JP2019167017A - Method for assembling unmanned flying inspection machine and method for inspecting inspection object using the unmanned flying inspection machine - Google Patents

Method for assembling unmanned flying inspection machine and method for inspecting inspection object using the unmanned flying inspection machine Download PDF

Info

Publication number
JP2019167017A
JP2019167017A JP2018057191A JP2018057191A JP2019167017A JP 2019167017 A JP2019167017 A JP 2019167017A JP 2018057191 A JP2018057191 A JP 2018057191A JP 2018057191 A JP2018057191 A JP 2018057191A JP 2019167017 A JP2019167017 A JP 2019167017A
Authority
JP
Japan
Prior art keywords
outer frame
inspection machine
inspection
unmanned
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018057191A
Other languages
Japanese (ja)
Other versions
JP6990612B2 (en
Inventor
雅幹 本田
Masaki Honda
雅幹 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018057191A priority Critical patent/JP6990612B2/en
Publication of JP2019167017A publication Critical patent/JP2019167017A/en
Application granted granted Critical
Publication of JP6990612B2 publication Critical patent/JP6990612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Automatic Assembly (AREA)

Abstract

To provide an unmanned flying inspection machine capable of being carried into an inspection object without affecting an inspection, and a method for inspecting the inspection object using the unmanned flying inspection machine.SOLUTION: A method for assembling an unmanned flying inspection machine comprises: a step of carrying an unmanned flying inspection machine comprising an unmanned aircraft having a body and at least one propeller attached to the body, an outer frame to be attached to the body, and an inspection device to be mounted onto the unmanned aircraft, in a state where at least the outer frame is disassembled into multiple outer frame components; and a step of configuring the outer frame by connecting the respective outer frame components in a manner of allowing disconnection thereof, in a state where the unmanned aircraft is disposed onto an inner side of any one of the multiple outer frame components.SELECTED DRAWING: Figure 1

Description

本開示は、無人飛行検査機の組立方法及び無人飛行検査機を用いた検査対象物の検査方法に関する。   The present disclosure relates to a method for assembling an unmanned flight inspection machine and an inspection method for an inspection object using the unmanned flight inspection machine.

近年、ドローンと称されるプロペラ式の無人飛行機の種々の用途での利用が推進されており、例えば、特許文献1には、無人飛行機の外側にバンパーを設けた構成が開示されている。   In recent years, the use of a propeller-type unmanned aerial vehicle called a drone has been promoted in various applications. For example, Patent Document 1 discloses a configuration in which a bumper is provided outside an unmanned aerial vehicle.

米国特許第9061558号明細書US Pat. No. 9061558

ところで、上記のような無人飛行機に検査装置を搭載し、ボイラ火炉等の検査対象物の内壁面を検査することができれば検査を効率的に行うことができる。
しかし、一般に、ボイラ火炉に設けられた開口部(マンホール)は人がかろうじて通れる程度の小さなものであり、上記特許文献1に記載されたようなバンパー構造を備えた無人飛行検査機は、開口部からボイラ火炉の内部に運び込むことが困難であり、仮に開口部を通過できる大きさとした場合は、飛行時間や可搬重量等の飛行性能が低下するため、検査に支障が出る虞がある。
By the way, if the inspection device is mounted on the above-described unmanned airplane and the inner wall surface of the inspection object such as a boiler furnace can be inspected, the inspection can be efficiently performed.
However, in general, the opening (manhole) provided in the boiler furnace is small enough to allow a person to pass through, and the unmanned flight inspection machine having the bumper structure described in Patent Document 1 It is difficult to carry from the inside to the boiler furnace, and if the size is such that it can pass through the opening, the flight performance such as the flight time and the loadable weight is lowered, which may hinder the inspection.

上述の事情に鑑みて、本発明の少なくとも一実施形態は、検査に影響を及ぼすことなく、検査対象物の内部に持ち込んで検査可能な無人飛行検査機、及び、無人飛行検査機を用いた検査方法を提供することを目的とする。   In view of the above circumstances, at least one embodiment of the present invention is an unmanned flight inspection machine that can be brought into an inspection object and inspected without affecting the inspection, and an inspection using the unmanned flight inspection machine It aims to provide a method.

(1)本開示の少なくとも一実施形態に係る無人飛行検査機の組立方法は、
検査対象物の開口部から前記検査対象物内に、本体及び前記本体に回転可能に取り付けられた少なくとも1つのプロペラを有する無人飛行機と、前記本体に取り付けられる外枠と、前記無人飛行機に搭載される検査装置と、を備えた無人飛行検査機を、少なくとも前記外枠を複数の外枠構成体に分解した状態で搬入するステップと、
複数の前記外枠構成体の何れか一つの内側に前記無人飛行機が配置された状態で、複数の前記外枠構成体の各々を分割可能に連結して前記外枠を構成するステップと、
を備える。
(1) An assembly method of an unmanned flight inspection machine according to at least one embodiment of the present disclosure includes:
An unmanned airplane having a main body and at least one propeller rotatably attached to the main body, and an outer frame attached to the main body, and an unmanned airplane mounted on the unmanned airplane. An unmanned flight inspection machine comprising: an inspection device, and a step of carrying in at least the outer frame disassembled into a plurality of outer frame components;
In the state where the unmanned airplane is disposed inside any one of the plurality of outer frame structural bodies, the step of configuring the outer frame by detachably connecting each of the plurality of outer frame structural bodies;
Is provided.

上記(1)の方法によれば、組み立てられた状態では検査対象物に設けられた開口部を通過できない大きさの無人飛行検査機であっても、少なくとも外枠を分解した状態で開口部を通過させることができる検査対象物に対しては、分解した外枠構成体を開口部から搬入したり搬出したりすることができる。よって、開口部よりもサイズの大きな外枠を有する無人飛行検査機を検査対象物内に持ち込んで検査することができる。また、外枠は外枠構成体の単位に組み立てた状態で開口部を通過させることができるから、開口部の通過に際して少なくとも外枠の分解又は組立時間の短縮を図ることができる。さらに、外枠が分解及び組立て可能で繰り返し再利用できることにより、無人飛行検査機を用いた検査対象物内の検査において、検査の度に外枠を廃棄したり新たに製造したりする必要がなく、検査コストを大幅に抑制することができる。   According to the method of (1) above, even if the unmanned flight inspection machine is of a size that cannot pass through the opening provided in the inspection object in the assembled state, at least the opening is opened with the outer frame disassembled. For the inspection object that can be passed, the disassembled outer frame structure can be carried in and out from the opening. Therefore, an unmanned flight inspection machine having an outer frame larger in size than the opening can be brought into the inspection object and inspected. In addition, since the outer frame can pass through the opening in a state of being assembled as a unit of the outer frame structure, at least the outer frame can be disassembled or the assembling time can be shortened when passing through the opening. Furthermore, since the outer frame can be disassembled and assembled and can be reused repeatedly, there is no need to dispose of the outer frame or newly manufacture it for each inspection in an inspection object using an unmanned flight inspection machine. The inspection cost can be greatly reduced.

(2)幾つかの実施形態では、上記(1)の方法において、
前記外枠は、互いに直交する2以上の軸を含むジンバル機構を介して前記本体に取り付けられ、
複数の前記外枠構成体を連結するステップでは、前記ジンバル機構の内側に前記無人飛行機を配置してもよい。
(2) In some embodiments, in the method of (1) above,
The outer frame is attached to the main body via a gimbal mechanism including two or more axes orthogonal to each other.
In the step of connecting the plurality of outer frame structural bodies, the unmanned airplane may be disposed inside the gimbal mechanism.

上記(2)の方法によれば、無人飛行機の本体がジンバル機構を介して外枠に連結される。よって、姿勢安定性に優れ検査に適した無人飛行検査機を得ることができる。   According to the method (2), the main body of the unmanned airplane is connected to the outer frame via the gimbal mechanism. Therefore, an unmanned flight inspection machine excellent in posture stability and suitable for inspection can be obtained.

(3)幾つかの実施形態では、上記(1)又は(2)に記載の方法において、
前記外枠構成体は、第1半球状体及び第2半球状体を含み、
複数の前記外枠構成体を連結するステップでは、前記第1半球状体と前記第2半球状体とを分割可能に連結して球状の前記外枠を構成してもよい。
(3) In some embodiments, in the method according to (1) or (2) above,
The outer frame structure includes a first hemispherical body and a second hemispherical body,
In the step of connecting the plurality of outer frame constituents, the spherical outer frame may be configured by connecting the first hemispherical body and the second hemispherical body so as to be separable.

上記(3)の方法によれば、外枠を球状に構成したことにより、外枠に対する任意の方向からの衝撃を分散させることができるから、無人飛行機を衝撃から適切に保護することができる。また、外枠が第1半球状体及び第2半球状体という二つの外枠構成体、すなわち最小の分割単位で構成されるから、検査対象物の開口部を通過可能でありつつ、外枠の分解又は組み立ての際の工数を可能な限り抑制し、工期を短縮することができる。   According to the method (3), since the outer frame is configured in a spherical shape, it is possible to disperse the impact from any direction on the outer frame, and thus it is possible to appropriately protect the unmanned airplane from the impact. In addition, since the outer frame is composed of two outer frame components, ie, the first hemispherical body and the second hemispherical body, that is, the smallest divided unit, the outer frame can pass through the opening of the inspection object. The man-hour at the time of decomposition | disassembly or an assembly of can be suppressed as much as possible, and a construction period can be shortened.

(4)幾つかの実施形態では、上記(1)〜(3)の何れか一つに記載の方法において、
複数の前記外枠構成体を連結するステップでは、
各々が球状多面体の縁を画定するように配置された梁を含む前記外枠構成体における複数の前記梁の端部を、前記球状多面体の頂部でそれぞれ分割可能に締結して前記外枠を構成してもよい。
(4) In some embodiments, in the method according to any one of (1) to (3) above,
In the step of connecting a plurality of the outer frame components,
The outer frame is configured by fastening the ends of the plurality of beams in the outer frame structure including beams arranged so as to define the edges of the spherical polyhedron, respectively, so as to be split at the top of the spherical polyhedron. May be.

上記(4)の方法によれば、外枠が球状多面体の縁を確定する梁で構成されることにより、軽量化を図りつつ耐衝撃性に優れた外枠を形成することができる。また、強度を確保しつつ十分に細い梁を採用することにより、外枠内外の通気性に優れ、プロペラによる浮力や推力を可能な限り阻害しない外枠を備えた無人飛行検査機を得ることができる。   According to the method of (4) above, the outer frame is made of a beam that defines the edge of the spherical polyhedron, so that it is possible to form an outer frame that is excellent in impact resistance while achieving weight reduction. In addition, by adopting sufficiently thin beams while ensuring strength, it is possible to obtain an unmanned flight inspection machine with an outer frame that has excellent air permeability inside and outside the outer frame and that does not obstruct buoyancy and thrust by the propeller as much as possible. it can.

(5)幾つかの実施形態では、上記(1)〜(4)の何れか一つに記載の方法において、
複数の前記外枠構成体を連結するステップでは、
ねじ又はボルト・ナットを含む締結部材により複数の前記外枠構成体を連結してもよい。
(5) In some embodiments, in the method according to any one of (1) to (4) above,
In the step of connecting a plurality of the outer frame components,
A plurality of the outer frame components may be connected by a fastening member including a screw or a bolt / nut.

上記(5)の方法によれば、締結部材を締結したり緩めたりするという簡易な方法で外枠の分解又は組立て作業を容易に実現することができる。よって、少なくとも外枠の分解又は組立てに要する時間を大幅に短縮することができる。   According to the method (5), the disassembly or assembling work of the outer frame can be easily realized by a simple method of fastening or loosening the fastening member. Therefore, at least the time required for disassembling or assembling the outer frame can be greatly shortened.

(6)幾つかの実施形態では、上記(1)の方法において、
前記外枠は、前記無人飛行機の両側に回転可能に配置され、各々の回転軸方向に相互に離間した少なくとも一対の回転体と、前記一対の回転体を同軸に連結する連結軸とを含み、
前記外枠構成体は、前記回転体を少なくとも径方向に分割した複数の円弧部を含み、
複数の前記外枠構成体を連結するステップでは、
前記円弧部を分割可能に連結して前記回転体を構成してもよい。
(6) In some embodiments, in the method of (1) above,
The outer frame includes at least a pair of rotating bodies that are rotatably arranged on both sides of the unmanned airplane, and are spaced apart from each other in the direction of each rotation axis, and a connecting shaft that coaxially connects the pair of rotating bodies,
The outer frame structure includes a plurality of arc portions obtained by dividing the rotating body at least in the radial direction,
In the step of connecting a plurality of the outer frame components,
The rotating body may be configured by connecting the arc portions so as to be split.

上記(6)の方法によれば、組み立てられた状態では検査対象物に設けられた開口部を通過できない大きさの無人飛行検査機であっても、少なくとも外枠を分解した状態で開口部を通過させることができる検査対象物に対しては、分解した外枠構成体を開口部から搬入したり搬出したりすることができる。その際、回転体は径方向に分割して円弧部として開口部から搬入及び搬出することができる。つまり、例えば、組み立てられた状態では開口部よりも大きな径を有し該開口部を通過できない回転体を、複数の円弧部に分解して検査対象物内に持ち込み、無人飛行検査機に用いることができる。   According to the method of (6) above, even if the unmanned flight inspection machine is of a size that cannot pass through the opening provided in the inspection object in the assembled state, the opening is opened with at least the outer frame disassembled. For the inspection object that can be passed, the disassembled outer frame structure can be carried in and out from the opening. In that case, a rotary body can be divided | segmented to radial direction and can be carried in and carried out from an opening part as a circular arc part. In other words, for example, a rotating body having a diameter larger than that of the opening in an assembled state and cannot pass through the opening is disassembled into a plurality of arc portions and brought into an inspection object, and used for an unmanned flight inspection machine. Can do.

(7)本開示の少なくとも一実施形態に係る検査方法は、
上記(1)〜(6)の何れか1つに記載の無人飛行検査機の組立方法を用いて前記検査対象物の内部で前記無人飛行検査機を組み立てるステップと、
組み立てられた前記無人飛行検査機を用いて前記検査対象物内を検査するステップと、
を備える。
(7) An inspection method according to at least one embodiment of the present disclosure includes:
Assembling the unmanned flight inspection machine inside the inspection object using the unmanned flight inspection machine assembly method according to any one of (1) to (6) above;
Inspecting the inspection object using the assembled unmanned flight inspection machine;
Is provided.

上記(7)の方法によれば、上記(1)で述べたように、開口部よりもサイズの大きな外枠を有する無人飛行検査機を検査対象物内に持ち込んで検査することができる。また、外枠は外枠構成体の単位に組み立てた状態で開口部を通過させることができるから、開口部の通過に際して少なくとも外枠の分解又は組立時間の短縮を図ることができる。さらに、外枠が分解及び組立て可能で繰り返し再利用できることにより、無人飛行検査機を用いた検査対象物内の検査において、検査の度に外枠を廃棄したり新たに製造したりする必要がなく、検査コストを大幅に抑制することができる。   According to the method (7), as described in the above (1), an unmanned flight inspection machine having an outer frame larger in size than the opening can be brought into the inspection object and inspected. In addition, since the outer frame can pass through the opening in a state of being assembled as a unit of the outer frame structure, at least the outer frame can be disassembled or the assembling time can be shortened when passing through the opening. Furthermore, since the outer frame can be disassembled and assembled and can be reused repeatedly, there is no need to dispose of the outer frame or newly manufacture it for each inspection in an inspection object using an unmanned flight inspection machine. The inspection cost can be greatly reduced.

(8)幾つかの実施形態では、上記(7)の方法において、
前記検査対象物内で少なくとも前記外枠を複数の前記外枠構成体に分解するステップと、
前記開口部を介して前記外枠構成体を前記検査対象物の前記開口部から搬出するステップと、をさらに備えていてもよい。
(8) In some embodiments, in the method of (7) above,
Disassembling at least the outer frame into a plurality of the outer frame components in the inspection object;
A step of carrying out the outer frame structure from the opening of the inspection object via the opening.

上記(8)の方法によれば、検査対象物内の検査後に、外枠が複数の外枠構成体に分解されて開口部から搬出される。搬出された外枠構成体は、次回の検査において再度、開口部から搬入可能であり、外枠に組み立てることができるから、検査の度に外枠を廃棄したり新たに製造したりする必要がなく、検査コストを大幅に低減することができる。   According to the above method (8), after the inspection in the inspection object, the outer frame is disassembled into a plurality of outer frame components and carried out from the opening. The outer frame structure that has been carried out can be carried in again from the opening in the next inspection and can be assembled to the outer frame. Therefore, it is necessary to discard the outer frame or newly manufacture it at each inspection. In addition, the inspection cost can be greatly reduced.

(9)幾つかの実施形態では、上記(7)又は(8)の方法において、
少なくとも組み立てられた状態の前記外枠が前記開口部より大寸法であり、
前記検査対象物の前記開口部を通過させる際に、前記開口部の寸法に応じて前記外枠構成体を変形させるステップをさらに備えていてもよい。
(9) In some embodiments, in the above method (7) or (8),
At least the outer frame in the assembled state is larger than the opening,
In passing through the opening of the inspection object, the method may further include a step of deforming the outer frame structure according to the size of the opening.

上記(9)の方法によれば、検査対象物に設けられた開口部を通過できない大きさの外枠構成体であっても、少なくとも開口部の寸法に応じて変形させた状態で開口部を通過させることができる検査対象物に対して、変形させた状態の外枠構成体を開口部から搬入したり搬出したりすることができる。よって、変形させずに開口部を通過可能な外枠構成体を採用するよりも、外枠全体の大きさを大きく確保できるため、例えば、搭載性や可搬性を向上させた無人飛行検査機を用いることができるため、検査の自由度や精度の向上を図ることができる。   According to the above method (9), even if the outer frame structure has a size that cannot pass through the opening provided in the inspection object, the opening is deformed in accordance with at least the size of the opening. The deformed outer frame structure can be carried into and out of the opening with respect to the inspection object that can be passed. Therefore, since the size of the entire outer frame can be secured larger than adopting an outer frame structure that can pass through the opening without being deformed, for example, an unmanned flight inspection machine with improved mountability and portability. Therefore, it is possible to improve the degree of freedom and accuracy of inspection.

本開示の少なくとも一実施形態によれば、検査に影響を及ぼすことなく、検査対象の内部に持ち込んで検査可能な無人飛行検査機、及び、無人飛行検査機を用いた検査対象物の検査方法を提供することができる。   According to at least one embodiment of the present disclosure, there is provided an unmanned flight inspection machine that can be brought into an inspection object and inspected without affecting the inspection, and an inspection method for an inspection object using the unmanned flight inspection machine Can be provided.

一実施形態における無人飛行検査機を概略的に示す正面図である。It is a front view showing roughly an unmanned flight inspection machine in one embodiment. 一実施形態に係る無人飛行検査機の組立方法を示すフローチャートである。It is a flowchart which shows the assembly method of the unmanned flight inspection machine which concerns on one Embodiment. 一実施形態における無人飛行検査機を概略的に示す図である。It is a figure showing roughly an unmanned flight inspection machine in one embodiment. 他の実施形態に係る無人飛行検査機の組立方法を示すフローチャートである。It is a flowchart which shows the assembly method of the unmanned flight inspection machine which concerns on other embodiment. 一実施形態における無人飛行検査機と開口部とを示す図である。It is a figure which shows the unmanned flight inspection machine and opening part in one Embodiment. 他の実施形態における無人飛行検査機と開口部とを示す図である。It is a figure which shows the unmanned flight inspection machine and opening part in other embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.

図1は、一実施形態に係る無人飛行検査を概略的に示す正面図である。図2は、一実施形態に係る無人飛行検査機の組立方法を示すフローチャートである。
図1及び図2に非限定的に例示するように、本開示の少なくとも一実施形態に係る無人飛行検査機の組立方法は、例えば、検査対象物50の開口部51(図5及び図6参照)から検査対象物50内に、本体3及び本体3に回転可能に取り付けられた少なくとも1つのプロペラ4を有する無人飛行機2と、本体3に取り付けられる外枠10と、無人飛行機2に搭載される検査装置5と、を備えた無人飛行検査機1を、少なくとも外枠10を複数の外枠構成体11に分解した状態で搬入する工程(ステップS10)と、複数の外枠構成体11の何れか一つの内側に無人飛行機2が配置された状態で、複数の外枠構成体11の各々を分割可能に連結して外枠10を構成する工程(ステップS20)と、を備えている。
FIG. 1 is a front view schematically showing an unmanned flight inspection according to an embodiment. FIG. 2 is a flowchart illustrating an assembling method of the unmanned flight inspection machine according to the embodiment.
As illustrated in a non-limiting manner in FIGS. 1 and 2, an unmanned flight inspection machine assembly method according to at least one embodiment of the present disclosure includes, for example, an opening 51 (see FIGS. 5 and 6) of an inspection object 50. The unmanned airplane 2 having the main body 3 and at least one propeller 4 rotatably attached to the main body 3, the outer frame 10 attached to the main body 3, and the unmanned airplane 2. A step of carrying in the unmanned flight inspection machine 1 including the inspection device 5 in a state in which at least the outer frame 10 is disassembled into a plurality of outer frame constituent bodies 11 (step S10), and any of the plurality of outer frame constituent bodies 11 A step (step S20) in which the outer frame 10 is configured by detachably connecting each of the plurality of outer frame structural bodies 11 in a state where the unmanned airplane 2 is arranged inside one of them.

上記の方法によれば、組み立てられた状態では検査対象物50に設けられた開口部51を通過できない大きさの無人飛行検査機1であっても、少なくとも外枠10を分解した状態で開口部51を通過させることができる検査対象物50に対しては、分解した外枠構成体11を開口部51から搬入したり搬出したりすることができる。よって、開口部51よりもサイズの大きな外枠10を有する無人飛行検査機1を検査対象物50内に持ち込んで検査することができる。また、外枠10は外枠構成体11の単位に組み立てた状態で開口部51を通過させることができるから、開口部51の通過に際して少なくとも外枠10の分解又は組立時間の短縮を図ることができる。さらに、外枠10が分解及び組立て可能で繰り返し再利用できることにより、無人飛行検査機1を用いた検査対象物50内の検査において、検査の度に外枠を廃棄したり新たに製造したりする必要がなく、検査コストを大幅に抑制することができる。   According to the above method, even if the unmanned flight inspection machine 1 has a size that cannot pass through the opening 51 provided in the inspection object 50 in the assembled state, at least the opening in the state in which the outer frame 10 is disassembled. The disassembled outer frame structure 11 can be carried into and out of the opening 51 with respect to the inspection object 50 that can pass through 51. Therefore, the unmanned flight inspection machine 1 having the outer frame 10 larger than the opening 51 can be brought into the inspection object 50 and inspected. Further, since the outer frame 10 can pass through the opening 51 in a state of being assembled in units of the outer frame structure 11, it is possible to at least disassemble the outer frame 10 or shorten the assembling time when passing through the opening 51. it can. Further, since the outer frame 10 can be disassembled and assembled and can be reused repeatedly, in the inspection of the inspection object 50 using the unmanned flight inspection machine 1, the outer frame is discarded or newly manufactured at every inspection. There is no need, and the inspection cost can be greatly reduced.

幾つかの実施形態では、上記の方法において、外枠10は、互いに直交する2以上の軸21を含むジンバル機構20を介して本体3に取り付けられ、複数の外枠構成体11を連結する工程(ステップS20)では、ジンバル機構20の内側に無人飛行機2を配置してもよい(図1参照)。   In some embodiments, in the above method, the outer frame 10 is attached to the main body 3 via the gimbal mechanism 20 including the two or more shafts 21 orthogonal to each other, and the plurality of outer frame components 11 are connected. In (step S20), you may arrange | position the unmanned airplane 2 inside the gimbal mechanism 20 (refer FIG. 1).

上記の方法によれば、無人飛行機2の本体3がジンバル機構20を介して外枠10に連結される。よって、姿勢安定性に優れ検査に適した無人飛行検査機1を得ることができる。   According to the above method, the main body 3 of the unmanned airplane 2 is connected to the outer frame 10 via the gimbal mechanism 20. Therefore, the unmanned flight inspection machine 1 which is excellent in posture stability and suitable for inspection can be obtained.

幾つかの実施形態では、上記の何れかに記載の方法において、外枠構成体11は、第1半球状体12及び第2半球状体13を含み、複数の外枠構成体11を連結する工程(ステップS20)では、第1半球状体12と第2半球状体13とを分割可能に連結して球状の外枠10を構成してもよい(図1及び図3参照)。   In some embodiments, in any of the above methods, the outer frame structure 11 includes a first hemispherical body 12 and a second hemispherical body 13, and connects the plurality of outer frame structural bodies 11. In the step (step S20), the first hemispherical body 12 and the second hemispherical body 13 may be detachably connected to form the spherical outer frame 10 (see FIGS. 1 and 3).

上記の方法によれば、外枠10を球状に構成したことにより、外枠10に対する任意の方向からの衝撃を分散させることができるから、無人飛行機2を衝撃から適切に保護することができる。また、外枠10が第1半球状体12及び第2半球状体13という二つの外枠構成体11、すなわち最小の分割単位で構成されるから、検査対象物50の開口部51を通過可能でありつつ、外枠10の分解又は組み立ての際の工数を可能な限り抑制し、工期を短縮することができる。   According to the above method, since the outer frame 10 is formed in a spherical shape, it is possible to disperse the impact from any direction on the outer frame 10, so that the unmanned airplane 2 can be appropriately protected from the impact. Further, since the outer frame 10 is composed of two outer frame constituent bodies 11, that is, a first hemispherical body 12 and a second hemispherical body 13, that is, a minimum division unit, it can pass through the opening 51 of the inspection object 50. However, the man-hour at the time of disassembly or assembly of the outer frame 10 can be suppressed as much as possible, and the construction period can be shortened.

幾つかの実施形態では、上記何れか一つに記載の方法において、複数の外枠構成体11を連結する工程(ステップS20)では、各々が球状多面体15の縁を画定するように配置された梁16を含む外枠構成体11における複数の梁16の端部18を、球状多面体15の頂部19でそれぞれ分割可能に締結して外枠10を構成してもよい(図1及び図3参照)。   In some embodiments, in the method according to any one of the above, in the step of connecting the plurality of outer frame structures 11 (step S20), each is arranged so as to define an edge of the spherical polyhedron 15. The outer frame 10 may be configured by fastening the end portions 18 of the plurality of beams 16 in the outer frame structural body 11 including the beams 16 so as to be separable by the top portions 19 of the spherical polyhedron 15 (see FIGS. 1 and 3). ).

上記の方法によれば、外枠10が球状多面体15の縁を確定する梁16で構成されることにより、軽量化を図りつつ耐衝撃性に優れた外枠10を形成することができる。また、強度を確保しつつ十分に細い梁16を採用することにより、外枠10内外の通気性に優れ、プロペラ4による浮力や推力を可能な限り阻害しない外枠10を備えた無人飛行検査機1を得ることができる。   According to the above method, the outer frame 10 is configured by the beam 16 that defines the edge of the spherical polyhedron 15, whereby the outer frame 10 having excellent impact resistance can be formed while reducing the weight. Further, by adopting a sufficiently thin beam 16 while ensuring strength, the unmanned flight inspection machine is provided with the outer frame 10 which has excellent air permeability inside and outside the outer frame 10 and does not obstruct buoyancy and thrust by the propeller 4 as much as possible. 1 can be obtained.

幾つかの実施形態では、上記何れか一つに記載の方法において、複数の外枠構成体11を連結する工程(ステップS20)では、ねじ又はボルト・ナットを含む締結部材30により複数の外枠構成体11を連結してもよい。   In some embodiments, in the method according to any one of the above, in the step of connecting the plurality of outer frame structural bodies 11 (step S20), the plurality of outer frames are formed by the fastening members 30 including screws or bolts and nuts. The structural body 11 may be connected.

上記の方法によれば、締結部材を締結したり緩めたりするという簡易な方法で外枠10の分解又は組立て作業を容易に実現することができる。よって、少なくとも外枠10の分解又は組立てに要する時間を大幅に短縮することができる。   According to the above method, the disassembly or assembly work of the outer frame 10 can be easily realized by a simple method of fastening or loosening the fastening member. Therefore, at least the time required for disassembling or assembling the outer frame 10 can be greatly shortened.

幾つかの実施形態では、上記の方法において、外枠10は、無人飛行機2の両側に回転可能に配置され、各々の回転軸方向に相互に離間した少なくとも一対の回転体と、一対の回転体を同軸に連結する連結軸21とを含んでもよく、外枠構成体11は、回転体を少なくとも径方向に分割した複数の円弧部を含んでもよい(例えば図6参照)。
回転体は、例えば車輪のような環状体であってもよい。
そして、複数の外枠構成体11を連結する工程(ステップS20)では、円弧部を分割可能に連結して回転体を構成してもよい。
In some embodiments, in the above-described method, the outer frame 10 is rotatably disposed on both sides of the unmanned airplane 2, and at least a pair of rotating bodies spaced apart from each other in the respective rotation axis directions, and a pair of rotating bodies. The outer frame constituting body 11 may include a plurality of arc portions obtained by dividing the rotating body at least in the radial direction (see, for example, FIG. 6).
The rotating body may be an annular body such as a wheel.
And in the process (step S20) which connects the some outer frame structure 11, you may connect a circular arc part so that division | segmentation is possible and may comprise a rotary body.

上記方法によれば、組み立てられた状態では検査対象物50に設けられた開口部51を通過できない大きさの無人飛行検査機1であっても、少なくとも外枠10を分解した状態で開口部51を通過させることができる検査対象物50に対しては、分解した外枠構成体11を開口部51から搬入したり搬出したりすることができる。その際、回転体は径方向に分割して円弧部として開口部51から搬入及び搬出することができる。つまり、例えば、組み立てられた状態では開口部51よりも大きな径を有し該開口部51を通過できない回転体を、複数の円弧部に分解して検査対象物50内に持ち込み、無人飛行検査機1に用いることができる。   According to the above method, even if the unmanned flight inspection machine 1 has a size that cannot pass through the opening 51 provided in the inspection object 50 in the assembled state, the opening 51 is in a state where at least the outer frame 10 is disassembled. The disassembled outer frame constituting body 11 can be carried into and out of the opening 51 with respect to the inspection object 50 that can pass through. In that case, a rotary body can be divided | segmented to radial direction and can be carried in and carried out from the opening part 51 as a circular arc part. That is, for example, a rotating body that has a diameter larger than that of the opening 51 in the assembled state and cannot pass through the opening 51 is disassembled into a plurality of arc portions and brought into the inspection object 50, and the unmanned flight inspection machine 1 can be used.

本開示の少なくとも一実施形態に係る無人飛行検査機を用いた検査対象物の検査方法は、例えば、図4に非限定的に例示するように、本開示の上記何れか1つに記載の無人飛行検査機の組立方法を用いて検査対象物50としてのボイラ50Aの内部で無人飛行検査機1を組み立てる工程(ステップS30)と、組み立てられた無人飛行検査機1を用いてボイラ50A内を検査する工程(ステップS40)と、を備えている。   An inspection object inspection method using an unmanned flight inspection machine according to at least one embodiment of the present disclosure is, for example, unmanned as described in any one of the above disclosures as illustrated in FIG. The process of assembling the unmanned flight inspection machine 1 inside the boiler 50A as the inspection object 50 using the assembly method of the flight inspection machine (step S30), and inspecting the boiler 50A using the assembled unmanned flight inspection machine 1 (Step S40) to perform.

上記方法によれば、開口部51よりもサイズの大きな外枠10を有する無人飛行検査機1を検査対象物50内に持ち込んで検査することができる。また、外枠10は外枠構成体11の単位に組み立てた状態で開口部51を通過させることができるから、開口部51の通過に際して少なくとも外枠10の分解又は組立時間の短縮を図ることができる。さらに、外枠10が分解及び組立て可能で繰り返し再利用できることにより、無人飛行検査機1を用いた検査対象物50内の検査において、検査の度に外枠10を廃棄したり新たに製造したりする必要がなく、検査コストを大幅に抑制することができる。   According to the above method, the unmanned flight inspection machine 1 having the outer frame 10 larger in size than the opening 51 can be brought into the inspection object 50 and inspected. Further, since the outer frame 10 can pass through the opening 51 in a state of being assembled in units of the outer frame structure 11, it is possible to at least disassemble the outer frame 10 or shorten the assembling time when passing through the opening 51. it can. Furthermore, since the outer frame 10 can be disassembled and assembled and can be reused repeatedly, the outer frame 10 can be discarded or newly manufactured each time an inspection is performed in the inspection object 50 using the unmanned flight inspection machine 1. There is no need to do this, and the inspection cost can be greatly reduced.

幾つかの実施形態では、上記の検査方法において、ボイラ50A内で少なくとも外枠10を複数の外枠構成体11に分解する工程(ステップS50)と、開口部51を介して外枠構成体11をボイラ50Aの開口部51から搬出する工程(ステップS60)と、をさらに備えていてもよい。   In some embodiments, in the inspection method described above, in the boiler 50 </ b> A, at least the outer frame 10 is disassembled into a plurality of outer frame structures 11 (step S <b> 50), and the outer frame structure 11 through the openings 51. And a step (Step S60) of unloading from the opening 51 of the boiler 50A.

上記の方法によれば、ボイラ50A内の検査後に、外枠10が複数の外枠構成体11に分解されて開口部51から搬出される。搬出された外枠構成体11は、次回の検査において再度、開口部51から搬入可能であり、外枠10に組み立てることができるから、検査の度に外枠10を廃棄したり新たに製造したりする必要がなく、検査コストを大幅に低減することができる。   According to the above method, after the inspection in the boiler 50 </ b> A, the outer frame 10 is disassembled into the plurality of outer frame structural bodies 11 and carried out from the opening 51. The outer frame structure 11 that has been carried out can be carried in again from the opening 51 in the next inspection and can be assembled to the outer frame 10. Therefore, the outer frame 10 is discarded or newly manufactured each time inspection is performed. The inspection cost can be greatly reduced.

幾つかの実施形態では、上記の何れかに記載の検査方法において、少なくとも組み立てられた状態の外枠10が開口部51より大寸法であり、ボイラ50Aの開口部51を通過させる際に、開口部素の寸法に応じて外枠構成体11を変形させる工程(ステップS55)をさらに備えていてもよい。   In some embodiments, in the inspection method according to any one of the above, at least the outer frame 10 in an assembled state is larger than the opening 51 and is opened when passing through the opening 51 of the boiler 50A. You may further provide the process (step S55) which deform | transforms the outer frame structure 11 according to the dimension of a partial element.

上記方法によれば、検査対象物50に設けられた開口部51を通過できない大きさの外枠構成体11であっても、少なくとも開口部51の寸法に応じて変形させた状態で開口部51を通過させることができる検査対象物50に対して、変形させた状態の外枠構成体11を開口部51から搬入したり搬出したりすることができる。よって、変形させずに開口部51を通過可能な外枠構成体11を採用するよりも、外枠10全体の大きさを大きく確保できるため、例えば、搭載性や可搬性を向上させた無人飛行検査機1を用いることができるため、検査の自由度や精度の向上を図ることができる。   According to the above method, even if the outer frame structure 11 has a size that cannot pass through the opening 51 provided in the inspection object 50, the opening 51 is deformed in accordance with at least the size of the opening 51. The outer frame constituting body 11 in a deformed state can be carried into and out of the opening 51 with respect to the inspection object 50 that can pass through. Therefore, since the size of the entire outer frame 10 can be secured larger than employing the outer frame structure 11 that can pass through the opening 51 without being deformed, for example, unmanned flight with improved mountability and portability. Since the inspection machine 1 can be used, the degree of freedom and accuracy of inspection can be improved.

本開示の少なくとも一実施形態によれば、検査に影響を及ぼすことなく、検査対象の内部に持ち込んで検査可能な無人飛行検査機、及び、無人飛行検査機を用いたボイラの検査方法を提供される。   According to at least one embodiment of the present disclosure, there is provided an unmanned flight inspection machine that can be brought into an inspection object and inspected without affecting the inspection, and a boiler inspection method using the unmanned flight inspection machine. The

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。   As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, The form which added the deformation | transformation to embodiment mentioned above and the form which combined these forms suitably are included.

1 無人飛行検査機
2 無人飛行機
3 本体
4 プロペラ
5 検査装置
10 外枠
11 外枠構成体
12 第1半球状体
13 第2半球状体
15 球状多面体
16 梁
18 端部
19 頂部
20 ジンバル機構
21 軸
30 締結部材
50 検査対象物
50A ボイラ
51 開口部
61 伝熱管
DESCRIPTION OF SYMBOLS 1 Unmanned flight inspection machine 2 Unmanned airplane 3 Main body 4 Propeller 5 Inspection apparatus 10 Outer frame 11 Outer frame component 12 First hemisphere 13 Second hemisphere 15 Spherical polyhedron 16 Beam 18 End 19 Top 20 Gimbal mechanism 21 Axis 30 Fastening member 50 Inspection object 50A Boiler 51 Opening 61 Heat transfer tube

Claims (9)

検査対象物の開口部から前記検査対象物内に、本体及び前記本体に回転可能に取り付けられた少なくとも1つのプロペラを有する無人飛行機と、前記本体に取り付けられる外枠と、前記無人飛行機に搭載される検査装置と、を備えた無人飛行検査機を、少なくとも前記外枠を複数の外枠構成体に分解した状態で搬入するステップと、
複数の前記外枠構成体の何れか一つの内側に前記無人飛行機が配置された状態で、複数の前記外枠構成体の各々を分割可能に連結して前記外枠を構成するステップと、
を備えた無人飛行検査機の組立方法。
An unmanned airplane having a main body and at least one propeller rotatably attached to the main body, and an outer frame attached to the main body, and an unmanned airplane mounted on the unmanned airplane. An unmanned flight inspection machine comprising: an inspection device, and a step of carrying in at least the outer frame disassembled into a plurality of outer frame components;
In the state where the unmanned airplane is disposed inside any one of the plurality of outer frame structural bodies, the step of configuring the outer frame by detachably connecting each of the plurality of outer frame structural bodies;
Method for assembling an unmanned flight inspection machine equipped with
前記外枠は、互いに直交する2以上の軸を含むジンバル機構を介して前記本体に取り付けられ、
複数の前記外枠構成体を連結するステップでは、前記ジンバル機構の内側に前記無人飛行機を配置する
請求項1に記載の無人飛行検査機の組立方法。
The outer frame is attached to the main body via a gimbal mechanism including two or more axes orthogonal to each other.
The method of assembling the unmanned flight inspection machine according to claim 1, wherein in the step of connecting the plurality of outer frame structural bodies, the unmanned airplane is arranged inside the gimbal mechanism.
前記外枠構成体は、第1半球状体及び第2半球状体を含み、
複数の前記外枠構成体を連結するステップでは、前記第1半球状体と前記第2半球状体とを分割可能に連結して球状の前記外枠を構成する
請求項1又は2に記載の無人飛行検査機の組立方法。
The outer frame structure includes a first hemispherical body and a second hemispherical body,
The step of connecting a plurality of outer frame constituents comprises connecting the first hemispherical body and the second hemispherical body in a severable manner to form the spherical outer frame. How to assemble an unmanned flight inspection machine.
複数の前記外枠構成体を連結するステップでは、
各々が球状多面体の縁を画定するように配置された梁を含む前記外枠構成体における複数の前記梁の端部を、前記球状多面体の頂部でそれぞれ分割可能に締結して前記外枠を構成する
請求項1〜3の何れか一項に記載の無人飛行検査機の組立方法。
In the step of connecting a plurality of the outer frame components,
The outer frame is configured by fastening the ends of the plurality of beams in the outer frame structure including beams arranged so as to define the edges of the spherical polyhedron, respectively, so as to be split at the top of the spherical polyhedron. The method for assembling the unmanned flight inspection machine according to any one of claims 1 to 3.
複数の前記外枠構成体を連結するステップでは、
ねじ又はボルト・ナットを含む締結部材により複数の前記外枠構成体を連結する
請求項1〜4の何れか一項に記載の無人飛行検査機の組立方法。
In the step of connecting a plurality of the outer frame components,
The assembling method of the unmanned flight inspection machine according to any one of claims 1 to 4, wherein the plurality of outer frame structural bodies are connected by a fastening member including a screw or a bolt and a nut.
前記外枠は、前記無人飛行機の両側に回転可能に配置され、各々の回転軸方向に相互に離間した少なくとも一対の回転体と、前記一対の回転体を同軸に連結する連結軸とを含み、
前記外枠構成体は、前記回転体を少なくとも径方向に分割した複数の円弧部を含み、
複数の前記外枠構成体を連結するステップでは、
前記円弧部を分割可能に連結して前記回転体を構成する
請求項1に記載の無人飛行検査機の組立方法。
The outer frame includes at least a pair of rotating bodies that are rotatably arranged on both sides of the unmanned airplane, and are spaced apart from each other in the direction of each rotation axis, and a connecting shaft that coaxially connects the pair of rotating bodies,
The outer frame structure includes a plurality of arc portions obtained by dividing the rotating body at least in the radial direction,
In the step of connecting a plurality of the outer frame components,
The method for assembling the unmanned flight inspection machine according to claim 1, wherein the rotating body is configured by connecting the arc portions so as to be split.
請求項1〜6の何れか1項に記載の無人飛行検査機の組立方法を用いて前記検査対象物の内部で前記無人飛行検査機を組み立てるステップと、
組み立てられた前記無人飛行検査機を用いて前記ボイラ内を検査するステップと、
を備えた検査方法。
Assembling the unmanned flight inspection machine inside the inspection object using the unmanned flight inspection machine assembly method according to any one of claims 1 to 6;
Inspecting the boiler using the assembled unmanned flight inspection machine;
Inspection method with
前記検査対象物内で少なくとも前記外枠を複数の前記外枠構成体に分解するステップと、
前記開口部を介して前記外枠構成体を前記ボイラの前記開口部から搬出するステップと、をさらに備えた請求項7に記載の検査方法。
Disassembling at least the outer frame into a plurality of the outer frame components in the inspection object;
The inspection method according to claim 7, further comprising a step of carrying out the outer frame structure from the opening of the boiler through the opening.
少なくとも組み立てられた状態の前記外枠が前記開口部より大寸法であり、
前記検査対象物の前記開口部を通過させる際に、前記開口部の寸法に応じて前記外枠構成体を変形させるステップをさらに備える
請求項7又は8に記載の検査方法。
At least the outer frame in the assembled state is larger than the opening,
The inspection method according to claim 7 or 8, further comprising a step of deforming the outer frame constituting body in accordance with a size of the opening when passing through the opening of the inspection object.
JP2018057191A 2018-03-23 2018-03-23 Assembling method of unmanned flight inspection machine and inspection method of inspection object using unmanned flight inspection machine Active JP6990612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018057191A JP6990612B2 (en) 2018-03-23 2018-03-23 Assembling method of unmanned flight inspection machine and inspection method of inspection object using unmanned flight inspection machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018057191A JP6990612B2 (en) 2018-03-23 2018-03-23 Assembling method of unmanned flight inspection machine and inspection method of inspection object using unmanned flight inspection machine

Publications (2)

Publication Number Publication Date
JP2019167017A true JP2019167017A (en) 2019-10-03
JP6990612B2 JP6990612B2 (en) 2022-01-12

Family

ID=68107967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057191A Active JP6990612B2 (en) 2018-03-23 2018-03-23 Assembling method of unmanned flight inspection machine and inspection method of inspection object using unmanned flight inspection machine

Country Status (1)

Country Link
JP (1) JP6990612B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081161A (en) * 2019-11-22 2021-05-27 三菱パワー株式会社 Boiler inside inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211995A (en) * 2003-01-07 2004-07-29 Mitsubishi Heavy Ind Ltd Inspection system of sealed space
US20150377405A1 (en) * 2014-06-25 2015-12-31 Pearson Engineering Ltd Inspection systems
JP2016523759A (en) * 2013-06-11 2016-08-12 エコール ポリテクニク フェデラル ドゥ ローザンヌ(ウ Vertical takeoff and landing aircraft
EP3239048A1 (en) * 2016-04-30 2017-11-01 Flyability SA Unmanned aerial vehicle and protective outer cage therefor
US20180002035A1 (en) * 2015-10-09 2018-01-04 Carl Michael NEELY Self-stabilizing spherical unmanned aeriel vehicle camera assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211995A (en) * 2003-01-07 2004-07-29 Mitsubishi Heavy Ind Ltd Inspection system of sealed space
JP2016523759A (en) * 2013-06-11 2016-08-12 エコール ポリテクニク フェデラル ドゥ ローザンヌ(ウ Vertical takeoff and landing aircraft
US20150377405A1 (en) * 2014-06-25 2015-12-31 Pearson Engineering Ltd Inspection systems
US20180002035A1 (en) * 2015-10-09 2018-01-04 Carl Michael NEELY Self-stabilizing spherical unmanned aeriel vehicle camera assembly
EP3239048A1 (en) * 2016-04-30 2017-11-01 Flyability SA Unmanned aerial vehicle and protective outer cage therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081161A (en) * 2019-11-22 2021-05-27 三菱パワー株式会社 Boiler inside inspection method

Also Published As

Publication number Publication date
JP6990612B2 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
US20170050726A1 (en) Flying machine frame structural body, flying machine, flying machine usage method
US20170174336A1 (en) Aerial vehicle
EP3543111B1 (en) Self-tightening rotor
CN107628248A (en) A kind of multi-rotor unmanned aerial vehicle robot arm device
EP3290344B1 (en) Toroidal support structures
US11673648B2 (en) Ducted fan assembly with curved stators
CN104443380B (en) A kind of eight word track flapping wing mechanism and micro flapping wing air vehicles
US9764835B1 (en) Aerial vehicle configuration
ITTO20080109A1 (en) AIR-TRANSHARED RADAR, IN PARTICULAR FOR DRONE.
CN209617463U (en) A kind of anti-crash protective device of unmanned plane
JP2019167017A (en) Method for assembling unmanned flying inspection machine and method for inspecting inspection object using the unmanned flying inspection machine
CN203657815U (en) Middle and inner ring integrated three-axis high-precision simulation turntable structure
ES2646128T3 (en) Modular rotor hub system of rotor aircraft
US10514060B2 (en) Inboard bearing assemblies with anti-rotation features
JP6696825B2 (en) Flight equipment
US9452830B2 (en) Constant velocity drive for tilt rotor assembly
US20190039725A1 (en) Unmanned air vehicle
US11391239B2 (en) Flying vehicle and propulsion device thereof
JP7425666B2 (en) flying vehicle with outer shell
JP7295829B2 (en) Vibration Prevention and Shock Absorption Device for Rotating Spherical Frame for Unmanned Aerial Vehicle Part 2
CN210284606U (en) Unmanned aerial vehicle wing is with flexible protective structure
JP7174988B2 (en) moving body
CN112758318A (en) Unmanned plane
CN207225665U (en) A kind of new unmanned plane for being used for agricultural and pouring based on Internet of Things
CN213473511U (en) Rotor fixing piece for unmanned aerial vehicle

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211206

R150 Certificate of patent or registration of utility model

Ref document number: 6990612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150