug-induced apoptosis. AKR1C3阻害剤2lによるin vivo抗腫瘍効果。In vivo antitumor effect by AKR1C3 inhibitor 2l.

本発明の第1の局面はAKR1C3阻害剤に関する。「AKR1C3阻害剤」とは、AKR1C3の活性を阻害ないし抑制する剤である。AKR1C3は別名17β-ヒドロキシステロイド脱水素酵素5型とも呼ばれ、アンドロゲン合成及びプロスタグランジン(PG)代謝に重要な役割を果たす。AKR1C3は白血病細胞、ホルモン依存性がん(前立腺がん(CRPCを含む)、乳がんなど)患者のがん病変部で高発現し(Kurkela, R. Li, Y. Patrikainen, L. Pulkka, A. Soronen, P. Torn, S. J. Steroid Biochem. Mol. Biol. 2005, 93, 277-283.; Byrns, M. C. Penning, T. M. Chem.-Biol. Interact. 2009, 178, 221-227.; Penning, T. M. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 233-239.)、ステロイド・プロスタノイド・イソプレノイド代謝を介してがん細胞増殖の促進に関与する。また、AKR1C3の発現上昇は肝細胞がんや非小細胞肺がんを含む様々ながんにおいても認められてきた(Guise, C. P. Abbattista, M. R. Singleton, R. S. Holford, S. D. Connolly, J. Dachs, G. U. Fox, S. B. Pollock, R. Harvey, J. Guilford,P. Donate, F. Wilson, W. R. Patterson, A. V. Cancer Res. 2010, 70,1573-1584.)。AKR1C3遺伝子をノックダウンすると前立腺がん細胞の増殖は阻害され、逆にAKR1C3の人為的過剰発現は前立腺がん細胞および乳がん細胞の増殖を促進する(Downs, T. M. Burton, D. W. Araiza, F. L. Hastings, R. H. Deftos, L. J. Cancer Lett. 2011, 306, 52-59.; Byrns, M. C. Duan, L. Lee, S. H. Blair, I. A. Penning, T. M. J. Steroid Biochem. Mol. Biol. 2010, 118, 177-187.; Dozmorov, M. G. Azzarello, J. T. Wren, J. D. Fung, K. M. Yang, Q. Davis, J. S. Hurst, R. E. Culkin, D. J. Penning, T. M.; Lin, H. K. BMC Cancer 2010, 10, 672.)。   The first aspect of the present invention relates to an AKR1C3 inhibitor. An “AKR1C3 inhibitor” is an agent that inhibits or suppresses the activity of AKR1C3. AKR1C3, also known as 17β-hydroxysteroid dehydrogenase type 5, plays an important role in androgen synthesis and prostaglandin (PG) metabolism. AKR1C3 is highly expressed in cancerous lesions of patients with leukemia cells, hormone-dependent cancers (prostate cancer (including CRPC), breast cancer, etc.) (Kurkela, R. Li, Y. Patrikainen, L. Pulkka, A. Soronen, P. Torn, SJ Steroid Biochem. Mol. Biol. 2005, 93, 277-283 .; Byrns, MC Penning, TM Chem.-Biol. Interact. 2009, 178, 221-227 .; Penning, TM Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 233-239.), Is involved in the promotion of cancer cell growth through steroid, prostanoid and isoprenoid metabolism. Increased expression of AKR1C3 has also been observed in various cancers including hepatocellular carcinoma and non-small cell lung cancer (Guise, CP Abbattista, MR Singleton, RS Holford, SD Connolly, J. Dachs, GU Fox, SB Pollock, R. Harvey, J. Guilford, P. Donate, F. Wilson, WR Patterson, AV Cancer Res. 2010, 70, 1573-1584.). Knocking down the AKR1C3 gene inhibits prostate cancer cell proliferation, whereas artificial overexpression of AKR1C3 promotes proliferation of prostate and breast cancer cells (Downs, TM Burton, DW Araiza, FL Hastings, RH Deftos, LJ Cancer Lett. 2011, 306, 52-59 .; Byrns, MC Duan, L. Lee, SH Blair, IA Penning, TMJ Steroid Biochem. Mol. Biol. 2010, 118, 177-187 .; Dozmorov, MG Azzarello, JT Wren, JD Fung, KM Yang, Q. Davis, JS Hurst, RE Culkin, DJ Penning, TM; Lin, HK BMC Cancer 2010, 10, 672.).

AKR1C3は17β-ヒドロキシステロイド脱水素酵素(HSD)活性を示し、前立腺や副腎で発現してアンドロゲン合成に関与するとともに、子宮や乳腺などのエストロゲン感受性組織で発現してエストロゲン合成にも関与する。従って、AKR1C3阻害剤は、アンドロゲン依存性疾患である前立腺がんに加えて、エストロゲン依存性疾患である乳がんなどにおいてもその効果を期待できる。また、AKR1C3はプロスタグランジン(PG)代謝やイソプレノイド代謝を触媒することでアンドロゲン非依存性細胞増殖に関与するほか、酸化ストレス時に生成される反応性アルデヒドを解毒代謝することでがん細胞の生存にも関与する。AKR1C3によってPGD2から生成されるPGF2αは白血病細胞の分化を抑制し、増殖を促進することが知られるため、AKR1C3は白血病の新たな標的として注目されている(Trippier et al., Future Med. Chem., 9, 1453-1456 (2017))。従って、本発明のAKR1C3阻害剤はアンドロゲン依存的/非依存的細胞増殖をともに阻害することで、多くのがん種に適応可能な抗がん薬の有効成分となる。   AKR1C3 exhibits 17β-hydroxysteroid dehydrogenase (HSD) activity, is expressed in prostate and adrenal glands and is involved in androgen synthesis, and is also expressed in estrogen sensitive tissues such as uterus and mammary gland and is also involved in estrogen synthesis. Therefore, the AKR1C3 inhibitor can be expected to have an effect on breast cancer, which is an estrogen-dependent disease, in addition to prostate cancer, which is an androgen-dependent disease. AKR1C3 is involved in androgen-independent cell growth by catalyzing prostaglandin (PG) metabolism and isoprenoid metabolism, as well as cancer cell survival by detoxifying and metabolizing reactive aldehydes produced during oxidative stress. Also involved. AKR1C3 has been attracting attention as a new target for leukemia because PGF2α produced from PGD2 by AKR1C3 is known to suppress differentiation and promote proliferation of leukemia cells (Trippier et al., Future Med. Chem. , 9, 1453-1456 (2017)). Therefore, the AKR1C3 inhibitor of the present invention inhibits androgen-dependent / independent cell growth, and thus becomes an active ingredient of an anticancer drug that can be applied to many cancer types.

ここで、AKR1C3に高次構造が類似するAKR1C1、AKR1C2及びAKR1C4が存在する。本発明のAKR1C3阻害剤はこれら構造類似酵素と比べてAKR1C3に対する特異性が高い。本明細書において「AKR1C3に対する特異性が高い」とは、AKR1C1、AKR1C2、AKR1C3及びAKR1C4の中で、選択的にAKR1C3を阻害することを意味する。これらAKR1Cサブファミリーの中でAKR1C1は20α-ヒドロキシステロイド脱水素酵素活性を示し、黄体ホルモンのプロゲステロンの不活性化や脳におけるアロプレグネノロンなどの神経ステロイドの不活化やその前駆体の異化にも関与する。また、AKR1C2は3α-ヒドロキシステロイド脱水素酵素活性を有し、5α-ジヒドロプロゲステロンから神経ステロイドアロプレグネノロンの生成および5α-プレグナン-17α-ol-3,20-ジオンから5α-プレグナン-3α,17α-ジオール-20-オンへの還元によってアンドロゲン生成に関与する。そのため、これらの類似酵素に対して阻害活性を示さないことは前立腺がん治療においてアンドロゲン量を制御することに加えて、これらの生理機能を阻害しないことで副作用を軽減するという観点からも重要である。IC50で比較した場合、本発明のAKR1C3阻害剤のAKR1C3に対する阻害活性は、AKR1C1又はAKR1C2に対する阻害活性の例えば100倍以上、好ましくは200倍以上、更に好ましくは300倍以上、更に更に好ましくは500倍以上、より一層好ましくは1,000倍以上である。 Here, there are AKR1C1, AKR1C2 and AKR1C4 whose higher order structure is similar to AKR1C3. The AKR1C3 inhibitor of the present invention has higher specificity for AKR1C3 than these structurally similar enzymes. As used herein, “high specificity for AKR1C3” means that AKR1C3 is selectively inhibited among AKR1C1, AKR1C2, AKR1C3, and AKR1C4. Among these AKR1C subfamily, AKR1C1 exhibits 20α-hydroxysteroid dehydrogenase activity and is also involved in inactivation of progesterone, progesterone, inactivation of neurosteroids such as allopregnenolone in the brain and catabolism of precursors . In addition, AKR1C2 has 3α-hydroxysteroid dehydrogenase activity, generation of neurosteroid allopregnenolone from 5α-dihydroprogesterone and 5α-pregnane-17α-ol-3,20-dione to 5α-pregnane-3α, 17α- Involved in androgen production by reduction to diol-20-one. Therefore, in addition to controlling androgen levels in prostate cancer treatment, not having inhibitory activity against these similar enzymes is important from the viewpoint of reducing side effects by not inhibiting these physiological functions. is there. When compared with IC 50 , the inhibitory activity against the AKR1C3 of the AKR1C3 inhibitor of the present invention is, for example, 100 times or more, preferably 200 times or more, more preferably 300 times or more, and still more preferably 500 times that of AKR1C1 or AKR1C2. It is more than twice, and more preferably more than 1,000 times.

本発明のAKR1C3阻害剤は以下の化学式1で表される。

Figure 2019167302
但し、式中のR1は水素原子、ヒドロキシ基、ハロゲン原子、又は置換基を有していてもよい炭化水素基である。「置換基を有していても良い炭化水素基」の「炭化水素基」としては、例えばC1〜C6の直鎖状、分岐状、環状のアルキル基などが挙げられる。本発明において「C1〜C6アルキル基」とは、炭素数1乃至6個の直鎖、分枝鎖または環状アルキル基を示し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、2−メチルブチル基、ネオペンチル基、1−エチルプロピル基、ヘキシル基、4−メチルペンチル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、3,3−ジメチルブチル基、2,2−ジメチルブチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、2−エチルブチル基、シクロプロピル基、シクロペンチル基およびシクロヘキシル基を挙げることができる。 The AKR1C3 inhibitor of the present invention is represented by the following chemical formula 1.
Figure 2019167302
However, R1 in the formula is a hydrogen atom, a hydroxy group, a halogen atom, or a hydrocarbon group which may have a substituent. Examples of the “hydrocarbon group” of the “hydrocarbon group optionally having substituent (s)” include C1-C6 linear, branched, and cyclic alkyl groups. In the present invention, the “C1 to C6 alkyl group” means a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Isobutyl group, tert-butyl group, pentyl group, isopentyl group, 2-methylbutyl group, neopentyl group, 1-ethylpropyl group, hexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1 -Methylpentyl group, 3,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethyl Mention may be made of a butyl group, a 2-ethylbutyl group, a cyclopropyl group, a cyclopentyl group and a cyclohexyl group.

好ましくは、式中のR1は水素原子、フルオロ基、クロロ基、メチル基、エチル基、ヒドロキシ基(但し、2位及び4位を除く)、ジフルオロ基、トリフルオロ基、トリフルオロメチル基、ジトリフルオロメチル基、イソプロピル基である。尚、アルキル基の炭素数が多すぎると、立体障害による活性の低下のおそれがあるほか、2位及び4位には親水性側鎖は望ましくない。   Preferably, R1 in the formula is a hydrogen atom, a fluoro group, a chloro group, a methyl group, an ethyl group, a hydroxy group (except for the 2-position and 4-position), a difluoro group, a trifluoro group, a trifluoromethyl group, a ditri A fluoromethyl group and an isopropyl group; If the alkyl group has too many carbon atoms, the activity may decrease due to steric hindrance, and a hydrophilic side chain is not desirable at the 2- and 4-positions.

更に好ましくは、式中のR1は水素原子、2-フルオロ、3-フルオロ、4-フルオロ、2-クロロ、3-クロロ、4-クロロ、2-メチル、3-メチル、4-メチル、2-エチル、3-エチル、4-エチル、3-ヒドロキシ、3,4-ジフルオロ、3,4,5-トリフルオロ、2-トリフルオロメチル、3-トリフルオロメチル、4-トリフルオロメチル、2,4-ジトリフルオロメチル、2-イソプロピル又は3-イソプロピルである。   More preferably, R1 in the formula is a hydrogen atom, 2-fluoro, 3-fluoro, 4-fluoro, 2-chloro, 3-chloro, 4-chloro, 2-methyl, 3-methyl, 4-methyl, 2-methyl Ethyl, 3-ethyl, 4-ethyl, 3-hydroxy, 3,4-difluoro, 3,4,5-trifluoro, 2-trifluoromethyl, 3-trifluoromethyl, 4-trifluoromethyl, 2,4 -Ditrifluoromethyl, 2-isopropyl or 3-isopropyl.

特に好ましいAKR1C3阻害剤として、以下の3つの化合物(化学式2〜4)を挙げることができる。

Figure 2019167302
Figure 2019167302
Figure 2019167302
Particularly preferred AKR1C3 inhibitors include the following three compounds (chemical formulas 2 to 4).
Figure 2019167302
Figure 2019167302
Figure 2019167302

これらの化合物は強力にAKR1C3を阻害する上に(後述の実施例に示した実験では順に、IC50=25nM、IC50=9.1nM、IC50=21nM)、AKR1C1又はAKR1C2と比べてAKR1C3に高い選択性(IC50で比較して、順に約240倍(対AKR1C1);400倍以上(対AKR1C2)、1,100倍以上(対AKR1C1);1,100倍以上(対AKR1C2)、480倍以上(対AKR1C1);480倍以上(対AKR1C2))を示す。 (Order in shown in the Examples below experiments, IC 50 = 25nM, IC 50 = 9.1nM, IC 50 = 21nM) These compounds strongly on to inhibit AKR1C3, high AKR1C3 compared to AKR1C1 or AKR1C2 Selectivity (in comparison with IC 50 , approximately 240 times (vs. AKR1C1); 400 times or more (vs. AKR1C2), 1,100 times or more (vs. AKR1C1); 1,100 times or more (vs. AKR1C2); 480 times or more (vs. AKR1C2)).

AKR1C3はがん治療の標的として重要であり、がん治療法の開発の対象となる。本発明のAKR1C3阻害剤はこのような研究・開発におけるツール(研究用試薬)としても有用である。   AKR1C3 is an important target for cancer treatment and is a target for the development of cancer treatments. The AKR1C3 inhibitor of the present invention is also useful as a tool (research reagent) in such research and development.

上記の通り、様々ながんにおいてAKR1C3の発現上昇が認められる。また、がん細胞の増殖・成長へのAKR1C3の関与が報告されている。これらの事実に鑑みれば、AKR1C3阻害剤は、がんの治療や予防に有効である。換言すれば、抗がん薬の有効成分としてAKR1C3阻害剤が有用である。そこで本発明の第2の局面は、本発明のAKR1C3阻害剤又はその薬理学的に許容可能な塩を有効成分として含有する抗がん薬を提供する。   As described above, increased expression of AKR1C3 is observed in various cancers. In addition, the involvement of AKR1C3 in the proliferation and growth of cancer cells has been reported. In view of these facts, AKR1C3 inhibitors are effective in the treatment and prevention of cancer. In other words, an AKR1C3 inhibitor is useful as an active ingredient of an anticancer drug. Therefore, a second aspect of the present invention provides an anticancer drug containing the AKR1C3 inhibitor of the present invention or a pharmacologically acceptable salt thereof as an active ingredient.

本発明において用語「がん」は広義に解釈され、用語「悪性腫瘍」と互換的に使用される。また、病理学的に診断が確定される前の段階、すなわち腫瘍としての良性、悪性のどちらかが確定される前には、良性腫瘍、良性悪性境界病変、悪性腫瘍を総括的に含む場合もあり得る。一般に、がんはその発生の母体となった臓器の名、もしくは発生母組織の名で呼ばれ、主なものを列記すると、舌癌、歯肉癌、咽頭癌、上顎癌、喉頭癌、唾液腺癌、食道癌、胃癌、小腸癌、大腸癌、直腸癌、肝臓癌、胆道癌、胆嚢癌、膵臓癌、肺癌、乳癌、甲状腺癌、副腎癌、脳下垂体腫瘍、松果体腫瘍、子宮癌、卵巣癌、膣癌、膀胱癌、腎臓癌、前立腺癌、尿道癌、網膜芽細胞腫、結膜癌、神経芽腫、神経膠腫、神経膠芽細胞腫、皮膚癌、髄芽種、白血病、悪性リンパ腫、睾丸腫瘍、骨肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、脂肪肉腫、軟骨肉腫、ユーイング肉腫などである。そして、さらに発生臓器の部位の特徴によって、上・中・下咽頭癌、上部・中部・下部食道癌、胃噴門癌、胃幽門癌、子宮頚癌、子宮体癌などと細分類されているが、これらが限定的ではなく本発明の「がん」としての記載に含まれる。   In the present invention, the term “cancer” is interpreted broadly and used interchangeably with the term “malignant tumor”. It may also include benign tumors, benign malignant border lesions, and malignant tumors before the pathological diagnosis is confirmed, that is, before any benign or malignant tumor is confirmed. possible. In general, cancer is called the name of the organ that developed it, or the name of the developing mother tissue, and the main ones are listed: tongue cancer, gingival cancer, pharyngeal cancer, maxillary cancer, laryngeal cancer, salivary gland cancer , Esophageal cancer, stomach cancer, small intestine cancer, colon cancer, rectal cancer, liver cancer, biliary tract cancer, gallbladder cancer, pancreatic cancer, lung cancer, breast cancer, thyroid cancer, adrenal cancer, pituitary tumor, pineal tumor, uterine cancer, Ovarian cancer, vaginal cancer, bladder cancer, kidney cancer, prostate cancer, urethral cancer, retinoblastoma, conjunctival cancer, neuroblastoma, glioma, glioblastoma, skin cancer, medulloblastoma, leukemia, malignant Examples include lymphoma, testicular tumor, osteosarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, liposarcoma, chondrosarcoma, and Ewing sarcoma. And it is subdivided into upper, middle and lower pharyngeal cancer, upper / middle / lower esophageal cancer, gastric cardia cancer, gastric pyloric cancer, cervical cancer, endometrial cancer, etc. These are not limiting and are included in the description of “cancer” of the present invention.

AKR1C3はアンドロゲン代謝におけるCYP17の下流に位置する。従って、AKR1C3阻害剤によればグルココルチコイドの合成を阻害することなしにアンドロゲン合成を阻害できる。また、AKR1C3はアンドロゲン合成のみならず、細胞増殖性のプロスタノイドやイソプレノイドの合成に関与する。したがって、AKR1C3の阻害はホルモン依存性、非依存性に関わらず前立腺がん治療に有効と考えられる。本発明の抗がん薬の典型的な標的の一つは、前立腺がんであり、特にCRPCが好適な標的となる。本発明のAKR1C3阻害剤がARアンタゴニスト作用も有し、強力なPSA降下作用をも発揮し得ることは、前立腺がんの治療薬として極めて有用であることを示す。   AKR1C3 is located downstream of CYP17 in androgen metabolism. Therefore, according to the AKR1C3 inhibitor, androgen synthesis can be inhibited without inhibiting glucocorticoid synthesis. AKR1C3 is involved not only in androgen synthesis, but also in the synthesis of cell proliferative prostanoids and isoprenoids. Therefore, inhibition of AKR1C3 is considered to be effective for prostate cancer treatment regardless of whether it is hormone-dependent or independent. One of the typical targets of the anticancer drug of the present invention is prostate cancer, and particularly CRPC is a suitable target. The fact that the AKR1C3 inhibitor of the present invention has an AR antagonistic action and can also exert a powerful PSA lowering action indicates that it is extremely useful as a therapeutic agent for prostate cancer.

「抗がん薬」とは、標的の疾病ないし病態である、がんに対する治療的又は予防的効果を示す医薬のことをいう。治療的効果には、がんに特徴的な症状又は随伴症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。後者については、重症化を予防するという点において予防的効果の一つと捉えることができる。このように、治療的効果と予防的効果は一部において重複する概念であり、明確に区別して捉えることは困難であり、またそうすることの実益は少ない。尚、予防的効果の典型的なものは、がんに特徴的な症状の再発発現(発症)を阻止ないし遅延することである。尚、がんに対して何らかの治療的効果又は予防的効果、或いはこの両者を示す限り、抗がん薬に該当する。   “Anticancer drug” refers to a drug that exhibits a therapeutic or prophylactic effect against cancer, which is a target disease or condition. The therapeutic effect includes alleviation of symptoms or associated symptoms characteristic of cancer (mildness), prevention or delay of deterioration of symptoms, and the like. The latter can be regarded as one of the preventive effects in terms of preventing the seriousness. In this way, the therapeutic effect and the preventive effect are partially overlapping concepts, and it is difficult to clearly distinguish them from each other, and there is little benefit in doing so. A typical preventive effect is to prevent or delay the recurrence (onset) of symptoms characteristic of cancer. In addition, as long as it shows some therapeutic effect or preventive effect with respect to cancer, or both, it corresponds to an anticancer drug.

本明細書における「薬理学的に許容される塩」の例として塩酸、リン酸、硫酸、硝酸、ホウ酸等との塩(無機酸塩)や、ギ酸、酢酸、乳酸、フマル酸、マレイン酸、酒石酸、クエン酸、コハク酸、マロン酸等との塩(有機酸塩)を挙げることができる。これらの塩の調製は慣用手段によって行なうことができる。尚、以上の例示は、「薬理学的に許容される塩」が限定解釈されるために用いられるべきではない。即ち、「薬理学的に許容される塩」は、広義に解釈されるべきであり、各種の塩を含む用語である。   Examples of “pharmacologically acceptable salts” in this specification include salts (inorganic acid salts) with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, boric acid, etc., formic acid, acetic acid, lactic acid, fumaric acid, maleic acid And salts (organic acid salts) with tartaric acid, citric acid, succinic acid, malonic acid and the like. These salts can be prepared by conventional means. In addition, the above illustration should not be used because “pharmacologically acceptable salt” is limitedly interpreted. That is, “pharmacologically acceptable salt” is to be interpreted broadly and is a term that includes various salts.

本発明の抗がん薬の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、界面活性剤、滑沢剤、稀釈剤、被覆剤、糖衣剤、矯味矯臭剤、乳化・可溶化・分散剤、pH調製剤、等張剤、可溶化剤、香料、着色剤、溶解補助剤、生理食塩水など)を含有させることができる。製剤化する場合の剤形も特に限定されない。剤形の例は錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、液剤、懸濁剤、乳剤、ゼリー剤、注射剤、外用剤、吸入剤、点鼻剤、点眼剤及び座剤である。本発明の抗がん薬には、期待される治療効果(又は予防効果)を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の抗がん薬中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.01重量%〜約95重量%の範囲内で設定する。   The anticancer drug of the present invention can be formulated according to a conventional method. When formulating, other pharmaceutically acceptable ingredients (for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, interfaces) Activators, lubricants, diluents, coating agents, sugar coatings, flavoring agents, emulsifying / solubilizing / dispersing agents, pH adjusting agents, isotonic agents, solubilizers, fragrances, coloring agents, solubilizing agents, physiological Saline solution and the like). The dosage form for formulation is not particularly limited. Examples of dosage forms are tablets, powders, fine granules, granules, capsules, syrups, solutions, suspensions, emulsions, jellies, injections, external preparations, inhalants, nasal drops, eye drops and suppositories. It is an agent. The anticancer drug of the present invention contains an active ingredient in an amount necessary for obtaining an expected therapeutic effect (or preventive effect) (that is, a therapeutically effective amount). The amount of the active ingredient in the anticancer drug of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, within a range of about 0.01 wt% to about 95 wt% so that a desired dose can be achieved.

本発明の抗がん薬はその剤形に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜など)によって対象に適用される。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。全身投与によらず、局所投与することにしてもよい。ドラッグデリバリーシステム(DDS)を利用して標的組織特異的に有効成分が送達されるように投与してもよい。ここでの「対象」は特に限定されず、ヒト及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ、ニワトリ、ウズラ等である)を含む。好ましい一態様では、適用対象はヒトである。   The anticancer drug of the present invention is administered orally or parenterally (intravenous, intraarterial, subcutaneous, intradermal, intramuscular or intraperitoneal injection, transdermal, nasal, transmucosal, etc.) according to the dosage form. Applied to the subject. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination (for example, intravenous injection or the like is performed simultaneously with oral administration or after a predetermined time has elapsed). Local administration may be used instead of systemic administration. A drug delivery system (DDS) may be used to administer the active ingredient in a target tissue-specific manner. The “subject” here is not particularly limited, and includes humans and non-human mammals (including pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats. , Sheep, dogs, cats, chickens, quails, etc.). In a preferred embodiment, the application subject is a human.

後述の実施例に示す通り、本発明のAKR1C3阻害剤を既存の抗アンドロゲン薬と併用すると、その抗がん活性が増強された。この事実に基づき一態様では、本発明の抗がん薬を抗アンドロゲン薬と併用し、その治療効果の増強を図る。併用される抗アンドロゲン薬は特に限定されない。抗アンドロゲン薬の例を挙げると、ビカルタミド、フルタミド、クロルマジノン酢酸エステル、エンザルタミド、アビラテロンである。エンザルタミドとアビラテロンはCRPCに対する認可薬であり、当該医薬との併用は、CRPCに対する治療法として有効となる。   As shown in Examples described later, when the AKR1C3 inhibitor of the present invention was used in combination with an existing antiandrogen, its anticancer activity was enhanced. Based on this fact, in one aspect, the anticancer drug of the present invention is used in combination with an antiandrogen drug to enhance its therapeutic effect. The antiandrogen used in combination is not particularly limited. Examples of antiandrogens include bicalutamide, flutamide, chlormadinone acetate, enzalutamide, and abiraterone. Enzalutamide and abiraterone are approved drugs for CRPC, and combined use with the drug is effective as a treatment for CRPC.

本発明の更なる局面は、本発明の抗がん薬を使用した、がんに対する治療方法又は予防方法(以下、これら二つの方法をまとめて「治療方法等」という)が提供される。本発明の治療方法等は、上記本発明の抗がん薬を、がんを罹患する又はがんの兆候を認める患者に投与するステップを含む。投与経路は特に限定されず例えば経口、静脈内、動脈内、皮内、皮下、筋肉内、腹腔内、経皮、経鼻、経粘膜などを挙げることができる。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる。抗がん薬の投与量は一般に、患者の症状、年齢、性別、及び体重などによって変動し得るが、当業者であれば適宜適当な投与量を設定することが可能である。投与スケジュールとしては例えば一日一回〜数回、二日に一回、或いは三日に一回などを採用できる。投与スケジュールの設定においては、患者の症状や有効成分の効果持続時間などを考慮することができる。   A further aspect of the present invention provides a method for treating or preventing cancer (hereinafter, these two methods are collectively referred to as “therapeutic methods”) using the anticancer drug of the present invention. The treatment method of the present invention includes a step of administering the anticancer drug of the present invention to a patient suffering from cancer or showing signs of cancer. The administration route is not particularly limited, and examples thereof include oral, intravenous, intraarterial, intradermal, subcutaneous, intramuscular, intraperitoneal, transdermal, nasal, and transmucosal. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination. In general, the dose of an anticancer drug may vary depending on the patient's symptoms, age, sex, weight, etc., but those skilled in the art can appropriately set an appropriate dose. As the administration schedule, for example, once to several times a day, once every two days, or once every three days can be adopted. In setting the administration schedule, it is possible to consider patient symptoms, duration of effect of active ingredients, and the like.

<方法>
1. 化合物の合成

Figure 2019167302
<Method>
1. Synthesis of compounds
Figure 2019167302

シアノアセトアミド 1 の一般合成法
Ar雰囲気下、シアノ酢酸 (100 mg, 1.176 mmol) のCH2Cl2 (5 mL) 溶液に室温にて、アニリン (1.176 mmol)、EDC.HCl (450 mg, 2.352 mmol)、DMAP (29 mg, 0.235 mmol) を順次加え、室温にて24時間攪拌を行った。反応終了後、溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー (SiO2: 10 g, hexane : acetone = 5 : 1〜1 : 1) により精製し、白色結晶 (1a-g 1), 1h 2), 1i 3), 1j-k 2), 1l 4), 1m 5), 1n-p 1), 1q 6), 1r 7), 1s 6), 1t 8), 1u 2), 1v, 1w 6), 1x 9)) を得た。
参考文献:1) Org. Biomol. Chem. 2015, 13, 7487. 2) J. Med. Chem. 2017, 60, 4626. 3) Bioorg. Med. Chem. Lett. 2009, 19, 1861. 4) Eur. J. Chem. 2012, 3, 228. 5) ChemCatChem 2016, 8, 3420. 6) J. Med. Chem. 2012, 55, 7378. 7) Commercially available: Aurora Building Blocks, A02.108.441. 8) Arch. Pharm. Res. 2003, 26, 197. 9) Commercially available: Aurora Building Blocks, A00.271.854.
General synthesis of cyanoacetamide 1
Under Ar atmosphere, cyanoacetic acid (100 mg, 1.176 mmol) at room temperature CH 2 Cl 2 (5 mL) solution of aniline (1.176 mmol), EDC. HCl (450 mg, 2.352 mmol), DMAP (29 mg, 0.235 mmol) was sequentially added, and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, the solvent was distilled off, and the resulting residue was purified by silica gel column chromatography (SiO 2 : 10 g, hexane: acetone = 5: 1 to 1: 1) to obtain white crystals (1a-g 1) , 1h 2) , 1i 3) , 1j-k 2) , 1l 4) , 1m 5) , 1n-p 1) , 1q 6) , 1r 7) , 1s 6) , 1t 8) , 1u 2) , 1v , 1w 6) , 1x 9) ).
References: 1) Org. Biomol. Chem. 2015, 13, 7487. 2) J. Med. Chem. 2017, 60, 4626. 3) Bioorg. Med. Chem. Lett. 2009, 19, 1861. 4) Eur J. Chem. 2012, 3, 228. 5) ChemCatChem 2016, 8, 3420. 6) J. Med. Chem. 2012, 55, 7378. 7) Commercially available: Aurora Building Blocks, A02.108.441. 8) Arch Pharm. Res. 2003, 26, 197. 9) Commercially available: Aurora Building Blocks, A00.271.854.

N-(2,4-Bis-trifluoromethylphenyl)-2-cyanoacetamide (1v)
収率: 51%; 1H-NMR (400 MHz, DMSO-d6) δ 4.01 (2H, s), 7.85 (1H, d, J = 8.4 Hz), 8.08 (1H, s), 8.12 (1H, d, J = 8.4 Hz), 10.26 (1H, s)
N- (2,4-Bis-trifluoromethylphenyl) -2-cyanoacetamide (1v)
Yield: 51%; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 4.01 (2H, s), 7.85 (1H, d, J = 8.4 Hz), 8.08 (1H, s), 8.12 (1H, d, J = 8.4 Hz), 10.26 (1H, s)

クロメン 2 の一般合成法
Ar雰囲気下、アミド体 (1a-x, 0.432 mmol) のEtOH (3 mL) 溶液に室温にて、2,3-ジヒドロキシベンズアルデヒド (0.432 mmol)、ピペリジン (3滴) を順次加え、室温して24時間攪拌を行った。反応終了後、析出した結晶をろ取した後、翌日まで風乾し、淡黄色結晶2a-xを得た。
General synthesis of chromene 2
Under an Ar atmosphere, 2,3-dihydroxybenzaldehyde (0.432 mmol) and piperidine (3 drops) were added sequentially to a solution of the amide compound (1a-x, 0.432 mmol) in EtOH (3 mL) at room temperature. Stir for hours. After completion of the reaction, the precipitated crystals were collected by filtration and then air-dried until the next day to obtain pale yellow crystals 2a-x.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid phenylamide (2a)
収率: 82%; mp: 235-237℃; 1H-NMR (500 MHz, DMSO-d6) δ 7.04-7.14 (3H, m), 7.23 (1H, dd, J = 4.0, 3.0 Hz), 7.37 (1H, t, J = 8.5 Hz), 7.67 (2H, dd, J = 7.5, 1.0 Hz), 8.50 (1H, d, J = 1.5 Hz), 9.09 (1H, s), 10.23 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 119.9, 120.1, 120.2, 120.4, 120.5, 124.5, 124.6, 129.6, 138.8, 142.5, 142.6, 144.5, 156.5, 160.3; IR (KBr): 3298, 1674, 1598, 1473 cm-1; MS (EI): m/z 280 (M+); HRMS: Calcd for C16H12N2O3 280.0848, Found 280.0847.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid phenylamide (2a)
Yield: 82%; mp: 235-237 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 7.04-7.14 (3H, m), 7.23 (1H, dd, J = 4.0, 3.0 Hz), 7.37 (1H, t, J = 8.5 Hz), 7.67 (2H, dd, J = 7.5, 1.0 Hz), 8.50 (1H, d, J = 1.5 Hz), 9.09 (1H, s), 10.23 (1H, br ); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 119.9, 120.1, 120.2, 120.4, 120.5, 124.5, 124.6, 129.6, 138.8, 142.5, 142.6, 144.5, 156.5, 160.3; IR (KBr): 3298 , 1674, 1598, 1473 cm -1 ; MS (EI): m / z 280 (M + ); HRMS: Calcd for C 16 H 12 N 2 O 3 280.0848, Found 280.0847.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-fluorophenyl)amide (2b)
収率: 82%; mp: 247-249℃; 1H-NMR (500 MHz, DMSO-d6) δ 7.10-7.17 (3H, m), 7.22-7.27 (2H, m), 7.31-7.35 (1H, m), 8.48 (1H, td, J = 3.5, 1.5 Hz), 8.55 (1H, d, J = 1.5 Hz), 9.14 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 115.6 (d, J = 23.1 Hz), 119.8, 120.2 (d, J = 23.1 Hz), 120.7, 121.9, 124.6, 125.0 (d, J = 8.5 Hz), 125.2 (d, J = 3.6 Hz), 127.0 (d, J = 8.5 Hz), 142.5, 143.1, 144.5, 153.0 (d, J = 241.8 Hz), 156.3, 160.6; IR (KBr): 3310, 1607, 1569, 1473 cm-1; MS (EI): m/z 298 (M+); HRMS: Calcd for C16H11FN2O3 298.0754, Found 298.0754.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-fluorophenyl) amide (2b)
Yield: 82%; mp: 247-249 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 7.10-7.17 (3H, m), 7.22-7.27 (2H, m), 7.31-7.35 (1H , m), 8.48 (1H, td, J = 3.5, 1.5 Hz), 8.55 (1H, d, J = 1.5 Hz), 9.14 (1H, br); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 115.6 (d, J = 23.1 Hz), 119.8, 120.2 (d, J = 23.1 Hz), 120.7, 121.9, 124.6, 125.0 (d, J = 8.5 Hz), 125.2 (d, J = 3.6 Hz), 127.0 (d, J = 8.5 Hz), 142.5, 143.1, 144.5, 153.0 (d, J = 241.8 Hz), 156.3, 160.6; IR (KBr): 3310, 1607, 1569, 1473 cm -1 ; MS (EI): m / z 298 (M + ); HRMS: Calcd for C 16 H 11 FN 2 O 3 298.0754, Found 298.0754.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-fluorophenyl)amide (2c)
収率: 51%; mp: 225-227℃; 1H-NMR (500 MHz, DMSO-d6) δ 6.96 (1H, m), 7.06-7.11 (2H, m), 7.22 (1H, dd, J = 4.5, 2.5 Hz), 7.28 (1H, d, J = 9.0 Hz), 7.39 (1H, q, J = 7.0 Hz), 7.74 (1H, d, J = 9.0 Hz), 8.50 (1H, s), 9.10 (1H, br), 10.22 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 107.0 (d, J = 23.1 Hz), 110.0 (d, J = 23.1 Hz), 116.0, 119.8, 120.1, 120.3, 120.6, 124.6 (d, J = 1.3 Hz), 131.1 (d, J = 10.3 Hz), 140.4 (d, J = 10.3 Hz), 142.5, 142.9, 144.5, 156.4, 160.7, 162.8 (d, J = 239.4 Hz); IR (KBr): 3305, 1609, 1579, 1473 cm-1; MS (EI): m/z 298 (M+); HRMS: Calcd for C16H11FN2O3 298.0754, Found 298.0754.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-fluorophenyl) amide (2c)
Yield: 51%; mp: 225-227 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 6.96 (1H, m), 7.06-7.11 (2H, m), 7.22 (1H, dd, J = 4.5, 2.5 Hz), 7.28 (1H, d, J = 9.0 Hz), 7.39 (1H, q, J = 7.0 Hz), 7.74 (1H, d, J = 9.0 Hz), 8.50 (1H, s), 9.10 (1H, br), 10.22 (1H, br); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 107.0 (d, J = 23.1 Hz), 110.0 (d, J = 23.1 Hz), 116.0, 119.8, 120.1, 120.3, 120.6, 124.6 (d, J = 1.3 Hz), 131.1 (d, J = 10.3 Hz), 140.4 (d, J = 10.3 Hz), 142.5, 142.9, 144.5, 156.4, 160.7, 162.8 ( d, J = 239.4 Hz); IR (KBr): 3305, 1609, 1579, 1473 cm -1 ; MS (EI): m / z 298 (M + ); HRMS: Calcd for C 16 H 11 FN 2 O 3 298.0754, Found 298.0754.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-fluorophenyl)amide (2d)
収率: 65%; mp: 240-242℃; 1H-NMR (500 MHz, DMSO-d6) δ 7.09-7.10 (2H, m), 7.22-7.24 (3H, m), 7.71 (1H, q, J = 5.0 Hz), 8.50 (1H, s), 9.09 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 116.1 (d, J = 23.1 Hz), 119.8, 120.2, 120.3, 120.5, 121.9 (d, J = 7.4 Hz), 124.6 (d, J = 3.6 Hz), 135.2, 142.4, 142.6, 144.5, 156.4, 158.9 (d, J = 239.0 Hz), 160.3; IR (KBr): 3298, 1674, 1511,1218 cm-1; MS (EI): m/z 298 (M+); HRMS: Calcd for C16H11FN2O3 298.0754, Found 298.0754.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-fluorophenyl) amide (2d)
Yield: 65%; mp: 240-242 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 7.09-7.10 (2H, m), 7.22-7.24 (3H, m), 7.71 (1H, q , J = 5.0 Hz), 8.50 (1H, s), 9.09 (1H, br); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 116.1 (d, J = 23.1 Hz), 119.8, 120.2, 120.3 , 120.5, 121.9 (d, J = 7.4 Hz), 124.6 (d, J = 3.6 Hz), 135.2, 142.4, 142.6, 144.5, 156.4, 158.9 (d, J = 239.0 Hz), 160.3; IR (KBr): 3298, 1674, 1511,1218 cm -1 ; MS (EI): m / z 298 (M + ); HRMS: Calcd for C 16 H 11 FN 2 O 3 298.0754, Found 298.0754.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-chlorophenyl)amide (2e)
収率: 67%; mp: 282-283℃; 1H-NMR (500 MHz, DMSO-d6) δ; 7.08-7.13 (2H, m), 7.16 (1H, td, J = 6.5, 1.5 Hz), 7.24 (1H, dd, J = 5.0, 2.0 Hz), 7.39 (1H, td, J = 7.0, 1.0 Hz), 7.54 (1H, dd, J = 6.5, 1.5 Hz), 8.52 (1H, dd, J = 7.0, 1.0 Hz), 8.55 (1H, s), 9.13 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 119.8, 120.2, 120.4, 120.7, 122.6, 123.6, 124.6, 125.5, 128.2, 129.9, 136.0, 142.5, 143.3, 144.5, 156.0, 160.8; IR (KBr): 3305, 1684, 1471, 1224 cm-1; MS (EI): m/z 314 (M+); HRMS: Calcd for C16H11ClN2O3 314.0458, Found: 314.0459.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-chlorophenyl) amide (2e)
Yield: 67%; mp: 282-283 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ; 7.08-7.13 (2H, m), 7.16 (1H, td, J = 6.5, 1.5 Hz) , 7.24 (1H, dd, J = 5.0, 2.0 Hz), 7.39 (1H, td, J = 7.0, 1.0 Hz), 7.54 (1H, dd, J = 6.5, 1.5 Hz), 8.52 (1H, dd, J = 7.0, 1.0 Hz), 8.55 (1H, s), 9.13 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 119.8, 120.2, 120.4, 120.7, 122.6, 123.6, 124.6, 125.5 , 128.2, 129.9, 136.0, 142.5, 143.3, 144.5, 156.0, 160.8; IR (KBr): 3305, 1684, 1471, 1224 cm -1 ; MS (EI): m / z 314 (M + ); HRMS: Calcd for C 16 H 11 ClN 2 O 3 314.0458, Found: 314.0459.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-chlorophenyl)amide (2f)
収率: 65%; mp: 252-254℃; 1H-NMR (500 MHz, DMSO-d6) δ 7.07 (2H, m), 7.18 (1H, d, J = 8.0 Hz), 7.23 (1H, d, J = 8.0 Hz), 7.39 (1H, t, J = 8.0 Hz), 7.44 (1H, t, J = 8.0 Hz), 7.95 (1H, s), 8.50 (1H, s), 9.12 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 118.6, 119.6, 119.8, 120.1, 120.3, 120.6, 124.2, 124.6, 131.2, 133.9, 140.1, 142.5, 142.9, 144.5, 156.4, 160.7; IR (KBr): 3301, 1681, 1595, 1482 cm-1; MS (EI): m/z 314 (M+); HRMS: Calcd for C16H11ClN2O3 314.0458, Found: 314.0458.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-chlorophenyl) amide (2f)
Yield: 65%; mp: 252-254 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 7.07 (2H, m), 7.18 (1H, d, J = 8.0 Hz), 7.23 (1H, d, J = 8.0 Hz), 7.39 (1H, t, J = 8.0 Hz), 7.44 (1H, t, J = 8.0 Hz), 7.95 (1H, s), 8.50 (1H, s), 9.12 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 118.6, 119.6, 119.8, 120.1, 120.3, 120.6, 124.2, 124.6, 131.2, 133.9, 140.1, 142.5, 142.9, 144.5, 156.4, 160.7; IR (KBr): 3301, 1681, 1595, 1482 cm -1 ; MS (EI): m / z 314 (M + ); HRMS: Calcd for C 16 H 11 ClN 2 O 3 314.0458, Found: 314.0458.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-chlorophenyl)amide (2g)
収率: 91%; mp: 272-273℃; 1H-NMR (500 MHz, DMSO-d6) δ 7.07-7.11 (2H, m), 7.23 (1H, dd, J = 5.0, 2.5 Hz), 7.43 (1H, dd, J = 5.0, 2.0 Hz), 7.70 (1H, dd, J = 5.0, 2.0 Hz), 8.50 (1H, d, J = 1.5 Hz), 9.11 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 119.8, 120.2, 120.3, 120.6, 121.7, 124.6, 128.1, 129.5, 137.7, 142.5, 142.7, 144.5, 156.4, 160.5; IR (KBr): 3302, 1675, 1473, 1230 cm-1; MS (EI): m/z 314 (M+); HRMS: Calcd for C16H11ClN2O3 314.0458, Found: 314.0459.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-chlorophenyl) amide (2g)
Yield: 91%; mp: 272-273 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 7.07-7.11 (2H, m), 7.23 (1H, dd, J = 5.0, 2.5 Hz), 7.43 (1H, dd, J = 5.0, 2.0 Hz), 7.70 (1H, dd, J = 5.0, 2.0 Hz), 8.50 (1H, d, J = 1.5 Hz), 9.11 (1H, s); 13 C- NMR (125 MHz, DMSO-d 6 ) δ 119.8, 120.2, 120.3, 120.6, 121.7, 124.6, 128.1, 129.5, 137.7, 142.5, 142.7, 144.5, 156.4, 160.5; IR (KBr): 3302, 1675, 1473, 1230 cm -1 ; MS (EI): m / z 314 (M + ); HRMS: Calcd for C 16 H 11 ClN 2 O 3 314.0458, Found: 314.0459.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-methylphenyl)amide (2h)
収率: 90%; mp: 263-264℃; 1H-NMR (400 MHz, DMSO-d6) δ 2.37 (3H, s), 7.08-7.16 (3H, m), 7.25-7.31 (3H, m), 8.25 (1H, d, J = 7.6 Hz), 8.52 (1H, d, J = 1.2 Hz), 9.11 (1H, s), 12.62 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 18.4, 119.4, 119.6, 120.0, 120.2, 120.8, 124.0, 124.1, 126.3, 127.8, 130.3 137.0, 141.9, 142.2, 144.0, 156.0, 159.7; IR (KBr): 3299, 1682, 1593, 1470 cm-1; MS (EI): m/z 294 (M+); HRMS: calcd for C17H14N2O3 294.1004, found 294.1008.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-methylphenyl) amide (2h)
Yield: 90%; mp: 263-264 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.37 (3H, s), 7.08-7.16 (3H, m), 7.25-7.31 (3H, m ), 8.25 (1H, d, J = 7.6 Hz), 8.52 (1H, d, J = 1.2 Hz), 9.11 (1H, s), 12.62 (1H, s); 13 C-NMR (125 MHz, DMSO- d 6 ) δ 18.4, 119.4, 119.6, 120.0, 120.2, 120.8, 124.0, 124.1, 126.3, 127.8, 130.3 137.0, 141.9, 142.2, 144.0, 156.0, 159.7; IR (KBr): 3299, 1682, 1593, 1470 cm -1 ; MS (EI): m / z 294 (M + ); HRMS: calcd for C 17 H 14 N 2 O 3 294.1004, found 294.1008.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-methylphenyl)amide (2i)
収率: 89%; mp: 241-242℃; 1H-NMR (400 MHz, DMSO-d6) δ 2.28 (3H, s), 6.93 (1H, d, J = 7.3 Hz), 7.08-7.11 (2H, m), 7.20 (1H, d, J = 7.3 Hz), 7.26 (1H, d, J = 7.3 Hz), 7.43 (1H, s), 7.52 (1H, d, J = 7.3 Hz), 8.49 (1H, d, J = 2.5 Hz), 9.09 (1H, s), 12.81 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 21.1, 116.7, 119.4, 119.7, 120.0, 124.1, 124.8, 128.9, 138.2, 138.4 142.0, 142.1, 144.0, 156.0, 159.7; IR (KBr): 3295, 1678, 1606, 1467 cm-1; MS (EI): m/z 294 (M+); HRMS: calcd for C17H14N2O3 294.1004, found 294.1001.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-methylphenyl) amide (2i)
Yield: 89%; mp: 241-242 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 2.28 (3H, s), 6.93 (1H, d, J = 7.3 Hz), 7.08-7.11 ( 2H, m), 7.20 (1H, d, J = 7.3 Hz), 7.26 (1H, d, J = 7.3 Hz), 7.43 (1H, s), 7.52 (1H, d, J = 7.3 Hz), 8.49 ( 1H, d, J = 2.5 Hz), 9.09 (1H, s), 12.81 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 21.1, 116.7, 119.4, 119.7, 120.0, 124.1, 124.8, 128.9, 138.2, 138.4 142.0, 142.1, 144.0, 156.0, 159.7; IR (KBr): 3295, 1678, 1606, 1467 cm -1 ; MS (EI): m / z 294 (M + ); HRMS: calcd for C 17 H 14 N 2 O 3 294.1004, found 294.1001.

8-Methoxy-2-imino-2H-chromene-3-carboxylic acid (4-methylphenyl)amide (2j)
収率: 89%; mp: 273-274℃; 1H-NMR (500 MHz, CDCl3) δ 2.36 (3H, s), 7.20 (2H, d, J = 8.1 Hz), 7.30-7.32 (3H, m), 7.63 (2H, d, J = 8.1 Hz), 9.04 (1H, s), 10.63 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 21.0, 119.9, 120.1, 120.2, 120.5, 124.6, 130.0, 133.6, 136.3, 142.4, 142.5, 143.5, 144.5, 156.5, 160.0; IR (KBr): 3292, 1674, 1564, 1472 cm-1; MS (EI): m/z 294 (M+); HRMS: calcd for C17H14N2O3 294.1004, found 294.1013.
8-Methoxy-2-imino-2H-chromene-3-carboxylic acid (4-methylphenyl) amide (2j)
Yield: 89%; mp: 273-274 ° C; 1 H-NMR (500 MHz, CDCl 3 ) δ 2.36 (3H, s), 7.20 (2H, d, J = 8.1 Hz), 7.30-7.32 (3H, m), 7.63 (2H, d, J = 8.1 Hz), 9.04 (1H, s), 10.63 (1H, br); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 21.0, 119.9, 120.1, 120.2 , 120.5, 124.6, 130.0, 133.6, 136.3, 142.4, 142.5, 143.5, 144.5, 156.5, 160.0; IR (KBr): 3292, 1674, 1564, 1472 cm -1 ; MS (EI): m / z 294 (M + ); HRMS: calcd for C 17 H 14 N 2 O 3 294.1004, found 294.1013.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-ethylphenyl)amide (2k)
収率: 66%; mp: 209-210℃; 1H-NMR (500 MHz, DMSO-d6) δ 1.13 (3H, t, J = 7.7 Hz), 2.66 (2H, q, J = 7.7 Hz), 7.04-7.07 (3H, m), 7.16-7.23 (3H, m), 8.16 (1H, d, J = 8.5 Hz), 8.47 (1H, d, J = 1.5 Hz), 9.06 (1H, s), 12.61 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 15.6, 28.2, 117.0, 118.9, 119.4, 119.6, 120.0, 120,1, 123.6, 124.1, 129.0, 138.3, 141.9, 142.0, 144.0, 144.7, 155.9, 159.7; IR (KBr): 3297, 1669, 1569, 1472 cm-1; MS (EI): m/z 308 (M+); HRMS: calcd for C18H16N2O3 308.1161, found 308.1153.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-ethylphenyl) amide (2k)
Yield: 66%; mp: 209-210 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 1.13 (3H, t, J = 7.7 Hz), 2.66 (2H, q, J = 7.7 Hz) , 7.04-7.07 (3H, m), 7.16-7.23 (3H, m), 8.16 (1H, d, J = 8.5 Hz), 8.47 (1H, d, J = 1.5 Hz), 9.06 (1H, s), 12.61 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 15.6, 28.2, 117.0, 118.9, 119.4, 119.6, 120.0, 120,1, 123.6, 124.1, 129.0, 138.3, 141.9, 142.0 , 144.0, 144.7, 155.9, 159.7; IR (KBr): 3297, 1669, 1569, 1472 cm -1 ; MS (EI): m / z 308 (M + ); HRMS: calcd for C 18 H 16 N 2 O 3 308.1161, found 308.1153.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-ethylphenyl)amide (2l)
収率: 78%; mp: 241-242℃; 1H-NMR (400 MHz, CDCl3) δ 1.14 (3H, t, J = 7.7 Hz), 2.65 (2H, q, J = 7.7 Hz), 6.99 (1H, d, J = 8.0 Hz), 7.11-7.12 (3H, m), 7.28 (1H, d, J = 8.0 Hz), 7.56 (1H, d, J = 8.0 Hz), 7.57 (1H, s), 8.60 (1H, br), 12.36 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 14.5, 24.6, 119.4, 119.6, 120.0, 120.1, 121.5, 124.1, 124.3, 126.3, 128.8, 134.0, 136.1, 141.9, 142.2, 144.0, 156.0, 159.8; IR (KBr): 3298, 1684, 1594, 1471 cm-1; MS (EI): m/z 308 (M+); HRMS: calcd for C18H16N2O3 308.1161, found 308.1153.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-ethylphenyl) amide (2l)
Yield: 78%; mp: 241-242 ° C; 1 H-NMR (400 MHz, CDCl 3 ) δ 1.14 (3H, t, J = 7.7 Hz), 2.65 (2H, q, J = 7.7 Hz), 6.99 (1H, d, J = 8.0 Hz), 7.11-7.12 (3H, m), 7.28 (1H, d, J = 8.0 Hz), 7.56 (1H, d, J = 8.0 Hz), 7.57 (1H, s) , 8.60 (1H, br), 12.36 (1H, br); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 14.5, 24.6, 119.4, 119.6, 120.0, 120.1, 121.5, 124.1, 124.3, 126.3, 128.8 , 134.0, 136.1, 141.9, 142.2, 144.0, 156.0, 159.8; IR (KBr): 3298, 1684, 1594, 1471 cm -1 ; MS (EI): m / z 308 (M + ); HRMS: calcd for C 18 H 16 N 2 O 3 308.1161, found 308.1153.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-ethylphenyl)amide (2m)
収率: 81%; mp: 259-260℃; 1H-NMR (400 MHz, DMSO-d6) δ 1.18 (3H, t, J = 7.9 Hz), 2.58 (2H, q, J = 7.9 Hz), 7.08-7.10 (2H, m), 7.20-7.24 (3H, m), 7.59 (2H, d, J = 8.5 Hz), 8.49 (1H, d, J = 1.7 Hz), 9.08 (1H, s), 12.78 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 15.6, 27.6, 119.4, 119.6, 120.0, 120.8, 124.1, 124.1, 128.3, 136.0, 139.5, 141.9, 144.0, 146.1, 156.0, 159.1; IR (KBr): 3296, 1669, 1599, 1473 cm-1; MS (EI): m/z 308 (M+); HRMS: calcd for C18H16N2O3 308.1161, found 308.1153.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-ethylphenyl) amide (2m)
Yield: 81%; mp: 259-260 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 1.18 (3H, t, J = 7.9 Hz), 2.58 (2H, q, J = 7.9 Hz) , 7.08-7.10 (2H, m), 7.20-7.24 (3H, m), 7.59 (2H, d, J = 8.5 Hz), 8.49 (1H, d, J = 1.7 Hz), 9.08 (1H, s), 12.78 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 15.6, 27.6, 119.4, 119.6, 120.0, 120.8, 124.1, 124.1, 128.3, 136.0, 139.5, 141.9, 144.0, 146.1, 156.0 , 159.1; IR (KBr): 3296, 1669, 1599, 1473 cm -1 ; MS (EI): m / z 308 (M + ); HRMS: calcd for C 18 H 16 N 2 O 3 308.1161, found 308.1153.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-hydroxyphenyl)amide (2n)
収率: 48%; mp: 253-255℃; 1H-NMR (500 MHz, DMSO-d6) δ 6.80 (1H, td, J = 6.0, 2.0 Hz), 6.88-6.93 (2H, m), 7.21 (1H, dd, J = 4.5, 2.5 Hz), 8.37 (1H, d, J = 8.0 Hz), 8.48 (1H, s), 8.98 (1H, s), 9.96 (1H, br), 10.20 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 115.23, 119.5, 119.97, 120.05, 120.5, 121.0, 124.5, 124.6, 127.5, 142.0, 142.4, 142.5, 144.4, 147.7, 155.8, 160.1; IR (KBr): 3313, 1668, 1558, 1471 cm-1; MS (EI): m/z 296 (M+); HRMS: Calcd for C16H12N2O4 296.0797, Found : 296.0798.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-hydroxyphenyl) amide (2n)
Yield: 48%; mp: 253-255 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 6.80 (1H, td, J = 6.0, 2.0 Hz), 6.88-6.93 (2H, m), 7.21 (1H, dd, J = 4.5, 2.5 Hz), 8.37 (1H, d, J = 8.0 Hz), 8.48 (1H, s), 8.98 (1H, s), 9.96 (1H, br), 10.20 (1H , br); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 115.23, 119.5, 119.97, 120.05, 120.5, 121.0, 124.5, 124.6, 127.5, 142.0, 142.4, 142.5, 144.4, 147.7, 155.8, 160.1; IR (KBr): 3313, 1668, 1558, 1471 cm -1 ; MS (EI): m / z 296 (M + ); HRMS: Calcd for C 16 H 12 N 2 O 4 296.0797, Found: 296.0798.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-hydroxyphenyl)amide (2o)
収率: 40%; mp: 202-204℃; 1H-NMR (500 MHz, DMSO-d6) δ 6.52 (1H, dd, J = 4.5, 2.5 Hz), 6.97 (1H, dd, J = 7.0, 1.0 Hz), 7.08-7.11 (2H, m), 7.14 (1H, t, J = 8.0 Hz), 7.22 (1H, dd, J = 4.5, 2.5 Hz), 7.28 (1H, t, J = 2.0 Hz), 8.48 (1H, s), 9.08 (1H, s), 9.50 (1H, br), 10.20 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 107.1, 110.8, 111.7, 119.9, 120.2, 120.5, 120.6, 124.6, 130.3, 139.8, 142.5, 144.5, 156.5, 158.4, 160.1; IR (KBr): 3303, 1676, 1577, 1473 cm-1; MS (EI): m/z 296 (M+); HRMS: Calcd for C16H12N2O3 296.0797, Found: 296.0799.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-hydroxyphenyl) amide (2o)
Yield: 40%; mp: 202-204 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 6.52 (1H, dd, J = 4.5, 2.5 Hz), 6.97 (1H, dd, J = 7.0 , 1.0 Hz), 7.08-7.11 (2H, m), 7.14 (1H, t, J = 8.0 Hz), 7.22 (1H, dd, J = 4.5, 2.5 Hz), 7.28 (1H, t, J = 2.0 Hz ), 8.48 (1H, s), 9.08 (1H, s), 9.50 (1H, br), 10.20 (1H, br); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 107.1, 110.8, 111.7, 119.9, 120.2, 120.5, 120.6, 124.6, 130.3, 139.8, 142.5, 144.5, 156.5, 158.4, 160.1; IR (KBr): 3303, 1676, 1577, 1473 cm -1 ; MS (EI): m / z 296 ( M + ); HRMS: Calcd for C 16 H 12 N 2 O 3 296.0797, Found: 296.0799.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-hydroxyphenyl)amide (2p)
収率: 46%; mp: 231-233℃; 1H-NMR (500 MHz, DMSO-d6) δ 6.76 (2H, d, J = 7.8 Hz), 7.06-7.10 (2H, m), 7.19-7.23 (1H, m), 7.47 (2H, d, J = 7.8 Hz), 8.46 (1H, s), 9.03 (1H, s), 9.34 (1H, br), 12.58 (1H, br); 13C-NMR (125 MHz, DMSO-d6) δ 116.0, 119.96, 120.03, 120.5, 120.7, 121.7, 124.6, 130.5, 142.1, 142.4, 144.5, 154.5, 156.5, 159.6; IR (KBr): 3287, 1669, 1513, 1473 cm-1; MS (EI): m/z Calcd for C16H12N2O4 296.0797, Found: 296.0796.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-hydroxyphenyl) amide (2p)
Yield: 46%; mp: 231-233 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 6.76 (2H, d, J = 7.8 Hz), 7.06-7.10 (2H, m), 7.19- 7.23 (1H, m), 7.47 (2H, d, J = 7.8 Hz), 8.46 (1H, s), 9.03 (1H, s), 9.34 (1H, br), 12.58 (1H, br); 13 C- NMR (125 MHz, DMSO-d 6 ) δ 116.0, 119.96, 120.03, 120.5, 120.7, 121.7, 124.6, 130.5, 142.1, 142.4, 144.5, 154.5, 156.5, 159.6; IR (KBr): 3287, 1669, 1513, 1473 cm -1 ; MS (EI): m / z Calcd for C 16 H 12 N 2 O 4 296.0797, Found: 296.0796.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3,4-difluorophenyl)amide (2q)
収率: 83%; mp: 279-281℃; 1H-NMR (500 MHz, DMSO-d6) δ 7.07-7.12 (2H, m), 7.24 (1H, dd, J = 7.0, 2.5 Hz), 7.32-7.34 (1H, m), 7.44 (1H, q, J = 9.0 Hz), 7.95 (1H, ddd, J = 10.1, 7.5, 2.3 Hz), 8.50 (1H, d, J = 1.0 Hz), 9.11 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 109.3 (d, J = 22.0 Hz), 116.1, 117.2, 117.8 (d, J = 18.3 Hz), 118.6 (d, J = 15.9 Hz), 119.9 (dd, J = 33.0, 7.3 Hz), 121.2, 124.1, 125.3, 142.2, 142.5, 142.7, 143.5, 144.5, 156.4, 160.7; IR (KBr): 3301, 1679, 1517, 1473 cm-1; MS (EI): m/z 316 (M+); HRMS: calcd for C16H10F2N2O3 316.0659, found 316.0654.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3,4-difluorophenyl) amide (2q)
Yield: 83%; mp: 279-281 ° C; 1 H-NMR (500 MHz, DMSO-d 6 ) δ 7.07-7.12 (2H, m), 7.24 (1H, dd, J = 7.0, 2.5 Hz), 7.32-7.34 (1H, m), 7.44 (1H, q, J = 9.0 Hz), 7.95 (1H, ddd, J = 10.1, 7.5, 2.3 Hz), 8.50 (1H, d, J = 1.0 Hz), 9.11 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 109.3 (d, J = 22.0 Hz), 116.1, 117.2, 117.8 (d, J = 18.3 Hz), 118.6 (d, J = 15.9 Hz), 119.9 (dd, J = 33.0, 7.3 Hz), 121.2, 124.1, 125.3, 142.2, 142.5, 142.7, 143.5, 144.5, 156.4, 160.7; IR (KBr): 3301, 1679, 1517, 1473 cm - 1 ; MS (EI): m / z 316 (M + ); HRMS: calcd for C 16 H 10 F 2 N 2 O 3 316.0659, found 316.0654.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3,4,5-trifluorophenyl)amide (2r)
収率: 83%; mp: 277-279℃; 1H-NMR (400 MHz, DMSO-d6) δ 7.08-7.12 (2H, m), 7.23 (1H, dd, J = 6.7, 2.4 Hz), 7.65 (2H, dd, J = 10.1, 6.5 Hz), 8.50 (1H, s), 9.13 (1H, s), 10.24 (1H, s), 13.12 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 104.7, 104.9, 119.7, 120.5, 120.7, 124.7, 134.8, 142.5, 143.2, 144.5, 149.8, 156.2, 161.1; IR (KBr): 3306, 1680, 1531, 1473 cm-1; MS (EI): m/z 334 (M+); HRMS: calcd for C16H9F3N2O3 334.0565, found 334.0560.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3,4,5-trifluorophenyl) amide (2r)
Yield: 83%; mp: 277-279 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 7.08-7.12 (2H, m), 7.23 (1H, dd, J = 6.7, 2.4 Hz), 7.65 (2H, dd, J = 10.1, 6.5 Hz), 8.50 (1H, s), 9.13 (1H, s), 10.24 (1H, s), 13.12 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 104.7, 104.9, 119.7, 120.5, 120.7, 124.7, 134.8, 142.5, 143.2, 144.5, 149.8, 156.2, 161.1; IR (KBr): 3306, 1680, 1531, 1473 cm -1 ; MS ( (EI): m / z 334 (M + ); HRMS: calcd for C 16 H 9 F 3 N 2 O 3 334.0565, found 334.0560.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-trifluoromethylphenyl)amide (2s)
収率: 64%; mp: 244-245℃; 1H-NMR (400 MHz, DMSO-d6) δ 7.07-7.14 (2H, m), 7.25 (1H, dd, J = 6.7, 2.4 Hz), 7.38 (1H, t, J = 8.0 Hz), 7.72 (1H, t, J = 8.0 Hz), 7.76 (1H, d, J = 8.0 Hz), 8.21 (1H, d, J = 8.0 Hz), 8.55 (1H, d, J = 1.2 Hz), 9.16 (1H, s), 10.25 (1H, br), 13.10 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 119.5, 119.6, 120.1, 120.5, 120.8, 124.4, 125.2, 125.7, 126.3, 133.4, 135.5, 142.3, 143.2, 144.2, 155.7, 160.9; IR (KBr): 3294, 1677, 1589, 1469 cm-1; MS (EI): m/z 348 (M+); HRMS: calcd for C17H11F3N2O3 348.0722, found 348.0732.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-trifluoromethylphenyl) amide (2s)
Yield: 64%; mp: 244-245 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 7.07-7.14 (2H, m), 7.25 (1H, dd, J = 6.7, 2.4 Hz), 7.38 (1H, t, J = 8.0 Hz), 7.72 (1H, t, J = 8.0 Hz), 7.76 (1H, d, J = 8.0 Hz), 8.21 (1H, d, J = 8.0 Hz), 8.55 ( 1H, d, J = 1.2 Hz), 9.16 (1H, s), 10.25 (1H, br), 13.10 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 119.5, 119.6, 120.1 , 120.5, 120.8, 124.4, 125.2, 125.7, 126.3, 133.4, 135.5, 142.3, 143.2, 144.2, 155.7, 160.9; IR (KBr): 3294, 1677, 1589, 1469 cm -1 ; MS (EI): m / z 348 (M + ); HRMS: calcd for C 17 H 11 F 3 N 2 O 3 348.0722, found 348.0732.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-trifluoromethylphenyl)amide (2t)
収率: 71%; mp: 256-257℃; 1H-NMR (400 MHz, DMSO-d6) δ 7.06-7.15 (2H, m), 7.24 (1H, dd, J = 6.1, 2.5 Hz), 7.49 (1H, d, J=8.0 Hz), 7.62 (1H, t, J=8.0 Hz), 7.79 (1H, d, J = 8.0 Hz), 8.22 (1H, s), 8.52 (1H, s), 9.18 (1H, s), 13.20 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 115.7, 119.3, 119.6, 119.9, 120.2, 122.7, 123.3, 124.2, 129.6, 130.0, 130.3, 139.0, 142.0, 142.5, 144.0, 155.9, 160.4; IR (KBr): 3282, 1668, 1575, 1470 cm-1; MS (EI): m/z 348 (M+); HRMS: calcd for C17H11F3N2O3 348.0722, found 348.0732.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-trifluoromethylphenyl) amide (2t)
Yield: 71%; mp: 256-257 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 7.06-7.15 (2H, m), 7.24 (1H, dd, J = 6.1, 2.5 Hz), 7.49 (1H, d, J = 8.0 Hz), 7.62 (1H, t, J = 8.0 Hz), 7.79 (1H, d, J = 8.0 Hz), 8.22 (1H, s), 8.52 (1H, s), 9.18 (1H, s), 13.20 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 115.7, 119.3, 119.6, 119.9, 120.2, 122.7, 123.3, 124.2, 129.6, 130.0, 130.3, 139.0, 142.0, 142.5, 144.0, 155.9, 160.4; IR (KBr): 3282, 1668, 1575, 1470 cm -1 ; MS (EI): m / z 348 (M + ); HRMS: calcd for C 17 H 11 F 3 N 2 O 3 348.0722, found 348.0732.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-trifluoromethylphenyl)amide (2u)
収率: 78%; mp: 271-272℃; 1H-NMR (400 MHz, DMSO-d6) δ 7.07-7.13 (2H, m), 7.25 (1H, dd, J = 6.7, 2.4 Hz), 7.74 (2H, d, J = 8.6 Hz), 7.88 (2H, d, J = 8.6 Hz), 8.53 (1H, d, J = 1.8 Hz), 9.17 (1H, s), 13.24 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 119.3, 119.5, 119.6, 119.9, 120.2, 124.1, 126.3, 141.7, 142.0, 144.0, 155.9, 160.4; IR (KBr): 3335, 1687, 1579, 1474 cm-1; MS (EI): m/z 348 (M+); HRMS: calcd for C17H11F3N2O3 348.0722, found 348.0732.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (4-trifluoromethylphenyl) amide (2u)
Yield: 78%; mp: 271-272 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 7.07-7.13 (2H, m), 7.25 (1H, dd, J = 6.7, 2.4 Hz), 7.74 (2H, d, J = 8.6 Hz), 7.88 (2H, d, J = 8.6 Hz), 8.53 (1H, d, J = 1.8 Hz), 9.17 (1H, s), 13.24 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 119.3, 119.5, 119.6, 119.9, 120.2, 124.1, 126.3, 141.7, 142.0, 144.0, 155.9, 160.4; IR (KBr): 3335, 1687, 1579, 1474 cm -1 ; MS (EI): m / z 348 (M + ); HRMS: calcd for C 17 H 11 F 3 N 2 O 3 348.0722, found 348.0732.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2,4-ditrifluoromethylphenyl)amide (2v)
収率: 60%; mp: 236-237℃; 1H-NMR (400 MHz, DMSO-d6) δ 7.10-7.15 (2H, m), 7.27 (1H, dd, J = 7.0, 2.1 Hz), 8.04 (1H, s), 8.12 (1H, d, J = 8.6 Hz), 8.59 (1H, s), 8.62 (1H, d, J = 8.6 Hz), 9.23 (1H, s), 13.61 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 118.9, 119.2, 119.6, 120.0, 120.1, 120.3, 122.0, 123.3, 124.2, 124.6, 125.0, 130.3, 139.2, 142.1, 143.5, 144.0, 155.5, 160.0; IR (KBr): 3333, 1680, 1561, 1470 cm-1; MS (EI): m/z 416(M+); HRMS: calcd for C18H10F6N2O3 416.0596, found 416.0600.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2,4-ditrifluoromethylphenyl) amide (2v)
Yield: 60%; mp: 236-237 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 7.10-7.15 (2H, m), 7.27 (1H, dd, J = 7.0, 2.1 Hz), 8.04 (1H, s), 8.12 (1H, d, J = 8.6 Hz), 8.59 (1H, s), 8.62 (1H, d, J = 8.6 Hz), 9.23 (1H, s), 13.61 (1H, s ); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 118.9, 119.2, 119.6, 120.0, 120.1, 120.3, 122.0, 123.3, 124.2, 124.6, 125.0, 130.3, 139.2, 142.1, 143.5, 144.0, 155.5, 160.0; IR (KBr): 3333, 1680, 1561, 1470 cm -1 ; MS (EI): m / z 416 (M + ); HRMS: calcd for C 18 H 10 F 6 N 2 O 3 416.0596, found 416.0600 .

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-isopropylphenyl)amide (2w)
収率: 76%; mp: 235-236℃; 1H-NMR (400 MHz, DMSO-d6) δ 1.38 (6H, d, J = 6.7 Hz), 3.39 (1H, sept, J = 6.7 Hz), 7.25-7.49 (4H, m), 7.51 (1H, dd, J = 8.0, 1.5 Hz), 8.24 (1H, dd, J = 8.0, 1.5 Hz), 8.69 (1H, d, J = 1.5 Hz), 9.26 (1H, s), 12.78 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 22.9, 27.5, 119.4, 119.6, 120.0, 120.2, 122.6, 124.1, 124.8, 125.3, 126.0, 135.2, 139.0, 142.0, 142.2, 144.0, 156.0, 160.0; IR (KBr): 3305, 1676, 1564, 1474 cm-1; MS (EI): m/z 322(M+); HRMS: calcd for C19H18N2O3 322.1317, found 322.1321.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (2-isopropylphenyl) amide (2w)
Yield: 76%; mp: 235-236 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 1.38 (6H, d, J = 6.7 Hz), 3.39 (1H, sept, J = 6.7 Hz) , 7.25-7.49 (4H, m), 7.51 (1H, dd, J = 8.0, 1.5 Hz), 8.24 (1H, dd, J = 8.0, 1.5 Hz), 8.69 (1H, d, J = 1.5 Hz), 9.26 (1H, s), 12.78 (1H, s); 13 C-NMR (125 MHz, DMSO-d 6 ) δ 22.9, 27.5, 119.4, 119.6, 120.0, 120.2, 122.6, 124.1, 124.8, 125.3, 126.0, 135.2, 139.0, 142.0, 142.2, 144.0, 156.0, 160.0; IR (KBr): 3305, 1676, 1564, 1474 cm -1 ; MS (EI): m / z 322 (M + ); HRMS: calcd for C 19 H 18 N 2 O 3 322.1317, found 322.1321.

8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-isopropylphenyl)amide (2x)
収率: 80%; mp: 235-236℃; 1H-NMR (400 MHz, DMSO-d6) δ 1.21 (6H, d, J = 6.7 Hz), 2.90 (1H, sept, J = 6.7 Hz), 7.02 (1H, d, J = 8.0 Hz), 7.08-7.10 (2H, m), 7.22 (1H, dd, J = 6.1, 3.1 Hz), 7.29 (1H, t, J = 8.0 Hz), 7.47 (1H, s), 7.55 (1H, d, J = 8.0 Hz), 8.49 (1H, d, J = 1.2 Hz), 9.08 (1H, s), 12.81 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ 23.8, 33.4, 117.2, 117.5, 119.4, 119.6, 120.0, 122.1, 124.1, 129.0, 138.3, 141.9, 142.0, 144.0, 149.4, 155.9, 159.7; IR (KBr): 3296, 1667, 1569, 1470 cm-1; MS (EI): m/z 322(M+); HRMS: calcd for C19H18N2O3 322.1317, found 322.1321.
8-Hydroxy-2-imino-2H-chromene-3-carboxylic acid (3-isopropylphenyl) amide (2x)
Yield: 80%; mp: 235-236 ° C; 1 H-NMR (400 MHz, DMSO-d 6 ) δ 1.21 (6H, d, J = 6.7 Hz), 2.90 (1H, sept, J = 6.7 Hz) , 7.02 (1H, d, J = 8.0 Hz), 7.08-7.10 (2H, m), 7.22 (1H, dd, J = 6.1, 3.1 Hz), 7.29 (1H, t, J = 8.0 Hz), 7.47 ( 1H, s), 7.55 (1H, d, J = 8.0 Hz), 8.49 (1H, d, J = 1.2 Hz), 9.08 (1H, s), 12.81 (1H, s); 13 C-NMR (125 MHz , DMSO-d 6 ) δ 23.8, 33.4, 117.2, 117.5, 119.4, 119.6, 120.0, 122.1, 124.1, 129.0, 138.3, 141.9, 142.0, 144.0, 149.4, 155.9, 159.7; IR (KBr): 3296, 1667, 1569, 1470 cm -1 ; MS (EI): m / z 322 (M + ); HRMS: calcd for C 19 H 18 N 2 O 3 322.1317, found 322.1321.

2. AKR1C3タンパク質の調製
AKR1C3 cDNAを組み込んだpkk223-3ベクターのプラスミドによって形質転換された大腸菌JM109を50μg/mLアンピシリンを含むLB培養液中に懸濁して37℃で一晩培養した。その大腸菌を1 LのLB培養液に植菌し、600 nmにおける濁度が0.4 - 0.6になるまで37℃で培養した後、isopropyl-β-D-galactopyranoside (IPTG) を終濃度が1 mMになるように添加し、37℃にてさらに8時間培養した。リコンビナント酵素の発現を誘導した大腸菌は、遠心分離 (5,000 x g、15分間、4℃) により集菌し、0.5 mM EDTAと5 mM 2-mercaptoethanol (2-ME) を含む10 mM Tris-HCl (pH 8.0) に懸濁した。この懸濁液を氷冷下超音波処理(150 W、5分間)した後、遠心分離 (12,000 x g、15分間、4℃) し、その上清を大腸菌粗抽出液とした。粗抽出液を0.15 M NaCl、20 % グリセロールを添加したbuffer A (10 mM Tris-HCl、0.5 mM EDTA、5 mM 2-ME; pH 8.0) で平衡化したSephadex G-100カラムを用いてゲル濾過を行った。溶出した酵素画分をYM-10限外濾過膜を用いて濃縮後、buffer Aに対して透析し、buffer Aで平衡化したQ-Sepharose カラムに添加した。未吸着タンパク質をbuffer Aで洗浄後、吸着した酵素を0 - 0.2 M NaClまでグラジエントにより溶出した。酵素活性画分をYM-10限外濾過膜を用いて濃縮後、buffer Aで平衡化したRed A-Sepharoseカラムに添加した。Buffer Aでカラムを洗浄後、酵素画分を0.5 mM NADP+を含むbuffer Aにより溶出した。AKR1C3精製標品はsodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 分析後のcoomassie brilliant blue (CBB) R250染色において、単一のバンドを示した。
2. Preparation of AKR1C3 protein
E. coli JM109 transformed with the pkk223-3 vector plasmid incorporating AKR1C3 cDNA was suspended in an LB culture solution containing 50 μg / mL ampicillin and cultured at 37 ° C. overnight. After inoculating the E. coli in 1 L of LB culture medium and culturing at 37 ° C until the turbidity at 600 nm becomes 0.4-0.6, isopropyl-β-D-galactopyranoside (IPTG) is brought to a final concentration of 1 mM. And then further cultured at 37 ° C. for 8 hours. E. coli that induced the expression of the recombinant enzyme was collected by centrifugation (5,000 xg, 15 min, 4 ° C), and 10 mM Tris-HCl (pH) containing 0.5 mM EDTA and 5 mM 2-mercaptoethanol (2-ME). 8.0). This suspension was sonicated under ice-cooling (150 W, 5 minutes) and then centrifuged (12,000 × g, 15 minutes, 4 ° C.), and the supernatant was used as a crude E. coli extract. Gel filtration of the crude extract using Sephadex G-100 column equilibrated with buffer A (10 mM Tris-HCl, 0.5 mM EDTA, 5 mM 2-ME; pH 8.0) supplemented with 0.15 M NaCl and 20% glycerol Went. The eluted enzyme fraction was concentrated using a YM-10 ultrafiltration membrane, dialyzed against buffer A, and added to a Q-Sepharose column equilibrated with buffer A. After washing unadsorbed protein with buffer A, the adsorbed enzyme was eluted with a gradient from 0 to 0.2 M NaCl. The enzyme active fraction was concentrated using a YM-10 ultrafiltration membrane and then added to a Red A-Sepharose column equilibrated with buffer A. After washing the column with Buffer A, the enzyme fraction was eluted with buffer A containing 0.5 mM NADP + . The purified AKR1C3 sample showed a single band in the coomassie brilliant blue (CBB) R250 staining after analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

3. AKR1C1、AKR1C2、AKR1C4タンパクの調製
AKR1C1、AKR1C4はMatsuuraらの方法 [Matsuura et al., Biochem. J., 336, 429-436. (1998)]、AKR1C2はShiraishiらの方法 [Shiraishi et al., Biochem. J., 334, 399-405] に従って均一に精製した。
3. Preparation of AKR1C1, AKR1C2, and AKR1C4 proteins
AKR1C1 and AKR1C4 are the methods of Matsuura et al. [Matsuura et al., Biochem. J., 336, 429-436. (1998)], and AKR1C2 is the method of Shirashi et al. [Shiraishi et al., Biochem. J., 334, 399. -405].

4. AKR1C3阻害活性測定
AKR1Cアイソフォーム (AKR1C1、AKR1C2、AKR1C3) の脱水素酵素活性は、以下の反応系におけるNADPHの生成速度を蛍光分光学的 (Ex. 340 nm、Em. 455 nm) に測定した。標準反応系は、0.1 M リン酸カリウム緩衝液 (pH 7.4)、0.25 mM NADP+、S-(+)-1,2,3,4-tetrahydro-1-naphthol (S-tetralol) および酵素を含む全量2.0 mLとした。酵素活性1 unit (U) は、25℃において1分間に1μmolのNADPHを生成する酵素量とした。阻害剤のIC50値は、0.1 M リン酸カリウム緩衝液 (pH 7.4)、0.25 mM NADP+、S-tetralol (AKR1C1の場合は0.1 mM、他のAKR1Cアイソフォームでは1 mM) および酵素を含む全量2.0 mLの反応系にて、5点の異なる濃度の阻害剤を添加した時の阻害率から算出した。これらの阻害定数は少なくとも3回以上の測定の平均値 ± 標準偏差で表した。
4. Measurement of AKR1C3 inhibitory activity
The dehydrogenase activity of AKR1C isoforms (AKR1C1, AKR1C2, AKR1C3) was measured spectrophotometrically (Ex. 340 nm, Em. 455 nm) for the production rate of NADPH in the following reaction system. Standard reaction system contains 0.1 M potassium phosphate buffer (pH 7.4), 0.25 mM NADP + , S-(+)-1,2,3,4-tetrahydro-1-naphthol (S-tetralol) and enzyme The total volume was 2.0 mL. Enzyme activity 1 unit (U) was defined as the amount of enzyme that produced 1 μmol of NADPH per minute at 25 ° C. IC 50 values of the inhibitor are 0.1 M potassium phosphate buffer (pH 7.4), 0.25 mM NADP + , S-tetralol (0.1 mM for AKR1C1, 1 mM for other AKR1C isoforms) and total amount of enzyme In the 2.0 mL reaction system, it calculated from the inhibition rate when the inhibitor of 5 different concentrations was added. These inhibition constants were expressed as the mean value ± standard deviation of at least 3 measurements.

5. 細胞培養
CWR22Rv1、PC3及びSC3細胞は37℃、5% CO2条件下の炭酸ガスインキュベーター内で培養した。増殖培地として、CWR22Rv1細胞は、10% (v/v) FBS、100 U/ml penicillin-G potassium、100μg/ml streptomycin sulfate及び10 mM [4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid] HEPES緩衝液 (pH 7.0) を含むRPMI1640を用いた。また、PC3及びSC3細胞の増殖培地としては、10% (v/v) FBS、100 U/ml penicillin-G potassiumおよび100μg/ml streptomycin sulfateを含むDMEM (pH 7.4) を用いた。細胞の剥離には0.25% trypsinおよび0.02% ethylenediaminetetraacetic acid (EDTA) を含むDulbecco's phosphate buffered saline (DPBS) (pH 7.4) を用いた。
5. Cell culture
CWR22Rv1, PC3 and SC3 cells were cultured in a carbon dioxide incubator under conditions of 37 ° C. and 5% CO 2 . As growth medium, CWR22Rv1 cells consist of 10% (v / v) FBS, 100 U / ml penicillin-G potassium, 100 μg / ml streptomycin sulfate and 10 mM [4- (2-hydroxyethyl) -1-piperazineethane sulfonic acid] HEPES RPMI1640 containing a buffer solution (pH 7.0) was used. As a growth medium for PC3 and SC3 cells, DMEM (pH 7.4) containing 10% (v / v) FBS, 100 U / ml penicillin-G potassium and 100 μg / ml streptomycin sulfate was used. For cell detachment, Dulbecco's phosphate buffered saline (DPBS) (pH 7.4) containing 0.25% trypsin and 0.02% ethylenediaminetetraacetic acid (EDTA) was used.

6. 細胞増殖能の測定及びアンドロゲン受容体に対するアゴニスト活性とアンタゴニスト活性の評価
増殖培地に懸濁した細胞を48-well multiplate中に3×104 cells / 300μLずつ播種し、CO2インキュベーター内で一晩培養した。CWR22Rv1細胞では、抗生物質と2%の活性炭処理済血清 (charcoal stripped fetal bovine serum; CS-FBS) を含み、フェノールレッド不含のRPMI培地に交換して、PC3細胞では、抗生物質と2% FBSを含む培地に交換して2時間培養後、培地中に試料を添加してさらに24時間培養した後、24および72時間後の生細胞数を細胞生存率の測定に従って測定した。各処理時間後のMTTの吸光度を、ヒトリンパ腫由来U937細胞を用いて標準化し、生細胞数を算出した。また、アンドロゲン受容体に対するアゴニスト活性とアンタゴニスト活性の評価には野生型アンドロゲン受容体を発現するSC-3細胞を用いた。増殖培地に懸濁したSC-3細胞を3.5mm dishに4×104 cells / 2mLずつ播種し、CO2インキュベーター内で一晩培養した。抗生物質と2% CS-FBSを含み、フェノールレッド不含のRPMI培地に交換して、2時間培養後、培地中に各種濃度の試料を添加してさらに24時間培養した後、生細胞数を細胞生存率の測定に従って測定した。
6. Measurement of cell growth ability and evaluation of agonist activity and antagonist activity for androgen receptor Seed cells suspended in growth medium in 3 × 10 4 cells / 300 µL each in a 48-well multiplate and place in a CO 2 incubator. Cultured overnight. CWR22Rv1 cells contain antibiotics and 2% charcoal stripped fetal bovine serum (CS-FBS) and are replaced with phenol red-free RPMI medium. PC3 cells have antibiotics and 2% FBS The culture medium was replaced with a medium containing 2 hours and cultured for 2 hours. After adding the sample to the medium and further culturing for 24 hours, the number of viable cells after 24 and 72 hours was measured according to the measurement of cell viability. The absorbance of MTT after each treatment time was standardized using human lymphoma-derived U937 cells, and the number of viable cells was calculated. SC-3 cells expressing wild-type androgen receptor were used for evaluation of agonist activity and antagonist activity against androgen receptor. SC-3 cells suspended in a growth medium were seeded at 4 × 10 4 cells / 2 mL each in a 3.5 mm dish and cultured overnight in a CO 2 incubator. Replace with RPMI medium containing antibiotics and 2% CS-FBS, and without phenol red. After 2 hours of culture, add samples of various concentrations to the medium and further culture for 24 hours. It was measured according to the measurement of cell viability.

7. PSA mRNA発現量の測定
細胞からTRIzol試薬とRNAlater試薬を用いてtotal RNAを単離した。一本鎖complementary DNA (cDNA) はReverTra Ace qPCR RT Master Mix (Toyobo) を用いて調製した。調製したcDNA (5μg) を鋳型とし、PSAの特異的プライマー (Forward primer: 5’-CCTCCTGAAGAATCGATTCCT-3’(配列番号1)とreverse primer: 5’-GAGGTCCACACACTGAAGTT-3’ (配列番号2)) を用いてTHUNDERBIRD SYBR qPCR Mix (Toyobo) を用いてquantitative PCR (qPCR) を行った。内標準物質として、ヒトβ-actinのcDNAを増幅しqPCRにはTakara Thermal Cycler Dice Real-Time PCR Systemを用いた。
7. Measurement of PSA mRNA expression level Total RNA was isolated from cells using TRIzol reagent and RNAlater reagent. Single-stranded complementary DNA (cDNA) was prepared using ReverTra Ace qPCR RT Master Mix (Toyobo). Using the prepared cDNA (5μg) as a template and using PSA specific primers (Forward primer: 5'-CCTCCTGAAGAATCGATTCCT-3 '(SEQ ID NO: 1) and reverse primer: 5'-GAGGTCCACACACTGAAGTT-3' (SEQ ID NO: 2)) Quantitative PCR (qPCR) was performed using THUNDERBIRD SYBR qPCR Mix (Toyobo). As an internal standard, human β-actin cDNA was amplified, and the Takara Thermal Cycler Dice Real-Time PCR System was used for qPCR.

8. テストステロン量の測定
増殖培地に懸濁した細胞を96-well multiplate中に3×104 cells/200μLずつ播種し、CO2インキュベーター内で一晩培養した。抗生物質と2% CS-FBSを含み、フェノールレッド不含の培地に交換して2時間培養後、培地中に試料を添加して、さらに24時間培養し、培地を回収した。Testosterone EIA kit (Cayman) を用いて、培地中のtestosterone量を測定した。
8. Measurement of the amount of testosterone Cells suspended in a growth medium were seeded at 3 × 10 4 cells / 200 μL in a 96-well multiplate and cultured overnight in a CO 2 incubator. The medium was replaced with a phenol red-free medium containing antibiotics and 2% CS-FBS, and cultured for 2 hours. The sample was added to the medium, and further cultured for 24 hours, and the medium was collected. The amount of testosterone in the medium was measured using Testosterone EIA kit (Cayman).

9. 核内AR量の測定
処理した細胞をDPBSで2回洗浄後、セルスクレイパーを用いて細胞を剥離した。回収した細胞を遠心分離 (1,500 ×g、3分間) し、上清を除去した後、buffer A [1 M HEPES (pH 7.9)、1 M KCl、0.5 M EDTA、1 M dithiothreitol (DTT)、100 mM phenylmethylsulfonyl fluoride (PMSF)] 300μlで懸濁し、氷冷下で15分間、静置した。次に、10% NP-40を加え、遠心分離 (500 ×g、3分間) を行った。上清を除去した後、buffer A 600μlで懸濁し、遠心分離 (500 ×g、1分間) を行った。上清を除去した後、buffer B [1 M HEPES (pH 7.9)、5 M NaCl、0.5 M EDTA、1 M DTT、100 mM PMSF] 80μlで懸濁し、氷冷下で15分間、静置した。次に、懸濁液を遠心分離 (15,000 ×g、15分間) し、上清を除去した後、8 M Urea、10 mM Tris (hydroxymethyl) aminomethane、50 mM Na2H2PO4を含むUrea bufferで懸濁したものを核抽出液とした。抗アンドロゲン受容体 (AR) 抗体を用いたウエスタンブロットにて核内AR量を測定した。
9. Measurement of the amount of AR in the nucleus The treated cells were washed twice with DPBS, and then detached using a cell scraper. The collected cells were centrifuged (1,500 × g, 3 minutes), the supernatant was removed, and buffer A [1 M HEPES (pH 7.9), 1 M KCl, 0.5 M EDTA, 1 M dithiothreitol (DTT), 100 The suspension was suspended in 300 μl of mM phenylmethylsulfonyl fluoride (PMSF) and allowed to stand for 15 minutes under ice cooling. Next, 10% NP-40 was added, and centrifugation (500 × g, 3 minutes) was performed. After removing the supernatant, the suspension was suspended in 600 μl of buffer A and centrifuged (500 × g, 1 minute). After removing the supernatant, the suspension was suspended in 80 μl of buffer B [1 M HEPES (pH 7.9), 5 M NaCl, 0.5 M EDTA, 1 M DTT, 100 mM PMSF], and allowed to stand for 15 minutes under ice cooling. Next, the suspension is centrifuged (15,000 xg, 15 minutes), the supernatant is removed, and a Urea buffer containing 8 M Urea, 10 mM Tris (hydroxymethyl) aminomethane, 50 mM Na 2 H 2 PO 4 is added. The suspension was used as a nuclear extract. The amount of AR in the nucleus was measured by Western blot using an antiandrogen receptor (AR) antibody.

10. DNA断片化
細胞をDPBSで3回洗浄後、セルスクレイパーを用いて細胞を剥離した。回収した細胞は、細胞溶解buffer [1 M Tris-HCl (pH 7.4)、0.5 M EDTA (pH 8.0)、10% Triton X-100] 100μLに溶解し、DNA断片を抽出した。4℃にて10分間静置後、遠心して得られた上清に10 mg/ml TE buffer [1M Tris-HCl (pH 7.4)、0.5 M EDTA (pH 8.0)] に溶解したRNase A 溶液2μLを加え、37℃で60分間インキュベートした。次に、10 mg/ml proteinase K 溶液2μLを加え、50℃、30分間インキュベートした後、5 M NaClとイソプロバノールをそれぞれ5μLと120μL加え、-30℃で一晩置いた。遠心分離して、単離したDNAをTEバッファー20μLに溶解し、2% アガロースゲルで電気泳動後、エチジウムブロマイド染色し、UV照射下にて検出した。
10. DNA fragmentation Cells were washed 3 times with DPBS, and then detached using a cell scraper. The collected cells were dissolved in 100 μL of cell lysis buffer [1 M Tris-HCl (pH 7.4), 0.5 M EDTA (pH 8.0), 10% Triton X-100], and the DNA fragment was extracted. After standing at 4 ° C for 10 minutes, 2 μL of RNase A solution dissolved in 10 mg / ml TE buffer [1M Tris-HCl (pH 7.4), 0.5 M EDTA (pH 8.0)] is added to the supernatant obtained by centrifugation. In addition, it was incubated at 37 ° C. for 60 minutes. Next, 2 μL of 10 mg / ml proteinase K solution was added and incubated at 50 ° C. for 30 minutes, then 5 μL and 120 μL of 5 M NaCl and isopropanol were added and left at −30 ° C. overnight. After centrifugation, the isolated DNA was dissolved in 20 μL of TE buffer, electrophoresed on a 2% agarose gel, stained with ethidium bromide, and detected under UV irradiation.

11. アポトーシス関連因子のウエスタンブロット
処理した細胞をDPBSで3回洗浄後、セルスクレイパーを用いて細胞を剥離した。回収した細胞は、Urea bufferで懸濁してソニケーションにより細胞膜を破壊した。細胞破砕液を遠心分離 (15,000 ×g、15分間、4℃) し、その上清を細胞抽出液とした。cleaved PARPとβ-actinは 12.5%ポリアクリルアミドゲルを、Bax、Bcl-2は15%ポリアクリルアミドゲルを用いたSDS-PAGEにより分離後、ゲル上のタンパク質を電気的にPVDF膜に転写した。PVDF膜は、BSA又はスキムミルクを用いてブロッキング後、Bcl-2、Bax、Cleaved PARP、ヒトβ-actinに対する一次抗体とhorseradish peroxidase標識二次抗体と順次反応させた。抗体反応性タンパク質はECL enhanced chemiluminescence detection kit (GE healthcare) を用いた化学発光法により検出した。
11. Apoptosis-related factor western blot The treated cells were washed three times with DPBS, and then detached using a cell scraper. The collected cells were suspended in Urea buffer and the cell membrane was disrupted by sonication. The cell lysate was centrifuged (15,000 × g, 15 minutes, 4 ° C.), and the supernatant was used as a cell extract. After cleaved PARP and β-actin were separated by SDS-PAGE using 12.5% polyacrylamide gel and Bax and Bcl-2 were 15% polyacrylamide gel, proteins on the gel were electrically transferred to a PVDF membrane. The PVDF membrane was blocked with BSA or skim milk, and then reacted sequentially with a primary antibody against Bcl-2, Bax, Cleaved PARP and human β-actin and a secondary antibody labeled with horseradish peroxidase. Antibody-reactive protein was detected by chemiluminescence using ECL enhanced chemiluminescence detection kit (GE healthcare).

12. 蛍光免疫染色
増殖培地に懸濁した細胞を24-well multiplate中に7.5×104 cells/500μLずつ播種し、37℃、5% CO2条件下で一晩培養した。培地を除去後、DPBSで細胞を2回洗浄した。4% paraformaldehyde phosphate buffer solution 300μLを加え、10分間固定し、0.1% Triton X-100、100 mM glycineを含むDPBS 300μLを加え、10分間静置した。0.1 % Tween 20、1% BSAを含むDPBS 300μLを加え、1時間ブロッキングし、DPBSで2回洗浄後、DPBSに300 : 1 に希釈した一次抗体 (抗Caspase-3抗体) 液中に、4℃で一晩インキュベートした。PBSで2回洗浄後、DPBSに500 : 1 で希釈したAlexa Fluoro-488標識したウサギ二次抗体液中に、室温で1時間遮光してインキュベートした。PBSで2回洗浄後、余分な水分を除去し、スライドグラス上にマウント剤 (DAPI fluoromount-G) を用いてカバーグラスを固定した。蛍光免疫染色した細胞を、共焦点レーザー顕微鏡LSM700 (Carl Zeiss) にセットし、蛍光観察を行った。倒立型蛍光顕微鏡の100倍油浸対物レンズを用いて、画像を取り込んだ。
12. Fluorescent immunostaining Cells suspended in growth medium were seeded in 24-well multiplates at 7.5 × 10 4 cells / 500 μL each and cultured overnight at 37 ° C. and 5% CO 2 . After removing the medium, the cells were washed twice with DPBS. 300 μL of 4% paraformaldehyde phosphate buffer solution was added and fixed for 10 minutes, 300 μL of DPBS containing 0.1% Triton X-100 and 100 mM glycine was added, and the mixture was allowed to stand for 10 minutes. Add 300 μL of DPBS containing 0.1% Tween 20 and 1% BSA, block for 1 hour, wash twice with DPBS, and then dilute with DPBS 300: 1 in primary antibody (anti-Caspase-3 antibody) at 4 ° C. Incubated overnight. After washing twice with PBS, the mixture was incubated in Alexa Fluoro-488-labeled rabbit secondary antibody solution diluted with DPBS at 500: 1 for 1 hour at room temperature, protected from light. After washing twice with PBS, excess water was removed, and a cover glass was fixed on the slide glass using a mounting agent (DAPI fluoromount-G). The fluorescent immunostained cells were set on a confocal laser microscope LSM700 (Carl Zeiss) and observed for fluorescence. Images were captured using a 100 × oil immersion objective of an inverted fluorescence microscope.

13. in vivo抗腫瘍活性評価
6週齢Balb/c nu/nuマウスの皮下に5×105個のCWR22Rv1細胞を移植し、ランダムにコントロールとしてDMSOを投与した群 (n=15) と100 mg/kgの化合物2lを投与した群 (n=10) を用意し、週に2回腹腔内投与した。週に一回体重および腫瘍径 (長径、短径) を計測し、腫瘍体積は近似値として(長径)2×短径/2の式で算出した。
13. In vivo antitumor activity assessment
A group of 5 × 10 5 CWR22Rv1 cells transplanted subcutaneously into 6-week-old Balb / c nu / nu mice and randomly administered DMSO as a control (n = 15) and 100 mg / kg of compound 2l Groups (n = 10) were prepared and administered intraperitoneally twice a week. The body weight and tumor diameter (major axis, minor axis) were measured once a week, and the tumor volume was calculated as an approximate value (major axis) 2 × minor axis / 2.

<結果>
1. クロメン誘導体を基にした新規AKR1C3阻害剤の創製研究
予備的に見出したAKR1C3阻害活性を有するクロメン骨格を有する化合物をリード化合物とし、構造最適化研究を行った。8位の水産基がAKR1C3阻害活性に必須であることが明らかとなったため24種の8-ヒドロキシクロメン誘導体を合成し、AKR1C3阻害活性を評価した (表1)。4位にフルオロ基を有する2dと同様に無置換体である2aに加えて、ベンゼン環にフルオロ基、クロル基、メチル基、エチル基を導入した誘導体2b-mはいずれも強力なAKR1C3阻害活性を有し、中でも4位にメチル基を有する2jはIC50値が9.1 nMと最も強力な阻害活性を示した。フルオロ基の数を2つあるいは3つに増やした誘導体2qと2rの阻害活性は2dよりも若干低下した。ベンゼン環のメチル基をフルオロメチル基に置換しても2s-vの阻害効果はほとんど変わらなかった。また2jより炭素鎖を一つ伸ばした誘導体2wと2xの阻害活性は低下した。一方、3位に水酸基を有する2oが強い阻害活性を示したのに対して、2位及び4位に水酸基を有する2nと2pはほとんどAKR1C3を阻害しなかった。

Figure 2019167302
<Result>
1. Research on the creation of novel AKR1C3 inhibitors based on chromene derivatives The structure optimization studies were conducted using lead compounds that were found in advance and had a chromene skeleton with AKR1C3 inhibitory activity. Since it became clear that the marine group at position 8 was essential for AKR1C3 inhibitory activity, 24 8-hydroxychromene derivatives were synthesized and evaluated for AKR1C3 inhibitory activity (Table 1). In addition to 2a, which is unsubstituted as well as 2d having a fluoro group at the 4-position, all derivatives 2b-m in which a benzene ring is introduced with a fluoro group, a chloro group, a methyl group, or an ethyl group have strong AKR1C3 inhibitory activity Among them, 2j having a methyl group at the 4-position showed the strongest inhibitory activity with an IC 50 value of 9.1 nM. The inhibitory activities of derivatives 2q and 2r with the number of fluoro groups increased to 2 or 3 were slightly lower than 2d. Substituting the methyl group of the benzene ring with a fluoromethyl group did not change the inhibitory effect of 2s-v. In addition, the inhibitory activities of derivatives 2w and 2x with one carbon chain extended from 2j decreased. On the other hand, 2o having a hydroxyl group at the 3 position showed strong inhibitory activity, whereas 2n and 2p having a hydroxyl group at the 2 and 4 positions hardly inhibited AKR1C3.
Figure 2019167302

次に、これら8-ヒドロキシクロメン誘導体の阻害活性がAKR1C3に特異的か否かを検討すべく、AKR1C3と高い構造類似性を示すAKR1Cサブファミリー酵素AKR1C1、AKR1C2、AKR1C4に対する2c-f、2jと2lの阻害活性を評価した (表2)。これら酵素は8-ヒドロキシクロメン誘導体によってほとんど阻害されなかった。そのため、これら8-ヒドロキシクロメン誘導体は強力なAKR1C3阻害活性を示すだけでなく、高い選択性も兼ね備えていることが分かった。

Figure 2019167302
表2. ヒトAKR1Cサブファミリー酵素間での阻害選択性 Next, in order to examine whether the inhibitory activity of these 8-hydroxychromene derivatives is specific to AKR1C3, 2c-f, 2j and 2l against AKR1C subfamily enzymes AKR1C1, AKR1C2, and AKR1C4 showing high structural similarity to AKR1C3 The inhibitory activity was evaluated (Table 2). These enzymes were hardly inhibited by 8-hydroxychromene derivatives. Therefore, it was found that these 8-hydroxychromene derivatives not only show strong AKR1C3 inhibitory activity but also have high selectivity.
Figure 2019167302
Table 2. Inhibition selectivity between human AKR1C subfamily enzymes

強力かつ選択的なAKR1C3阻害活性を示した2d、2jと2lの前立腺がん細胞増殖効果について、AKR1C3を高発現するCWR22Rv1細胞株を用いて種々検討を行った。   The prostatic cancer cell proliferation effect of 2d, 2j and 2l, which showed potent and selective AKR1C3 inhibitory activity, was variously examined using the CWR22Rv1 cell line that highly expresses AKR1C3.

2. 新規AKR1C3阻害剤の前立腺がん治療薬としての有効性評価
精製酵素を用いた検討において強力なAKR1C3阻害活性を示した2d、2jと2lの前立腺がん細胞増殖抑制効果について、AKR1C3が高発現するCWR22Rv1細胞を用いて種々検討を行った。アンドロゲンの供給源をプレグネノロン(pregnenolone)またはアンドロステンジオン(androstenedione)に限定するため、培地には2% CS-FBSを含むフェノールレッド不含のRPMI1640を用いた。まず、CWR22Rv1細胞に細胞増殖を誘導するpregnenolone濃度の最適化を行った。Pregnenoloneは濃度依存的に細胞の生細胞数を増加させ、その効果は20 nMで最も高かった (図1A)。そこで、この後の検討には、最も細胞増殖の誘導が認められた20 nM pregnenoloneを使用した。Pregnenolone誘導性細胞増殖は、ARアンタゴニストであるフルタミド(flutamide)とエンザルタミド(enzalutamide)やCYP17A1阻害剤であるアビラテロン(abiraterone)と同様に、AKR1C3阻害剤2d、2jと2lによって抑制された (図1B)。これらAKR1C3阻害剤による増殖抑制効果はabirateroneほどではないが、flutamideとenzalutamideに匹敵した。
2. Evaluation of the effectiveness of novel AKR1C3 inhibitors as prostate cancer therapeutics AKR1C3 is highly effective in suppressing prostate cancer cell growth of 2d, 2j and 2l, which showed strong AKR1C3 inhibitory activity in studies using purified enzymes. Various studies were performed using CWR22Rv1 cells. To limit the source of androgen to pregnenolone or androstenedione, RPMI1640 without phenol red containing 2% CS-FBS was used as the medium. First, the pregnenolone concentration that induces cell proliferation in CWR22Rv1 cells was optimized. Pregnenolone increased the number of living cells in a concentration-dependent manner, and the effect was highest at 20 nM (FIG. 1A). Therefore, 20 nM pregnenolone in which the most induction of cell proliferation was observed was used for the subsequent examination. Pregnenolone-induced cell proliferation was inhibited by the AKR1C3 inhibitors 2d, 2j and 2l, as well as the AR antagonists flutamide and enzalutamide, and the CYP17A1 inhibitor abiraterone (Figure 1B). . The growth inhibitory effects of these AKR1C3 inhibitors were not as good as abiraterone, but were comparable to flutamide and enzalutamide.

新規AKR1C3阻害剤によるアンドロゲン依存性の細胞増殖抑制機構を明らかにするため、細胞内のテストステロン量を測定した。AKR1C3阻害剤の効果を明確にするため、テストステロン(testosterone)とandrostenedioneの還元代謝を触媒する5α還元酵素 (SRD5A1、2) の阻害剤フィナステリド(finasteride)存在下、2d、2jと2lを添加したところ、finasteride単独添加群と比較して、テストステロンの生成量は有意に減少した (図2A)。AKR1C3の還元代謝産物であるtestosteroneはSRD5A1、2により細胞内で還元代謝されて、5α-DHTになる。ARはリガンド結合ドメインでheat shock protein (HSP) 90と結合した状態で細胞質に存在し、5α-DHTと結合することによってHSP90を遊離し、二量体を形成し、核内に移行する。その後、ARはDNA上のプロモーター領域に存在するアンドロゲン応答配列 (androgen receptor element; ARE) に結合し、PSAやTMPRSS2などの標的遺伝子の転写を促進することで、細胞増殖を亢進させる。そこで、ARの核内移行に及ぼす2d、2jと2lの影響をウエスタンブロットを用いて検討したところ、androstenedione添加によって顕著に増加した核内のAR発現量は、2d、2jと2lの添加によって減少した (図2B)。   In order to elucidate the androgen-dependent cell growth suppression mechanism by the novel AKR1C3 inhibitor, the amount of testosterone in the cells was measured. In order to clarify the effects of AKR1C3 inhibitor, 2d, 2j and 2l were added in the presence of finasteride, a 5α reductase (SRD5A1, 2) inhibitor that catalyzes the reductive metabolism of testosterone and androstenedione. Compared with the group added with finasteride alone, the amount of testosterone produced was significantly reduced (FIG. 2A). Testosterone, a reduced metabolite of AKR1C3, is reduced and metabolized intracellularly by SRD5A1 and 2 to 5α-DHT. AR is a ligand-binding domain that is present in the cytoplasm in a state of binding to heat shock protein (HSP) 90, and by binding to 5α-DHT, HSP90 is released, forms a dimer, and moves into the nucleus. AR then binds to androgen receptor element (ARE) present in the promoter region on the DNA, and promotes transcription of target genes such as PSA and TMPRSS2, thereby enhancing cell proliferation. Therefore, when the effects of 2d, 2j and 2l on AR translocation into the nucleus were examined using Western blotting, the amount of AR expression in the nucleus that was significantly increased by the addition of androstenedione decreased with the addition of 2d, 2j and 2l. (Fig. 2B).

2dと2jはARの核内移行を抑制したため、ARの標的遺伝子であるPSA mRNAの発現に及ぼす2d、2jと2lの影響をreal-time PCR法を用いて検討した。その結果、pregnenolone処理によって増加したPSAのmRNA発現量は、2d、2jと2lの添加によってabiraterone程強力ではないが、flutamideやenzalutamideと同程度に低下した (図2C)。   Since 2d and 2j inhibited the nuclear translocation of AR, the effects of 2d, 2j and 2l on the expression of PSA mRNA, the target gene of AR, were examined using real-time PCR. As a result, PSA mRNA expression increased by pregnenolone treatment was not as strong as abiraterone by the addition of 2d, 2j and 2l, but decreased to the same extent as flutamide and enzalutamide (FIG. 2C).

ARを発現していない前立腺がんPC3細胞を用いて、2d、2jと2l添加によるアンドロゲン非依存性の細胞増殖への影響を種々検討した。AKR1C3はアンドロゲン合成に加えて、プロスタグランジン(prostaglandin) F (PGF) 受容体のリガンドであるPGFや9α,11β-PGF2の生合成を介したmitogen-activated protein kinase (MAPK) 経路やホスファチジルイノシトール3-キナーゼ(phosphatidylinositol-3 kinase) (PI3K) 経路の活性化によってがん細胞の増殖に関与することが報告されている。そこで、AKR1C3を内因的に発現するPC3細胞を用いて、2d、2jと2lが細胞増殖に及ぼす影響を検討した。その結果、2d、2jと2l添加後24時間での影響は小さかったものの、72時間後では、DMSOを添加したコントロール細胞と比較して、有意な生細胞数の減少が確認された (図3)。 Using prostate cancer PC3 cells that do not express AR, various effects of 2d, 2j and 2l on androgen-independent cell proliferation were examined. In addition to androgen synthesis, AKR1C3 is responsible for the mitogen-activated protein kinase (MAPK) pathway and phosphatidyl via the biosynthesis of prostaglandin F (PGF) receptor ligands PGF and 9α, 11β-PGF 2. It has been reported that phosphatidylinositol-3 kinase (PI3K) pathway is involved in the growth of cancer cells by activating the pathway. Therefore, we investigated the effects of 2d, 2j and 2l on cell proliferation using PC3 cells that endogenously express AKR1C3. As a result, although the effect at 24 hours after addition of 2d, 2j and 2l was small, after 72 hours, a significant decrease in the number of viable cells was confirmed compared to control cells to which DMSO was added (Fig. 3). ).

ARの主要なリガンドであるtestosteroneと5α-DHTはAKR1C3による17位の還元によって合成される。そのため、ARとAKR1C3のリガンド結合部位は類似することが想定される。これまでにAKR1C3とARの両方を阻害する化合物は報告されておらず、アンドロゲン合成経路を複数の作用点で阻害することができれば画期的なことである。そこで、野生型ARを発現する乳がんSC-3細胞を用いて、各種8-ヒドロキシクロメン誘導体のARアゴニスト活性とアンタゴニスト活性を評価した。SC-3細胞に10μMの各種8-ヒドロキシクロメン誘導体あるいは1 nM 5α-DHTを処理し、24時間後の生細胞数を測定することでアゴニスト活性を評価した。その結果、DMSOを添加したコントロール群と比較して、5α-DHTの添加時に生細胞数は有意に増加したが、4種の誘導体 (2f, 2g, 2q, 2r) 添加時にわずかに生細胞数の減少が確認されたのみで、その他12種の誘導体 (2a-e, 2j-p) 添加時に生細胞数への影響は認められなかった。したがって、今回開発した8-ヒドロキシクロメン誘導体はARアゴニスト活性作用を示さないことが明らかとなった (図4A)。次に、1 nM DHT共存下、各種濃度のARアンタゴニストであるヒドロキシフルタミド(hydroxyflutamide) (HF) あるいは各種8-ヒドロキシクロメン誘導体で前処理したSC-3細胞の24時間後の生細胞数を測定し、DHT単独処理群の生細胞数を基準とし、IC50値を算出することでARアンタゴニスト活性を評価した。その結果、8種類の誘導体 (2b-e, 2j-m) のIC50値はHFのIC50値と比較して、阻害活性は10倍程度低かったものの、ARアンタゴニスト作用を示した (図4B)。 The main AR ligands testosterone and 5α-DHT are synthesized by reduction at position 17 with AKR1C3. Therefore, it is assumed that the ligand binding sites of AR and AKR1C3 are similar. To date, no compound that inhibits both AKR1C3 and AR has been reported, and it is epoch-making if the androgen synthesis pathway can be inhibited at multiple points of action. Thus, AR agonist activity and antagonist activity of various 8-hydroxychromene derivatives were evaluated using breast cancer SC-3 cells expressing wild type AR. SC-3 cells were treated with 10 μM of various 8-hydroxychromene derivatives or 1 nM 5α-DHT, and the agonist activity was evaluated by measuring the number of viable cells after 24 hours. As a result, the number of viable cells increased significantly when 5α-DHT was added compared to the control group added with DMSO, but slightly increased when 4 derivatives (2f, 2g, 2q, 2r) were added. Only a decrease was observed, and no effect on the number of viable cells was observed when 12 other derivatives (2a-e, 2j-p) were added. Therefore, it was revealed that the 8-hydroxychromene derivative developed this time does not show an AR agonist activity (FIG. 4A). Next, in the presence of 1 nM DHT, the number of viable cells after 24 hours of SC-3 cells pretreated with various concentrations of AR antagonist hydroxyflutamide (HF) or various 8-hydroxychromene derivatives was measured. Based on the number of living cells in the DHT single treatment group, the AR antagonist activity was evaluated by calculating the IC 50 value. As a result, the IC 50 values of eight derivative (2b-e, 2j-m ) as compared to an IC 50 value of HF, although inhibitory activity was low about 10-fold showed AR antagonist effect (Figure 4B ).

CWR22Rv1細胞を用いて、AKR1C3阻害剤2d、2jと2lと既存の治療薬との併用効果を検討した。その結果、pregnenolone誘導性細胞増殖は、5μM 2d、2jと2l、flutamide、abiraterone、enzalutamide処理によって有意に抑制された。また、flutamide、abiraterone、enzalutamideのいずれの治療薬を用いた場合においても、2d、2jと2lの併用処理は、単独処理と比較して、有意に細胞増殖を抑制したことから、既存の治療薬とAKR1C3阻害剤の併用で抗がん活性の増強が可能であることが示された (図5)。   Using CWR22Rv1 cells, the combined effect of AKR1C3 inhibitors 2d, 2j and 2l and existing therapeutic agents was examined. As a result, pregnenolone-induced cell proliferation was significantly suppressed by treatment with 5 μM 2d, 2j and 2l, flutamide, abiraterone and enzalutamide. In addition, when using any of the therapeutic agents flutamide, abiraterone, and enzalutamide, the combined treatment of 2d, 2j, and 2l significantly suppressed cell growth compared to the single treatment, so existing therapeutic agents It was shown that anti-cancer activity can be enhanced by the combined use of AKR1C3 and AKR1C3 inhibitor (Fig. 5).

一般に抗がん剤による抗腫瘍効果にアポトーシス性細胞死が関与することが知られる。そこで、enzalutamideと2dと2jの併用によるアポトーシスへの影響を検討した (図6)。Enzalutamideと2dと2jの併用処理は、単独処理と比較して、アポトーシスに特徴的な現象であるDNAの断片化を亢進した (図6A)。また、2dと2jの併用処理によって、PARPの分解、Bax発現量の増加、Bcl-2発現量の減少、活性型カスパーゼ(caspase)-3の増加も認められた (図6B,C)。さらに、CWR22Rv1細胞の生存率は、enzalutamide単独処理時と比較して、2dと2jの併用により有意に低下した (図6D)。   It is generally known that apoptotic cell death is involved in the antitumor effect of anticancer agents. Therefore, we examined the effect of enzalutamide, 2d and 2j on apoptosis (Fig. 6). The combined treatment of Enzalutamide, 2d, and 2j enhanced DNA fragmentation, a phenomenon characteristic of apoptosis, compared to single treatment (FIG. 6A). Moreover, PRP degradation, increased Bax expression, decreased Bcl-2 expression, and increased active caspase-3 were also observed by the combined treatment of 2d and 2j (FIGS. 6B and C). Furthermore, the survival rate of CWR22Rv1 cells was significantly reduced by the combined use of 2d and 2j, compared to the treatment with enzalutamide alone (FIG. 6D).

同様の検討を作用機序の異なるCRPC治療薬abirateroneを用いて行った (図7)。Enzalutamideの場合と同様に、abirateroneと2dと2jの併用処理によって、DNA断片化、PARPの分解、Bax発現量の増加、Bcl-2発現量の減少、活性型caspase-3の増加は、いずれも単独処理時よりも亢進し、細胞生存率も有意に低下した。   A similar study was performed using abiraterone, a CRPC therapeutic agent with a different mechanism of action (Fig. 7). As in the case of Enzalutamide, the combined treatment of abiraterone, 2d, and 2j resulted in DNA fragmentation, PARP degradation, increased Bax expression, decreased Bcl-2 expression, and increased active caspase-3. The cell viability was significantly reduced and the cell viability was significantly reduced.

さらに、2lによる両CRPC阻害剤誘導性アポトーシス増強効果を検証した (図8)。併用処理によって、DNA断片化、PARPの分解、活性型caspase-3の増加は、いずれも単独処理時よりも亢進し、細胞生存率も有意に低下した。   Furthermore, the effect of enhancing both CRPC inhibitor-induced apoptosis by 2l was verified (FIG. 8). By the combined treatment, DNA fragmentation, PARP degradation, and active caspase-3 increase were all increased compared to the single treatment, and the cell viability was significantly reduced.

今回検討した3種の化合物のうち、2jはCAS番号のみ登録された文献未記載の化合物である。一方、2lはこれまでに未発表の新規化合物であった。そこで、新規化合物である2lについてin vivo抗腫瘍効果を検討した (図9)。6週齢Balb/c nu/nuマウスの皮下に5×105個のCWR22Rv1細胞を移植し、ランダムにコントロールとしてDMSOを投与した群 (n=15) と100 mg/kgの2lと投与した群 (n=10) を用意し、週に2回腹腔内投与した。週に一回体重および腫瘍径 (長径、短径) を計測し、腫瘍体積は近似値として、(長径)2×短径/2の式で算出した。2lと投与した群では、顕著な腫瘍サイズの抑制効果が示された。 Of the three compounds examined this time, 2j is a compound not described in the literature, in which only the CAS number is registered. On the other hand, 2l was an unpublished new compound. Therefore, the in vivo antitumor effect of 2l, a novel compound, was examined (FIG. 9). Groups of 5x10 5 CWR22Rv1 cells implanted subcutaneously in 6-week-old Balb / c nu / nu mice, and randomly administered DMSO as a control (n = 15) and 2 mg of 100 mg / kg (n = 10) was prepared and administered intraperitoneally twice a week. The body weight and tumor diameter (major axis, minor axis) were measured once a week, and the tumor volume was calculated by the formula (major axis) 2 × minor axis / 2 as an approximate value. In the group administered with 2 l, a remarkable tumor size suppression effect was shown.

<考察>
強力且つ選択的なAKR1C3阻害活性を示す複数の8-ヒドロキシクロメン誘導体が見出された。即ち、有用性の高い新規AKR1C3阻害剤の開発に成功した。新規AKR1C3阻害剤は前立腺がん細胞の増殖を抑制した。また、代表的な化合物を用いた実験によって、in vivoでの抗腫瘍効果も確認された。重要なことの一つは、新規AKR1C3阻害剤は、ARを発現していない前立腺がん細胞に対しても細胞増殖抑制活性を示し、CRPCの治療への適用も期待されるものであった。
<Discussion>
A number of 8-hydroxychromene derivatives have been found that exhibit potent and selective AKR1C3 inhibitory activity. That is, the present inventors have succeeded in developing a novel AKR1C3 inhibitor with high utility. A novel AKR1C3 inhibitor suppressed the growth of prostate cancer cells. In addition, in vivo antitumor effects were confirmed by experiments using representative compounds. One important thing was that the novel AKR1C3 inhibitor also showed cytostatic activity against prostate cancer cells not expressing AR, and was expected to be applied to CRPC treatment.

一方、新規AKR1C3阻害剤はARアンタゴニスト作用も示した(ARアゴニスト活性作用は示さない)。このような特性を持つ化合物の報告はない。新規AKR1C3阻害剤によれば複数の作用点(AKR1C3とAR)でアンドロゲン合成経路を阻害でき、また、強力なPSA降下作用を期待できる。   On the other hand, the novel AKR1C3 inhibitor also showed an AR antagonistic action (not showing an AR agonistic activity). There are no reports of compounds having such characteristics. A novel AKR1C3 inhibitor can inhibit the androgen synthesis pathway at multiple points of action (AKR1C3 and AR), and can be expected to have a strong PSA lowering effect.

既存薬と新規AKR1C3阻害剤の併用によって抗がん活性の増強が認められた。この事実は、新規AKR1C3阻害剤が既存薬と異なる作用機序に基づき治療効果を発揮することを裏付けるとともに、既存薬との併用による、治療効果の高い治療戦略が可能になることを意味する。   The combination of existing drugs and new AKR1C3 inhibitors showed enhanced anticancer activity. This fact confirms that a novel AKR1C3 inhibitor exerts a therapeutic effect based on a mechanism of action different from that of existing drugs, and also means that a therapeutic strategy with a high therapeutic effect can be achieved by using in combination with existing drugs.

世界保健機構の報告によると、全世界で新たながん患者は毎年1400万人以上増え、年間760万人が死亡している。中でもホルモン依存性がんである前立腺がんの日本における罹患率は欧米の10%程度と低いが、食の欧米化などに伴い増加している。これらホルモン依存性がんの治療にはホルモン療法が有効であるが、先天的に若しくは治療の過程でホルモン感受性が消失した去勢抵抗性前立腺がん(CRPC)についてはホルモン療法は全く効果がなく、新規抗がん剤の開発が必要である。本発明のAKR1C3阻害剤は化学合成も容易であり、大量生産にも適する。本発明のAKR1C3阻害剤をがん治療に応用すれば、患者の治療機会の向上、ひいては国民医療費の削減に寄与できる。本発明のAKR1C3阻害剤には特にCRPC治療薬への利用・応用が期待される。   According to a World Health Organization report, there are more than 14 million new cancer patients every year, with 7.6 million deaths annually. In particular, the incidence of prostate cancer, which is a hormone-dependent cancer, in Japan is as low as 10% in Europe and the United States, but it is increasing with the westernization of food. Hormone therapy is effective in treating these hormone-dependent cancers, but hormone therapy has no effect on castration-resistant prostate cancer (CRPC), which has lost hormone sensitivity either congenitally or in the course of treatment, New anticancer drugs need to be developed. The AKR1C3 inhibitor of the present invention can be easily synthesized and is suitable for mass production. If the AKR1C3 inhibitor of the present invention is applied to cancer treatment, it can contribute to the improvement of treatment opportunities for patients and consequently to the reduction of national medical expenses. The AKR1C3 inhibitor of the present invention is particularly expected to be used and applied to CRPC therapeutics.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

配列番号1:人工配列の説明:フォワードプライマー
配列番号2:人工配列の説明:リバースプライマー
SEQ ID NO: 1: Description of artificial sequence: Forward primer SEQ ID NO: 2: Description of artificial sequence: Reverse primer

Claims (11)

以下の化学式1で表されるAKR1C3阻害剤:
Figure 2019167302
但し、式中のR1は水素原子、ヒドロキシ基、ハロゲン原子、又は置換基を有していてもよい炭化水素基である。
AKR1C3 inhibitor represented by the following chemical formula 1:
Figure 2019167302
However, R1 in the formula is a hydrogen atom, a hydroxy group, a halogen atom, or a hydrocarbon group which may have a substituent.
前記式中のR1が水素原子、フルオロ基、クロロ基、メチル基、エチル基、ヒドロキシ基(但し、2位及び4位を除く)、ジフルオロ基、トリフルオロ基、トリフルオロメチル基、ジトリフルオロメチル基又はイソプロピル基である、請求項1に記載のAKR1C3阻害剤。   In the above formula, R1 is a hydrogen atom, a fluoro group, a chloro group, a methyl group, an ethyl group, a hydroxy group (except for the 2nd and 4th positions), a difluoro group, a trifluoro group, a trifluoromethyl group, and a ditrifluoromethyl. The AKR1C3 inhibitor according to claim 1, which is a group or an isopropyl group. 前記式中のR1が水素原子、2-フルオロ、3-フルオロ、4-フルオロ、2-クロロ、3-クロロ、4-クロロ、2-メチル、3-メチル、4-メチル、2-エチル、3-エチル、4-エチル、3-ヒドロキシ、3,4-ジフルオロ、3,4,5-トリフルオロ、2-トリフルオロメチル、3-トリフルオロメチル、4-トリフルオロメチル、2,4-ジトリフルオロメチル、2-イソプロピル又は3-イソプロピルである、請求項1に記載のAKR1C3阻害剤。   R1 in the above formula is a hydrogen atom, 2-fluoro, 3-fluoro, 4-fluoro, 2-chloro, 3-chloro, 4-chloro, 2-methyl, 3-methyl, 4-methyl, 2-ethyl, 3 -Ethyl, 4-ethyl, 3-hydroxy, 3,4-difluoro, 3,4,5-trifluoro, 2-trifluoromethyl, 3-trifluoromethyl, 4-trifluoromethyl, 2,4-ditrifluoro The AKR1C3 inhibitor according to claim 1, which is methyl, 2-isopropyl or 3-isopropyl. 以下の化学式2〜4のいずれかで表される、請求項1に記載のAKR1C3阻害剤:
Figure 2019167302
Figure 2019167302
Figure 2019167302
The AKR1C3 inhibitor according to claim 1, which is represented by any one of the following chemical formulas 2 to 4:
Figure 2019167302
Figure 2019167302
Figure 2019167302
請求項1〜4のいずれか一項に記載のAKR1C3阻害剤又はその薬理学的に許容可能な塩を有効成分として含有する、抗がん薬。   The anticancer agent which contains the AKR1C3 inhibitor as described in any one of Claims 1-4, or its pharmacologically acceptable salt as an active ingredient. 前立腺がん、乳がん、肝細胞がん、非小細胞肺がん又は白血病の治療又は予防に使用される、請求項5に記載の抗がん薬。   The anticancer drug according to claim 5, which is used for the treatment or prevention of prostate cancer, breast cancer, hepatocellular carcinoma, non-small cell lung cancer or leukemia. 前立腺がんの治療又は予防に使用される、請求項5に記載の抗がん薬。   The anticancer drug according to claim 5, which is used for treatment or prevention of prostate cancer. 前立腺がんが、去勢抵抗性前立腺がんである、請求項7に記載の抗がん薬。   The anticancer drug according to claim 7, wherein the prostate cancer is castration resistant prostate cancer. 抗アンドロゲン薬と併用される、請求項7又は8に記載の抗がん薬。   The anticancer drug according to claim 7 or 8, which is used in combination with an antiandrogen drug. がん患者に対して、請求項5に記載の抗がん薬を治療上有効量投与するステップを含む、がんの治療又は予防法。   A method for treating or preventing cancer, comprising a step of administering a therapeutically effective amount of the anticancer drug according to claim 5 to a cancer patient. 請求項1〜4のいずれか一項に記載のAKR1C3阻害剤を含む研究用試薬。   A research reagent comprising the AKR1C3 inhibitor according to any one of claims 1 to 4.
JP2018055182A 2018-03-22 2018-03-22 AKR1C3 selective inhibitor and use thereof Active JP7178075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055182A JP7178075B2 (en) 2018-03-22 2018-03-22 AKR1C3 selective inhibitor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055182A JP7178075B2 (en) 2018-03-22 2018-03-22 AKR1C3 selective inhibitor and use thereof

Publications (2)

Publication Number Publication Date
JP2019167302A true JP2019167302A (en) 2019-10-03
JP7178075B2 JP7178075B2 (en) 2022-11-25

Family

ID=68108033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055182A Active JP7178075B2 (en) 2018-03-22 2018-03-22 AKR1C3 selective inhibitor and use thereof

Country Status (1)

Country Link
JP (1) JP7178075B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903214A (en) * 2019-12-05 2020-03-24 中山大学附属第三医院 Preparation method of teriflunomide
CN115838340A (en) * 2022-12-31 2023-03-24 辰欣药业股份有限公司 Preparation method of teriflunomide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648378A (en) * 1995-06-07 1997-07-15 Research Corporation Technologies, Inc. 2-iminochromene derivatives as inhibitors of protein tyrosine kinase
JP2015020966A (en) * 2013-07-18 2015-02-02 岐阜市 Akr1c3 inhibitor
WO2017202817A1 (en) * 2016-05-26 2017-11-30 Bayer Pharma Aktiengesellschaft [8-(phenylsulfonyl)-3,8-diazabicyclo[3.2.1]oct-3-yl] (1h-1,2,3-triazol-4-yl)methanones
JP2018027897A (en) * 2016-08-15 2018-02-22 国立大学法人富山大学 2-oxo-2h-chromene-3-carboxylic acid amid derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648378A (en) * 1995-06-07 1997-07-15 Research Corporation Technologies, Inc. 2-iminochromene derivatives as inhibitors of protein tyrosine kinase
JP2015020966A (en) * 2013-07-18 2015-02-02 岐阜市 Akr1c3 inhibitor
WO2017202817A1 (en) * 2016-05-26 2017-11-30 Bayer Pharma Aktiengesellschaft [8-(phenylsulfonyl)-3,8-diazabicyclo[3.2.1]oct-3-yl] (1h-1,2,3-triazol-4-yl)methanones
JP2018027897A (en) * 2016-08-15 2018-02-22 国立大学法人富山大学 2-oxo-2h-chromene-3-carboxylic acid amid derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ORGANIC AND BIOMOLECULAR CHEMISTRY, vol. 13, JPN6022014702, 2015, pages 7487 - 7499, ISSN: 0004752826 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903214A (en) * 2019-12-05 2020-03-24 中山大学附属第三医院 Preparation method of teriflunomide
CN115838340A (en) * 2022-12-31 2023-03-24 辰欣药业股份有限公司 Preparation method of teriflunomide

Also Published As

Publication number Publication date
JP7178075B2 (en) 2022-11-25

Similar Documents

Publication Publication Date Title
ES2707596T3 (en) Use of an adrenal hormone-modifying agent
US20210251960A1 (en) Indomethacin analogs for the treatment of castrate-resistant prostate cancer
AU2005259329B2 (en) Novel 2-substituted D-homo-estra-1,3,5(10)-trienes as inhibitors of 17Beta-hydroxysteroid dehydrogenase type 1
Zang et al. Screening baccharin analogs as selective inhibitors against type 5 17β-hydroxysteroid dehydrogenase (AKR1C3)
JP7178075B2 (en) AKR1C3 selective inhibitor and use thereof
EP2646427B1 (en) Quinolin-4(1h)-one derivatives as inhibitors of phosphatidylinositol 3-kinases
El-Achkar et al. Thiazole derivatives as inhibitors of cyclooxygenases in vitro and in vivo
US20230039244A1 (en) 2-beta-naphthyl-acetic acid analogs as akr1c3 inhibitors and methods of using same
JP2014531402A5 (en)
JP2014531402A (en) Novel aniline derivatives and uses thereof (Novelanilinedrivativesandusetheof)
Fan et al. Design, synthesis, and biological evaluation of a novel indoleamine 2, 3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor
US10927085B2 (en) 1,2-naphthoquinone based derivative and method of preparing the same
CN108929281B (en) Triazole compound and synthesis method and application thereof
US10265329B2 (en) Altering steroid metabolism for treatment of steroid-dependent disease
KR101644778B1 (en) 1,2-Naphthoquinone-based Derivatives and and Methods for Preparing them
WO2012126280A1 (en) Rutaecarpine compound, preparation method therefor, and use thereof
US11865104B2 (en) Antitumor TET2 modulating compounds
TW200831108A (en) Modulation of prostaglandin/cyclooxygenase metabolic pathways
AU2013309515B2 (en) Compositions and methods for inhibiting activity of hypoxia-inducible transcription factor complex and its use for treatment of tumors
JP2015020966A (en) Akr1c3 inhibitor
JP2011521986A (en) 4,6-Diphenylpyrid-2-one for cancer
Li et al. Tetrandrine alleviates atherosclerosis via inhibition of STING-TBK1 pathway and inflammation in macrophages
WO2019204998A1 (en) Use of ezh2 inhibitor in treating mucosal melanoma
AU2016206795B2 (en) 5-methoxytryptophan and its derivatives and uses thereof
Meyer The Design, Synthesis, and Investigation into Small Molecule Modulators of the Src Homology 2 Domain-Containing Inositol 5’-Phosphatase (SHIP)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7178075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150