JP2019166514A - Carbon dioxide separation device and carbon dioxide separation method - Google Patents

Carbon dioxide separation device and carbon dioxide separation method Download PDF

Info

Publication number
JP2019166514A
JP2019166514A JP2018058735A JP2018058735A JP2019166514A JP 2019166514 A JP2019166514 A JP 2019166514A JP 2018058735 A JP2018058735 A JP 2018058735A JP 2018058735 A JP2018058735 A JP 2018058735A JP 2019166514 A JP2019166514 A JP 2019166514A
Authority
JP
Japan
Prior art keywords
carbon dioxide
adsorbent
adsorption
desorption
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018058735A
Other languages
Japanese (ja)
Inventor
古川 秀樹
Hideki Furukawa
秀樹 古川
高城 敏己
Toshimi Takagi
敏己 高城
杉田 澄雄
Sumio Sugita
澄雄 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2018058735A priority Critical patent/JP2019166514A/en
Publication of JP2019166514A publication Critical patent/JP2019166514A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a carbon dioxide separation device that can separate carbon dioxide from a gas mixture containing carbon dioxide in a short time at low cost.SOLUTION: A carbon dioxide separation device includes: a carbon dioxide adsorbent capable of adsorbing and desorbing carbon dioxide with a temperature difference; and an electromagnetic wave irradiation part for irradiating the carbon dioxide adsorbent with an electromagnetic wave and heat it.SELECTED DRAWING: Figure 1

Description

本発明は、二酸化炭素分離装置及び二酸化炭素分離方法に関する。   The present invention relates to a carbon dioxide separator and a carbon dioxide separation method.

混合ガス中の二酸化炭素をゼオライト等の吸着剤に吸着させた後に、吸着剤を加熱することにより二酸化炭素を脱着させて、混合ガスから二酸化炭素を分離する熱スイング式の分離方法が知られている。例えば特許文献1には、高温のガスを用いた加熱や伝導性フィラメントの電気抵抗加熱により吸着剤を加熱して二酸化炭素を脱着させる熱スイング式の分離方法が開示されている。しかしながら、特許文献1に開示の方法は、吸着剤の加熱に時間を要するため、エネルギーの消費量が多く高コストとなるおそれがあった。   A heat swing type separation method is known in which carbon dioxide in a mixed gas is adsorbed onto an adsorbent such as zeolite, and then the adsorbent is heated to desorb carbon dioxide to separate the carbon dioxide from the mixed gas. Yes. For example, Patent Document 1 discloses a thermal swing type separation method in which an adsorbent is heated by heating using a high-temperature gas or electric resistance heating of a conductive filament to desorb carbon dioxide. However, since the method disclosed in Patent Document 1 requires time for heating the adsorbent, there is a risk that the energy consumption is large and the cost is high.

特許第5904420号公報Japanese Patent No. 5904420

本発明は、二酸化炭素を含有する混合ガスから二酸化炭素を短時間且つ低コストで分離することが可能な二酸化炭素分離装置及び二酸化炭素分離方法を提供することを課題とする。   An object of the present invention is to provide a carbon dioxide separator and a carbon dioxide separation method capable of separating carbon dioxide from a mixed gas containing carbon dioxide in a short time and at low cost.

本発明の一態様に係る二酸化炭素分離装置は、温度差によって二酸化炭素の吸着及び脱着が可能な二酸化炭素吸着剤と、二酸化炭素吸着剤に電磁波を照射して加熱する電磁波照射部と、を備えることを要旨とする。   A carbon dioxide separator according to one embodiment of the present invention includes a carbon dioxide adsorbent capable of adsorbing and desorbing carbon dioxide according to a temperature difference, and an electromagnetic wave irradiation unit that irradiates and heats the carbon dioxide adsorbent with an electromagnetic wave. This is the gist.

本発明の他の態様に係る二酸化炭素分離方法は、温度差によって二酸化炭素の吸着及び脱着が可能な二酸化炭素吸着剤に、二酸化炭素を含有する混合ガスを接触させて、二酸化炭素吸着剤に二酸化炭素を吸着させる吸着工程と、吸着工程で二酸化炭素を吸着した二酸化炭素吸着剤に電磁波を照射して加熱し、二酸化炭素吸着剤から二酸化炭素を脱着させる脱着工程と、を備えることを要旨とする。   In the carbon dioxide separation method according to another aspect of the present invention, a carbon dioxide adsorbent capable of adsorbing and desorbing carbon dioxide according to a temperature difference is brought into contact with a mixed gas containing carbon dioxide, and the carbon dioxide adsorbent is subjected to carbon dioxide. The gist is provided with an adsorption process for adsorbing carbon, and a desorption process for irradiating and heating the carbon dioxide adsorbent adsorbing carbon dioxide in the adsorption process to desorb carbon dioxide from the carbon dioxide adsorbent. .

本発明によれば、二酸化炭素を含有する混合ガスから二酸化炭素を短時間且つ低コストで分離することができる。   According to the present invention, carbon dioxide can be separated from a mixed gas containing carbon dioxide in a short time and at low cost.

本発明に係る二酸化炭素分離装置の一実施形態の構造を模式的に示す概念図である。It is a conceptual diagram which shows typically the structure of one Embodiment of the carbon dioxide separator which concerns on this invention. 図1の二酸化炭素分離装置が備えるゼオライト及び吸着剤容器の図であり、(a)が、ゼオライトを収容した吸着剤容器の平面図であり、(b)が、ゼオライトを収容した吸着剤容器の断面図である。It is a figure of the zeolite and adsorbent container with which the carbon dioxide separator of FIG. 1 is equipped, (a) is a top view of the adsorbent container which accommodated the zeolite, (b) is the adsorbent container which accommodated the zeolite. It is sectional drawing. ゼオライトに二酸化炭素を吸着させる吸着工程を説明する図である。It is a figure explaining the adsorption | suction process which makes a zeolite adsorb | suck a carbon dioxide. ゼオライトから二酸化炭素を脱着させる脱着工程を説明する図である。It is a figure explaining the desorption process of desorbing carbon dioxide from a zeolite. 脱着させた二酸化炭素を含有する濃縮二酸化炭素を濃縮二酸化炭素保管室に送る送気工程を説明する図である。It is a figure explaining the air supply process which sends the concentrated carbon dioxide containing the desorbed carbon dioxide to a concentrated carbon dioxide storage chamber.

本発明の一実施形態を、図面を参照しながら詳細に説明する。図1の二酸化炭素分離装置は、温度差によって二酸化炭素の吸着及び脱着が可能な二酸化炭素吸着剤1と、二酸化炭素吸着剤1に電磁波を照射して加熱する電磁波照射部10と、二酸化炭素吸着剤1を収容する吸着剤容器20と、吸着剤容器20が内部に配されて二酸化炭素吸着剤1における二酸化炭素の吸着及び脱着が行われる吸脱着室30と、を備えている。   An embodiment of the present invention will be described in detail with reference to the drawings. 1 includes a carbon dioxide adsorbent 1 capable of adsorbing and desorbing carbon dioxide according to a temperature difference, an electromagnetic wave irradiation unit 10 that irradiates and heats the carbon dioxide adsorbent 1 with an electromagnetic wave, and carbon dioxide adsorption. An adsorbent container 20 for storing the agent 1 and an adsorption / desorption chamber 30 in which the adsorbent container 20 is arranged to perform adsorption and desorption of carbon dioxide in the carbon dioxide adsorbent 1 are provided.

二酸化炭素吸着剤1の種類は、温度差によって二酸化炭素の吸着及び脱着が可能であれば特に限定されるものではなく、例えば、ゼオライト(人工ゼオライト、天然ゼオライト)、活性炭、黒鉛、カーボンファイバー、カーボンナノチューブ、分子篩、金属酸化物(例えばアルミナ、シリカ)が挙げられる。これらの二酸化炭素吸着剤の中では、ゼオライトがより好ましい。また、これらの二酸化炭素吸着剤は、1種を単独で用いてもよいし、2種以上を組み合わせて併用してもよい。
二酸化炭素吸着剤1の形状は特に限定されるものではなく、例えば、粉状、粒状、塊状、繊維状、棒状、ペレット形状が挙げられるが、これらの形状の中ではペレット形状がより好ましい。
The type of carbon dioxide adsorbent 1 is not particularly limited as long as carbon dioxide can be adsorbed and desorbed depending on the temperature difference. For example, zeolite (artificial zeolite, natural zeolite), activated carbon, graphite, carbon fiber, carbon Nanotubes, molecular sieves, metal oxides (eg, alumina, silica) can be mentioned. Among these carbon dioxide adsorbents, zeolite is more preferable. Moreover, these carbon dioxide adsorbents may be used alone or in combination of two or more.
The shape of the carbon dioxide adsorbent 1 is not particularly limited, and examples thereof include powder, granule, lump, fiber, rod, and pellet. Among these shapes, the pellet shape is more preferable.

二酸化炭素吸着剤1を収容する吸着剤容器20の形状は、二酸化炭素吸着剤1を収容可能であれば特に限定されるものではなく、例えば、円筒形、角筒形が挙げられる。ただし、吸着剤容器20の少なくとも一部が、気体透過性を有する素材で構成されていることがより好ましい。気体透過性を有する素材としては、例えば、多孔質材料、網状材料が挙げられる。   The shape of the adsorbent container 20 that accommodates the carbon dioxide adsorbent 1 is not particularly limited as long as the carbon dioxide adsorbent 1 can be accommodated, and examples thereof include a cylindrical shape and a rectangular tube shape. However, it is more preferable that at least a part of the adsorbent container 20 is made of a material having gas permeability. Examples of the material having gas permeability include a porous material and a net-like material.

また、吸着剤容器20の材質は特に限定されるものではないが、照射される電磁波に対して耐性を有するものであることがより好ましい。例えば、照射される電磁波がマイクロ波である場合には、吸着剤容器20の材質をポリテトラフルオロエチレン(PTFE)とすることがより好ましい。
図2は、二酸化炭素吸着剤1としてペレット形状のゼオライトを収容した吸着剤容器20の図であるが、この吸着剤容器20はPTFE製の円筒形容器であり、その底部20aは網目状に形成されていて気体透過性を有している。
In addition, the material of the adsorbent container 20 is not particularly limited, but it is more preferable that the adsorbent container 20 has resistance to the electromagnetic waves to be irradiated. For example, when the irradiated electromagnetic wave is a microwave, it is more preferable that the material of the adsorbent container 20 is polytetrafluoroethylene (PTFE).
FIG. 2 is a view of an adsorbent container 20 containing pellet-shaped zeolite as the carbon dioxide adsorbent 1. This adsorbent container 20 is a cylindrical container made of PTFE, and its bottom portion 20a is formed in a mesh shape. It is gas permeable.

吸着剤容器20は、吸脱着室30内に設置されたターンテーブル22上に、スペーサー24を介して載置されている。図1に示すように、スペーサー24によってターンテーブル22の上面と吸着剤容器20の底部20aとの間にスペースが形成されるので、吸着剤容器20の底部20aの気体透過性が保たれる。吸脱着室30は気密性を有するとともに、電磁波に対して耐性を有する。   The adsorbent container 20 is placed on a turntable 22 installed in the adsorption / desorption chamber 30 via a spacer 24. As shown in FIG. 1, since a space is formed between the upper surface of the turntable 22 and the bottom 20a of the adsorbent container 20 by the spacer 24, the gas permeability of the bottom 20a of the adsorbent container 20 is maintained. The adsorption / desorption chamber 30 is airtight and resistant to electromagnetic waves.

電磁波の種類は、照射することにより二酸化炭素吸着剤1を加熱することができるならば、特に限定されるものではなく、ガンマ線、X 線、紫外線、可視光線、赤外線、電波、マイクロ波、超短波、短波、中波、長波が挙げられるが、これらの電磁波の中ではマイクロ波がより好ましい。
マイクロ波とは、一般に、波長が1mから100μm、周波数が300MHzから3THzの電波を指し、この範囲には、デシメートル波、センチメートル波、ミリメートル波、サブミリ波が含まれる。
The type of electromagnetic wave is not particularly limited as long as the carbon dioxide adsorbent 1 can be heated by irradiation, and is not limited to gamma rays, X-rays, ultraviolet rays, visible rays, infrared rays, radio waves, microwaves, ultrashort waves, A short wave, a medium wave, and a long wave are mentioned, but among these electromagnetic waves, a microwave is more preferable.
The microwave generally refers to a radio wave having a wavelength of 1 to 100 μm and a frequency of 300 MHz to 3 THz, and this range includes a decimeter wave, a centimeter wave, a millimeter wave, and a submillimeter wave.

吸脱着室30には電磁波照射部10が接続されており、電磁波照射部10から発せられた電磁波が二酸化炭素吸着剤1に照射可能とされている。電磁波の照射により、二酸化炭素吸着剤1が加熱される。
以下、電磁波がマイクロ波である場合を例にして、電磁波照射部10を説明する。電磁波照射部10は、マイクロ波を発生させるマグネトロンを有するマイクロ波電源12と、マグネトロンを保護する装置であるアイソレーター14と、入射波及び反射波の方向を制御する整合器16と、マイクロ波を伝送する導波管18と、を備えている。
An electromagnetic wave irradiation unit 10 is connected to the adsorption / desorption chamber 30, and an electromagnetic wave emitted from the electromagnetic wave irradiation unit 10 can be irradiated to the carbon dioxide adsorbent 1. The carbon dioxide adsorbent 1 is heated by the electromagnetic wave irradiation.
Hereinafter, the electromagnetic wave irradiation unit 10 will be described by taking the case where the electromagnetic wave is a microwave as an example. The electromagnetic wave irradiation unit 10 transmits a microwave, a microwave power source 12 having a magnetron that generates a microwave, an isolator 14 that protects the magnetron, a matching unit 16 that controls directions of incident waves and reflected waves, and a microwave. And a waveguide 18 to be provided.

図1に示すように、マイクロ波電源12、アイソレーター14、整合器16、導波管18の順で並んでおり、導波管18の一端部が吸脱着室30に接続されている。そして、マイクロ波電源12で発生させたマイクロ波は導波管18を通って吸脱着室30に入り、吸脱着室30内の吸着剤容器20に収容された二酸化炭素吸着剤1に照射されるようになっている。   As shown in FIG. 1, the microwave power source 12, the isolator 14, the matching unit 16, and the waveguide 18 are arranged in this order, and one end of the waveguide 18 is connected to the adsorption / desorption chamber 30. The microwave generated by the microwave power source 12 enters the adsorption / desorption chamber 30 through the waveguide 18 and is irradiated to the carbon dioxide adsorbent 1 accommodated in the adsorbent container 20 in the adsorption / desorption chamber 30. It is like that.

なお、二酸化炭素吸着剤1に電磁波を照射して二酸化炭素吸着剤1を加熱する際には、ターンテーブル22を回転させてもよい。モーター26を用いてターンテーブル22を回転させながら電磁波を照射することによって、二酸化炭素吸着剤1をより均一に加熱することができる。   When the carbon dioxide adsorbent 1 is irradiated with electromagnetic waves to heat the carbon dioxide adsorbent 1, the turntable 22 may be rotated. By irradiating the electromagnetic wave while rotating the turntable 22 using the motor 26, the carbon dioxide adsorbent 1 can be heated more uniformly.

吸脱着室30は、吸脱着室30内の気体を撹拌する撹拌機32を備えている。また、吸脱着室30には複数(図1の例では3本)の配管42、44、46が接続されており、それぞれの配管42、44、46にはバルブ42a、44a、46a、46bが設けられている。そして、モーター34を用いた撹拌機32の駆動とバルブ42a、44a、46a、46bの開閉を組み合わせることにより、外気を吸脱着室30内に導入したり、吸脱着室30内の気体を室外に排出したりすることが可能となっている。   The adsorption / desorption chamber 30 includes a stirrer 32 for agitating the gas in the adsorption / desorption chamber 30. A plurality (three in the example of FIG. 1) of pipes 42, 44, 46 are connected to the adsorption / desorption chamber 30, and valves 42a, 44a, 46a, 46b are connected to the pipes 42, 44, 46, respectively. Is provided. Then, by combining the driving of the stirrer 32 using the motor 34 and the opening and closing of the valves 42a, 44a, 46a, 46b, the outside air is introduced into the adsorption / desorption chamber 30 or the gas in the adsorption / desorption chamber 30 is moved outside. It is possible to discharge.

二酸化炭素分離装置に濃縮二酸化炭素保管室40を設けて、複数の配管42、44、46のうち1本の配管46を濃縮二酸化炭素保管室40に接続させてもよい。詳細は後述するが、濃縮二酸化炭素保管室40を設ければ、吸脱着室30内で製造した濃縮二酸化炭素を配管46を介して濃縮二酸化炭素保管室40に送気して、濃縮二酸化炭素保管室40に保管することができる。   The concentrated carbon dioxide storage chamber 40 may be provided in the carbon dioxide separator, and one of the plurality of pipes 42, 44, 46 may be connected to the concentrated carbon dioxide storage chamber 40. Although details will be described later, if the concentrated carbon dioxide storage chamber 40 is provided, the concentrated carbon dioxide produced in the adsorption / desorption chamber 30 is supplied to the concentrated carbon dioxide storage chamber 40 via the pipe 46 to store the concentrated carbon dioxide. It can be stored in the chamber 40.

次に、図1の二酸化炭素分離装置を用いて、二酸化炭素を含有する混合ガスから二酸化炭素を分離して濃縮二酸化炭素を製造する方法について説明する。なお、電磁波がマイクロ波であり、二酸化炭素吸着剤1がゼオライトであり、二酸化炭素を含有する混合ガスが空気(大気)であり、吸脱着室30に接続された配管の数が3本である場合を例にして、説明を行う。   Next, a method for producing concentrated carbon dioxide by separating carbon dioxide from a mixed gas containing carbon dioxide using the carbon dioxide separator of FIG. 1 will be described. The electromagnetic waves are microwaves, the carbon dioxide adsorbent 1 is zeolite, the mixed gas containing carbon dioxide is air (atmosphere), and the number of pipes connected to the adsorption / desorption chamber 30 is three. The case will be described as an example.

吸脱着室30に接続された3本の配管42、44、46のうち1本の配管46は、濃縮二酸化炭素保管室40に接続しており、吸脱着室30内で製造した濃縮二酸化炭素を濃縮二酸化炭素保管室40に送気し、さらに濃縮二酸化炭素保管室40から濃縮二酸化炭素を室外に取り出すための配管46である。残りの2本の配管42、44は外気に接続しており、室外から吸脱着室30に空気を導入するための配管42と、吸脱着室30内の気体を室外に排出するための配管44である。   Of the three pipes 42, 44, 46 connected to the adsorption / desorption chamber 30, one pipe 46 is connected to the concentrated carbon dioxide storage chamber 40, and the concentrated carbon dioxide produced in the adsorption / desorption chamber 30 is used. This is a pipe 46 for supplying air to the concentrated carbon dioxide storage chamber 40 and for taking out the concentrated carbon dioxide from the concentrated carbon dioxide storage chamber 40 to the outside. The remaining two pipes 42 and 44 are connected to the outside air, and a pipe 42 for introducing air from the outside to the adsorption / desorption chamber 30 and a pipe 44 for discharging the gas in the adsorption / desorption chamber 30 to the outside. It is.

まず、濃縮二酸化炭素を濃縮二酸化炭素保管室40に送気するための配管46のバルブ46a(吸脱着室30と濃縮二酸化炭素保管室40の間に配置されたバルブ46a)を閉状態とするとともに、室外から吸脱着室30に空気を導入するための配管42のバルブ42aと、吸脱着室30内の気体を室外に排出するための配管44のバルブ44aを開状態とする。また、吸脱着室30に接続された導波管18の一端部(吸脱着室30と導波管18の接続部分)に設けられた開閉シャッター36を、閉状態とする。   First, the valve 46a (the valve 46a disposed between the adsorption / desorption chamber 30 and the concentrated carbon dioxide storage chamber 40) of the pipe 46 for supplying the concentrated carbon dioxide to the concentrated carbon dioxide storage chamber 40 is closed. Then, the valve 42a of the pipe 42 for introducing air into the adsorption / desorption chamber 30 from the outside and the valve 44a of the pipe 44 for discharging the gas in the adsorption / desorption chamber 30 to the outside are opened. Further, the open / close shutter 36 provided at one end of the waveguide 18 connected to the adsorption / desorption chamber 30 (a connection portion between the adsorption / desorption chamber 30 and the waveguide 18) is closed.

モーター34により撹拌機32を駆動して、吸脱着室30内に気流を生じさせる。これにより、室外の空気が配管42を介して吸脱着室30内に流れ込み、図3に示すように、空気が二酸化炭素吸着剤1に接触する。このとき、空気中の二酸化炭素の一部又は全部が二酸化炭素吸着剤1に吸着される(吸着工程)。すなわち、空気から二酸化炭素が分離される。二酸化炭素吸着剤1に接触し二酸化炭素が分離された後の空気は、配管44を介して吸脱着室30外に排出される。なお、図3において矢印は空気の流れを示している。   The agitator 32 is driven by the motor 34 to generate an air flow in the adsorption / desorption chamber 30. Thereby, outdoor air flows into the adsorption / desorption chamber 30 through the pipe 42, and the air contacts the carbon dioxide adsorbent 1 as shown in FIG. 3. At this time, part or all of carbon dioxide in the air is adsorbed to the carbon dioxide adsorbent 1 (adsorption step). That is, carbon dioxide is separated from the air. The air after coming into contact with the carbon dioxide adsorbent 1 and separating the carbon dioxide is discharged out of the adsorption / desorption chamber 30 through the pipe 44. In FIG. 3, arrows indicate the air flow.

次に、撹拌機32の回転を停止させるとともに、配管42のバルブ42aと配管44のバルブ44aを閉状態とする。また、開閉シャッター36を開状態とする。そして、電磁波照射部10のマイクロ波電源12を立ち上げてマイクロ波を発生させる。マイクロ波電源12の運転条件は、周波数2450MHz、出力500〜1000Wである。図4に示すように、発生したマイクロ波50は、アイソレーター14、整合器16、導波管18を通って吸脱着室30に入り、二酸化炭素吸着剤1に照射される。   Next, the rotation of the agitator 32 is stopped, and the valve 42a of the pipe 42 and the valve 44a of the pipe 44 are closed. Further, the open / close shutter 36 is opened. And the microwave power supply 12 of the electromagnetic wave irradiation part 10 is started, and a microwave is generated. The operating conditions of the microwave power source 12 are a frequency of 2450 MHz and an output of 500 to 1000 W. As shown in FIG. 4, the generated microwave 50 enters the adsorption / desorption chamber 30 through the isolator 14, the matching unit 16, and the waveguide 18, and is irradiated onto the carbon dioxide adsorbent 1.

なお、撹拌機32を回転させながらマイクロ波50を照射すれば、吸脱着室30内にマイクロ波50をより均一に拡散させることができる。そして、撹拌機32の回転と同時にターンテーブル22も回転させながらマイクロ波50を照射すれば、二酸化炭素吸着剤1にマイクロ波50をより均一に照射することができる。   If the microwave 50 is irradiated while rotating the stirrer 32, the microwave 50 can be diffused more uniformly in the adsorption / desorption chamber 30. If the microwave 50 is irradiated while rotating the turntable 22 simultaneously with the rotation of the stirrer 32, the carbon dioxide adsorbent 1 can be irradiated with the microwave 50 more uniformly.

マイクロ波50が照射された二酸化炭素吸着剤1は、二酸化炭素吸着剤1自身及び二酸化炭素吸着剤1が含有する水分がマイクロ波50により振動するので、温度が上昇する。加熱温度は、二酸化炭素吸着剤1の種類等によっても異なるが、例えばゼオライトの場合には、二酸化炭素吸着剤1の温度が60℃以上180℃以下になるように加熱することがより好ましい。   The carbon dioxide adsorbent 1 irradiated with the microwave 50 rises in temperature because the water contained in the carbon dioxide adsorbent 1 itself and the carbon dioxide adsorbent 1 are vibrated by the microwave 50. The heating temperature varies depending on the type of the carbon dioxide adsorbent 1 and the like. For example, in the case of zeolite, it is more preferable to heat the carbon dioxide adsorbent 1 so that the temperature is 60 ° C. or higher and 180 ° C. or lower.

所定の温度まで昇温した後に、その温度で例えば1分間以上5分間以下の時間保持することにより、二酸化炭素吸着剤1に吸着されていた二酸化炭素が脱着され、吸脱着室30内に放出される(脱着工程)。その結果、大気よりも二酸化炭素濃度の高い空気である濃縮二酸化炭素が、吸脱着室30内に製造される。   After the temperature is raised to a predetermined temperature, the carbon dioxide adsorbed on the carbon dioxide adsorbent 1 is desorbed and released into the adsorption / desorption chamber 30 by holding the temperature for 1 minute to 5 minutes, for example. (Desorption process). As a result, concentrated carbon dioxide that is air having a higher carbon dioxide concentration than the atmosphere is produced in the adsorption / desorption chamber 30.

マイクロ波50の照射が完了したら、開閉シャッター36を閉状態としてマイクロ波50を遮断する。そして、吸脱着室30と濃縮二酸化炭素保管室40の間に配置されたバルブ46aを開状態とするとともに、撹拌機32を回転させる。すると、図5に示すように、吸脱着室30内の濃縮二酸化炭素が配管46を介して濃縮二酸化炭素保管室40に送られ、濃縮二酸化炭素保管室40内に貯蔵される(送気工程)。濃縮二酸化炭素の濃縮二酸化炭素保管室40への送気が終了したら、バルブ46aを閉状態とする。   When the irradiation of the microwave 50 is completed, the microwave 50 is blocked by closing the open / close shutter 36. Then, the valve 46a disposed between the adsorption / desorption chamber 30 and the concentrated carbon dioxide storage chamber 40 is opened, and the stirrer 32 is rotated. Then, as shown in FIG. 5, the concentrated carbon dioxide in the adsorption / desorption chamber 30 is sent to the concentrated carbon dioxide storage chamber 40 via the pipe 46 and stored in the concentrated carbon dioxide storage chamber 40 (air supply process). . When the supply of the concentrated carbon dioxide to the concentrated carbon dioxide storage chamber 40 is completed, the valve 46a is closed.

このとき、吸脱着室30内の二酸化炭素吸着剤1は加熱された状態であるので、加熱された二酸化炭素吸着剤1を冷却して、二酸化炭素を再び吸着可能な状態とする。冷却方法は特に限定されるものではなく、自然放冷で冷却してもよいし、冷却装置により冷却してもよい。すなわち、本実施形態の二酸化炭素分離装置は、吸脱着室30内の二酸化炭素吸着剤1を冷却する冷却装置を備えていてもよい。   At this time, since the carbon dioxide adsorbent 1 in the adsorption / desorption chamber 30 is in a heated state, the heated carbon dioxide adsorbent 1 is cooled so that carbon dioxide can be adsorbed again. The cooling method is not particularly limited, and may be naturally cooled or may be cooled by a cooling device. That is, the carbon dioxide separator of this embodiment may include a cooling device that cools the carbon dioxide adsorbent 1 in the adsorption / desorption chamber 30.

濃縮二酸化炭素保管室40内の濃縮二酸化炭素の二酸化炭素濃度を、二酸化炭素濃度計等を用いて測定し、所望の二酸化炭素濃度となるまで、上記の吸着工程、脱着工程、及び送気工程を繰り返し実施して、二酸化炭素の濃縮を行う。大気の二酸化炭素濃度は約400ppmであるが、濃縮二酸化炭素保管室40内の濃縮二酸化炭素の二酸化炭素濃度が例えば1000〜2000ppmになるまで、上記の吸着工程、脱着工程、及び送気工程を繰り返し実施する。   The carbon dioxide concentration of the concentrated carbon dioxide in the concentrated carbon dioxide storage chamber 40 is measured using a carbon dioxide concentration meter or the like, and the above adsorption process, desorption process, and air supply process are performed until the desired carbon dioxide concentration is reached. Repeatedly, carbon dioxide is concentrated. The carbon dioxide concentration in the atmosphere is about 400 ppm, but the above-described adsorption process, desorption process, and air supply process are repeated until the carbon dioxide concentration of the concentrated carbon dioxide in the concentrated carbon dioxide storage chamber 40 reaches, for example, 1000 to 2000 ppm. carry out.

濃縮二酸化炭素保管室40内の濃縮二酸化炭素の二酸化炭素濃度が所望の濃度となったら、配管46のうち濃縮二酸化炭素保管室40よりも下流側の部分に設置されたバルブ46bを開状態として、濃縮二酸化炭素保管室40内の濃縮二酸化炭素を室外に取り出す。濃縮二酸化炭素の取り出しは、濃縮二酸化炭素保管室40内の二酸化炭素濃度が例えば大気の二酸化炭素濃度と同程度となるまで行う。取り出し時間は数分程度である。   When the carbon dioxide concentration of the concentrated carbon dioxide in the concentrated carbon dioxide storage chamber 40 reaches a desired concentration, the valve 46b installed in the downstream portion of the piping 46 from the concentrated carbon dioxide storage chamber 40 is opened, The concentrated carbon dioxide in the concentrated carbon dioxide storage room 40 is taken out of the room. Extraction of the concentrated carbon dioxide is performed until the carbon dioxide concentration in the concentrated carbon dioxide storage chamber 40 becomes approximately the same as the carbon dioxide concentration in the atmosphere, for example. The take-out time is about several minutes.

このように、本実施形態の二酸化炭素分離装置を用いれば、吸脱着室30内の二酸化炭素吸着剤1を短時間で加熱することができるので、エネルギーの消費量が少ない。よって、熱スイング式により、二酸化炭素を含有する混合ガスから二酸化炭素を短時間且つ低コストで分離して、濃縮二酸化炭素を製造することが可能である。   Thus, if the carbon dioxide separator of this embodiment is used, the carbon dioxide adsorbent 1 in the adsorption / desorption chamber 30 can be heated in a short time, so that the amount of energy consumption is small. Therefore, it is possible to produce concentrated carbon dioxide by separating carbon dioxide from a mixed gas containing carbon dioxide in a short time and at low cost by the heat swing method.

製造した濃縮二酸化炭素の用途は特に限定されるものではないが、例えば、農作物の栽培用途に用いることができる。すなわち、ビニールハウス等の農業用ハウス内に濃縮二酸化炭素を供給して植物の光合成に利用することにより、農作物の収率や品質を向上させることができる。あるいは、製造した濃縮二酸化炭素は、例えばドライアイスの原料として利用することもできる。   Although the use of the manufactured concentrated carbon dioxide is not specifically limited, For example, it can be used for the cultivation use of agricultural products. That is, the yield and quality of crops can be improved by supplying concentrated carbon dioxide into an agricultural house such as a vinyl house and using it for plant photosynthesis. Alternatively, the produced concentrated carbon dioxide can be used as a raw material for dry ice, for example.

さらに、本実施形態の二酸化炭素分離装置の用途は、濃縮二酸化炭素の製造用途に限定されるものではなく、他の用途に使用してもよい。例えば、自動車、工場、焼却炉等から排出される各種の排ガスから二酸化炭素を除去する排ガス処理装置として使用することもできる。また、建築物(住宅、ビルディング等)、自動車、列車、船舶、航空機等の室内の空気から二酸化炭素を除去する空気浄化装置として使用することもできる。   Furthermore, the use of the carbon dioxide separator of the present embodiment is not limited to the use for producing concentrated carbon dioxide, and may be used for other uses. For example, it can also be used as an exhaust gas treatment device that removes carbon dioxide from various exhaust gases discharged from automobiles, factories, incinerators, and the like. Moreover, it can also be used as an air purification device that removes carbon dioxide from indoor air of buildings (housing, buildings, etc.), automobiles, trains, ships, aircrafts, and the like.

1 二酸化炭素吸着剤
10 電磁波照射部
20 吸着剤容器
20a 底部
30 吸脱着室
40 濃縮二酸化炭素保管室
50 マイクロ波
DESCRIPTION OF SYMBOLS 1 Carbon dioxide adsorbent 10 Electromagnetic wave irradiation part 20 Adsorbent container 20a Bottom part 30 Adsorption / desorption room 40 Concentrated carbon dioxide storage room 50 Microwave

Claims (9)

温度差によって二酸化炭素の吸着及び脱着が可能な二酸化炭素吸着剤と、前記二酸化炭素吸着剤に電磁波を照射して加熱する電磁波照射部と、を備える二酸化炭素分離装置。   A carbon dioxide separator comprising: a carbon dioxide adsorbent capable of adsorbing and desorbing carbon dioxide according to a temperature difference; and an electromagnetic wave irradiation unit that irradiates and heats the carbon dioxide adsorbent with electromagnetic waves. 前記二酸化炭素吸着剤がゼオライトである請求項1に記載の二酸化炭素分離装置。   The carbon dioxide separator according to claim 1, wherein the carbon dioxide adsorbent is zeolite. 前記電磁波がマイクロ波である請求項1又は請求項2に記載の二酸化炭素分離装置。   The carbon dioxide separator according to claim 1 or 2, wherein the electromagnetic wave is a microwave. 前記二酸化炭素吸着剤がペレット形状をなしている請求項1〜3のいずれか一項に記載の二酸化炭素分離装置。   The carbon dioxide separator according to any one of claims 1 to 3, wherein the carbon dioxide adsorbent has a pellet shape. 前記二酸化炭素吸着剤を収容する吸着剤容器と、前記吸着剤容器が内部に配されて前記二酸化炭素吸着剤における二酸化炭素の吸着及び脱着が行われる吸脱着室と、をさらに備え、前記電磁波照射部は、前記二酸化炭素吸着剤に電磁波を照射可能に前記吸脱着室に接続されている請求項1〜4のいずれか一項に記載の二酸化炭素分離装置。   An adsorbent container for containing the carbon dioxide adsorbent; and an adsorption / desorption chamber in which the adsorbent container is disposed to perform adsorption and desorption of carbon dioxide in the carbon dioxide adsorbent. The carbon dioxide separator according to any one of claims 1 to 4, wherein the unit is connected to the adsorption / desorption chamber so that the carbon dioxide adsorbent can be irradiated with electromagnetic waves. 前記吸着剤容器の少なくとも一部が、気体透過性を有する素材で構成されている請求項5に記載の二酸化炭素分離装置。   The carbon dioxide separator according to claim 5, wherein at least a part of the adsorbent container is made of a material having gas permeability. 温度差によって二酸化炭素の吸着及び脱着が可能な二酸化炭素吸着剤に、二酸化炭素を含有する混合ガスを接触させて、前記二酸化炭素吸着剤に前記二酸化炭素を吸着させる吸着工程と、
前記吸着工程で二酸化炭素を吸着した前記二酸化炭素吸着剤に電磁波を照射して加熱し、前記二酸化炭素吸着剤から二酸化炭素を脱着させる脱着工程と、
を備える二酸化炭素分離方法。
An adsorption step in which a mixed gas containing carbon dioxide is brought into contact with a carbon dioxide adsorbent capable of adsorbing and desorbing carbon dioxide according to a temperature difference, and the carbon dioxide adsorbent adsorbs the carbon dioxide;
Desorption step of irradiating and heating the carbon dioxide adsorbent adsorbing carbon dioxide in the adsorption step to desorb carbon dioxide from the carbon dioxide adsorbent;
A carbon dioxide separation method comprising:
前記二酸化炭素吸着剤がゼオライトである請求項7に記載の二酸化炭素分離方法。   The carbon dioxide separation method according to claim 7, wherein the carbon dioxide adsorbent is zeolite. 前記電磁波がマイクロ波である請求項7又は請求項8に記載の二酸化炭素分離方法。   The carbon dioxide separation method according to claim 7 or 8, wherein the electromagnetic wave is a microwave.
JP2018058735A 2018-03-26 2018-03-26 Carbon dioxide separation device and carbon dioxide separation method Pending JP2019166514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058735A JP2019166514A (en) 2018-03-26 2018-03-26 Carbon dioxide separation device and carbon dioxide separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058735A JP2019166514A (en) 2018-03-26 2018-03-26 Carbon dioxide separation device and carbon dioxide separation method

Publications (1)

Publication Number Publication Date
JP2019166514A true JP2019166514A (en) 2019-10-03

Family

ID=68105908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058735A Pending JP2019166514A (en) 2018-03-26 2018-03-26 Carbon dioxide separation device and carbon dioxide separation method

Country Status (1)

Country Link
JP (1) JP2019166514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224842A1 (en) * 2021-04-22 2022-10-27 三菱瓦斯化学株式会社 Carbon dioxide recovering method and carbon dioxide recovering device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273821A (en) * 2007-04-06 2008-11-13 Nippon Steel Corp Method of recovering carbon dioxide in gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273821A (en) * 2007-04-06 2008-11-13 Nippon Steel Corp Method of recovering carbon dioxide in gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224842A1 (en) * 2021-04-22 2022-10-27 三菱瓦斯化学株式会社 Carbon dioxide recovering method and carbon dioxide recovering device

Similar Documents

Publication Publication Date Title
CN115362129A (en) For microwave removal of NH from adsorbent materials 3 System and method
JPS6221566B2 (en)
US20120048111A1 (en) Hybrid adsorbent and method of capturing carbon dioxide in gas
WO2016058251A1 (en) Apparatus for flash treatment of volatile organic waste gas and method for treating volatile organic gas
JP2019188319A (en) Apparatus and method for separating carbon dioxide
JP2019147710A (en) Method for producing cerium(iv) oxide, cerium(iv) oxide, adsorbent, method for removing carbon dioxide, and apparatus for removing carbon dioxide
JP2019166514A (en) Carbon dioxide separation device and carbon dioxide separation method
US20220176309A1 (en) Improvements relating to carbon dioxide capture
US20240250253A1 (en) Method of producing guest-free silicon clathrate, apparatus for producing guest-free silicon clathrate
CN114832776A (en) Acidized puffed active biochar adsorbing material as well as preparation method and application thereof
CN102764588B (en) Superstrong polluted air decomposer
JPH10305207A (en) Simplified gas adsorptive recovery method
CN105217649B (en) A kind of method of two steps in low temperature removing organic formwork agent and the device for realizing this method
JP2008188491A (en) Adsorbent regeneration method using microwave
US11305229B1 (en) CO2 sorbent materials for advanced carbon capture technologies and dielectric barrier discharge (DBD) plasma based processes
EP2767323B1 (en) System and method for collecting carbon dioxide utilizing dielectric heating
JP2024018456A (en) Gas separation method, and production method of purified gas
CN113209773A (en) VOCs adsorption and desorption equipment and method
JP2008188490A (en) Adsorbent regeneration apparatus using microwave
CN111871199A (en) Closed photocatalyst removes formaldehyde equipment
CN106031864A (en) A microwave regeneration technology for a molecular sieve
JP2006101031A (en) Speaker instrument
JPWO2003080237A1 (en) Adsorbent heating regeneration method and adsorbent
JP4463870B1 (en) Fresh water production equipment
JPS6159165B2 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220405