JP2019164340A - Bonding structure - Google Patents

Bonding structure Download PDF

Info

Publication number
JP2019164340A
JP2019164340A JP2019029668A JP2019029668A JP2019164340A JP 2019164340 A JP2019164340 A JP 2019164340A JP 2019029668 A JP2019029668 A JP 2019029668A JP 2019029668 A JP2019029668 A JP 2019029668A JP 2019164340 A JP2019164340 A JP 2019164340A
Authority
JP
Japan
Prior art keywords
lens barrel
hole
lens
members
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019029668A
Other languages
Japanese (ja)
Inventor
裕二 鳥海
Yuji Toriumi
裕二 鳥海
飯川 誠
Makoto Iikawa
誠 飯川
隆明 藤屋
Takaaki Fujiya
隆明 藤屋
佐藤 裕之
Hiroyuki Sato
裕之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to CN201910192480.9A priority Critical patent/CN110308534A/en
Priority to US16/356,586 priority patent/US10852503B2/en
Priority to EP19163675.2A priority patent/EP3543547A1/en
Publication of JP2019164340A publication Critical patent/JP2019164340A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

To provide a bonding structure capable of obtaining a high bonding strength in all directions with a simple structure.SOLUTION: A bonding structure has holes (27, 33) opening to facing surfaces (28, 31) faced by two members (12, 13). Liquid or powder filling body (U) is filled into both the holes in a state where the holes communicate with each other. The two members are relatively fixed by the filling body. Each of the hole of the two members has a position, which is more separated from an opening than the side of the opening, having a wider inner space.SELECTED DRAWING: Figure 32

Description

本発明は、複数の部品を固定させる接合構造に関する。   The present invention relates to a joining structure for fixing a plurality of components.

撮像装置では、所定の光学性能を満たすべく、レンズ等の光学要素の支持に関わる部材の位置を非常に高精度に定めて取り付けることが求められる。例えば、ネジ止めによる固定は、強固な固定が可能である一方で、固定時のトルク等を起因とする位置ずれ量の管理が難しい。そこで、撮像装置の部品固定には接着剤による接着が多く用いられている。   In order to satisfy predetermined optical performance, an imaging device is required to determine and attach a position of a member related to support of an optical element such as a lens with very high accuracy. For example, the fixing by screwing can be firmly fixed, but it is difficult to manage the amount of misalignment due to the torque at the time of fixing. Therefore, bonding with an adhesive is often used for fixing the components of the imaging device.

接着剤による固定には、被接着箇所が互いに接触している密着接着と、被接着箇所に隙間があって当該隙間に接着剤を充填する充填接着がある。特許文献1には、光軸方向と光軸方向に垂直な方向の双方の接着強度を向上する目的で、接着する部品どうしを面取り付きの櫛歯形状にして、櫛歯間を充填接着する技術が記載されている。   The fixing with the adhesive includes close adhesion where the adherends are in contact with each other and filling adhesion where there is a gap in the adherend and the adhesive is filled in the gap. Patent Document 1 discloses a technique in which parts to be bonded are made into a comb-teeth shape with chamfering and filled between the comb teeth for the purpose of improving the adhesive strength in both the optical axis direction and the direction perpendicular to the optical axis direction. Is described.

特開2015−097325号公報JP, 2015-097325, A

特許文献1のような接着構造は、接着する部品に複雑な形状加工を施す必要があり、コストや手間がかかる。また、近年は撮像装置の小型化の要求が強く、接着箇所や接着領域を潤沢に確保することが難しいので、部品に複雑な形状加工を施す余地が無い場合もある。このような問題は、小型化と高度な部品接合強度の両立が厳しく求められる撮像装置において特に顕著であるが、撮像装置以外の精密機器においても同様の課題がある。   The adhesive structure as in Patent Document 1 requires complicated shape processing on the parts to be bonded, which is costly and troublesome. In recent years, there has been a strong demand for downsizing of the imaging apparatus, and it is difficult to secure a sufficient amount of bonding portions and bonding areas, so there is a case where there is no room for complicated shape processing on parts. Such a problem is particularly noticeable in an imaging apparatus that requires both miniaturization and high component bonding strength, but there is a similar problem in precision equipment other than the imaging apparatus.

本発明は、以上の問題意識に基づいてなされたものであり、簡単な構成で全方位に高い接合強度が得られる接合構造を提供することを目的とする。   The present invention has been made on the basis of the above awareness of the problem, and an object thereof is to provide a joint structure that can obtain high joint strength in all directions with a simple configuration.

本発明は、2つの部材が対向する対向面に開口する穴を有し、互いの穴が連通する状態で流体又は粉体の充填体が双方の穴内に充填され、該充填体によって2つの部材が相対的に固定される接合構造において、2つの部材の穴はそれぞれ、開口側よりも開口から離れた位置の方が内部が広いことを特徴とする。   In the present invention, two members have holes opened on opposing surfaces, and a fluid or powder filler is filled in both holes in a state where the holes communicate with each other. In the joint structure in which the two are relatively fixed, the holes of the two members are characterized in that the inside is wider at a position away from the opening than at the opening side.

本発明によれば、簡単な構成で全方位に高い接合強度が得られる接合構造を提供することができる。   According to the present invention, it is possible to provide a joint structure that can obtain high joint strength in all directions with a simple configuration.

本実施形態の撮像装置を構成する撮像システムを左方から見た図である。It is the figure which looked at the imaging system which constitutes the imaging device of this embodiment from the left. 撮像システムを後方から見た図である。It is the figure which looked at the imaging system from back. 撮像システムを上方から見た図である。It is the figure which looked at the imaging system from the upper part. 撮像システムを含む複合鏡筒の斜視図である。It is a perspective view of the compound lens barrel containing an imaging system. 複合鏡筒を後方から見た図である。It is the figure which looked at the compound lens barrel from the back. 複合鏡筒を左方から見た図である。It is the figure which looked at the compound lens barrel from the left. 複合鏡筒を上方から見た図である。It is the figure which looked at the compound lens barrel from the upper part. 複合鏡筒を下方から見た図である。It is the figure which looked at the compound lens barrel from the lower part. 複合鏡筒を構成する2つの鏡筒を分割した状態の斜視図である。It is a perspective view of the state which divided | segmented two lens barrels which comprise a compound lens barrel. 分割した2つの鏡筒を左方から見た図である。It is the figure which looked at two divided | segmented lens-barrels from the left. 分割した2つの鏡筒を上方から見た図である。It is the figure which looked at two divided | segmented lens-barrels from upper direction. 分割した2つの鏡筒を下方から見た図である。It is the figure which looked at the divided | segmented two lens barrels from the downward direction. 分割した2つの鏡筒の一方の正面図である。It is a front view of one of two divided lens barrels. 分割した2つの鏡筒の一方の背面図である。It is a rear view of one of two divided lens barrels. 鏡筒を構成するベース枠の正面図である。It is a front view of the base frame which comprises a lens-barrel. ベース枠の背面図である。It is a rear view of a base frame. ベース枠を背面側から見た斜視図である。It is the perspective view which looked at the base frame from the back side. 2つの鏡筒のベース枠を分割した状態の斜視図である。It is a perspective view in the state where the base frame of two lens barrels was divided. 前方の鏡筒のベース枠に位置決め用の2つの軸部材を装着した状態を示す斜視図である。It is a perspective view which shows the state which mounted | wore the positioning shaft member with the base frame of the front lens-barrel. 図15及び図16のXX-XX線に沿う断面図であり、(A)は軸部材の非装着状態、(B)は軸部材の装着状態を示す。It is sectional drawing which follows the XX-XX line of FIG.15 and FIG.16, (A) shows the mounting | wearing state of a shaft member, (B) shows the mounting state of a shaft member. 図5のXXI-XXI線に沿う断面図である。It is sectional drawing which follows the XXI-XXI line | wire of FIG. 主基準側の位置決め機構を示す断面図である。It is sectional drawing which shows the positioning mechanism by the side of a main reference | standard. 図21の断面位置で撮像装置の前カバーを鏡筒に取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the front cover of the imaging device to the lens-barrel in the cross-sectional position of FIG. 図15及び図16のXXIV-XXIV線に沿う断面図であり、(A)は軸部材の非装着状態、(B)は軸部材の装着状態を示す。It is sectional drawing which follows the XXIV-XXIV line | wire of FIG.15 and FIG.16, (A) shows the non-attachment state of a shaft member, (B) shows the attachment state of a shaft member. 図5のXXV-XXV線に沿う断面図である。It is sectional drawing which follows the XXV-XXV line | wire of FIG. 従基準側の位置決め機構を示す断面図である。It is sectional drawing which shows the positioning mechanism by the side of a secondary reference. 図25の断面位置で撮像装置の前カバーを鏡筒に取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the front cover of the imaging device to the lens-barrel in the cross-sectional position of FIG. 従基準側の位置決め機構で、軸部材を逆向きに組み付けたエラー状態を示す断面図である。It is sectional drawing which shows the error state which assembled | attached the shaft member in the reverse direction with the positioning mechanism by the side of a secondary reference | standard. 前群枠を取り付けた状態のベース枠を背面側から見た図である。It is the figure which looked at the base frame of the state which attached the front group frame from the back side. 図29のXXX-XXX線に沿う断面図である。It is sectional drawing which follows the XXX-XXX line of FIG. 図29のXXX-XXX線に沿って断面視したベース枠と前群枠の斜視図である。FIG. 30 is a perspective view of the base frame and the front group frame viewed in section along the line XXX-XXX in FIG. 29. 図30の一部を拡大して接着構造を示した断面図である。It is sectional drawing which expanded a part of FIG. 30, and showed the adhesion structure. 接着構造の変形例を示す断面図である。It is sectional drawing which shows the modification of adhesion structure. 接着構造の変形例を示す断面図である。It is sectional drawing which shows the modification of adhesion structure. 本実施形態の撮像装置の断面図である。It is sectional drawing of the imaging device of this embodiment. 本実施形態の撮像装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the imaging device of this embodiment.

以下、図面を参照して、本発明を適用した実施形態の光学システム及び撮像装置を説明する。本実施形態の撮像装置は、撮像システム1(図1から図3)を組み込んで構成した複合鏡筒10(図4から図7)を備え、複合鏡筒10に外装部材等を取り付けて構成される。複合鏡筒10は、同一構造の鏡筒11Aと鏡筒11Bを対称に組み合わせたものである。最初に撮像システム1の概略を説明し、続いて複合鏡筒10について説明する。以下の説明中の前、後、上、下、左、右の各方向は、各図に記載した矢線方向を基準とする。   Hereinafter, an optical system and an imaging apparatus according to an embodiment to which the present invention is applied will be described with reference to the drawings. The imaging apparatus of the present embodiment includes a composite lens barrel 10 (FIGS. 4 to 7) configured by incorporating the imaging system 1 (FIGS. 1 to 3), and is configured by attaching an exterior member or the like to the composite lens barrel 10. The The compound barrel 10 is a symmetrical combination of a barrel 11A and a barrel 11B having the same structure. First, the outline of the imaging system 1 will be described, and then the composite lens barrel 10 will be described. In the following description, the front, back, top, bottom, left, and right directions are based on the arrow direction described in each figure.

撮像システム1は、互いに対称に配置される2つの広角レンズ系(撮像光学系)A、Bと、2つの広角レンズ系A、Bによる像が結像する2つの撮像センサAI、BIと、を有している。各2つの広角レンズ系A、Bと撮像センサAI、BIは同一の仕様である。広角レンズ系A、Bは、180度より広い画角を有している。撮像システム1は、撮像センサAI、BIが結像した2つの像を合成することにより4πラジアンの立体角内の像を得る、全天球型の撮像システムとすることができる。   The imaging system 1 includes two wide-angle lens systems (imaging optical systems) A and B arranged symmetrically with each other, and two imaging sensors AI and BI on which images by the two wide-angle lens systems A and B are formed. Have. The two wide-angle lens systems A and B and the image sensors AI and BI have the same specifications. The wide-angle lens systems A and B have an angle of view wider than 180 degrees. The imaging system 1 can be an omnidirectional imaging system that obtains an image within a solid angle of 4π radians by combining two images formed by the imaging sensors AI and BI.

広角レンズ系A、Bはそれぞれ、物体側から像側に向かって順に、負のパワーを持つ前群AF、BFと、第1プリズムAP1、BP1と、可変開口絞りAS、BSと、第2プリズムAP2、BP2と、正のパワーを持つ後群AR、BRと、第3プリズムAP3、BP3と、を有している。前群AF、BFは、180°より大きい高画角の光線を取り込む機能を持ち、後群AR、BRは、結像画像の収差を補正する機能を持つ。可変開口絞りAS、BSは、図2に概念的に示している。   The wide-angle lens systems A and B are, in order from the object side to the image side, the front groups AF and BF having negative power, the first prisms AP1 and BP1, the variable aperture stops AS and BS, and the second prism. AP2 and BP2, rear groups AR and BR having positive power, and third prisms AP3 and BP3 are included. The front groups AF and BF have a function of taking in light rays having a high angle of view larger than 180 °, and the rear groups AR and BR have a function of correcting aberrations in the formed image. The variable aperture stops AS and BS are conceptually shown in FIG.

広角レンズ系Aにおいて、前群AFは、前方から入射した被写体光束を発散させながら後方に出射する。第1プリズムAP1は、前群AFから入射した被写体光束を左方に90°反射する。可変開口絞りASは、第1プリズムAP1が反射した被写体光束の透過量を調整(光量調整)する。第2プリズムAP2は、可変開口絞りASが光量調整した被写体光束を下方に90°反射する。後群ARは、第2プリズムAP2が反射した被写体光束を収束させながら下方に出射する。第3プリズムAP3は、後群ARから入射した被写体光束を右方に90°反射して、撮像センサAIの撮像面に結像させる。前群AF及び後群ARは複数枚のレンズで構成される。   In the wide-angle lens system A, the front lens group AF emits the subject light beam incident from the front side while diverging. The first prism AP1 reflects the subject luminous flux incident from the front group AF 90 ° to the left. The variable aperture stop AS adjusts (amount of light adjustment) the transmission amount of the subject light beam reflected by the first prism AP1. The second prism AP2 reflects the subject luminous flux adjusted by the variable aperture stop AS by 90 ° downward. The rear group AR emits the subject light beam reflected by the second prism AP2 downward while converging. The third prism AP3 reflects the subject luminous flux incident from the rear group AR 90 ° to the right and forms an image on the imaging surface of the imaging sensor AI. The front group AF and the rear group AR are composed of a plurality of lenses.

広角レンズ系Bにおいて、前群BFは、後方から入射した被写体光束を発散させながら前方に出射する。第1プリズムBP1は、前群BFから入射した被写体光束を右方に90°反射する。可変開口絞りBSは、第1プリズムBP1が反射した被写体光束の透過量を調整(光量調整)する。第2プリズムBP2は、可変開口絞りBSが光量調整した被写体光束を下方に90°反射する。後群BRは、第2プリズムBP2が反射した被写体光束を収束させながら下方に出射する。第3プリズムBP3は、後群BRから入射した被写体光束を左方に90°反射して、撮像センサBIの撮像面に結像させる。前群BF及び後群BRは複数枚のレンズで構成される。   In the wide-angle lens system B, the front group BF emits the subject light beam incident from the rear side while diverging. The first prism BP1 reflects the subject luminous flux incident from the front group BF 90 ° to the right. The variable aperture stop BS adjusts (amount of light adjustment) the transmission amount of the subject light beam reflected by the first prism BP1. The second prism BP2 reflects the subject luminous flux adjusted by the variable aperture stop BS by 90 ° downward. The rear group BR emits the subject light beam reflected by the second prism BP2 downward while converging. The third prism BP3 reflects the subject luminous flux incident from the rear group BR 90 ° to the left, and forms an image on the imaging surface of the imaging sensor BI. The front group BF and the rear group BR are composed of a plurality of lenses.

第1プリズムAP1と第1プリズムBP1は、互いの斜面が背中合わせに近接して配置されている。また、広角レンズ系A、Bの撮像センサAI、BIは、撮像センサAIの撮像面が左方を向き、撮像センサBIの撮像面が右方を向き、撮像センサAI、BIの裏面(撮像面とは反対側の面)が背中合わせとなるように支持されている。   The first prism AP1 and the first prism BP1 are arranged such that their slopes are close to each other back to back. In addition, the imaging sensors AI and BI of the wide-angle lens systems A and B have the imaging surface of the imaging sensor AI facing left, the imaging surface of the imaging sensor BI facing right, and the back surfaces (imaging surfaces) of the imaging sensors AI and BI. The surface opposite to the back is supported back to back.

広角レンズ系Aと広角レンズ系Bのそれぞれにおいて、前群AF、BFの光軸を光軸X1(入射光軸)とする。第1プリズムAP1、BP1の反射面から第2プリズムAP2、BP2の反射面までの部分の光軸を光軸X2とする。後群AR、BRの光軸を光軸X3とする。第3プリズムAP3、BP3の反射面から撮像センサAI、BIまで部分の光軸を光軸X4とする。広角レンズ系Aと広角レンズ系Bは、互いの光軸X1が同軸上に位置して前後方向を向き、光軸X1と垂直な所定の平面(広角レンズ系A、Bの対向平面とする)に関して前群AFと前群BFが前後対称となるように配置される。   In each of the wide-angle lens system A and the wide-angle lens system B, the optical axes of the front groups AF and BF are defined as an optical axis X1 (incident optical axis). The optical axis of the portion from the reflecting surface of the first prism AP1, BP1 to the reflecting surface of the second prism AP2, BP2 is defined as an optical axis X2. The optical axes of the rear groups AR and BR are set as an optical axis X3. The optical axis of the portion from the reflecting surfaces of the third prisms AP3 and BP3 to the imaging sensors AI and BI is defined as an optical axis X4. In the wide-angle lens system A and the wide-angle lens system B, a predetermined plane perpendicular to the optical axis X1 (the opposite plane of the wide-angle lens systems A and B) is such that the optical axis X1 is positioned coaxially and faces the front and rear direction The front group AF and the front group BF are arranged so as to be symmetric in the longitudinal direction.

また、広角レンズ系Aの光軸X2、X3及びX4と、広角レンズ系Bの光軸X2、X3及びX4は、上記の対向平面内に位置する。より詳しくは、広角レンズ系Aの光軸X2と広角レンズ系Bの光軸X2が同軸上に位置して左右方向を向き、広角レンズ系Aの光軸X4と広角レンズ系Bの光軸X4が同軸上に位置して左右方向を向く。また、後群AR上の光軸X3と後群BR上の光軸X3とが、左右方向に離間して互いに平行となる。   In addition, the optical axes X2, X3, and X4 of the wide-angle lens system A and the optical axes X2, X3, and X4 of the wide-angle lens system B are located in the facing plane. More specifically, the optical axis X2 of the wide-angle lens system A and the optical axis X2 of the wide-angle lens system B are coaxially positioned and face in the left-right direction, and the optical axis X4 of the wide-angle lens system A and the optical axis X4 of the wide-angle lens system B Is located on the same axis and faces left and right. Further, the optical axis X3 on the rear group AR and the optical axis X3 on the rear group BR are spaced apart in the left-right direction and become parallel to each other.

このように、広角レンズ系A、Bの対向平面内において複数回かつ異なる方向に光路を折り曲げることにより、広角レンズ系A、Bの光路長を長く確保することができる。また、広角レンズ系Aの最も物体側のレンズ(後述する前群AFの第1レンズL1)と広角レンズ系Bの最も物体側のレンズ(後述する前群BFの第1レンズL1)に対する最大画角光線の入射位置の間の距離(最大画角間距離)を小さくことができる(図1に最大画角間距離を示した)。その結果、撮像センサAI、BIの大型化及び撮像システム1の小型化(薄型化)を両立するとともに、キャリブレーションで貼り合わせられる2つの画像の重なり量である視差を小さくして、高品質な画像を得ることが可能になる。   Thus, by bending the optical path in a different direction a plurality of times in the opposing planes of the wide-angle lens systems A and B, it is possible to ensure a long optical path length of the wide-angle lens systems A and B. Further, the maximum image with respect to the lens closest to the object side of the wide-angle lens system A (first lens L1 of the front group AF described later) and the lens closest to the object side of the wide-angle lens system B (first lens L1 of the front group BF described later). The distance between the incident positions of the angular rays (maximum inter-view angle distance) can be reduced (the maximum inter-view angle distance is shown in FIG. 1). As a result, it is possible to achieve both high-quality imaging sensors AI and BI and miniaturization (thinning) of the imaging system 1, and to reduce the parallax, which is the overlapping amount of two images to be bonded together by calibration, to achieve high quality. An image can be obtained.

複合鏡筒10は、広角レンズ系Aと撮像センサAIを支持する鏡筒11Aと、広角レンズ系Bと撮像センサBIを支持する鏡筒11Bとを組み合わせて構成される。鏡筒11Aと鏡筒11Bは同一の形状(構造)であり、互いに前後対称に配置して組み合わせることが可能となっている。図4以降を参照して、各鏡筒11A、11Bの詳細について説明する。なお、鏡筒11Aと鏡筒11Bに共通する構成要素は、同じ符号で示す。また、各鏡筒11A、11Bにおいて、光軸X1に沿う前後方向のうち、被写体側(物体側)を「正面」、被写体側に対して反対側を「背面」とする。鏡筒11Aにおいては、前方が正面側(被写体側)で後方が背面側になり、鏡筒11Bにおいては、後方が正面側(被写体側)で前方が背面側になる。   The compound lens barrel 10 is configured by combining a lens barrel 11A that supports the wide-angle lens system A and the imaging sensor AI, and a lens barrel 11B that supports the wide-angle lens system B and the imaging sensor BI. The lens barrel 11 </ b> A and the lens barrel 11 </ b> B have the same shape (structure), and can be combined by being arranged symmetrically in the front-rear direction. The details of each of the lens barrels 11A and 11B will be described with reference to FIG. Components common to the lens barrel 11A and the lens barrel 11B are denoted by the same reference numerals. In each of the lens barrels 11A and 11B, of the front and rear directions along the optical axis X1, the subject side (object side) is referred to as “front”, and the opposite side to the subject side is referred to as “back”. In the lens barrel 11A, the front is the front side (subject side) and the rear is the back side, and in the lens barrel 11B, the rear is the front side (subject side) and the front is the back side.

本実施形態における鏡筒11Aと鏡筒11Bは、結像光学系(広角レンズ系A、B)と撮像センサ(AI、BI)を含み、それぞれが単独で被写体画像の取得を行うことが可能な撮像ユニットである。各鏡筒11A、11Bのうち、結像光学系(広角レンズ系A、B)と、結像光学系を直接又は間接に保持する各部材(後述するベース枠12、前群枠13、後群枠14、第3プリズム枠15等)とで構成される部分を、光学システムとする。   The lens barrel 11A and the lens barrel 11B in this embodiment include an imaging optical system (wide-angle lens systems A and B) and an image sensor (AI and BI), each of which can independently acquire a subject image. An imaging unit. Of each of the lens barrels 11A and 11B, an imaging optical system (wide-angle lens systems A and B) and members for holding the imaging optical system directly or indirectly (a base frame 12, a front group frame 13 and a rear group described later) A portion constituted by the frame 14, the third prism frame 15 and the like is an optical system.

鏡筒11A、11Bはそれぞれ、ベース枠12、前群枠13、後群枠14、第3プリズム枠15、撮像センサユニット16と、を有している。ベース枠12、前群枠13、後群枠14、第3プリズム枠15は、それぞれプラスチック等の成形品として形成される。   Each of the lens barrels 11A and 11B has a base frame 12, a front group frame 13, a rear group frame 14, a third prism frame 15, and an image sensor unit 16. The base frame 12, the front group frame 13, the rear group frame 14, and the third prism frame 15 are each formed as a molded product such as plastic.

鏡筒11Aにおいて、ベース枠12は、第1プリズムAP1と可変開口絞りASと第2プリズムAP2を支持する。前群枠13は前群AFを支持する。後群枠14は後群ARを支持する。第3プリズム枠15は第3プリズムAP3を支持する。撮像センサユニット16は、撮像センサAIと基板17等がユニット化されたものである。   In the lens barrel 11A, the base frame 12 supports the first prism AP1, the variable aperture stop AS, and the second prism AP2. The front group frame 13 supports the front group AF. The rear group frame 14 supports the rear group AR. The third prism frame 15 supports the third prism AP3. The imaging sensor unit 16 is a unit in which the imaging sensor AI, the substrate 17 and the like are unitized.

鏡筒11Bにおいて、ベース枠12は、第1プリズムBP1と可変開口絞りBSと第2プリズムBP2を支持する。前群枠13は前群BFを支持する。後群枠14は後群BRを支持する。第3プリズム枠15は第3プリズムBP3を支持する。撮像センサユニット16は、撮像センサBIと基板17等がユニット化されたものである。   In the lens barrel 11B, the base frame 12 supports the first prism BP1, the variable aperture stop BS, and the second prism BP2. The front group frame 13 supports the front group BF. The rear group frame 14 supports the rear group BR. The third prism frame 15 supports the third prism BP3. The imaging sensor unit 16 is a unit in which the imaging sensor BI and the substrate 17 are unitized.

図15から図19に示すように、ベース枠12は、正面壁部20と、正面壁部20の上部に位置する上壁部21と、正面壁部20の左右の縁部に位置する側壁部22及び側壁部23と、を有する。また、上壁部21と側壁部22の境界付近に角壁部24を有し、上壁部21と側壁部23の境界付近に角壁部25を有する。   As shown in FIGS. 15 to 19, the base frame 12 includes a front wall portion 20, an upper wall portion 21 located at the top of the front wall portion 20, and side wall portions located at the left and right edges of the front wall portion 20. 22 and the side wall part 23. Further, a corner wall portion 24 is provided near the boundary between the upper wall portion 21 and the side wall portion 22, and a corner wall portion 25 is provided near the boundary between the upper wall portion 21 and the side wall portion 23.

正面壁部20は概ね被写体に正対する壁部であり、前後方向へ貫通する正面開口20aを有している。光軸X1は正面開口20aの中央付近を通る。図15に示すように、正面壁部20の正面側には、正面開口20aの周囲に位置する複数(本実施形態では3つ)の前群枠当接部26が形成されている。各前群枠当接部26は、正面側へ突出する凸部上に、光軸X1と垂直な平面を設けたものである。   The front wall portion 20 is generally a wall portion facing the subject and has a front opening 20a penetrating in the front-rear direction. The optical axis X1 passes near the center of the front opening 20a. As shown in FIG. 15, on the front side of the front wall portion 20, a plurality (three in the present embodiment) of front group frame contact portions 26 located around the front opening 20a are formed. Each front group frame contact portion 26 is provided with a plane perpendicular to the optical axis X1 on a convex portion protruding to the front side.

正面壁部20にはさらに、正面開口20aの周囲に複数(本実施形態では4つ)の接着用穴27が形成されている。各接着用穴27は、概ね光軸X1を中心とする周方向に長手方向が向く円弧形状の長穴であり、正面壁部20を前後方向に貫通している。各接着用穴27の周囲には、正面側を向く接合対向面28が形成されている。正面開口20aの内縁部分には、複数の接着用凹部29が形成されている。   Further, a plurality of (four in this embodiment) bonding holes 27 are formed around the front opening 20a in the front wall portion 20. Each of the bonding holes 27 is an arc-shaped long hole whose longitudinal direction is generally in the circumferential direction about the optical axis X1, and penetrates the front wall portion 20 in the front-rear direction. Around each bonding hole 27, a bonding facing surface 28 facing the front side is formed. A plurality of bonding recesses 29 are formed in the inner edge portion of the front opening 20a.

図1及び図3に示すように、前群AFと前群BFはそれぞれ、第1レンズL1、第2レンズL2、第3レンズL3によって構成されている。図30及び図31に示すように、前群枠13は、第1レンズL1を保持する環状の第1保持部13aと、第2レンズL2(図30及び図31では図示を省略している)を保持する環状の第2保持部13bと、第3レンズL3を保持する環状の第3保持部13cと、を備えている。   As shown in FIGS. 1 and 3, the front group AF and the front group BF are each composed of a first lens L1, a second lens L2, and a third lens L3. As shown in FIGS. 30 and 31, the front group frame 13 includes an annular first holding portion 13a that holds the first lens L1, and a second lens L2 (not shown in FIGS. 30 and 31). An annular second holding portion 13b for holding the third lens L3, and an annular third holding portion 13c for holding the third lens L3.

図30及び図31に示すように、前群枠13の第1保持部13aに保持される第1レンズL1は、物体側に凸面を向けた負メニスカスレンズであり、出射面である凹面の周囲に、光軸X1に対して垂直な環状の平面L1aが形成されている。第1保持部13aは、平面L1aを支持する環状のレンズ支持面30を正面側に有する。レンズ支持面30の背面側には、ベース枠12の正面壁部20の正面(接合対向面28を含む)に対向する接合対向面31と、接合対向面31の周縁部に位置する複数(本実施形態では3つ)の当接部32とを有する。当接部32は、接合対向面31から背面側へ突出する凸部上に、光軸X1と垂直な平面を設けたものであり、ベース枠12の前群枠当接部26に対向する位置関係にある。   As shown in FIGS. 30 and 31, the first lens L1 held by the first holding portion 13a of the front group frame 13 is a negative meniscus lens having a convex surface directed toward the object side, and around the concave surface that is the exit surface. In addition, an annular plane L1a perpendicular to the optical axis X1 is formed. The 1st holding | maintenance part 13a has the cyclic | annular lens support surface 30 which supports the plane L1a in the front side. On the back side of the lens support surface 30, there are a joint facing surface 31 that faces the front surface (including the joint facing surface 28) of the front wall portion 20 of the base frame 12, and a plurality of (books) positioned at the peripheral edge of the joint facing surface 31. 3) in the embodiment. The abutting portion 32 is provided with a plane perpendicular to the optical axis X1 on a convex portion protruding from the joint facing surface 31 to the back side, and a position facing the front group frame abutting portion 26 of the base frame 12. There is a relationship.

前群枠13の第1保持部13aにはさらに、複数(本実施形態では4つ)の接着用穴33が形成されている。各接着用穴33は、概ね光軸X1を中心とする周方向に長手方向が向く円弧形状の長穴であり、第1保持部13aを前後方向に貫通している。接着用穴33は、レンズ支持面30側が第1レンズL1の平面L1aで覆われており、接合対向面31側が開放されている。   A plurality (four in this embodiment) of bonding holes 33 are further formed in the first holding portion 13a of the front group frame 13. Each bonding hole 33 is an arc-shaped long hole whose longitudinal direction is generally in the circumferential direction centered on the optical axis X1, and penetrates the first holding portion 13a in the front-rear direction. In the bonding hole 33, the lens support surface 30 side is covered with the plane L1a of the first lens L1, and the bonding facing surface 31 side is open.

図30から図32に示すように、前群枠13の当接部32がベース枠12の前群枠当接部26に接触(当接)することで、ベース枠12に対する前群枠13の前後方向の相対位置が定められる。第2保持部13bと第3保持部13cは第1保持部13aよりも小径であり、正面開口20a内に進入する。この状態で、第2保持部13b及び第3保持部13cと正面開口20aとの間には、光軸X1を中心とする径方向への隙間があり、前群枠13はベース枠12に対して、光軸X1と垂直な方向へ位置調整(光学調整)が可能である。位置調整後に前群枠13をベース枠12に接着で固定する。この接着構造について説明する。   As shown in FIGS. 30 to 32, the abutment portion 32 of the front group frame 13 comes into contact (abuts) with the front group frame abutment portion 26 of the base frame 12, whereby the front group frame 13 with respect to the base frame 12. A relative position in the front-rear direction is determined. The second holding portion 13b and the third holding portion 13c have a smaller diameter than the first holding portion 13a and enter the front opening 20a. In this state, there is a radial gap centered on the optical axis X1 between the second holding portion 13b and the third holding portion 13c and the front opening 20a, and the front group frame 13 is located with respect to the base frame 12. Thus, position adjustment (optical adjustment) in a direction perpendicular to the optical axis X1 is possible. After the position adjustment, the front group frame 13 is fixed to the base frame 12 by adhesion. This adhesion structure will be described.

図29に示すように、前群枠13の当接部32をベース枠12の前群枠当接部26に接触させた状態で背面側から見ると、4箇所の接着用穴27と接着用穴33がそれぞれ連通している。また、接着用凹部29を通して前群枠13の第3保持部13cの背面が露出している。接着用穴27及び接着用穴33と、接着用凹部29とにそれぞれ接着剤を充填し、接着剤が硬化することにより前群枠13がベース枠12に対して固定される。例えば、前群枠13を位置調整した段階で、接着用凹部29に紫外線硬化型の接着剤を充填して紫外線を照射し、前群枠13を仮固定する。続いて、接着用穴27及び接着用穴33に接着力の強い接着剤を充填して、最終的な固定を行う。   As shown in FIG. 29, when viewed from the back side in a state where the abutting portion 32 of the front group frame 13 is in contact with the front group frame abutting portion 26 of the base frame 12, the four bonding holes 27 and the bonding holes The holes 33 communicate with each other. Further, the back surface of the third holding portion 13 c of the front group frame 13 is exposed through the bonding recess 29. The front group frame 13 is fixed to the base frame 12 by filling the bonding holes 27 and the bonding holes 33 and the bonding concave portions 29 with adhesives and curing the adhesives. For example, at the stage where the position of the front group frame 13 is adjusted, the adhesive concave portion 29 is filled with an ultraviolet curable adhesive and irradiated with ultraviolet rays to temporarily fix the front group frame 13. Subsequently, the adhesive hole 27 and the adhesive hole 33 are filled with an adhesive having a strong adhesive force, and finally fixed.

接着用穴27と接着用穴33付近の断面構造を図32に拡大して示した。接着用穴27は、正面側(接合対向面28側)に開口する幅狭部27aと、背面側に開口する幅広部27bと、幅狭部27aと幅広部27bの間に位置する幅徐変部27cと、を有する。幅狭部27aよりも幅広部27bの方が、光軸X1を中心とする径方向の幅及び周方向の長さが大きい(断面積が大きい)。幅徐変部27cは、幅狭部27aから幅広部27bにかけて徐々に、径方向の幅及び周方向の長さが大きくなる(断面積が大きくなる)。そのため、図32のように光軸X1に沿う方向で接着用穴27を断面視すると、幅狭部27aと幅広部27bの内面が光軸X1と平行であるのに対し、幅徐変部27cの内面は背面側に向けて広がるテーパー形状の接着抜け止め面27dになっている。   FIG. 32 shows an enlarged cross-sectional structure in the vicinity of the bonding hole 27 and the bonding hole 33. The bonding hole 27 includes a narrow portion 27a that opens to the front side (the bonding facing surface 28 side), a wide portion 27b that opens to the back side, and a gradual change in width located between the narrow portion 27a and the wide portion 27b. Part 27c. The wide portion 27b is larger in the radial width and the circumferential length around the optical axis X1 (the cross-sectional area is larger) than the narrow portion 27a. The gradually changing width portion 27c gradually increases in width in the radial direction and length in the circumferential direction from the narrow portion 27a to the wide portion 27b (the cross-sectional area increases). Therefore, when the bonding hole 27 is viewed in a cross-section in the direction along the optical axis X1 as shown in FIG. 32, the inner surfaces of the narrow portion 27a and the wide portion 27b are parallel to the optical axis X1, whereas the width gradually changing portion 27c. The inner surface is a taper-shaped adhesive retaining surface 27d that widens toward the back side.

接着用穴33は、背面側(接合対向面31側)に開口する幅狭部33aと、正面側(レンズ支持面30側)に開口する幅広部33bと、幅狭部33aと幅広部33bの間に位置する幅徐変部33cと、を有する。幅狭部33aよりも幅広部33bの方が、光軸X1を中心とする径方向の幅及び周方向の長さが大きい(断面積が大きい)。幅徐変部33cは、幅狭部33aから幅広部33bにかけて徐々に、径方向の幅及び周方向の長さが大きくなる(断面積が大きくなる)。そのため、図32のように光軸X1に沿う方向で接着用穴33を断面視すると、幅狭部33aと幅広部33bの内面が光軸X1と平行であるのに対し、幅徐変部33cの内面は正面側に向けて広がるテーパー形状の接着抜け止め面33dになっている。   The bonding hole 33 includes a narrow portion 33a that opens to the back side (bonding facing surface 31 side), a wide portion 33b that opens to the front side (lens support surface 30 side), a narrow portion 33a, and a wide portion 33b. And a gradually changing width portion 33c located between the two. The wide portion 33b is larger in the radial width and the circumferential length around the optical axis X1 (the cross-sectional area is larger) than the narrow portion 33a. The gradually changing width portion 33c gradually increases in radial width and circumferential length (cross-sectional area increases) from the narrow portion 33a to the wide portion 33b. Therefore, when the bonding hole 33 is viewed in a cross-section in the direction along the optical axis X1 as shown in FIG. 32, the inner surfaces of the narrow portion 33a and the wide portion 33b are parallel to the optical axis X1, whereas the width gradually changing portion 33c. The inner surface is a taper-shaped adhesive retaining surface 33d that widens toward the front side.

各接着用穴27は、対応する(前後方向に連通する)各接着用穴33よりも大きく、接着用穴27を背面側から見ると、接着用穴33の周囲に前群枠13の接合対向面31が視認される(図29参照)。より詳しくは、接着用穴27と接着用穴33において光軸X1を中心とする径方向の幅(図32中の上下方向の幅)は、幅狭部27aが幅広部33bと同程度であり、幅狭部33aが最も小さく、幅広部27bが最も大きい。また、各接着用穴27は対応する各接着用穴33よりも、光軸X1を中心とする周方向に長い(図29参照)。この接着用穴27と接着用穴33の大きさの違いによって、ベース枠12に対する前群枠13の位置調整を行った際に、所定の範囲内の調整であれば、前群枠13の接着用穴33が遮られることなくベース枠12の接着用穴27に対して連通される。そのため、接着用穴27側から接着用穴33側にスムーズに接着剤を注入することができる。また、接着の対象として接着用穴27と接着用穴33を用いる構成によれば、仮に調整量が所定以上になって幅狭部33aの一部が幅狭部27aの範囲を超過しても、接着用穴27から接着用穴33へ接着剤を充填させることが可能である。これにより、穴に対して突起を挿入させて接着するような構造よりも、対応可能な調整量が大きくなる。なお、図32に示すように、前群枠当接部26に当接部32が接触する状態で、接合対向面28と接合対向面31の間には前後方向に僅かな隙間があり、接着用穴27と接着用穴33は当該隙間にも通じている。   Each bonding hole 27 is larger than the corresponding bonding hole 33 (communicating in the front-rear direction). When the bonding hole 27 is viewed from the back side, the front group frame 13 is opposed to the periphery of the bonding hole 33. The surface 31 is visually recognized (see FIG. 29). More specifically, in the bonding hole 27 and the bonding hole 33, the width in the radial direction around the optical axis X1 (the width in the vertical direction in FIG. 32) is the same for the narrow portion 27a as the wide portion 33b. The narrow portion 33a is the smallest and the wide portion 27b is the largest. Each bonding hole 27 is longer than the corresponding bonding hole 33 in the circumferential direction around the optical axis X1 (see FIG. 29). When the position of the front group frame 13 is adjusted with respect to the base frame 12 due to the difference in size between the bonding hole 27 and the bonding hole 33, if the adjustment is within a predetermined range, the front group frame 13 is bonded. The working hole 33 communicates with the bonding hole 27 of the base frame 12 without being blocked. Therefore, the adhesive can be smoothly injected from the bonding hole 27 side to the bonding hole 33 side. Further, according to the configuration in which the bonding hole 27 and the bonding hole 33 are used as objects to be bonded, even if the adjustment amount exceeds a predetermined value and a part of the narrow part 33a exceeds the range of the narrow part 27a. It is possible to fill the bonding hole 27 with the adhesive from the bonding hole 27. As a result, the amount of adjustment that can be accommodated is larger than a structure in which a protrusion is inserted into and bonded to the hole. Note that, as shown in FIG. 32, there is a slight gap in the front-rear direction between the joint facing surface 28 and the joint facing surface 31 in a state where the contact portion 32 is in contact with the front group frame contact portion 26. The hole 27 and the bonding hole 33 communicate with the gap.

図32に矢線Tで示すように、接着用穴27の幅広部27b側から注入された接着剤は、幅徐変部27c及び幅狭部27aを通して接着用穴33に流入する。レンズ支持面30と第1レンズL1の平面L1bとの間には薄いシート(図示略)が挟まれており、このシートによって接着用穴33からの接着剤の流出が遮られ、接着用穴33と接着用穴27の内部に接着剤が充填される。なお、接着剤の粘度に応じて、接着剤の一部が接合対向面28と接合対向面31の間の隙間にも広がる。接着用穴33と接着用穴27の内部に充填された接着剤は、経時やエネルギーの付与(例えば加熱)によって流体の状態から硬化し(固体になり)、ベース枠12と前群枠13を固着させる。接着用穴27と接着用穴33の内部に充填されて硬化した状態の接着剤Uを、図32に二点鎖線で仮想的に示した。   As indicated by an arrow T in FIG. 32, the adhesive injected from the wide portion 27b side of the bonding hole 27 flows into the bonding hole 33 through the width gradually changing portion 27c and the narrow portion 27a. A thin sheet (not shown) is sandwiched between the lens support surface 30 and the plane L1b of the first lens L1, and the outflow of the adhesive from the bonding hole 33 is blocked by this sheet. The adhesive hole 27 is filled with an adhesive. Depending on the viscosity of the adhesive, a part of the adhesive spreads in the gap between the bonding facing surface 28 and the bonding facing surface 31. The adhesive filled in the bonding hole 33 and the bonding hole 27 is cured from a fluid state (becomes solid) with the passage of time or application of energy (for example, heating), so that the base frame 12 and the front group frame 13 are separated. Secure. The adhesive U in a state of being filled and cured inside the bonding hole 27 and the bonding hole 33 is virtually shown by a two-dot chain line in FIG.

接着用穴27と接着用穴33に亘って接着剤Uを充填することにより強固な固定力が得られ、光軸X1を中心とする径方向や、光軸X1を中心とする周方向に負荷が働いた場合に、ベース枠12と前群枠13の相対移動を確実に防ぐことができる。   A strong fixing force is obtained by filling the adhesive U across the bonding hole 27 and the bonding hole 33, and a load is applied in the radial direction around the optical axis X1 and in the circumferential direction around the optical axis X1. When this works, the relative movement of the base frame 12 and the front group frame 13 can be reliably prevented.

さらに、以上のように接着固定されたベース枠12と前群枠13に対して、互いの接合対向面28と接合対向面31を離間させるような前後方向の負荷が加わると、硬化した状態の接着剤Uが接着用穴27と接着用穴33の双方に対して当て付いて(嵌合して)離間を防ぐように機能する。より詳しくは、接着用穴27と接着用穴33は互いに対向する接合対向面28と接合対向面31側(幅狭部27aと幅狭部33a)の開口幅が小さく、正逆に向く2つの楔の先端部分を接合させたような概略断面形状になっている。これに応じて、接着用穴27と接着用穴33内に充填された接着剤Uも同様の概略断面形状となる。   Further, when a load in the front-rear direction is applied to the base frame 12 and the front group frame 13 that are bonded and fixed as described above, such that the joint facing surface 28 and the joint facing surface 31 are separated from each other, the cured state The adhesive U functions so as to abut against (fitting) both the bonding hole 27 and the bonding hole 33 to prevent separation. More specifically, the bonding hole 27 and the bonding hole 33 have two small opening widths on the bonding facing surface 28 side and the bonding facing surface 31 side (the narrow portion 27a and the narrow portion 33a) facing each other, and the two facing forward and reverse. The cross-sectional shape is such that the tip of the wedge is joined. Accordingly, the adhesive U filled in the bonding hole 27 and the bonding hole 33 also has the same schematic cross-sectional shape.

従って、前群枠13に対してベース枠12から離れる方向(正面側)への負荷が加わると、接着抜け止め面33dを介して硬化状態の接着剤Uに同方向の負荷が作用する。すると、接着抜け止め面33dとは反対側(背面側)に向く面である接着抜け止め面27dに対して接着剤Uが楔のように作用し、ベース枠12から前群枠13を離間させようとする負荷に耐えることができる。逆も同様で、ベース枠12に対して前群枠13から離れる方向(背面側)への負荷が加わると、接着抜け止め面27dを介して硬化状態の接着剤Uに同方向の負荷が作用する。すると、接着抜け止め面27dとは反対側(正面側)に向く面である接着抜け止め面33dに対して接着剤Uが楔のように作用し、前群枠13からベース枠12を離間させようとする負荷に耐えることができる。   Accordingly, when a load is applied to the front group frame 13 in a direction away from the base frame 12 (front side), a load in the same direction acts on the cured adhesive U via the adhesion retaining surface 33d. Then, the adhesive U acts like a wedge on the adhesion retaining surface 27d that is the surface facing the adhesion retaining surface 33d (the back side), and the front group frame 13 is separated from the base frame 12. It can withstand the load to be tried. The reverse is also true. When a load in the direction away from the front group frame 13 (back side) is applied to the base frame 12, a load in the same direction acts on the cured adhesive U via the adhesive retaining surface 27d. To do. Then, the adhesive U acts like a wedge on the adhesive retaining surface 33d that is the surface facing the adhesive retaining surface 27d (front side), and the base frame 12 is separated from the front group frame 13. It can withstand the load to be tried.

このように、本実施形態の接着構造では、接着用穴27と接着用穴33のうち、前後方向に対して正逆に傾斜する接着抜け止め面27d及び接着抜け止め面33dと接着剤Uとの間で得られる楔効果を用いている。言い換えれば、接着用穴27は、抜け止め面27dを挟んで、接合対向面28側(鏡筒11A、11Bの正面側)の内部が狭く、接合対向面28から離れた側(鏡筒11A、11Bの背面側)の内部が広い形状を有する。同様に、接着用穴33は、抜け止め面33dを挟んで、接合対向面31側(鏡筒11A、11Bの背面側)の内部が狭く、接合対向面31から離れた側(鏡筒11A、11Bの正面側)の内部が広い形状を有する。そして、前群枠13とベース枠12を離間させようとする負荷が加わったときに、接着用穴27、33のそれぞれの内部が狭くなる側(抜け止め面27d、33d)に向けて接着剤Uが当て付くことで、強固な抜け止め効果が得られる。これにより、内面が前後方向に延びている幅狭部27a、33aや幅広部27b、33bに対する接着剤Uの固着のみに依存する場合に比して、ベース枠12と前群枠13の接着強度を向上させることができる。各接着用穴27と各接着用穴33における接着強度が優れるため、少ない接着箇所や接着面積での固定を実現でき、スペース効率の向上や鏡筒設計の自由度の向上といった効果が得られる。特に、本実施形態の複合鏡筒10では、後述するように、ベース枠12の背面側に第1プリズムAP1、BP1や第2プリズムAP2、BP2等が高密度に配置されているため、前群枠13を省スペース且つ強固に接着固定できることの効果が高い。   Thus, in the bonding structure of the present embodiment, of the bonding hole 27 and the bonding hole 33, the adhesive retaining surface 27d and the adhesive retaining surface 33d that are inclined in the forward and backward directions with respect to the front-rear direction and the adhesive U The wedge effect obtained between the two is used. In other words, the bonding hole 27 has a narrow inside on the side facing the joint 28 (the front side of the lens barrels 11A and 11B) across the retaining surface 27d, and the side away from the joint facing surface 28 (the lens barrel 11A, 11B (back side) has a wide shape. Similarly, the bonding hole 33 has a narrow inside on the bonding facing surface 31 side (the back side of the lens barrels 11A and 11B) across the retaining surface 33d and a side away from the bonding facing surface 31 (the lens barrel 11A, 11B (front side) has a wide shape. Then, when a load is applied to separate the front group frame 13 and the base frame 12, the adhesive is directed toward the side (the retaining surfaces 27d, 33d) where the insides of the bonding holes 27, 33 are narrowed. When U is applied, a strong retaining effect can be obtained. Thereby, the adhesive strength between the base frame 12 and the front group frame 13 is compared with the case where only the adhesive U is fixed to the narrow portions 27a and 33a and the wide portions 27b and 33b whose inner surfaces extend in the front-rear direction. Can be improved. Since the bonding strength in each bonding hole 27 and each bonding hole 33 is excellent, fixation with a small number of bonding locations and bonding areas can be realized, and effects such as improvement in space efficiency and freedom in designing a lens barrel can be obtained. In particular, in the compound barrel 10 of the present embodiment, the first prism AP1, BP1, the second prism AP2, BP2, etc. are arranged at high density on the back side of the base frame 12, as will be described later. The effect that the frame 13 can be firmly fixed in a space-saving manner is high.

なお、ベース枠12と前群枠13の固定に用いる接着構造は、上記の構成に限定されない。図33と図34は接着構造の変形例を示したものである。図33は、ベース枠12の接着用穴127と前群枠13の接着用穴133の内面全体がそれぞれ、互いに接合対向面28と接合対向面31に近づくにつれて幅を狭くするテーパー状の接着抜け止め面27e、33eからなる形態を示している。図34は、ベース枠12の接着用穴227と前群枠13の接着用穴233がそれぞれ、上記の接着抜け止め面27d、33dに代えて、光軸X1と垂直な平面状の接着抜け止め面27f、33fを備えている形態を示している。これらの構成も、接着抜け止め面27eと接着抜け止め面33e、接着抜け止め面27fと接着抜け止め面33fがそれぞれ、互いに反対を向いて接着剤Uが接触する対をなす抜け止め面となるので、上記構成と同様の効果が得られる。   The adhesive structure used for fixing the base frame 12 and the front group frame 13 is not limited to the above configuration. 33 and 34 show a modification of the adhesive structure. FIG. 33 shows a taper-like adhesive omission where the entire inner surfaces of the bonding hole 127 of the base frame 12 and the bonding hole 133 of the front group frame 13 become narrower as they approach the bonding facing surface 28 and the bonding facing surface 31, respectively. The form which consists of the stop surfaces 27e and 33e is shown. In FIG. 34, the bonding hole 227 of the base frame 12 and the bonding hole 233 of the front group frame 13 are replaced with the above-mentioned bonding retaining surfaces 27d and 33d, respectively, and are planar adhesive retaining members perpendicular to the optical axis X1. The form provided with the surfaces 27f and 33f is shown. Also in these configurations, the adhesive retaining surface 27e and the adhesive retaining surface 33e, and the adhesive retaining surface 27f and the adhesive retaining surface 33f are the retaining surfaces that make a pair that face each other and are in contact with the adhesive U. Therefore, the same effect as the above configuration can be obtained.

さらに、ベース枠12側に設ける接着用穴27(図32)、接着用穴127(図33)、接着用穴227(図34)と、前群枠13側に設ける接着用穴33(図32)、接着用穴133(図33)、接着用穴233(図34)を適宜組み替えて、前後方向で非対称な形状の一対の抜け止め面を有するように構成してもよい。   Further, an adhesion hole 27 (FIG. 32), an adhesion hole 127 (FIG. 33), an adhesion hole 227 (FIG. 34) provided on the base frame 12 side, and an adhesion hole 33 (FIG. 32) provided on the front group frame 13 side. ), The bonding hole 133 (FIG. 33), and the bonding hole 233 (FIG. 34) may be appropriately combined to have a pair of retaining surfaces having an asymmetric shape in the front-rear direction.

ベース枠12の接着用穴27、127、227と、前群枠13の接着用穴33、133、233はいずれも、前後方向に離型する成形型によって容易に製造可能な形状である。そのため、ベース枠12や前群枠13の製造コストを上昇させることなく、容易に得ることができる。   The bonding holes 27, 127, and 227 of the base frame 12 and the bonding holes 33, 133, and 233 of the front group frame 13 have shapes that can be easily manufactured by a mold that is released in the front-rear direction. Therefore, the base frame 12 and the front group frame 13 can be easily obtained without increasing the manufacturing cost.

引き続きベース枠12の構造を説明する。図16から図19に示すように、上壁部21は、正面壁部20の上縁から背面側に延びる壁部であり、各鏡筒11A、11Bの上面部分となる上面部21aと、上面部21aの左右の端部から下方に向けて延びる一対の側面部21b、21cとを有する。上壁部21は、上面部21a、側面部21b及び側面部21cによって上方及び左右方向が閉じられ、下方に向けて開放された、コ字型の形状をなしている。   Next, the structure of the base frame 12 will be described. As shown in FIGS. 16 to 19, the upper wall portion 21 is a wall portion that extends from the upper edge of the front wall portion 20 to the rear surface side, and an upper surface portion 21 a that is an upper surface portion of each of the lens barrels 11 </ b> A and 11 </ b> B, It has a pair of side surface parts 21b and 21c extended toward the downward direction from the left and right end parts of the part 21a. The upper wall portion 21 has a U-shape that is closed upward and laterally by the upper surface portion 21a, the side surface portion 21b, and the side surface portion 21c, and opened downward.

側壁部22と側壁部23はそれぞれ、上壁部21よりも下方に位置し、正面壁部20の左右方向の側縁から背面側に延びる壁部である。正面壁部20から側壁部22にかけての部分と、正面壁部20から側壁部23にかけての部分はそれぞれ、後述する後群枠14の外面形状に沿う湾曲形状になっている。   Each of the side wall part 22 and the side wall part 23 is a wall part located below the upper wall part 21 and extending from the side edge in the left-right direction of the front wall part 20 to the back side. The part from the front wall part 20 to the side wall part 22 and the part from the front wall part 20 to the side wall part 23 are respectively curved shapes along the outer surface shape of the rear group frame 14 described later.

角壁部24と角壁部25はそれぞれ、概ね前後方向に正対する壁部であり、正面壁部20よりも背面側にずれて位置している。角壁部24は、上壁部21の側面部21bから側方に突出し、下端が側壁部22の上部に接続している。角壁部25は、上壁部21の側面部21cから側方に突出し、下端が側壁部23の上部に接続している。角壁部24と角壁部25は、延設方向が異なる複数の壁部に接続することにより、支持強度が高く変形しにくくなっている。   Each of the square wall portion 24 and the square wall portion 25 is a wall portion that faces the front-rear direction in general, and is shifted from the front wall portion 20 toward the back side. The square wall portion 24 protrudes laterally from the side surface portion 21 b of the upper wall portion 21, and the lower end is connected to the upper portion of the side wall portion 22. The square wall portion 25 protrudes laterally from the side surface portion 21 c of the upper wall portion 21, and the lower end is connected to the upper portion of the side wall portion 23. The corner wall portion 24 and the corner wall portion 25 are connected to a plurality of wall portions having different extending directions, whereby the support strength is high and the deformation is difficult.

ベース枠12はさらに、正面壁部20の背面部分に第1プリズム保持部35と第2プリズム保持部36を備えている。第1プリズム保持部35は、正面開口20aの背後に第1プリズムAP1または第1プリズムBP1を保持するための部位である。第2プリズム保持部36は、第2プリズムAP2または第2プリズムBP2を保持するための部位である。   The base frame 12 further includes a first prism holding portion 35 and a second prism holding portion 36 on the back surface portion of the front wall portion 20. The first prism holding part 35 is a part for holding the first prism AP1 or the first prism BP1 behind the front opening 20a. The second prism holding part 36 is a part for holding the second prism AP2 or the second prism BP2.

第1プリズム保持部35は、正面開口20aの上縁側に位置する上壁35aと、正面開口20aの下縁側に位置する下壁35bとを有する。上壁35aの左右方向の一端には、下方に向けて突出する縦壁35cが形成され、下壁35bの左右方向の一端には、上方に向けて突出する縦壁35dが形成されている。   The first prism holding portion 35 has an upper wall 35a located on the upper edge side of the front opening 20a and a lower wall 35b located on the lower edge side of the front opening 20a. A vertical wall 35c protruding downward is formed at one end in the left-right direction of the upper wall 35a, and a vertical wall 35d protruding upward is formed at one end in the left-right direction of the lower wall 35b.

上壁35aと下壁35bと縦壁35cと縦壁35dとの間に第1プリズムAP1、BP1が挿入される。これらの各壁35a、35b、35c、35dと第1プリズムAP1、BP1との間にはクリアランスがあり、第1プリズムAP1、BP1は、組立治具を用いて位置決めした上で、第1プリズム保持部35に対して接着で固定される。   The first prisms AP1 and BP1 are inserted between the upper wall 35a, the lower wall 35b, the vertical wall 35c, and the vertical wall 35d. There is a clearance between each of the walls 35a, 35b, 35c, and 35d and the first prism AP1 and BP1, and the first prism AP1 and BP1 are positioned using an assembly jig and then held by the first prism. It is fixed to the portion 35 by adhesion.

先に述べたように、複合鏡筒10の完成状態で、第1プリズムAP1と第1プリズムBP1は互いの斜面が背中合わせに近接配置される。そのため、第1プリズム保持部35は、第1プリズムAP1と第1プリズムBP1の斜面の裏側を覆わずに露出させる形状になっている。   As described above, in the completed state of the compound barrel 10, the first prism AP1 and the first prism BP1 are arranged close to each other with their slopes back to back. Therefore, the first prism holding part 35 has a shape that exposes the back sides of the slopes of the first prism AP1 and the first prism BP1 without covering them.

第2プリズム保持部36は、上壁部21の側面部21bと角壁部24の下方に位置しており、背面側を向く支持座36aと、支持座36aに対して背面側に突出する支持壁36bとを有している。支持座36aに対して、第2プリズムAP2、BP2の側面が接触する。支持壁36bに対して、第2プリズムAP2、BP2の斜面が接触する。第2プリズムAP2、BP2は、組立治具を用いて、斜面に沿う方向に位置決めされる。そして、位置決めされた第2プリズムAP2、BP2は、第2プリズム保持部36に対して接着で固定される。   The second prism holding portion 36 is positioned below the side surface portion 21b and the square wall portion 24 of the upper wall portion 21, and has a support seat 36a facing the back side and a support projecting to the back side with respect to the support seat 36a. Wall 36b. The side surfaces of the second prisms AP2 and BP2 are in contact with the support seat 36a. The slopes of the second prisms AP2 and BP2 are in contact with the support wall 36b. The second prisms AP2 and BP2 are positioned in a direction along the slope using an assembly jig. Then, the positioned second prisms AP2 and BP2 are fixed to the second prism holding part 36 by adhesion.

ベース枠12に取り付けられていない単体状態の後群枠14を図13に示した。図9、図13、図14等に示すように、後群枠14は、上下方向に延びる光軸X3を中心とする略円筒状の筒状部14aを有しており、後群ARまたは後群BRを構成する複数のレンズが筒状部14aの内部に固定的に支持される。後群枠14はさらに、筒状部14aの上部にプリズムカバー14bを有している。筒状部14aから側方に支持タブ14cが突出し、プリズムカバー14bから上方に支持タブ14dが突出している。筒状部14aの下端には接合フランジ14eが形成されている。   FIG. 13 shows the rear group frame 14 in a single state not attached to the base frame 12. As shown in FIG. 9, FIG. 13, FIG. 14, etc., the rear group frame 14 has a substantially cylindrical tubular portion 14a centering on the optical axis X3 extending in the vertical direction, and the rear group AR or the rear group frame 14a. A plurality of lenses constituting the group BR are fixedly supported inside the cylindrical portion 14a. The rear group frame 14 further has a prism cover 14b on the upper portion of the cylindrical portion 14a. A support tab 14c protrudes laterally from the cylindrical portion 14a, and a support tab 14d protrudes upward from the prism cover 14b. A joining flange 14e is formed at the lower end of the cylindrical portion 14a.

図16から図19に示すように、ベース枠12の背面側には、角壁部24及び第2プリズム保持部36の下方に後群枠保持部37が形成されている。後群枠保持部37は、正面壁部20と側壁部22とによって囲まれる凹部であり、後群枠14の筒状部14aのうち正面側に位置する略半分の部分が収まる形状になっている。後群枠保持部37内に筒状部14aが収まる状態で、ベース枠12の第2プリズム保持部36に支持されている第2プリズムAP2、BP2の一部をプリズムカバー14bが背面側から覆う。   As shown in FIGS. 16 to 19, a rear group frame holding portion 37 is formed below the square wall portion 24 and the second prism holding portion 36 on the back side of the base frame 12. The rear group frame holding part 37 is a concave part surrounded by the front wall part 20 and the side wall part 22, and has a shape in which a substantially half part located on the front side of the cylindrical part 14a of the rear group frame 14 is accommodated. Yes. The prism cover 14b covers a part of the second prisms AP2 and BP2 supported by the second prism holding part 36 of the base frame 12 from the back side in a state where the cylindrical part 14a is accommodated in the rear group frame holding part 37. .

後群枠保持部37の側方(第1プリズム保持部35の下壁35bの下方)に支持座38が形成され、第2プリズム保持部36の上方に支持座39が形成されている。支持座38と支持座39はそれぞれ、光軸X1に対して垂直な環状平面を有し、該環状平面の中央にネジ穴が形成されている。後群枠保持部37内に後群枠14の筒状部14aを収めた状態で、支持タブ14cが支持座38に接触し、支持タブ14dが支持座39に接触する。支持タブ14cと支持タブ14dにはそれぞれ貫通穴(図示略)が形成されており、支持タブ14cの貫通穴を通して支持座38のネジ穴に固定ネジ40を螺合させ、支持タブ14dの貫通穴を通して支持座39のネジ穴に固定ネジ41を螺合させる。固定ネジ40と固定ネジ41を締め付けることによって、後群枠14がベース枠12に対して位置決めされた状態で固定される(図14参照)。   A support seat 38 is formed on the side of the rear group frame holding portion 37 (below the lower wall 35 b of the first prism holding portion 35), and a support seat 39 is formed above the second prism holding portion 36. Each of the support seat 38 and the support seat 39 has an annular plane perpendicular to the optical axis X1, and a screw hole is formed at the center of the annular plane. In a state where the cylindrical portion 14 a of the rear group frame 14 is housed in the rear group frame holding portion 37, the support tab 14 c comes into contact with the support seat 38 and the support tab 14 d comes into contact with the support seat 39. A through hole (not shown) is formed in each of the support tab 14c and the support tab 14d, and the fixing screw 40 is screwed into the screw hole of the support seat 38 through the through hole of the support tab 14c. Then, the fixing screw 41 is screwed into the screw hole of the support seat 39. By tightening the fixing screw 40 and the fixing screw 41, the rear group frame 14 is fixed in a state of being positioned with respect to the base frame 12 (see FIG. 14).

また、ベース枠12の背面側には、角壁部25の下方に後群枠収容部42が形成されている。後群枠収容部42は、正面壁部20と側壁部23とによって囲まれる凹部であり、後群枠14の筒状部14aのうち背面側に位置する略半分の部分が収まる形状になっている。鏡筒11Aと鏡筒11Bを組み合わせる前の状態では、後群枠収容部42は空きスペースになっている(図9、図14参照)。そして、鏡筒11Aと鏡筒11Bを組み合わせたときに、一方のベース枠12における後群枠保持部37と他方のベース枠12における後群枠収容部42とが前後方向に対向して、後群枠14の筒状部14aを内部に収容する空間を形成する。   Further, a rear group frame housing portion 42 is formed below the square wall portion 25 on the back side of the base frame 12. The rear group frame housing part 42 is a recess surrounded by the front wall part 20 and the side wall part 23, and has a shape in which a substantially half part located on the back side of the cylindrical part 14 a of the rear group frame 14 is accommodated. Yes. In a state before the lens barrel 11A and the lens barrel 11B are combined, the rear group frame housing portion 42 is an empty space (see FIGS. 9 and 14). When the lens barrel 11A and the lens barrel 11B are combined, the rear group frame holding portion 37 in one base frame 12 and the rear group frame housing portion 42 in the other base frame 12 face each other in the front-rear direction. A space for accommodating the cylindrical portion 14a of the group frame 14 is formed.

第3プリズム枠15は、第3プリズムAP3、BP3の両側面と斜面とを支持するプリズム支持壁15aを有し、各第3プリズムAP3、BP3は、第3プリズム枠15に対して接着で固定される。第3プリズム枠15の上部には接合フランジ15bが設けられている。接合フランジ15bは、後群枠14の接合フランジ14eに対して下方から嵌合可能である。該嵌合状態で位置決めを行って、第3プリズム枠15が後群枠14に対して接着で固定される。   The third prism frame 15 has a prism support wall 15a that supports both side surfaces and inclined surfaces of the third prisms AP3 and BP3. The third prisms AP3 and BP3 are fixed to the third prism frame 15 by bonding. Is done. A joint flange 15 b is provided on the upper portion of the third prism frame 15. The joining flange 15b can be fitted to the joining flange 14e of the rear group frame 14 from below. Positioning is performed in the fitted state, and the third prism frame 15 is fixed to the rear group frame 14 by adhesion.

撮像センサユニット16には前後方向の縁部に一対の嵌合片43が設けられている。一対の嵌合片43は、第3プリズム枠15のプリズム支持壁15aに形成された凹部に嵌合し、該嵌合によって第3プリズム枠15に対する撮像センサユニット16の位置が定まる。撮像センサユニット16は、第3プリズム枠15に対して接着で固定される。この固定状態で、撮像センサAI、BIの撮像面が光軸X4と垂直な向きになり、撮像センサAIの撮像面が第3プリズムAP3の出射面に対向し、撮像センサBIの撮像面が第3プリズムBP3の出射面に対向する。   The imaging sensor unit 16 is provided with a pair of fitting pieces 43 at the edges in the front-rear direction. The pair of fitting pieces 43 are fitted into recesses formed in the prism support wall 15a of the third prism frame 15, and the position of the image sensor unit 16 with respect to the third prism frame 15 is determined by the fitting. The image sensor unit 16 is fixed to the third prism frame 15 by adhesion. In this fixed state, the imaging surfaces of the imaging sensors AI and BI are oriented perpendicular to the optical axis X4, the imaging surface of the imaging sensor AI faces the exit surface of the third prism AP3, and the imaging surface of the imaging sensor BI is the first. It faces the exit surface of the three prism BP3.

撮像センサユニット16は、撮像センサAI、BIを片面側に有する基板17を備えている。基板17は略矩形であり、第3プリズム枠15に対して撮像センサユニット16を固定した状態では、基板17の長手方向が上下方向に向き、基板17の短手方向が前後方向に向く。また、基板17の板厚方向が左右方向に向く。基板17の下端付近には、撮像装置の制御回路(図示略)に接続するためのコネクタ17aが設けられている。コネクタ17aは、基板17のうち撮像センサAI、BIが設けられているのと同じ側の面に配置されている。   The imaging sensor unit 16 includes a substrate 17 having imaging sensors AI and BI on one side. The substrate 17 is substantially rectangular, and in a state where the imaging sensor unit 16 is fixed to the third prism frame 15, the longitudinal direction of the substrate 17 is directed in the vertical direction, and the lateral direction of the substrate 17 is directed in the front-rear direction. Further, the thickness direction of the substrate 17 is directed in the left-right direction. Near the lower end of the substrate 17, a connector 17a for connecting to a control circuit (not shown) of the imaging device is provided. The connector 17a is disposed on the same surface of the substrate 17 as the imaging sensors AI and BI are provided.

以上の各構成要素を組み合わせることで、個々の鏡筒11Aと鏡筒11Bが完成する。図9から図12は鏡筒11Aと鏡筒11Bを分割した状態を示し、図13と図14は単体の鏡筒11A、11Bを示したものである。これらの図から分かるように、個々の鏡筒11Aと鏡筒11Bは同一構造である。   By combining the above components, the individual lens barrels 11A and 11B are completed. 9 to 12 show a state in which the lens barrel 11A and the lens barrel 11B are divided, and FIGS. 13 and 14 show the single lens barrels 11A and 11B. As can be seen from these drawings, the individual lens barrels 11A and 11B have the same structure.

図10に示すように、鏡筒11Aと鏡筒11Bはそれぞれ、前群AF、BFと前群枠13の一部が正面側に突出する箇所を除いて、基板17の短手方向の幅内に収まる前後方向のサイズになっている。複数のプリズムを用いて光軸X1と垂直な平面内(広角レンズ系A、Bの対向平面内)で光路を屈曲させる屈曲光学系として広角レンズ系A、Bを構成したことにより、このような鏡筒11A及び鏡筒11Bの前後方向への薄型化が実現している。   As shown in FIG. 10, the lens barrel 11A and the lens barrel 11B are within the width of the substrate 17 in the short direction except for the front group AF, BF, and a part where the front group frame 13 protrudes to the front side. It is the size of the front and rear to fit in. By configuring the wide-angle lens systems A and B as bending optical systems that use a plurality of prisms to bend the optical path in a plane perpendicular to the optical axis X1 (in the plane opposite to the wide-angle lens systems A and B), Thinning of the lens barrel 11A and the lens barrel 11B in the front-rear direction is realized.

同一構造の鏡筒11Aと鏡筒11Bを前後対称となるように対向させ(図9から図12)、前後方向で鏡筒11Aと鏡筒11Bを接近させて組み合わせることで、図4から図8に示す完成状態の複合鏡筒10になる。図9から図12に示すように、鏡筒11Aと鏡筒11Bは、前後方向への接近によって、互いの凹凸部分が組み合わされる構造を備えており、スペース効率良く結合させることができる。   The lens barrel 11A and the lens barrel 11B having the same structure are opposed to each other so as to be symmetrical in the front-rear direction (FIGS. 9 to 12), and the lens barrel 11A and the lens barrel 11B are brought close to each other in the front-rear direction. As shown in FIG. As shown in FIGS. 9 to 12, the lens barrel 11 </ b> A and the lens barrel 11 </ b> B have a structure in which the concavo-convex portions are combined by approaching in the front-rear direction, and can be combined with high efficiency.

ここで、光軸X1を含み上下に延びる仮想平面Q1(図5)と、仮想平面Q1に対して垂直でベース枠12の下端付近を通る仮想平面Q2(図5)を設定する。鏡筒11Aは、第1プリズムAP1で屈曲された後の、第2プリズムAP2から撮像センサAIに至るまでの光路が、仮想平面Q1の左方の領域に集中して配されている。鏡筒11Bは、第1プリズムBP1で屈曲された後の、第2プリズムBP2から撮像センサBIに至るまでの光路が、仮想平面Q1の右方の領域に集中して配されている。図11及び図12に示すように、仮想平面Q1の左方では、鏡筒11Aの構成要素がベース枠12から後方に突出する一方で、鏡筒11Bの構成要素がベース枠12から前方に突出しない。同様に、仮想平面Q1の右方では、鏡筒11Bの構成要素がベース枠12から前方に突出する一方で、鏡筒11Aの構成要素がベース枠12から後方に突出しない。従って、鏡筒11Aと鏡筒11Bを組み合わせると、鏡筒11A側の後群枠14、第3プリズム枠15及び撮像センサユニット16と、鏡筒11B側の後群枠14、第3プリズム枠15及び撮像センサユニット16とが、互いに干渉することなく仮想平面Q1を挟んで左右対称に並列する。   Here, a virtual plane Q1 (FIG. 5) including the optical axis X1 and extending vertically is set, and a virtual plane Q2 (FIG. 5) passing through the vicinity of the lower end of the base frame 12 perpendicular to the virtual plane Q1 is set. In the lens barrel 11A, the optical path from the second prism AP2 to the image sensor AI after being bent by the first prism AP1 is concentrated in the left region of the virtual plane Q1. In the lens barrel 11B, the optical path from the second prism BP2 to the image sensor BI after being bent by the first prism BP1 is concentrated in the right region of the virtual plane Q1. As shown in FIGS. 11 and 12, on the left side of the virtual plane Q1, the constituent elements of the lens barrel 11A protrude rearward from the base frame 12, while the constituent elements of the lens barrel 11B protrude frontward from the base frame 12. do not do. Similarly, on the right side of the virtual plane Q1, the components of the lens barrel 11B protrude forward from the base frame 12, while the components of the lens barrel 11A do not protrude rearward from the base frame 12. Therefore, when the lens barrel 11A and the lens barrel 11B are combined, the rear group frame 14, the third prism frame 15 and the imaging sensor unit 16 on the lens barrel 11A side, the rear group frame 14 and the third prism frame 15 on the lens barrel 11B side are combined. And the imaging sensor unit 16 are arranged in parallel symmetrically across the virtual plane Q1 without interfering with each other.

また、広角レンズ系A、Bではそれぞれ、第1プリズムAP1、BP1により左右に振り分けられた被写体光束が、第3プリズムAP3、BP3での反射により互いに仮想平面Q1に接近する方向に進んで撮像センサAIに入射する。その結果、左右方向における鏡筒11A側の撮像センサユニット16と鏡筒11B側の撮像センサユニット16の間隔が近くなり、特に互いの基板17が仮想平面Q1を挟んで近接した関係にある。そして、各鏡筒11A、11Bにおいて、左右方向の中央部分の領域には、仮想平面Q2の上方に第1プリズムAP1、BP1が配置され、仮想平面Q2の下方に2つの撮像センサユニット16が背中合わせの関係で配置される。なお、鏡筒11A側の基板17と鏡筒11B側の基板17はそれぞれ仮想平面Q1と略平行な平板形状であり、且つ互いの間に左右方向へのクリアランスが確保されているので、鏡筒11Aと鏡筒11Bを前後方向に接近させたときに双方の基板17の干渉は生じない。   Further, in the wide-angle lens systems A and B, the subject light beams distributed to the left and right by the first prisms AP1 and BP1 advance toward the virtual plane Q1 with reflection by the third prisms AP3 and BP3, respectively, and are image sensors. Incident to AI. As a result, the distance between the imaging sensor unit 16 on the lens barrel 11A side and the imaging sensor unit 16 on the lens barrel 11B side in the left-right direction is closer, and in particular, the mutual substrates 17 are in close proximity with the virtual plane Q1 interposed therebetween. In each of the lens barrels 11A and 11B, the first prisms AP1 and BP1 are disposed above the virtual plane Q2 in the region of the central portion in the left-right direction, and the two image sensor units 16 are back to back below the virtual plane Q2. Arranged in relation to The substrate 17 on the side of the lens barrel 11A and the substrate 17 on the side of the lens barrel 11B each have a flat plate shape substantially parallel to the virtual plane Q1, and a clearance in the left-right direction is secured between them. When the 11A and the lens barrel 11B are brought close to each other in the front-rear direction, the interference between the substrates 17 does not occur.

第1プリズムAP1と第1プリズムBP1は、互いの斜面が背中合わせに近接して配置されているので、2つのプリズムが前後方向に並ぶ関係でありながら、実質的に占めている前後方向の厚みは概ね1つのプリズム相当で済む(図3参照)。また、鏡筒11Aの撮像センサユニット16と鏡筒11Bの撮像センサユニット16は、前後方向で概ね同じ位置にあって左右方向に並ぶ関係にあり、前後方向において概ね1つの基板17の短手方向の幅が収まるだけのスペースがあれば、2つの撮像センサユニット16を第1プリズムAP1、BP1の下方に収めることができる。従って、鏡筒11Aと鏡筒11Bのそれぞれの構成要素(後群枠14や第3プリズム枠15)が単独で配置される左右方向の両縁付近だけでなく、鏡筒11Aと鏡筒11Bの互いの構成要素(第1プリズムAP1、BP1、撮像センサユニット16)が重なって配置される左右方向の中央付近でも、前後方向の厚みを小さく抑えることができる。   Since the first prism AP1 and the first prism BP1 are arranged so that the slopes of the first prism AP1 and the first prism BP1 are close to each other, the thickness in the front-rear direction substantially occupied by the two prisms is aligned in the front-rear direction. Approximately one prism is sufficient (see FIG. 3). In addition, the imaging sensor unit 16 of the lens barrel 11A and the imaging sensor unit 16 of the lens barrel 11B are in substantially the same position in the front-rear direction and are aligned in the left-right direction. If there is enough space for the width of the two, the two image sensor units 16 can be accommodated below the first prisms AP1 and BP1. Therefore, not only the vicinity of both edges in the left-right direction in which the respective constituent elements (the rear group frame 14 and the third prism frame 15) of the lens barrel 11A and the lens barrel 11B are independently arranged, but also the lens barrel 11A and the lens barrel 11B. The thickness in the front-rear direction can be kept small even in the vicinity of the center in the left-right direction where the respective constituent elements (first prisms AP1, BP1, image sensor unit 16) are arranged to overlap.

以上の通り、複合鏡筒10は、前後、左右、上下の各方向において鏡筒11Aと鏡筒11Bの構成要素が互いにスペース効率良く配置されており、2つの鏡筒11A及び鏡筒11Bを備えていながらコンパクトな構成が実現される。   As described above, the composite lens barrel 10 includes the two lens barrels 11A and 11B in which the constituent elements of the lens barrel 11A and the lens barrel 11B are arranged in a space-efficient manner in the front-rear, left-right, and upper-lower directions. However, a compact configuration is realized.

上記の通り、鏡筒11Aと鏡筒11Bは、前後対称に配置した上で前後方向に接近させることで組み合わされる。ここで、鏡筒11Aと鏡筒11Bは、互いの光学系(広角レンズ系A、B)の向きを適正にして、安定した位置関係で組み合わせる必要がある。具体的には、光軸X1に沿う前後方向の位置決めと、光軸X1に対して垂直な平面に沿う方向(上下左右方向)の位置決めとが必要である。また、2つの光学系(広角レンズ系A、B)を備える撮像システム1を機能させるためには、鏡筒11Aと鏡筒11Bを組み合わせた後(より詳しくは、広角レンズ系A、Bを含む撮像システム1としてキャリブレーションした後)において、外力等によって鏡筒11Aと鏡筒11Bの相対的な位置関係が変化しないように、高い結合強度が求められる。   As described above, the lens barrel 11 </ b> A and the lens barrel 11 </ b> B are combined by being arranged symmetrically in the front-rear direction and approaching in the front-rear direction. Here, it is necessary to combine the lens barrel 11A and the lens barrel 11B in a stable positional relationship by making the directions of the optical systems (wide-angle lens systems A and B) appropriate. Specifically, positioning in the front-rear direction along the optical axis X1 and positioning in the direction along the plane perpendicular to the optical axis X1 (up / down / left / right direction) are necessary. Further, in order to make the imaging system 1 including two optical systems (wide-angle lens systems A and B) function, after combining the lens barrel 11A and the lens barrel 11B (more specifically, including the wide-angle lens systems A and B). After calibration as the imaging system 1, a high coupling strength is required so that the relative positional relationship between the lens barrel 11A and the lens barrel 11B is not changed by an external force or the like.

まず、鏡筒11Aと鏡筒11Bの前後方向の位置を定める構造について説明する。ベース枠12には、角壁部24の背面側に当て付け面50が設けられ、角壁部25の背面側に当て付け面51が設けられている。角壁部24から前後に突出する円筒状のボス52の端面として当て付け面50が形成され、角壁部25から前後に突出する円筒状のボス53の端面として当て付け面51が形成される。当て付け面50と当て付け面51はいずれも光軸X1に対して垂直な円環状の平面であり、互いに前後対称な形状を有している。   First, the structure that determines the positions of the lens barrel 11A and the lens barrel 11B in the front-rear direction will be described. The base frame 12 is provided with an abutment surface 50 on the back side of the corner wall portion 24 and an abutment surface 51 on the back side of the corner wall portion 25. An abutting surface 50 is formed as an end surface of a cylindrical boss 52 projecting forward and backward from the corner wall portion 24, and an abutting surface 51 is formed as an end surface of a cylindrical boss 53 projecting forward and backward from the corner wall portion 25. . The abutting surface 50 and the abutting surface 51 are both annular planes perpendicular to the optical axis X1 and have shapes that are symmetrical to each other.

ボス52の内部には、前後方向に軸線が向くネジ穴54が形成されている。ネジ穴54は、背面側の端部が当て付け面50上に開口し、その反対の正面側の端部が閉じられている。ボス53の内部には、前後方向に貫通するネジ挿通穴55が形成されている。   Inside the boss 52, there is formed a screw hole 54 whose axis is directed in the front-rear direction. The screw hole 54 has an end on the back side opened on the abutting surface 50, and an end on the opposite front side is closed. Inside the boss 53, a screw insertion hole 55 penetrating in the front-rear direction is formed.

図9から図12は、鏡筒11A側の当て付け面50と当て付け面51がそれぞれ鏡筒11B側の当て付け面51と当て付け面50に対向する状態を示している。この位置関係で鏡筒11Aと鏡筒11Bを前後方向に接近させると、互いの当て付け面50と当て付け面51がそれぞれ接触(当接)して、前後方向の鏡筒11Aと鏡筒11Bの相対位置が定まる。当て付け面50と当て付け面51は、この接触状態で互いに平行になる平面であり、かつ接触状態で互いに対称となる形状である。当て付け面50と当て付け面51の接触状態で鏡筒11Aと鏡筒11Bを固定することで、鏡筒11Aと鏡筒11Bの前後方向の位置精度が管理された複合鏡筒10になる。   9 to 12 show a state in which the abutment surface 50 and the abutment surface 51 on the side of the lens barrel 11A face the abutment surface 51 and the abutment surface 50 on the side of the lens barrel 11B, respectively. When the lens barrel 11A and the lens barrel 11B are brought close to each other in this positional relationship, the abutting surface 50 and the abutting surface 51 come into contact (contact) with each other, and the lens barrel 11A and the lens barrel 11B in the front / rear direction are brought into contact with each other. The relative position of is determined. The abutting surface 50 and the abutting surface 51 are flat surfaces that are parallel to each other in this contact state, and are symmetrical to each other in the contact state. By fixing the lens barrel 11A and the lens barrel 11B in a contact state between the abutting surface 50 and the abutting surface 51, the composite lens barrel 10 in which the positional accuracy in the front-rear direction of the lens barrel 11A and the lens barrel 11B is managed is obtained.

鏡筒11Aと鏡筒11Bを固定する手段として、ネジ止めを用いる。ネジ止めについては、鏡筒11Aのネジ挿通穴55に対して前方から固定ネジ(図示略)を挿入して鏡筒11Bのネジ穴54に螺合させ、鏡筒11Bのネジ挿通穴55に対して後方から固定ネジ(図示略)を挿入して鏡筒11Bのネジ穴54に螺合させる。そして、各固定ネジを締め付けることにより、鏡筒11Aと鏡筒11Bが互いに固定された関係になる。   As means for fixing the lens barrel 11A and the lens barrel 11B, screwing is used. As for screwing, a fixing screw (not shown) is inserted from the front into the screw insertion hole 55 of the lens barrel 11A and screwed into the screw hole 54 of the lens barrel 11B. Then, a fixing screw (not shown) is inserted from behind and screwed into the screw hole 54 of the lens barrel 11B. Then, by tightening each fixing screw, the lens barrel 11A and the lens barrel 11B are fixed to each other.

各鏡筒11A、11Bにおけるベース枠12は、複数のプリズム(第1プリズムAP1、BP1、第2プリズムAP2、BP2)を保持しており、さらに前群枠13や後群枠14の組み付け対象でもあり、全ての光学要素の支持基準となる部材でもある。故に、ベース枠12の組み付け精度が光学性能に特に大きな影響を及ぼすので、各鏡筒11A、11Bの前後方向の相対的な位置基準となる当て付け面50、51を、ベース枠12に備えている。   The base frame 12 in each of the lens barrels 11A and 11B holds a plurality of prisms (first prism AP1, BP1, second prism AP2, BP2), and is also an assembly target of the front group frame 13 and the rear group frame 14. Yes, it is also a member that serves as a support reference for all optical elements. Therefore, since the assembly accuracy of the base frame 12 has a great influence on the optical performance, the base frame 12 is provided with the abutment surfaces 50 and 51 serving as relative position references in the front-rear direction of the lens barrels 11A and 11B. Yes.

当て付け面50と当て付け面51はそれぞれ、ベース枠12の左右方向の両縁付近に設けられており、ベース枠12の寸法的な制約の中で互いの距離が最大限に大きく確保されている。このように位置基準となる2つの当て付け面50、51の距離を大きくすることで、2つのベース枠12どうしの傾きを効果的に防いで、各鏡筒11A、11Bの位置決め精度を向上させることができる。図14に示すように、当て付け面50は、第2プリズムAP2、BP2の斜面の背後のスペースを利用して配されており、スペース効率に優れている。また、当て付け面50は、後群枠14を保持する後群枠保持部37の上方に設けられ、当て付け面51は、後群枠14を背面側から覆う後群枠収容部42の上方に設けられている。そのため、両方のベース枠12の背面側に保持される後群AR、BRや、第1プリズムAP1、BP1や、第2プリズムAP2、BP2の保持位置と重ならずに当て付け面50、51を配置し、且つ当て付け面50と当て付け面51の間隔を広くして配置することが可能になっている。   The abutting surface 50 and the abutting surface 51 are provided in the vicinity of both edges in the left-right direction of the base frame 12, and the distance between the abutting surface 50 and the abutting surface 51 is ensured to the maximum with the dimensional constraints of the base frame 12. Yes. In this way, by increasing the distance between the two abutment surfaces 50 and 51 serving as the position reference, the tilt between the two base frames 12 is effectively prevented, and the positioning accuracy of the lens barrels 11A and 11B is improved. be able to. As shown in FIG. 14, the abutment surface 50 is arranged using the space behind the slopes of the second prisms AP2 and BP2, and is excellent in space efficiency. The abutting surface 50 is provided above the rear group frame holding portion 37 that holds the rear group frame 14, and the abutting surface 51 is located above the rear group frame housing portion 42 that covers the rear group frame 14 from the back side. Is provided. Therefore, the abutting surfaces 50 and 51 are not overlapped with the holding positions of the rear groups AR and BR, the first prisms AP1 and BP1 and the second prisms AP2 and BP2 held on the back side of both the base frames 12. Further, it is possible to arrange the abutting surface 50 and the abutting surface 51 wide.

当て付け面50を備える角壁部24と当て付け面51を備える角壁部25はいずれも、上壁部21や側壁部22、23付近の向きの異なる複数の壁部に接続しているため、平板形状でありながら高度な剛性を備えている。従って、当て付け面50と当て付け面51の面精度が高く、当て付け面50、51が互いに接触したときの角壁部24、25の歪みも生じず、高精度な位置決めを行える。   The square wall portion 24 having the abutting surface 50 and the square wall portion 25 having the abutting surface 51 are both connected to a plurality of wall portions having different orientations in the vicinity of the upper wall portion 21 and the side wall portions 22 and 23. Although it has a flat plate shape, it has high rigidity. Therefore, the surface accuracy of the abutting surface 50 and the abutting surface 51 is high, and the square wall portions 24 and 25 are not distorted when the abutting surfaces 50 and 51 are in contact with each other, so that highly accurate positioning can be performed.

また、図5に示すように、当て付け面50を有するボス52と当て付け面51を有するボス53は、光軸X1に関して、左右方向に略対称の位置に配されている。これにより、光軸X1の左右両側で、前後方向への均等な位置決め精度を出しやすく、光軸X1上に並ぶ前群AF、BFや第1プリズムAP1、BP1の位置精度の確保に特に有利になる。また、当て付け面50、51による位置決め精度や位置決めの安定性が高いため、鏡筒11Aと鏡筒11Bを互いに干渉させずに組み合わせることができる。   Further, as shown in FIG. 5, the boss 52 having the abutting surface 50 and the boss 53 having the abutting surface 51 are arranged at positions that are substantially symmetrical in the left-right direction with respect to the optical axis X1. This facilitates uniform positioning accuracy in the front-rear direction on both the left and right sides of the optical axis X1, and is particularly advantageous for securing the positional accuracy of the front groups AF and BF and the first prisms AP1 and BP1 arranged on the optical axis X1. Become. Further, since the positioning accuracy and positioning stability by the abutting surfaces 50 and 51 are high, the lens barrel 11A and the lens barrel 11B can be combined without interfering with each other.

例えば、鏡筒11Aと鏡筒11Bを組み合わせると、それぞれのベース枠12の背面側の後群枠収容部42に対して、相手側の鏡筒11A、11Bを構成する後群枠14の筒状部14aが進入し、対向関係にある各後群枠保持部37と各後群枠収容部42の間に筒状部14a(後群AR、BR)が位置する。このとき、後群ARを保持する後群枠14(鏡筒11A側の後群枠14)は、鏡筒11Bのベース枠12に設けた後群枠収容部42により背面側(後方)から覆われるが、鏡筒11B側の後群枠収容部42は鏡筒11A側の後群枠14に対して接触はしない(前後方向のクリアランスがある)ため、鏡筒11A側の後群枠14は、鏡筒11Aのベース枠12上の後群枠保持部37内に適正に位置決めされる状態を維持する。同様に、後群BRを保持する後群枠14(鏡筒11B側の後群枠14)は、鏡筒11Aのベース枠12に設けた後群枠収容部42により背面側(前方)から覆われるが、鏡筒11A側の後群枠収容部42は鏡筒11B側の後群枠14に対して接触はしない(前後方向のクリアランスがある)ため、鏡筒11B側の後群枠14は、鏡筒11Bのベース枠12上の後群枠保持部37内に適正に位置決めされる状態を維持する。このように、互いのベース枠12が当て付け面50、51により安定して高精度に位置決めされるため、各ベース枠12の後群枠収容部42に対して各後群枠14を、干渉させることなく適切な位置に収容させることができる。   For example, when the lens barrel 11A and the lens barrel 11B are combined, the cylindrical shape of the rear group frame 14 constituting the opposite lens barrels 11A and 11B with respect to the rear group frame housing portion 42 on the back side of each base frame 12 The cylindrical part 14a (rear group AR, BR) is located between each rear group frame holding part 37 and each rear group frame accommodating part 42 which are in the opposite relationship. At this time, the rear group frame 14 holding the rear group AR (the rear group frame 14 on the side of the lens barrel 11A) is covered from the back side (rear) by the rear group frame housing portion 42 provided on the base frame 12 of the lens barrel 11B. However, the rear group frame housing portion 42 on the side of the lens barrel 11B does not contact the rear group frame 14 on the side of the lens barrel 11A (there is a clearance in the front-rear direction). The state of being properly positioned in the rear group frame holding portion 37 on the base frame 12 of the lens barrel 11A is maintained. Similarly, the rear group frame 14 that holds the rear group BR (the rear group frame 14 on the lens barrel 11B side) is covered from the back side (front) by the rear group frame housing portion 42 provided on the base frame 12 of the lens barrel 11A. However, since the rear group frame housing portion 42 on the lens barrel 11A side does not contact the rear group frame 14 on the lens barrel 11B side (there is a clearance in the front-rear direction), the rear group frame 14 on the lens barrel 11B side is The state of being properly positioned in the rear group frame holding portion 37 on the base frame 12 of the lens barrel 11B is maintained. In this way, each base frame 12 is stably and highly accurately positioned by the abutting surfaces 50 and 51, so that each rear group frame 14 interferes with the rear group frame housing portion 42 of each base frame 12. It can be accommodated in an appropriate position without causing it.

当て付け面50と当て付け面51はそれぞれ、光軸X1と垂直な平面であり、且つ互いに前後方向に対称な形状である。そのため、鏡筒11Aと鏡筒11Bを光軸X1に沿って前後に接近させて当て付け面50と当て付け面51が接触したときに、余分な分力を生じさせずに、確実且つ高精度に前後方向の位置決めを行うことができる。   Each of the abutting surface 50 and the abutting surface 51 is a plane perpendicular to the optical axis X1 and is symmetric in the front-rear direction. Therefore, when the lens barrel 11A and the lens barrel 11B are moved close to each other along the optical axis X1 and the abutting surface 50 and the abutting surface 51 come into contact with each other, an extra component force is not generated, and the accuracy is ensured. Positioning in the front-rear direction can be performed.

当て付け面50を有するボス52と、当て付け面51を有するボス53はいずれも、前後方向に離型する成形型によって容易に製造可能な形状である。そのため、ベース枠12の製造コストを上昇させることなく、容易に得ることができる。   Both of the boss 52 having the abutting surface 50 and the boss 53 having the abutting surface 51 have shapes that can be easily manufactured by a mold that is released in the front-rear direction. Therefore, it can be easily obtained without increasing the manufacturing cost of the base frame 12.

当て付け面50、51が接触する状態で鏡筒11Aと鏡筒11Bを固定すると、ベース枠12における互いの上壁部21、側壁部22及び側壁部23が組み合わさって、前後方向に連続する複合鏡筒10の外壁部分を形成する。より詳しくは、複合鏡筒10の上面では、鏡筒11Aと鏡筒11Bの互いの上壁部21(上面部21a)の縁部が接する。複合鏡筒10の左側面では、鏡筒11Aの側壁部22の縁部と鏡筒11Bの側壁部23の縁部が接する。複合鏡筒10の右側面では、鏡筒11Aの側壁部23の縁部と鏡筒11Bの側壁部22の縁部が接する。これらの各縁部は、当て付け面50と当て付け面51の接触による前後方向の位置決め精度に影響を及ぼさないように、当て付け面50と当て付け面51が接触した状態で前後方向にわずかなクリアランスをもって対向する。そして、上壁部21、側壁部22及び側壁部23の各縁部には、クリアランスが存在していても、外部からの有害光が複合鏡筒10内に入ることを防止する遮光構造が設けられている。   When the lens barrel 11A and the lens barrel 11B are fixed in a state where the contact surfaces 50 and 51 are in contact with each other, the upper wall portion 21, the side wall portion 22 and the side wall portion 23 of the base frame 12 are combined to be continuous in the front-rear direction. The outer wall portion of the composite lens barrel 10 is formed. More specifically, on the upper surface of the compound barrel 10, the edges of the upper wall portion 21 (upper surface portion 21a) of the barrel 11A and the barrel 11B are in contact with each other. On the left side surface of the compound barrel 10, the edge of the side wall 22 of the lens barrel 11A and the edge of the side wall 23 of the lens barrel 11B are in contact. On the right side surface of the composite lens barrel 10, the edge of the side wall 23 of the lens barrel 11A and the edge of the side wall 22 of the lens barrel 11B are in contact. Each of these edges is slightly in the front-rear direction with the abutment surface 50 and the abutment surface 51 in contact with each other so as not to affect the positioning accuracy in the front-rear direction due to the contact between the abutment surface 50 and the abutment surface 51. Opposing with a clear clearance. Further, each edge of the upper wall portion 21, the side wall portion 22, and the side wall portion 23 is provided with a light shielding structure that prevents harmful light from the outside from entering the compound lens barrel 10 even if there is a clearance. It has been.

具体的には、図16や図17に示すように、上面部21aの縁部には、鏡筒11Aと鏡筒11Bを組み合わせたときに互いに上下方向に重なる位置関係でリブ21d、21eが設けられている。側壁部22と側壁部23の縁部には、鏡筒11Aと鏡筒11Bを組み合わせたときに互いに左右方向に重なる位置関係でリブ22aとリブ23aが設けられている。リブ21dとリブ21e、リブ22aとリブ23aのそれぞれの重なりによって、外部からの光を遮断できる。また、図7、図11、図17等に示すように、側面部21cに連続して、上面部21aよりも背面側に突出するリブ21fが設けられている。鏡筒11Aと鏡筒11Bを組み合わせると、リブ21fが、相手側の側面部21bの一部と左右方向に重なる位置関係となる(図7参照)。このリブ21fと側面部21bとの重なりによって、外部からの光を遮断できる。   Specifically, as shown in FIGS. 16 and 17, ribs 21d and 21e are provided on the edge of the upper surface portion 21a so as to overlap each other in the vertical direction when the lens barrel 11A and the lens barrel 11B are combined. It has been. Ribs 22a and 23a are provided at the edge portions of the side wall portion 22 and the side wall portion 23 so as to overlap each other in the left-right direction when the lens barrel 11A and the lens barrel 11B are combined. Light from the outside can be blocked by the overlapping of the ribs 21d and 21e and the ribs 22a and 23a. Further, as shown in FIGS. 7, 11, 17, etc., a rib 21f is provided continuously to the side surface portion 21c and protrudes to the back side from the upper surface portion 21a. When the lens barrel 11A and the lens barrel 11B are combined, the rib 21f overlaps with a part of the side surface portion 21b on the other side in the left-right direction (see FIG. 7). Light from the outside can be blocked by the overlap of the rib 21f and the side surface portion 21b.

上記のように、鏡筒11Aと鏡筒11Bは当て付け面50と当て付け面51の接触によって前後方向の相対位置が定まっており、当て付け面50と当て付け面51以外の箇所には前後方向に所定のクリアランスが確保されている。   As described above, the relative positions of the lens barrel 11A and the lens barrel 11B in the front-rear direction are determined by the contact between the abutment surface 50 and the abutment surface 51, and there are front and rear portions other than the abutment surface 50 and the abutment surface 51. A predetermined clearance is ensured in the direction.

第1プリズム保持部35の上壁35aと下壁35bはそれぞれ、背面側を向く縁部が、光軸X1に対して垂直な平面と、光軸X1と平行な平面とが連続する階段状の形状になっている。鏡筒11Aと鏡筒11Bを組み合わせると、一方の上壁35aと他方の下壁35bの階段状の縁部が、わずかなクリアランスをもって前後方向に対向する。鏡筒11Aと鏡筒11Bに対して前後方向に過大な負荷(鏡筒11Aと鏡筒11Bを接近させる方向への過大な負荷)が加わった場合、互いの上壁35aや互いの下壁35bの縁部が接触して負荷を受けることができる。すなわち、上壁35aと下壁35bの対向部分を補助的な当て付け面として用いて、鏡筒11Aと鏡筒11Bの間で負荷を分散させて、複合鏡筒10全体として強度を確保することができる。上壁35aと下壁35bの互いの縁部は、光軸X1と垂直な平面を対向させているため、該平面が接触したときに、不要な分力を生じることなく、確実に負荷を受けることができる。特に、第1プリズム保持部35が設けられている箇所は、左右方向に大きく離間する当て付け面50と当て付け面51の中間付近であり、且つ光学性能に大きく影響する第1プリズムAP1、BP1の保持位置でもある。そのため、当該位置で前後の第1プリズム保持部35によって補助的に負荷を受けられるようにすることで、複合鏡筒10の全体的な強度向上と、光学性能の確保に寄与する。   Each of the upper wall 35a and the lower wall 35b of the first prism holding part 35 has a stepped shape in which the edge facing the back side is continuous with a plane perpendicular to the optical axis X1 and a plane parallel to the optical axis X1. It has a shape. When the lens barrel 11A and the lens barrel 11B are combined, the stepped edges of one upper wall 35a and the other lower wall 35b face each other in the front-rear direction with a slight clearance. When an excessive load in the front-rear direction is applied to the lens barrel 11A and the lens barrel 11B (an excessive load in a direction in which the lens barrel 11A and the lens barrel 11B approach each other), the upper wall 35a and the lower wall 35b of each other The edges of the can contact and receive a load. That is, using the opposing portion of the upper wall 35a and the lower wall 35b as an auxiliary abutment surface, the load is distributed between the lens barrel 11A and the lens barrel 11B to ensure the strength of the composite lens barrel 10 as a whole. Can do. Since the edges of the upper wall 35a and the lower wall 35b face each other a plane perpendicular to the optical axis X1, when the planes come into contact with each other, the load is reliably received without generating unnecessary component force. be able to. In particular, the place where the first prism holding portion 35 is provided is in the vicinity of the middle between the abutting surface 50 and the abutting surface 51 that are greatly separated in the left-right direction and has a great influence on the optical performance. It is also a holding position. For this reason, the load can be supplementarily received by the front and rear first prism holding portions 35 at this position, which contributes to improving the overall strength of the compound barrel 10 and ensuring optical performance.

上記のように、鏡筒11Aと鏡筒11Bを組み合わせると、前後方向に対向する互いの後群枠保持部37と後群枠収容部42の間の空間に後群枠14の筒状部14aが収まる。ベース枠12の背面側には、後群枠保持部37内に後群枠対向部56が形成されている(図16から図19参照)。後群枠対向部56は光軸X1と垂直な平面である。図13に示すように、後群枠14は、ベース枠12の後群枠保持部37に対向する正面側に、対向凸部14fを有している。対向凸部14fは、ベース枠12に後群枠14を組み付けた状態で、ベース枠12の後群枠対向部56に対向する位置に設けられている。設計上、対向凸部14fと後群枠対向部56が接触するように設定されている。仮に、対向凸部14fと後群枠対向部56が離間するような精度誤差があった場合、ベース枠12と後群枠14との間に柔軟な部材を挿入して後群枠14に付勢力を与え、対向凸部14fが後群枠対向部56に接触するように安定させることができる。具体的には、鏡筒11A側で後群枠14の対向凸部14fが後群枠対向部56から離間している場合、鏡筒11B側のベース枠12の後群枠収容部42の内面に柔軟な部材を配すれば、鏡筒11Aの後群枠14を前方に付勢して、対向凸部14fを後群枠対向部56に接触させることができる。このように、各鏡筒11A、11Bで後群枠14の位置を高精度に管理することができる。なお、この後群枠14の位置決めは、当て付け面50と当て付け面51による鏡筒11A、11B全体の位置決めを妨げるものではない。   As described above, when the lens barrel 11A and the lens barrel 11B are combined, the cylindrical portion 14a of the rear group frame 14 is formed in the space between the rear group frame holding portion 37 and the rear group frame housing portion 42 facing each other in the front-rear direction. Will fit. A rear group frame facing portion 56 is formed in the rear group frame holding portion 37 on the back side of the base frame 12 (see FIGS. 16 to 19). The rear group frame facing portion 56 is a plane perpendicular to the optical axis X1. As shown in FIG. 13, the rear group frame 14 has a facing convex portion 14 f on the front side facing the rear group frame holding portion 37 of the base frame 12. The facing convex portion 14 f is provided at a position facing the rear group frame facing portion 56 of the base frame 12 in a state where the rear group frame 14 is assembled to the base frame 12. By design, the opposing convex portion 14f and the rear group frame opposing portion 56 are set to contact each other. If there is an accuracy error such that the facing convex portion 14f and the rear group frame facing portion 56 are separated from each other, a flexible member is inserted between the base frame 12 and the rear group frame 14 and attached to the rear group frame 14. A force can be applied to stabilize the opposing convex portion 14 f so as to contact the rear group frame opposing portion 56. Specifically, when the facing convex portion 14f of the rear group frame 14 is separated from the rear group frame facing portion 56 on the lens barrel 11A side, the inner surface of the rear group frame housing portion 42 of the base frame 12 on the lens barrel 11B side. If a flexible member is provided, the rear group frame 14 of the lens barrel 11A can be urged forward, and the opposing convex portion 14f can be brought into contact with the rear group frame opposing portion 56. In this manner, the position of the rear group frame 14 can be managed with high accuracy by the lens barrels 11A and 11B. The positioning of the rear group frame 14 does not hinder the positioning of the entire lens barrel 11A, 11B by the abutting surface 50 and the abutting surface 51.

続いて、光軸X1と垂直な方向への鏡筒11Aと鏡筒11Bの位置を定める構造について説明する。鏡筒11Aと鏡筒11Bのそれぞれのベース枠12には、第1穴60と第2穴61が形成されている。角壁部24から前後に突出する円筒状のボス62の内側に第1穴60が形成され、角壁部25から前後に突出する円筒状のボス63の内側に第2穴61が形成される。ボス62は当て付け面50を有するボス52の上方に位置し、ボス63は当て付け面51を有するボス53の上方に位置する。第1穴60と第2穴61はいずれもベース枠12を前後方向に貫通する貫通穴である。第1穴60と第2穴61は、光軸X1を含み上下方向に延びる仮想平面Q1(図5)に関して略対称の位置(仮想平面Q1から左右方向に正逆で略等距離)に設けられている。   Next, a structure for determining the positions of the lens barrel 11A and the lens barrel 11B in the direction perpendicular to the optical axis X1 will be described. A first hole 60 and a second hole 61 are formed in the base frames 12 of the lens barrel 11A and the lens barrel 11B. A first hole 60 is formed inside a cylindrical boss 62 that protrudes forward and backward from the square wall portion 24, and a second hole 61 is formed inside the cylindrical boss 63 that protrudes forward and backward from the square wall portion 25. . The boss 62 is located above the boss 52 having the abutting surface 50, and the boss 63 is located above the boss 53 having the abutting surface 51. Both the first hole 60 and the second hole 61 are through holes that penetrate the base frame 12 in the front-rear direction. The first hole 60 and the second hole 61 are provided at positions that are substantially symmetrical with respect to a virtual plane Q1 (FIG. 5) that includes the optical axis X1 and extends in the up-down direction (generally equidistant from the virtual plane Q1 in the left-right direction). ing.

第1穴60は、前後方向に連通する円形穴部60aと長穴部60bを有している。円形穴部60aはベース枠12の背面側に位置し、長穴部60bはベース枠12の正面側に位置している。円形穴部60aは、前後方向を向く軸線を中心とする円筒状の内周面を有する円形穴である。長穴部60bは、左右方向(円形穴部60aの径方向)に長手方向を向ける長穴であり、上下方向に対向する一対の平行な平面60cを内部に有している。各平面60cは、光軸X1、X2及びX4と平行で、光軸X3に対して垂直な面である。一対の平面60cは、円形穴部60aの軸線に対して上下対称の位置に形成されている。図22と図26に示すように、円形穴部60aの内径K1よりも、長穴部60bの上下方向幅(一対の平面60cの間隔)K2の方が小さい。また、前後方向への円形穴部60aの長さM1よりも、前後方向への長穴部60bの長さM2の方が大きい。   The first hole 60 has a circular hole portion 60a and a long hole portion 60b communicating with each other in the front-rear direction. The circular hole 60 a is located on the back side of the base frame 12, and the long hole 60 b is located on the front side of the base frame 12. The circular hole portion 60a is a circular hole having a cylindrical inner peripheral surface centering on an axis line facing the front-rear direction. The long hole portion 60b is a long hole whose longitudinal direction is directed in the left-right direction (the radial direction of the circular hole portion 60a), and has a pair of parallel flat surfaces 60c facing each other in the vertical direction. Each plane 60c is a plane parallel to the optical axes X1, X2, and X4 and perpendicular to the optical axis X3. The pair of flat surfaces 60c are formed at positions that are vertically symmetrical with respect to the axis of the circular hole 60a. As shown in FIG. 22 and FIG. 26, the vertical width (interval between the pair of flat surfaces 60c) K2 of the long hole portion 60b is smaller than the inner diameter K1 of the circular hole portion 60a. Further, the length M2 of the long hole portion 60b in the front-rear direction is larger than the length M1 of the circular hole portion 60a in the front-rear direction.

第2穴61は、前後方向に連通する円形穴部61aと小径穴部61bを有している。円形穴部61aはベース枠12の背面側に位置し、長穴部60bはベース枠12の正面側に位置している。円形穴部61aと小径穴部61bはそれぞれ、前後方向を向く同一の軸線を中心とする円筒状の内周面を有する円形穴であり、互いの内径が異なっている。図22と図26に示すように、円形穴部61aの内径K3よりも、小径穴部61bの内径K4の方が小さい。また、前後方向への円形穴部61aの長さM3は、前後方向への長穴部60bの長さM4よりも大きい。   The second hole 61 has a circular hole 61a and a small-diameter hole 61b communicating with each other in the front-rear direction. The circular hole 61 a is located on the back side of the base frame 12, and the long hole 60 b is located on the front side of the base frame 12. Each of the circular hole 61a and the small diameter hole 61b is a circular hole having a cylindrical inner peripheral surface centering on the same axis line facing the front-rear direction, and the inner diameters thereof are different. As shown in FIGS. 22 and 26, the inner diameter K4 of the small-diameter hole 61b is smaller than the inner diameter K3 of the circular hole 61a. In addition, the length M3 of the circular hole 61a in the front-rear direction is larger than the length M4 of the long hole 60b in the front-rear direction.

第1穴60と第2穴61の関係では、円形穴部60aの内径K1と円形穴部61aの内径K3は略等しく、長穴部60bの上下方向幅K2と小径穴部61bの内径K4は略等しい。また、前後方向の長さは、大きい方から順に、円形穴部61aの長さM3、長穴部60bの長さM2、円形穴部60aの長さM1、小径穴部61bの長さM4となる。   In the relationship between the first hole 60 and the second hole 61, the inner diameter K1 of the circular hole portion 60a and the inner diameter K3 of the circular hole portion 61a are substantially equal, the vertical width K2 of the long hole portion 60b and the inner diameter K4 of the small diameter hole portion 61b are Almost equal. The length in the front-rear direction is, in order from the largest, the length M3 of the circular hole 61a, the length M2 of the long hole 60b, the length M1 of the circular hole 60a, and the length M4 of the small diameter hole 61b. Become.

前後方向への第1穴60全体の長さと第2穴61全体の長さは略同じである。なお、第1穴60は、円形穴部60aと長穴部60bの間に、円形穴部60a側から長穴部60b側に進むにつれて内径を徐々に小さくするテーパー部を有している。第1穴60全体の長さは、このテーパー部の長さも含んでいる。   The length of the entire first hole 60 in the front-rear direction and the length of the entire second hole 61 are substantially the same. The first hole 60 has a tapered portion between the circular hole portion 60a and the elongated hole portion 60b that gradually decreases the inner diameter as it proceeds from the circular hole portion 60a side to the elongated hole portion 60b side. The entire length of the first hole 60 includes the length of the tapered portion.

鏡筒11A、11Bのそれぞれのベース枠12の第1穴60と第2穴61に対して、軸部材65と軸部材66が挿入される。軸部材65と軸部材66は金属製である。図22と図26に軸部材65と軸部材66をそれぞれ拡大して示した。   The shaft member 65 and the shaft member 66 are inserted into the first hole 60 and the second hole 61 of the base frame 12 of each of the lens barrels 11A and 11B. The shaft member 65 and the shaft member 66 are made of metal. 22 and 26 show the shaft member 65 and the shaft member 66 in an enlarged manner.

軸部材65は、前後方向に並ぶ軸部65a及び軸部65bと、軸部65aと軸部65bの間に位置するフランジ65cと、を有している。軸部65aと軸部65bは、前後方向を向く同一の軸線を中心とする円筒状の外周面を有しており、互いの外径が略等しい。フランジ65cは、軸部65a及び軸部65bの外径よりも大径であり、軸部65aと軸部65bの外周面から突出する環状の部位である。   The shaft member 65 has a shaft portion 65a and a shaft portion 65b arranged in the front-rear direction, and a flange 65c positioned between the shaft portion 65a and the shaft portion 65b. The shaft portion 65a and the shaft portion 65b have a cylindrical outer peripheral surface centering on the same axis line facing the front-rear direction, and the outer diameters thereof are substantially equal. The flange 65c is an annular portion having a larger diameter than the outer diameters of the shaft portion 65a and the shaft portion 65b and protruding from the outer peripheral surfaces of the shaft portion 65a and the shaft portion 65b.

軸部65aと軸部65bの前後方向の長さは互いに等しく、第1穴60における円形穴部60aの長さM1よりも僅かに短くなっている。なお、軸部65aと軸部65bはフランジ65cを挟んで軸方向に対称形状である(外径と長さがいずれも等しい)ので、図示の軸部材65を前後反転させて軸部65aが後方、軸部65bが前方を向くように配置しても同じ構造となる。   The lengths of the shaft portion 65a and the shaft portion 65b in the front-rear direction are equal to each other and slightly shorter than the length M1 of the circular hole portion 60a in the first hole 60. Since the shaft portion 65a and the shaft portion 65b are symmetrical in the axial direction with the flange 65c in between (the outer diameter and the length are both equal), the shaft member 65 shown in FIG. The same structure is obtained even if the shaft portion 65b is arranged so as to face forward.

軸部65aと軸部65bの外径は、円形穴部60aの内径K1及び円形穴部61aの内径K3と略等しい。より詳しくは、軸部65aと軸部65bの外径は、内径K1、K3よりも僅かに大きく設定されており、軸部65aと軸部65bはいずれも、円形穴部60aと円形穴部61aに対して軽い圧入状態で挿入することができる。   The outer diameters of the shaft portion 65a and the shaft portion 65b are substantially equal to the inner diameter K1 of the circular hole portion 60a and the inner diameter K3 of the circular hole portion 61a. More specifically, the outer diameters of the shaft portion 65a and the shaft portion 65b are set to be slightly larger than the inner diameters K1 and K3, and both the shaft portion 65a and the shaft portion 65b are the circular hole portion 60a and the circular hole portion 61a. Can be inserted in a light press-fit state.

軸部材66は、前後方向に並ぶ大径軸部66a及び小径軸部66bと、大径軸部66aと小径軸部66bの間に位置するフランジ66cとを有している。大径軸部66aと小径軸部66bは、前後方向を向く同一の軸線を中心とする円筒状の外周面を有しており、大径軸部66aの外径が小径軸部66bの外径よりも大きい。また、前後方向の長さは、大径軸部66aよりも小径軸部66bの方が大きい。   The shaft member 66 includes a large-diameter shaft portion 66a and a small-diameter shaft portion 66b arranged in the front-rear direction, and a flange 66c positioned between the large-diameter shaft portion 66a and the small-diameter shaft portion 66b. The large-diameter shaft portion 66a and the small-diameter shaft portion 66b have a cylindrical outer peripheral surface centered on the same axis line facing the front-rear direction, and the outer diameter of the large-diameter shaft portion 66a is the outer diameter of the small-diameter shaft portion 66b. Bigger than. The length in the front-rear direction is larger in the small-diameter shaft portion 66b than in the large-diameter shaft portion 66a.

大径軸部66aはさらに、フランジ66cに近い基端部66dと、フランジ66cから遠い先端部66eを有しており、基端部66dの方が先端部66eよりも外径が僅かに大きい。基端部66dと先端部66eを合わせた大径軸部66a全体の前後方向の長さは、円形穴部60aの長さM1及び小径穴部61bの長さM4よりも大きく、長穴部60bの長さM2及び円形穴部61aの長さM3よりも小さい。また、基端部66dの方が先端部66eよりも前後方向の長さが大きい。   The large-diameter shaft portion 66a further has a base end portion 66d close to the flange 66c and a tip end portion 66e far from the flange 66c, and the base end portion 66d has a slightly larger outer diameter than the tip end portion 66e. The total length of the large-diameter shaft portion 66a including the base end portion 66d and the distal end portion 66e is longer than the length M1 of the circular hole portion 60a and the length M4 of the small-diameter hole portion 61b, and the long hole portion 60b. And the length M3 of the circular hole 61a. The proximal end portion 66d is longer in the front-rear direction than the distal end portion 66e.

小径軸部66bはさらに、フランジ66cに近い基端部66fと、フランジ66cから遠い先端部66gを有しており、基端部66fの方が先端部66gよりも外径が大きい。基端部66fと先端部66gを合わせた小径軸部66b全体の前後方向の長さは、円形穴部60a全体の長さと、円形穴部61a全体の長さよりもそれぞれ僅かに大きい。また、基端部66fの方が先端部66gよりも前後方向の長さが大きい。基端部66fの長さは、円形穴部60aの長さM1、長穴部60bの長さM2及び小径穴部61bの長さM4よりも大きく、円形穴部61aの長さM3よりも僅かに小さい。先端部66gの長さは、小径穴部61bの長さM4よりも僅かに大きく、円形穴部60aの長さM1よりも僅かに小さい。   The small-diameter shaft portion 66b further has a base end portion 66f close to the flange 66c and a tip end portion 66g far from the flange 66c, and the base end portion 66f has a larger outer diameter than the tip end portion 66g. The length in the front-rear direction of the entire small-diameter shaft portion 66b including the base end portion 66f and the distal end portion 66g is slightly larger than the entire length of the circular hole portion 60a and the entire length of the circular hole portion 61a. Further, the base end portion 66f is longer in the front-rear direction than the distal end portion 66g. The length of the base end portion 66f is larger than the length M1 of the circular hole portion 60a, the length M2 of the long hole portion 60b, and the length M4 of the small diameter hole portion 61b, and slightly longer than the length M3 of the circular hole portion 61a. Small. The length of the tip 66g is slightly larger than the length M4 of the small diameter hole 61b and slightly smaller than the length M1 of the circular hole 60a.

大径軸部66aの外径は、円形穴部60aの内径K1及び円形穴部61aの内径K3と略等しい。より詳しくは、大径軸部66aのうち基端部66dの外径は、内径K1、K3よりも僅かに大きく設定されており、先端部66eの外径は、内径K1、K3よりも僅かに小さく設定されている。従って、大径軸部66aは、円形穴部60aまたは円形穴部61aに対して基端部66dを軽い圧入状態で挿入することができる。   The outer diameter of the large-diameter shaft portion 66a is substantially equal to the inner diameter K1 of the circular hole portion 60a and the inner diameter K3 of the circular hole portion 61a. More specifically, the outer diameter of the base end portion 66d of the large diameter shaft portion 66a is set slightly larger than the inner diameters K1 and K3, and the outer diameter of the distal end portion 66e is slightly smaller than the inner diameters K1 and K3. It is set small. Therefore, the large-diameter shaft portion 66a can be inserted with the base end portion 66d in a light press-fit state into the circular hole portion 60a or the circular hole portion 61a.

小径軸部66bの外径は、長穴部60bの上下方向幅K2及び小径穴部61bの内径K4と略等しい。より詳しくは、小径軸部66bのうち基端部66fの外径は、上下方向幅K2と内径K4よりも僅かに大きく設定されており、先端部66gの外径は、上下方向幅K2と内径K4よりも僅かに小さく設定されている。従って、小径軸部66bは、長穴部60bまたは小径穴部61bに対して基端部66fを軽い圧入状態で挿入することができる。但し、実際には、小径穴部61bに対する基端部66fの挿入は、フランジ66cにより制限される(図28参照)。   The outer diameter of the small diameter shaft portion 66b is substantially equal to the vertical width K2 of the long hole portion 60b and the inner diameter K4 of the small diameter hole portion 61b. More specifically, the outer diameter of the base end portion 66f of the small-diameter shaft portion 66b is set slightly larger than the vertical width K2 and the inner diameter K4, and the outer diameter of the distal end portion 66g is the vertical width K2 and the inner diameter. It is set slightly smaller than K4. Therefore, the small-diameter shaft portion 66b can insert the base end portion 66f into the long hole portion 60b or the small-diameter hole portion 61b in a light press-fit state. However, in practice, the insertion of the base end portion 66f into the small diameter hole portion 61b is limited by the flange 66c (see FIG. 28).

本実施形態の図面では、鏡筒11Aを基準として鏡筒11Bの位置を合わせる場合を示している。すなわち、鏡筒11Aが基準の支持鏡筒で、鏡筒11Bが位置合わせされる被支持鏡筒である場合を示している。   In the drawings of the present embodiment, a case where the position of the lens barrel 11B is aligned with respect to the lens barrel 11A is shown. That is, the case where the lens barrel 11A is a reference supporting lens barrel and the lens barrel 11B is a supported lens barrel to be aligned is shown.

まず、図20に示すように、鏡筒11A側の第1穴60に対して軸部材65の軸部65aを背面側から挿入する。軸部材65は、フランジ65cがボス62の背面側の端面に接触する位置で挿入が規制される。軸部65aの長さは円形穴部60aの長さM1よりも小さいので、軸部65aは長穴部60bの位置まで達することなく、円形穴部60aまでの挿入となる(図22参照)。円形穴部60aの内径K1よりも軸部65aの外径が僅かに大きいため、軸部65aが円形穴部60aに軽く圧入され、鏡筒11A側のベース枠12に対して、軸部材65がガタつかずに安定した装着状態となる。   First, as shown in FIG. 20, the shaft portion 65a of the shaft member 65 is inserted into the first hole 60 on the lens barrel 11A side from the back side. Insertion of the shaft member 65 is restricted at a position where the flange 65 c comes into contact with the end surface on the back surface side of the boss 62. Since the length of the shaft portion 65a is smaller than the length M1 of the circular hole portion 60a, the shaft portion 65a is inserted to the circular hole portion 60a without reaching the position of the long hole portion 60b (see FIG. 22). Since the outer diameter of the shaft portion 65a is slightly larger than the inner diameter K1 of the circular hole portion 60a, the shaft portion 65a is lightly press-fitted into the circular hole portion 60a, and the shaft member 65 is against the base frame 12 on the lens barrel 11A side. It becomes a stable wearing state without rattling.

また、図24に示すように、鏡筒11A側の第2穴61に対して軸部材66の大径軸部66aを背面側から挿入する。軸部材66は、フランジ66cがボス63の背面側の端面に接触する位置で挿入が規制される。大径軸部66aの長さは円形穴部61aの長さM3よりも小さいので、大径軸部66aは小径穴部61bの位置まで達することなく、円形穴部61aまでの挿入となる(図26参照)。円形穴部61aの内径K3よりも大径軸部66aにおける基端部66dの外径が僅かに大きいため、大径軸部66aが円形穴部61aに軽く圧入され、鏡筒11A側のベース枠12に対して、軸部材66がガタつかずに安定した装着状態となる。   Further, as shown in FIG. 24, the large-diameter shaft portion 66a of the shaft member 66 is inserted into the second hole 61 on the lens barrel 11A side from the back side. Insertion of the shaft member 66 is restricted at a position where the flange 66 c comes into contact with the end face on the back surface side of the boss 63. Since the length of the large-diameter shaft portion 66a is smaller than the length M3 of the circular hole portion 61a, the large-diameter shaft portion 66a is inserted into the circular hole portion 61a without reaching the position of the small-diameter hole portion 61b (see FIG. 26). Since the outer diameter of the base end portion 66d of the large-diameter shaft portion 66a is slightly larger than the inner diameter K3 of the circular hole portion 61a, the large-diameter shaft portion 66a is lightly press-fitted into the circular hole portion 61a, and the base frame on the lens barrel 11A side 12, the shaft member 66 does not rattle and is in a stable mounting state.

なお、大径軸部66aにおける先端部66eの外径が円形穴部61aの内径K3よりも僅かに小さいため、円形穴部61aへ大径軸部66aを挿入する初期の段階では圧入にならず、スムーズに挿入させることができる。別言すれば、安定的な支持が必要となる挿入の最終段階でのみ圧入状態になるように大径軸部66aを構成することで、挿入作業性を向上させている。   In addition, since the outer diameter of the tip portion 66e in the large diameter shaft portion 66a is slightly smaller than the inner diameter K3 of the circular hole portion 61a, it is not press-fitted in the initial stage of inserting the large diameter shaft portion 66a into the circular hole portion 61a. Can be inserted smoothly. In other words, the insertion workability is improved by configuring the large-diameter shaft portion 66a so as to be in a press-fitted state only at the final stage of insertion that requires stable support.

以上のようにして軸部材65と軸部材66をそれぞれ鏡筒11A側のベース枠12に組み付けた状態が図19である。同図から分かるように、軸部材65の軸部65bと軸部材66の小径軸部66bがそれぞれ後方(鏡筒11Aの背面側)に向けて突出している。   FIG. 19 shows a state in which the shaft member 65 and the shaft member 66 are assembled to the base frame 12 on the lens barrel 11A side as described above. As can be seen from the figure, the shaft portion 65b of the shaft member 65 and the small-diameter shaft portion 66b of the shaft member 66 protrude toward the rear (the back side of the lens barrel 11A).

鏡筒11Aに対して軸部材65と軸部材66を組み付けるタイミングは任意に選択できる。例えば、図19のように、単体の状態のベース枠12に対して予め軸部材65及び軸部材66を組み付けておき、その後にベース枠12に対する各種部材(後群枠14、第3プリズム枠15、撮像センサユニット16等)の組み付けを行うことができる。あるいは、ベース枠12に対して各種部材を組み付けて鏡筒11Aを完成させてから、軸部材65及び軸部材66の組み付けを行うことも可能である。いずれの場合も、軸部材65と軸部材66はベース枠12に対して圧入状態となるので、組み付け後に軸部材65や軸部材66が不用意に落下するおそれがない。また、軸部材65と軸部材66の挿入対象となる第1穴60と第2穴61は、第1プリズム保持部35、第2プリズム保持部36、後群枠保持部37、後群枠収容部42等から離れたベース枠12の上縁側に位置している。そのため、ベース枠12に対して各種部材を組み付けた後でも、第1穴60と第2穴61へのアクセスが容易であり、軸部材65と軸部材66の組み付け作業を行いやすい。   The timing at which the shaft member 65 and the shaft member 66 are assembled to the lens barrel 11A can be arbitrarily selected. For example, as shown in FIG. 19, the shaft member 65 and the shaft member 66 are assembled in advance to the base frame 12 in a single state, and thereafter, various members (the rear group frame 14 and the third prism frame 15 for the base frame 12). , The image sensor unit 16 and the like) can be assembled. Alternatively, the shaft member 65 and the shaft member 66 can be assembled after various members are assembled to the base frame 12 to complete the lens barrel 11A. In either case, since the shaft member 65 and the shaft member 66 are press-fitted into the base frame 12, there is no possibility that the shaft member 65 and the shaft member 66 will be accidentally dropped after assembly. The shaft member 65 and the first hole 60 and the second hole 61 to be inserted into the shaft member 66 are the first prism holding part 35, the second prism holding part 36, the rear group frame holding part 37, and the rear group frame housing. It is located on the upper edge side of the base frame 12 away from the part 42 and the like. Therefore, even after various members are assembled to the base frame 12, the first hole 60 and the second hole 61 can be easily accessed, and the shaft member 65 and the shaft member 66 can be easily assembled.

続いて、軸部材65と軸部材66が組み付けられた状態の鏡筒11Aに対して、鏡筒11Bを組み付ける。軸部材65の軸部65bに対して鏡筒11B側の第2穴61(円形穴部61a)を対向させ、軸部材66の小径軸部66bに対して鏡筒11B側の第1穴60(円形穴部60a)を対向させる。そして、鏡筒11Aと鏡筒11Bを前後方向に接近させると、軸部65bが鏡筒11Bの第2穴61に挿入され(図21)、小径軸部66bが鏡筒11Bの第1穴60に挿入される(図25)。   Subsequently, the lens barrel 11B is assembled to the lens barrel 11A in a state where the shaft member 65 and the shaft member 66 are assembled. The second hole 61 (circular hole 61a) on the lens barrel 11B side is opposed to the shaft portion 65b of the shaft member 65, and the first hole 60 (on the lens barrel 11B side is opposed to the small-diameter shaft portion 66b of the shaft member 66. The circular holes 60a) are opposed. Then, when the lens barrel 11A and the lens barrel 11B are moved closer to each other in the front-rear direction, the shaft portion 65b is inserted into the second hole 61 of the lens barrel 11B (FIG. 21), and the small-diameter shaft portion 66b is the first hole 60 of the lens barrel 11B. (FIG. 25).

上記のように、鏡筒11A、11Bは、当て付け面50、51が互いに接触することで、それ以上の接近が規制される(互いの前後位置が定まる)。図22と図26に示すように、当て付け面50、51が接触した段階で、鏡筒11A、11Bの互いのベース枠12におけるボス62とボス63の対向端面の間には、前後方向の隙間Nがある。軸部材65のフランジ65cと軸部材66のフランジ66cのそれぞれの厚みは、隙間Nよりも僅かに小さい。従って、軸部材65と軸部材66は、当て付け面50、51による前後方向の位置決めを妨げない。   As described above, when the abutment surfaces 50 and 51 are in contact with each other, the lens barrels 11 </ b> A and 11 </ b> B are restricted from approaching further (the front and rear positions are determined). As shown in FIGS. 22 and 26, when the abutting surfaces 50 and 51 are in contact with each other, there is a front-rear direction gap between the bosses 62 and the bosses 63 of the base frames 12 of the lens barrels 11A and 11B. There is a gap N. The thickness of each of the flange 65c of the shaft member 65 and the flange 66c of the shaft member 66 is slightly smaller than the gap N. Therefore, the shaft member 65 and the shaft member 66 do not interfere with the positioning in the front-rear direction by the abutting surfaces 50 and 51.

図22に示すように、軸部65bの長さは円形穴部61aの長さM3よりも小さいので、鏡筒11B側の第2穴61に対して、軸部65bは小径穴部61bの位置まで達することなく、円形穴部61aまでの挿入となる。円筒状外面の軸部65bに対して円筒状内面の円形穴部61aがフィットするので、軸部65bの径方向(光軸X1と垂直な全ての方向)への鏡筒11B側のベース枠12の移動が制限される。その結果、光軸X1と垂直な平面内での鏡筒11Aと鏡筒11Bの相対的な位置が定まる。   As shown in FIG. 22, since the length of the shaft portion 65b is smaller than the length M3 of the circular hole portion 61a, the shaft portion 65b is located at the position of the small diameter hole portion 61b with respect to the second hole 61 on the lens barrel 11B side. Without reaching up to, the circular hole 61a is inserted. Since the circular hole portion 61a of the cylindrical inner surface fits with the shaft portion 65b of the cylindrical outer surface, the base frame 12 on the lens barrel 11B side in the radial direction of the shaft portion 65b (all directions perpendicular to the optical axis X1). Movement is restricted. As a result, the relative positions of the lens barrel 11A and the lens barrel 11B in a plane perpendicular to the optical axis X1 are determined.

なお、円形穴部61aの内径K3よりも軸部65bの外径が僅かに大きいため、軸部65bは円形穴部61aに対して軽い圧入状態になる。これにより、鏡筒11Aと鏡筒11Bの組み合わせ状態で軸部材65がガタついて異音を生じさせるおそれがない。   Since the outer diameter of the shaft portion 65b is slightly larger than the inner diameter K3 of the circular hole portion 61a, the shaft portion 65b is in a light press-fit state with respect to the circular hole portion 61a. As a result, there is no possibility that the shaft member 65 rattles in the combined state of the lens barrel 11A and the lens barrel 11B and causes abnormal noise.

図26に示すように、小径軸部66bは、鏡筒11B側の第1穴60に対して、円形穴部60a側から長穴部60b側に向けて挿入される。基端部66fと先端部66gの外径はいずれも円形穴部60aの内径K1よりも小さいため、挿入の初期段階では小径軸部66bは第1穴60の内面に接触しない。   As shown in FIG. 26, the small-diameter shaft portion 66b is inserted into the first hole 60 on the lens barrel 11B side from the circular hole portion 60a side toward the long hole portion 60b side. Since the outer diameters of the proximal end portion 66f and the distal end portion 66g are both smaller than the inner diameter K1 of the circular hole portion 60a, the small diameter shaft portion 66b does not contact the inner surface of the first hole 60 at the initial stage of insertion.

第1穴60への小径軸部66bの挿入が進むと、先端部66gが長穴部60bに入る。先端部66gの外径は長穴部60bの上下方向幅K2よりも小さいため、この段階でも軸部材66と第1穴60の間には負荷が生じない。さらに小径軸部66bの挿入が進むと、基端部66fが長穴部60bに入る。すると、基端部66fを長穴部60b内の一対の平面60cが上下から挟む状態になり、小径軸部66bに対する鏡筒11B側のベース枠12の上下方向移動が制限される。その結果、軸部材65を中心とする鏡筒11Aと鏡筒11Bの相対的な回転が規制される。   When the insertion of the small diameter shaft portion 66b into the first hole 60 proceeds, the tip portion 66g enters the long hole portion 60b. Since the outer diameter of the tip 66g is smaller than the vertical width K2 of the elongated hole 60b, no load is generated between the shaft member 66 and the first hole 60 even at this stage. When the insertion of the small diameter shaft portion 66b further proceeds, the base end portion 66f enters the elongated hole portion 60b. Then, the pair of flat surfaces 60c in the elongated hole portion 60b is sandwiched from above and below the base end portion 66f, and the vertical movement of the base frame 12 on the lens barrel 11B side with respect to the small diameter shaft portion 66b is restricted. As a result, the relative rotation of the lens barrel 11A and the lens barrel 11B around the shaft member 65 is restricted.

その一方で、左右方向への長穴部60bの長さは、基端部66fの外径よりも大きいため、小径軸部66bは鏡筒11B側の左右方向の位置を規制しない。すなわち、鏡筒11Bの長穴部60bは、小径軸部66bに対して、光軸X1と垂直な平面内で特定の方向(左右方向)にのみ相対移動可能となる。これにより、鏡筒11Aと鏡筒11Bの間の組み付け精度のばらつきを小径軸部66bと第1穴60の間で吸収することができる。   On the other hand, since the length of the long hole portion 60b in the left-right direction is larger than the outer diameter of the base end portion 66f, the small-diameter shaft portion 66b does not regulate the position in the left-right direction on the lens barrel 11B side. That is, the long hole portion 60b of the lens barrel 11B can be moved relative to the small-diameter shaft portion 66b only in a specific direction (left-right direction) within a plane perpendicular to the optical axis X1. Thereby, the dispersion | variation in the assembly precision between the lens barrel 11A and the lens barrel 11B can be absorbed between the small diameter shaft portion 66b and the first hole 60.

なお、長穴部60bの上下方向幅K2よりも基端部66fの外径が僅かに大きいため、小径軸部66bは長穴部60bに対して軽い圧入状態になる。これにより、鏡筒11Aと鏡筒11Bの組み合わせ状態で軸部材66がガタついて異音を生じさせるおそれがない。上述のように、小径軸部66bの先端に先端部66gを設けているため、長穴部60bへの小径軸部66bの挿入がある程度進むまでは、圧入が生じない。この構成により、第1穴60の長穴部60bに対する軸部材66の小径軸部66b(基端部66f)の圧入のタイミングと、第2穴61の円形穴部61aに対する軸部材65の軸部65bの圧入のタイミングを、ほぼ同時にして、鏡筒11Bを傾かせずに組み込むことを可能にしている。仮に、本実施形態とは異なり、先端部66gを設けずに、小径軸部66bの全体が基端部66fに相当する径を有する構成であると、第1穴60の長穴部60bに対して小径軸部66bが圧入されるタイミングが、第2穴61の円形穴部61aに対して軸部65bが圧入されるタイミングよりも大幅に早くなる。すると、軸部材66と第1穴60の箇所を支点として、鏡筒11Aに対する鏡筒11Bの傾きが生じやすくなってしまう。   Since the outer diameter of the base end portion 66f is slightly larger than the vertical width K2 of the long hole portion 60b, the small diameter shaft portion 66b is lightly press-fitted into the long hole portion 60b. As a result, there is no possibility that the shaft member 66 rattles in the combined state of the lens barrel 11A and the lens barrel 11B and generates abnormal noise. As described above, since the distal end portion 66g is provided at the distal end of the small diameter shaft portion 66b, press-fitting does not occur until the insertion of the small diameter shaft portion 66b into the long hole portion 60b proceeds to some extent. With this configuration, the timing of press-fitting the small-diameter shaft portion 66 b (base end portion 66 f) of the shaft member 66 with respect to the long hole portion 60 b of the first hole 60 and the shaft portion of the shaft member 65 with respect to the circular hole portion 61 a of the second hole 61. It is possible to incorporate the lens barrel 11B without tilting by almost simultaneously with the press-fitting timing of 65b. Unlike the present embodiment, if the entire small-diameter shaft portion 66b has a diameter corresponding to the base end portion 66f without providing the distal end portion 66g, the elongated hole portion 60b of the first hole 60 is Thus, the timing at which the small-diameter shaft portion 66b is press-fitted is significantly earlier than the timing at which the shaft portion 65b is press-fitted into the circular hole portion 61a of the second hole 61. Then, the inclination of the lens barrel 11B with respect to the lens barrel 11A is likely to occur with the shaft member 66 and the first hole 60 as fulcrums.

図26に示すように、小径軸部66bの長さは第1穴60全体の長さよりも僅かに大きいため、小径軸部66bは鏡筒11B側の第1穴60を貫通して、先端部66gがボス63から僅かに後方に突出する。鏡筒11Aと鏡筒11Bは前後対称の同一形状であるが、軸部材66が突出しているのが鏡筒11Bの背面側であると識別しやすくなり、作業性が向上する。   As shown in FIG. 26, since the length of the small diameter shaft portion 66b is slightly larger than the entire length of the first hole 60, the small diameter shaft portion 66b penetrates the first hole 60 on the lens barrel 11B side, 66 g slightly protrudes backward from the boss 63. Although the lens barrel 11A and the lens barrel 11B have the same shape symmetrical in the front-rear direction, it is easy to identify that the shaft member 66 protrudes from the back side of the lens barrel 11B, and the workability is improved.

上記のように軸部材65と軸部材66は第1穴60と第2穴61に対してそれぞれ圧入される。但し、圧入の負荷が大きすぎると、作業性が悪くなったり、ベース枠12側に歪みが生じて位置決めの精度に影響を及ぼしたりするおそれがある。そのため、第1穴60、第2穴61と軸部材65、66の相対的な径の大きさは、位置決め精度を損なわない軽度の圧入になるように設定されている。   As described above, the shaft member 65 and the shaft member 66 are press-fitted into the first hole 60 and the second hole 61, respectively. However, if the press-fitting load is too large, workability may be deteriorated, or distortion may occur on the base frame 12 side, which may affect positioning accuracy. Therefore, the relative diameters of the first hole 60, the second hole 61, and the shaft members 65, 66 are set so as to be light press-fitting without impairing the positioning accuracy.

軸部材65と軸部材66による位置決めが行われる箇所は、当て付け面50、51による前後方向の位置決めが行われる箇所に近く、光軸X1を含み上下方向へ延びる仮想平面Q1(図5)に関して軸部材65と軸部材66が略対称に配置される。従って、左右方向における軸部材65と軸部材66の距離を大きく確保したことや、前群AF、BFや第1プリズムAP1、BP1に対する軸部材65と軸部材66の配置の対称性に基づく、位置決め精度の高さを実現できる。   The position where the positioning by the shaft member 65 and the shaft member 66 is performed is close to the position where the positioning is performed in the front-rear direction by the abutting surfaces 50 and 51, and the virtual plane Q1 (FIG. 5) including the optical axis X1 and extending in the vertical direction. The shaft member 65 and the shaft member 66 are disposed substantially symmetrically. Accordingly, the positioning based on the fact that the distance between the shaft member 65 and the shaft member 66 in the left-right direction is large and the symmetry of the arrangement of the shaft member 65 and the shaft member 66 with respect to the front groups AF and BF and the first prisms AP1 and BP1. High accuracy can be achieved.

また、軸部材65と軸部材66が挿入される第1穴60と第2穴61は、ベース枠12の角壁部24と角壁部25に振り分けられて配置されており、鏡筒11A、11Bを構成する他の部材に干渉せずにスペース効率良く設けることができる。角壁部24、25自体の剛性に加えて、第1穴60を有するボス62と第2穴61を有するポス63の肉厚によっても補強されるため、第1穴60と第2穴61には、軸部材65と軸部材66で位置決めする際の歪みが生じにくい。   Further, the first hole 60 and the second hole 61 into which the shaft member 65 and the shaft member 66 are inserted are arranged to be distributed to the corner wall portion 24 and the corner wall portion 25 of the base frame 12, and the lens barrel 11A, The space can be provided efficiently without interfering with other members constituting 11B. In addition to the rigidity of the square wall portions 24 and 25 themselves, the first hole 60 and the second hole 61 are also reinforced by the thickness of the boss 62 having the first hole 60 and the thickness of the post 63 having the second hole 61. Is less likely to be distorted when positioning with the shaft member 65 and the shaft member 66.

第1穴60と第2穴61はさらに、撮像装置の外面を構成する外装部材の取り付けにも用いられる。図23と図27に示す前カバー70は、撮像装置の前面側を覆う外装部材である。前カバー70は、後方に向けて突出する支持突起71(図23)と支持突起72(図27)を内面側に有している。支持突起71と支持突起72は、ベース枠12における第1穴60及び第2穴61に対応する位置関係で設けられている。支持突起71は外径サイズが一定の円筒状外面部分を先端近くに有し、この円筒状外面部分の外径は、第1穴60における長穴部60bの上下方向幅K2と略同じである。支持突起72は外径サイズが一定の円筒状外面部分を先端近くに有し、この円筒状外面部分の外径は、第2穴61における小径穴部61bの内径K4と略同じである。   The first hole 60 and the second hole 61 are further used for attaching an exterior member constituting the outer surface of the imaging apparatus. A front cover 70 shown in FIGS. 23 and 27 is an exterior member that covers the front side of the imaging apparatus. The front cover 70 has a support protrusion 71 (FIG. 23) and a support protrusion 72 (FIG. 27) that protrude rearward on the inner surface side. The support protrusion 71 and the support protrusion 72 are provided in a positional relationship corresponding to the first hole 60 and the second hole 61 in the base frame 12. The support protrusion 71 has a cylindrical outer surface portion having a constant outer diameter size near the tip, and the outer diameter of the cylindrical outer surface portion is substantially the same as the vertical width K2 of the elongated hole portion 60b in the first hole 60. . The support protrusion 72 has a cylindrical outer surface portion having a constant outer diameter size near the tip, and the outer diameter of the cylindrical outer surface portion is substantially the same as the inner diameter K 4 of the small diameter hole portion 61 b in the second hole 61.

複合鏡筒10に対して前カバー70を組み付ける際に、鏡筒11A側の第1穴60の長穴部60bに対して、支持突起71の先端部分(円筒状外面部分)が前方から挿入される。また、鏡筒11A側の第2穴61の小径穴部61bに対して、支持突起72の先端部分(円筒状外面部分)が前方から挿入される。鏡筒11A側では、軸部材65の軸部65aが長穴部60bに進入しておらず、且つ軸部材66の大径軸部66aが小径穴部61bに進入していないため、軸部材65や軸部材66と干渉することなく支持突起71と支持突起72を挿入させることができる。   When the front cover 70 is assembled to the composite lens barrel 10, the tip end portion (cylindrical outer surface portion) of the support protrusion 71 is inserted from the front into the elongated hole portion 60b of the first hole 60 on the lens barrel 11A side. The Further, the distal end portion (cylindrical outer surface portion) of the support protrusion 72 is inserted from the front into the small diameter hole portion 61b of the second hole 61 on the lens barrel 11A side. On the side of the lens barrel 11A, the shaft portion 65a of the shaft member 65 does not enter the long hole portion 60b, and the large diameter shaft portion 66a of the shaft member 66 does not enter the small diameter hole portion 61b. In addition, the support protrusion 71 and the support protrusion 72 can be inserted without interfering with the shaft member 66.

円筒状外面の支持突起72が円筒状内面の小径穴部61bにフィットすることで、光軸X1と垂直な平面内での前カバー70の位置が定まる。また、長穴部60bの一対の平面60cに支持突起71が挟まれることで、支持突起72を中心とする前カバー70の回転が規制される。長穴部60bの左右方向の長さは、支持突起71の外径よりも大きく、支持突起71は長穴部60bから左右方向の位置規制を受けない。従って、複合鏡筒10に対する前カバー70の組み付け精度のばらつきを、支持突起71と第1穴60の間で吸収することができる。このように、第1穴60と第2穴61は、軸部材65及び軸部材66による位置決めに加えて、前カバー70の組み付けと位置決めにも用いられる。   The position of the front cover 70 in a plane perpendicular to the optical axis X1 is determined by fitting the support protrusion 72 on the cylindrical outer surface into the small diameter hole 61b on the cylindrical inner surface. Further, the support protrusion 71 is sandwiched between the pair of flat surfaces 60c of the long hole portion 60b, whereby the rotation of the front cover 70 around the support protrusion 72 is restricted. The length of the long hole portion 60b in the left-right direction is larger than the outer diameter of the support protrusion 71, and the support protrusion 71 is not subjected to the position restriction in the left-right direction from the long hole portion 60b. Therefore, variations in the assembly accuracy of the front cover 70 with respect to the composite lens barrel 10 can be absorbed between the support protrusion 71 and the first hole 60. As described above, the first hole 60 and the second hole 61 are used for assembling and positioning the front cover 70 in addition to the positioning by the shaft member 65 and the shaft member 66.

なお、鏡筒11B側では、第1穴60の全体を軸部材66の小径軸部66bが貫通しているが(図26参照)、第2穴61の小径穴部61bには軸部材65が進入していない(図22参照)。よって、鏡筒11Bの小径穴部61bに対して、後方から別部材(例えば、前カバー70と共に撮像装置の外装を構成する後カバー等)の突起を挿入して、該別部材の位置決めを行うことも可能である。   On the lens barrel 11B side, the small diameter shaft portion 66b of the shaft member 66 passes through the entire first hole 60 (see FIG. 26), but the shaft member 65 is inserted into the small diameter hole portion 61b of the second hole 61. It has not entered (see FIG. 22). Therefore, a projection of another member (for example, a rear cover that constitutes the exterior of the imaging device together with the front cover 70) is inserted from the rear into the small-diameter hole 61b of the lens barrel 11B to position the separate member. It is also possible.

軸部材65は軸方向に対称な形状であるため、軸部65aと軸部65bの向きを逆にすることが可能である。一方、軸部材66は軸方向に非対称であるため、大径軸部66aと小径軸部66bを逆向きにすると組み付け不良となり、正しく機能しない。本実施形態の撮像装置では、軸部材66の逆向きの組み付けを防ぐ構造を備えている。   Since the shaft member 65 has a symmetrical shape in the axial direction, the directions of the shaft portion 65a and the shaft portion 65b can be reversed. On the other hand, since the shaft member 66 is asymmetric in the axial direction, if the large-diameter shaft portion 66a and the small-diameter shaft portion 66b are reversed, the assembly will be poor and will not function correctly. The imaging apparatus according to the present embodiment includes a structure that prevents the shaft member 66 from being assembled in the reverse direction.

図28は、軸部材66を逆向きに組み付けた場合を示している。鏡筒11A側の第2穴61に対して小径軸部66bが挿入されている。小径軸部66bのうち基端部66fの外径は円形穴部61aの内径K3よりも小さく、先端部66gの外径は小径穴部61bの内径K4よりも小さい。そのため、フランジ66cがボス63の背面側の端面に接触する位置まで小径軸部66bを第2穴61に挿入することができる。   FIG. 28 shows a case where the shaft member 66 is assembled in the reverse direction. A small-diameter shaft portion 66b is inserted into the second hole 61 on the lens barrel 11A side. Of the small diameter shaft portion 66b, the outer diameter of the base end portion 66f is smaller than the inner diameter K3 of the circular hole portion 61a, and the outer diameter of the distal end portion 66g is smaller than the inner diameter K4 of the small diameter hole portion 61b. Therefore, the small diameter shaft portion 66 b can be inserted into the second hole 61 until the flange 66 c comes into contact with the end surface on the back side of the boss 63.

一方、大径軸部66aの長さは、第1穴60の円形穴部60aの長さM1よりも大きい。そのため、鏡筒11B側の第1穴60に大径軸部66aを挿入させると、当て付け面50、51が接触するよりも前に、大径軸部66aの先端が円形穴部60aと長穴部60bの境界部分の段差に当て付いて、それ以上の挿入が規制される。この状態で、フランジ66cとボス63との間に前後方向への大きな隙間があるため、軸部材66の組み付け不良が原因で、鏡筒11A、11Bの接近が妨げられていることを認識できる。   On the other hand, the length of the large-diameter shaft portion 66a is larger than the length M1 of the circular hole portion 60a of the first hole 60. Therefore, when the large-diameter shaft portion 66a is inserted into the first hole 60 on the lens barrel 11B side, the tip of the large-diameter shaft portion 66a is longer than the circular hole portion 60a before the contact surfaces 50 and 51 come into contact with each other. Further contact with the step at the boundary of the hole 60b restricts further insertion. In this state, since there is a large gap in the front-rear direction between the flange 66c and the boss 63, it can be recognized that the approach of the lens barrels 11A and 11B is hindered due to poor assembly of the shaft member 66.

また、図28の状態で前カバー70(図23、図26)を組み付けようとすると、支持突起72が小径軸部66bに当て付いてしまい、支持突起72を第2穴61(小径穴部61b)に挿入させることができない。すなわち、前カバー70が前方に浮いた状態になるので、この段階でも軸部材66の組み付け不良を認識できる。   In addition, when the front cover 70 (FIGS. 23 and 26) is assembled in the state of FIG. 28, the support protrusion 72 comes into contact with the small diameter shaft portion 66b, and the support protrusion 72 is attached to the second hole 61 (small diameter hole portion 61b). ) Can not be inserted. That is, since the front cover 70 is lifted forward, it is possible to recognize an assembly failure of the shaft member 66 even at this stage.

本実施形態では、鏡筒11A側を基準として、鏡筒11Bの位置決めを行う例を示したが、鏡筒11Aと鏡筒11Bは同一形状であるため、鏡筒11B側を基準にすることも可能である。すなわち、位置決めの基準となる支持鏡筒と、支持鏡筒によって位置決めされる被支持鏡筒を逆にすることもできる。具体的には、鏡筒11B側の第1穴60(円形穴部60a)に軸部材65(軸部65aと軸部65bのいずれでも可)を挿入し、鏡筒11B側の第2穴61(円形穴部61a)に軸部材66の大径軸部66aを挿入しておく。その上で、鏡筒11A側の第2穴61(円形穴部61a)に軸部材65(軸部65aと軸部65bのうち鏡筒11Bの第1穴60に挿入されていない側)を挿入させ、鏡筒11A側の第1穴60(長穴部60b)に軸部材66の小径軸部66bを挿入させる。   In the present embodiment, an example in which the lens barrel 11B is positioned with reference to the lens barrel 11A side has been described. However, since the lens barrel 11A and the lens barrel 11B have the same shape, the lens barrel 11B side may be used as a reference. Is possible. That is, the supporting barrel serving as a positioning reference and the supported barrel positioned by the supporting barrel can be reversed. Specifically, the shaft member 65 (which can be either the shaft portion 65a or the shaft portion 65b) is inserted into the first hole 60 (circular hole portion 60a) on the lens barrel 11B side, and the second hole 61 on the lens barrel 11B side. The large-diameter shaft portion 66a of the shaft member 66 is inserted into the (circular hole portion 61a). Then, the shaft member 65 (the side of the shaft portion 65a and the shaft portion 65b that is not inserted into the first hole 60 of the lens barrel 11B) is inserted into the second hole 61 (circular hole portion 61a) on the lens barrel 11A side. Then, the small diameter shaft portion 66b of the shaft member 66 is inserted into the first hole 60 (long hole portion 60b) on the lens barrel 11A side.

図35及び図36を参照して、本実施形態による撮像システム1及び複合鏡筒10を全天球型撮像装置に適用した場合の全体構成について説明する。図35、図36では、上述の複合鏡筒10における各2つの広角レンズ系A、Bと撮像センサAI、BIの配置構造と若干相違している点があるが、図35、図36は、全天球型撮像システムの一般的な構成を例示するための位置付けで参照する。撮像光学系(光学システム)、撮像システム及び撮像装置の特徴的な構成は、上述の実施形態(図1から図34)に開示されている。   With reference to FIGS. 35 and 36, the overall configuration when the imaging system 1 and the composite lens barrel 10 according to the present embodiment are applied to an omnidirectional imaging device will be described. 35 and 36, there are some differences from the arrangement structure of each of the two wide-angle lens systems A and B and the imaging sensors AI and BI in the above-described compound lens barrel 10, but FIGS. Reference is made to the positioning for illustrating the general configuration of the omnidirectional imaging system. Characteristic configurations of the imaging optical system (optical system), the imaging system, and the imaging apparatus are disclosed in the above-described embodiments (FIGS. 1 to 34).

図35に示すように、撮像装置80は、撮像体81と、撮像体81やコントローラやバッテリ等の部品を内部に保持する筐体82と、筐体82の外面に設けられたシャッター・ボタン83とを備える。筐体82は、上述の実施形態の前カバー70等に相当する外装部材を含むものである。なお、図35では、撮像装置80の筐体82内に、結像光学系84A、84Bと固体撮像素子85、85Bのみを示しているが、実際には、上述の実施形態(図1から図34)における複合鏡筒10に相当する構成が筐体82内に搭載される。   As shown in FIG. 35, the imaging device 80 includes an imaging body 81, a housing 82 that holds the imaging body 81, components such as a controller and a battery, and a shutter button 83 provided on the outer surface of the housing 82. With. The casing 82 includes an exterior member corresponding to the front cover 70 and the like of the above-described embodiment. In FIG. 35, only the imaging optical systems 84A and 84B and the solid-state imaging elements 85 and 85B are shown in the housing 82 of the imaging device 80. In practice, however, the above-described embodiment (FIG. 1 to FIG. A configuration corresponding to the compound lens barrel 10 in 34) is mounted in the housing 82.

図35に示す撮像体81は、上述の複合鏡筒10における撮像システム1に相当するものであり、2つの結像光学系84A、84Bと、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等の2つの固体撮像素子85A、85Bとを含む。結像光学系84と固体撮像素子85とを1個ずつ組み合わせたものを撮像系とする。結像光学系84の各々は、例えば6群7枚の魚眼レンズとして構成することができる。この魚眼レンズは、図35に示す実施形態では、180度(=360度/n;n=2)より大きい全画角を有し、好適には、185度以上の画角を有し、より好適には、190度以上の画角を有する。   An imaging body 81 shown in FIG. 35 corresponds to the imaging system 1 in the above-described composite lens barrel 10, and includes two imaging optical systems 84A and 84B, a CCD (Charge Coupled Device) sensor, and a CMOS (Complementary Metal Oxide). Semiconductor) two solid-state image sensors 85A and 85B such as sensors. A combination of the imaging optical system 84 and the solid-state imaging element 85 one by one is referred to as an imaging system. Each of the imaging optical systems 84 can be configured as, for example, six groups of seven fisheye lenses. In the embodiment shown in FIG. 35, this fish-eye lens has a total angle of view larger than 180 degrees (= 360 degrees / n; n = 2), and preferably has an angle of view of 185 degrees or more. Has an angle of view of 190 degrees or more.

2つの結像光学系84A、84Bの光学素子(レンズ、プリズム、フィルタおよび開口絞り)は、固体撮像素子85A、85Bに対して位置関係が定められる。位置決めは、結像光学系84A、84Bの光学素子の光軸が、対応する固体撮像素子85A、85Bの受光領域の中心部に直交して位置するように、かつ、受光領域が、対応する魚眼レンズの結像面となるように行われる。固体撮像素子85A、85Bの各々は、受光領域が面積エリアを成す2次元の固体撮像素子であり、組み合わせられる結像光学系84A、84Bにより集光された光を画像信号に変換する。   The optical elements (lens, prism, filter, and aperture stop) of the two imaging optical systems 84A and 84B have a positional relationship with respect to the solid-state imaging elements 85A and 85B. The positioning is performed so that the optical axes of the optical elements of the imaging optical systems 84A and 84B are positioned perpendicular to the center of the light receiving area of the corresponding solid-state imaging element 85A and 85B, and the light receiving area corresponds to the corresponding fisheye lens. It is performed so that it may become the image formation plane. Each of the solid-state imaging devices 85A and 85B is a two-dimensional solid-state imaging device in which a light receiving region forms an area area, and converts the light collected by the combined imaging optical systems 84A and 84B into an image signal.

図35に示す撮像装置80では、結像光学系84A、84Bは、同一仕様のものであり、それぞれの光軸が合致するようにして、互いに逆向きに組み合わせられる。固体撮像素子85A、85Bは、受光した光分布を画像信号に変換して、図示しないコントローラ上の画像処理手段に出力する。画像処理手段では、詳細は後述するが、固体撮像素子85A、85Bからそれぞれ入力される部分画像をつなぎ合わせて合成し、立体角4πラジアンの画像(以下「全天球画像」と参照する。)を生成する。全天球画像は、撮影地点から見渡すことのできる全ての方向を撮影したものとなる。ここで、図35に示す実施形態では、全天球画像を生成しているが、水平面のみ360度を撮影した、いわゆるパノラマ画像であってもよい。   In the imaging device 80 shown in FIG. 35, the imaging optical systems 84A and 84B have the same specifications, and are combined in opposite directions so that their optical axes match. The solid-state imaging elements 85A and 85B convert the received light distribution into image signals and output them to image processing means on a controller (not shown). As will be described in detail later, the image processing means connects and synthesizes the partial images respectively input from the solid-state imaging devices 85A and 85B and combines them into an image with a solid angle of 4π radians (hereinafter referred to as “global sphere image”). Is generated. The omnidirectional image is an image of all directions that can be seen from the shooting point. Here, in the embodiment shown in FIG. 35, the omnidirectional image is generated, but a so-called panoramic image obtained by photographing 360 degrees only on the horizontal plane may be used.

また、ここで、固体撮像素子85A、85Bの走査方向を、互いに一致させることで、各々の撮像画像をつなぎ合わせやすくすることができる。つまり、それぞれの固体撮像素子85A、85Bの走査方向と順序を、互いにつなぎ合わせる部分で一致させることで、互いのカメラの境界にある物体、特に、移動物体のつなぎ合わせに効果が得られる。例えば、固体撮像素子85Aで撮影された撮像画像の左上の部分と、固体撮像素子85Bで撮影された撮像画像の左下の部分が、画像のつなぎ合わせる部分として一致する場合は、固体撮像素子85Aの走査は、固体撮像素子の上から下に向かって、右から左に走査する。一方、固体撮像素子85Bの走査は、固体撮像素子の下から上に向かって、右から左に走査する。このように、画像のつなぎ合わせる部分に基づいて、各固体撮像素子85の走査方向を一致させるように制御することで、つなぎ合わせ易いという効果が得られる。   In addition, here, by making the scanning directions of the solid-state imaging devices 85A and 85B coincide with each other, the captured images can be easily joined together. That is, by matching the scanning direction and the order of the solid-state imaging devices 85A and 85B at the portions where they are connected to each other, it is possible to obtain an effect in connecting objects at the boundary of each camera, in particular, moving objects. For example, when the upper left part of the captured image captured by the solid-state image sensor 85A and the lower left part of the captured image captured by the solid-state image sensor 85B coincide with each other as a part where the images are joined, the solid-state image sensor 85A The scanning is performed from right to left from the top to the bottom of the solid-state imaging device. On the other hand, the solid-state image sensor 85B scans from the right to the left from the bottom to the top of the solid-state image sensor. As described above, by controlling so that the scanning directions of the respective solid-state imaging devices 85 coincide with each other based on the stitched portions of the images, an effect that the stitching is easily performed is obtained.

上述したように、魚眼レンズが180度を超える全画角を有するため、全天球画像を構成する際には、各撮像系による撮影画像において、重複する画像部分が、同一像を表す基準データとして画像つなぎ合わせの参考とされる。生成された全天球画像は、例えば、撮像体81に備えられる、または撮像体81に接続されているディスプレイ装置、印刷装置、SD(登録商標)カードやコンパクトフラッシュ(登録商標)等の外部記憶媒体等に出力される。   As described above, since the fisheye lens has a total angle of view exceeding 180 degrees, when composing an omnidirectional image, overlapping image portions are taken as reference data representing the same image in the captured images by the respective imaging systems. It is used as a reference for connecting images. The generated omnidirectional image is, for example, an external storage such as a display device, a printing device, an SD (registered trademark) card, or a compact flash (registered trademark) provided in the imaging body 81 or connected to the imaging body 81. It is output to the medium.

図36は、撮像装置80のハードウェア構成の一例を示している。撮像装置80は、デジタル・スチルカメラ・プロセッサ(以下、単にプロセッサと参照する。)500と、鏡筒ユニット502(上述した複合鏡筒10に相当する)と、プロセッサ500に接続される種々のコンポーネントから構成される。鏡筒ユニット502は、上述した2組の結像光学系84A、84Bと、固体撮像素子85A、85Bとを有する。固体撮像素子85A、85Bは、プロセッサ500内の後述するCPU530からの制御指令により制御される。   FIG. 36 shows an example of the hardware configuration of the imaging device 80. The imaging device 80 includes a digital still camera processor (hereinafter simply referred to as a processor) 500, a lens barrel unit 502 (corresponding to the above-described composite lens barrel 10), and various components connected to the processor 500. Consists of The lens barrel unit 502 includes the above-described two sets of the imaging optical systems 84A and 84B and the solid-state imaging elements 85A and 85B. The solid-state imaging elements 85A and 85B are controlled by a control command from a CPU 530 described later in the processor 500.

プロセッサ500は、ISP(Image Signal Processor)508A、508Bと、DMAC(Direct Memory Access Controller)510と、メモリアクセスの調停のためのアービタ(ARBMEMC)512と、メモリアクセスを制御するMEMC(Memory Controller)514と、歪曲補正・画像合成ブロック518とを含む。ISP508A、508Bは、それぞれ、固体撮像素子85A、85Bの信号処理を経て入力された画像データに対し、ホワイト・バランス設定やガンマ設定を行う。MEMC514には、SDRAM516が接続される。SDRAM516には、ISP508A、508Bおよび歪曲補正・画像合成ブロック518において処理を施す際にデータが一時的に保存される。歪曲補正・画像合成ブロック518は、2つの撮像系から得られた2つの部分画像に対し、3軸加速度センサ520からの情報を利用して、歪曲補正とともに天地補正を施し、画像合成する。   The processor 500 includes ISPs (Image Signal Processors) 508A and 508B, a DMAC (Direct Memory Access Controller) 510, an arbiter (ARBMEMC) 512 for arbitrating memory access, and a MEMC (Memory Controller) 514 for controlling memory access. And a distortion correction / image synthesis block 518. The ISPs 508A and 508B perform white balance setting and gamma setting for the image data input through the signal processing of the solid-state imaging devices 85A and 85B, respectively. An SDRAM 516 is connected to the MEMC 514. The SDRAM 516 temporarily stores data when processing is performed in the ISPs 508A and 508B and the distortion correction / image synthesis block 518. The distortion correction / image composition block 518 performs distortion correction and top-and-bottom correction on the two partial images obtained from the two imaging systems using the information from the three-axis acceleration sensor 520 to synthesize an image.

プロセッサ500は、さらに、DMAC522と、画像処理ブロック524と、CPU530と、画像データ転送部526と、SDRAMC528と、メモリカード制御ブロック540と、USBブロック546と、ペリフェラル・ブロック550と、音声ユニット552と、シリアルブロック558と、LCD(Liquid Crystal Display)ドライバ562と、ブリッジ568とを含む。   The processor 500 further includes a DMAC 522, an image processing block 524, a CPU 530, an image data transfer unit 526, an SDRAM C 528, a memory card control block 540, a USB block 546, a peripheral block 550, an audio unit 552, Serial block 558, LCD (Liquid Crystal Display) driver 562, and bridge 568.

CPU530は、撮像装置80の各部の動作を制御する。画像処理ブロック524は、リサイズブロック532、JPEGブロック534、H.264ブロック536などを用いて、画像データに対し各種画像処理を施す。リサイズブロック532は、画像データのサイズを補間処理により拡大または縮小するためのブロックである。JPEGブロック534は、JPEG圧縮および伸張を行うコーデック・ブロックである。H.264ブロック536は、H.264などの動画圧縮および伸張を行うコーデック・ブロックである。画像データ転送部526は、画像処理ブロック524で画像処理された画像を転送する。SDRAMC528は、プロセッサ500に接続されるSDRAM538を制御し、SDRAM538には、プロセッサ500内で画像データに各種処理を施す際に、画像データを一時的に保存する。   The CPU 530 controls the operation of each unit of the imaging device 80. The image processing block 524 includes a resize block 532, a JPEG block 534, H.264, and H.264. Various image processing is performed on the image data using a H.264 block 536 or the like. The resize block 532 is a block for enlarging or reducing the size of the image data by interpolation processing. The JPEG block 534 is a codec block that performs JPEG compression and expansion. H. H.264 block 536 includes H.264 blocks. It is a codec block that performs video compression and decompression such as H.264. The image data transfer unit 526 transfers the image processed by the image processing block 524. The SDRAM C 528 controls the SDRAM 538 connected to the processor 500, and temporarily stores the image data in the SDRAM 538 when various processes are performed on the image data in the processor 500.

メモリカード制御ブロック540は、メモリカードスロット542に挿入されたメモリカードおよびフラッシュROM544に対する読み書きを制御する。メモリカードスロット542は、撮像装置80にメモリカードを着脱可能に装着するためのスロットである。USBブロック546は、USBコネクタ548を介して接続されるパーソナル・コンピュータなどの外部機器とのUSB通信を制御する。ペリフェラル・ブロック550には、電源スイッチ566が接続される。音声ユニット552は、ユーザが音声信号を入力するマイク556と、記録された音声信号を出力するスピーカ554とに接続され、音声入出力を制御する。シリアルブロック558は、パーソナル・コンピュータなどの外部機器とのシリアル通信を制御し、無線NIC(Network Interface Card)560が接続される。LCDドライバ562は、LCDモニタ564を駆動するドライブ回路であり、LCDモニタ564に各種状態を表示するための信号に変換する。   The memory card control block 540 controls reading and writing with respect to the memory card inserted into the memory card slot 542 and the flash ROM 544. The memory card slot 542 is a slot for detachably attaching a memory card to the imaging device 80. The USB block 546 controls USB communication with an external device such as a personal computer connected via the USB connector 548. A power switch 566 is connected to the peripheral block 550. The audio unit 552 is connected to a microphone 556 to which a user inputs an audio signal and a speaker 554 to output a recorded audio signal, and controls audio input / output. The serial block 558 controls serial communication with an external device such as a personal computer, and is connected to a wireless NIC (Network Interface Card) 560. The LCD driver 562 is a drive circuit that drives the LCD monitor 564 and converts it into signals for displaying various states on the LCD monitor 564.

フラッシュROM544には、CPU530が解読可能なコードで記述された制御プログラムや各種パラメータが格納される。電源スイッチ566の操作によって電源がオン状態になると、上記制御プログラムがメインメモリにロードされる。CPU530は、メインメモリに読み込まれたプログラムに従って、装置各部の動作を制御するとともに、制御に必要なデータをSDRAM538と、図示しないローカルSRAMとに一時的に保存する。   The flash ROM 544 stores a control program and various parameters described by codes that can be read by the CPU 530. When the power is turned on by operating the power switch 566, the control program is loaded into the main memory. The CPU 530 controls the operation of each part of the apparatus according to the program read into the main memory, and temporarily stores data necessary for control in the SDRAM 538 and a local SRAM (not shown).

以上のように、本実施形態の撮像装置では、各鏡筒11A、11Bを構成するベース枠12に対して前群枠13を接合する構造として、充填接着に用いる接着用穴27(127、227)と接着用穴33(133、233)の内部に、接着抜け止め面27d(27e、27f)と接着抜け止め面33d(33e、33f)を備えている。接着抜け止め面27d(27e、27f)と接着抜け止め面33d(33e、33f)はそれぞれ、充填された接着剤Uに対して双方がアンダーカット構造となる(それぞれが接合対向面28、31と反対側を向く)形状なっている。これにより、光軸X1と垂直な方向に加えて、光軸X1と平行な方向にも強固な固定が実現され、簡単且つ省スペースな構造でありながら、全方位に高い接着強度を得ることができる。   As described above, in the imaging apparatus of the present embodiment, the bonding holes 27 (127, 227) used for filling bonding are used as a structure in which the front group frame 13 is bonded to the base frame 12 constituting each of the lens barrels 11A, 11B. ) And the bonding holes 33 (133, 233) are provided with an adhesive retaining surface 27d (27e, 27f) and an adhesive retaining surface 33d (33e, 33f). The adhesive retaining surface 27d (27e, 27f) and the adhesive retaining surface 33d (33e, 33f) both have an undercut structure with respect to the filled adhesive U (each of which is a joint opposing surface 28, 31). The shape is facing the other side. As a result, in addition to the direction perpendicular to the optical axis X1, in addition to being firmly fixed in the direction parallel to the optical axis X1, it is possible to obtain high adhesive strength in all directions while having a simple and space-saving structure. it can.

特に、上記実施形態の撮像システム1では、前群枠13に支持される前群AF、BFの感度が高く、ベース枠12に対して前群枠13を厳密に位置調整した上で、強固に固定させる必要がある。上記の接着構造は、制約されたスペースの中で、前群枠13の固定強度の確保において極めて優れた効果を得ることができる。   In particular, in the imaging system 1 of the above-described embodiment, the sensitivity of the front group AF and BF supported by the front group frame 13 is high. It needs to be fixed. The above-mentioned adhesion structure can obtain an extremely excellent effect in securing the fixing strength of the front group frame 13 in a restricted space.

このように、本発明は、撮像装置の鏡筒のように高精度な接合が要求される精密機器に対して特に有用であるが、撮像装置以外の機器の接合構造に適用することも可能である。また、撮像装置において、レンズを支持する部材以外の接合に用いることも可能である。   As described above, the present invention is particularly useful for precision equipment that requires high-precision joining, such as a lens barrel of an imaging apparatus, but can also be applied to a joining structure of equipment other than the imaging apparatus. is there. Moreover, in an imaging device, it is also possible to use for joining other than the member which supports a lens.

上記実施形態の撮像装置は、同一形状の鏡筒11A、11Bを組み合わせるタイプであるが、これ以外のタイプの撮像装置や光学機器にも適用が可能である。   The imaging device of the above-described embodiment is a type in which the same shape of the lens barrels 11A and 11B is combined. However, the imaging device can also be applied to other types of imaging devices and optical devices.

また、接合に用いる充填体は、接着剤以外を選択することも可能である。一例として、本発明の要件を満たす2つの部材に設けた穴に対して、溶融状態や粉末状態の樹脂を充填し、該樹脂の固化により接合させることも可能である。   Moreover, it is also possible to select the filler used for joining other than an adhesive. As an example, it is also possible to fill a hole provided in two members satisfying the requirements of the present invention with a resin in a molten state or a powder state and join the resin by solidifying the resin.

図32から図34に接着用穴の断面形状のバリエーションを示したが、本発明における接合用の穴の形状はこれに限定されない。例えば、上記実施形態の接着用穴27(127、227)はいずれも、接着剤を注入する側の開口面積が大きく、接合対向面28に開口する奥側の開口面積が小さい断面形状を有する。これにより、接着用穴27(127、227)へ接着剤を流入させやすくなっている。しかし、少なくとも内部に接着抜け止め面27d(27e、27f)のような、接着剤が接触して抜け止めする面面を有するという条件を満たしていれば、注入側の開口面積が部分的に小さくなっているような穴であっても適用が可能である。   Although the variation of the cross-sectional shape of the bonding hole is shown in FIGS. 32 to 34, the shape of the bonding hole in the present invention is not limited to this. For example, each of the bonding holes 27 (127, 227) of the above embodiment has a cross-sectional shape in which the opening area on the side where the adhesive is injected is large and the opening area on the back side opening in the bonding facing surface 28 is small. This makes it easier for the adhesive to flow into the bonding holes 27 (127, 227). However, the opening area on the injection side is partially small as long as it satisfies the condition that at least the inner surface has a surface that prevents contact with the adhesive, such as the adhesive retaining surface 27d (27e, 27f). Even a hole like this can be applied.

1 :撮像システム
10 :複合鏡筒
11A :鏡筒
11B :鏡筒
12 :ベース枠
13 :前群枠
14 :後群枠
15 :第3プリズム枠
16 :撮像センサユニット
17 :基板
20 :正面壁部
21 :上壁部
22 :側壁部
23 :側壁部
24 :角壁部
25 :角壁部
26 :前群枠当接部
27 :接着用穴
27a :幅狭部
27b :幅広部
27c :幅徐変部
27d :接着抜け止め面
27e :接着抜け止め面
27f :接着抜け止め面
28 :接合対向面
29 :接着用凹部
30 :レンズ支持面
31 :接合対向面
32 :当接部
33 :接着用穴
33a :幅狭部
33b :幅広部
33c :幅徐変部
33d :接着抜け止め面
33e :接着抜け止め面
33f :接着抜け止め面
35 :第1プリズム保持部
36 :第2プリズム保持部
37 :後群枠保持部
42 :後群枠収容部
50 :当て付け面
51 :当て付け面
56 :後群枠対向部
60 :第1穴
61 :第2穴
65 :軸部材
66 :軸部材
70 :前カバー
80 :撮像装置
84A :結像光学系
84B :結像光学系
85A :固体撮像素子
85B :固体撮像素子
127 :接着用穴
133 :接着用穴
227 :接着用穴
233 :接着用穴
A :広角レンズ系
AF :前群
AI :撮像センサ
AP1 :第1プリズム
AP2 :第2プリズム
AP3 :第3プリズム
AR :後群
AS :可変開口絞り
B :広角レンズ系
BF :前群
BI :撮像センサ
BP1 :第1プリズム
BP2 :第2プリズム
BP3 :第3プリズム
BR :後群
BS :可変開口絞り
U :請求項(充填体)
X1 :光軸(入射光軸)
X2 :光軸
X3 :光軸
X4 :光軸
1: Imaging system 10: Compound lens barrel 11A: Lens barrel 11B: Lens barrel 12: Base frame 13: Front group frame 14: Rear group frame 15: Third prism frame 16: Image sensor unit 17: Substrate 20: Front wall 21: Upper wall part 22: Side wall part 23: Side wall part 24: Square wall part 25: Square wall part 26: Front group frame contact part 27: Bonding hole 27a: Narrow part 27b: Wide part 27c: Gradual change in width Portion 27d: Adhesion retaining surface 27e: Adhesion retaining surface 27f: Adhesion retaining surface 28: Bonding facing surface 29: Adhesion recess 30: Lens support surface 31: Bonding facing surface 32: Abutting portion 33: Adhesion hole 33a : Narrow portion 33b: wide portion 33c: width gradually changing portion 33d: adhesive retaining surface 33e: adhesive retaining surface 33f: adhesive retaining surface 35: first prism retaining portion 36: second prism retaining portion 37: rear group Frame holding part 42: rear group Frame housing portion 50: abutting surface 51: abutting surface 56: rear group frame facing portion 60: first hole 61: second hole 65: shaft member 66: shaft member 70: front cover 80: imaging device 84A: imaging Optical system 84B: Imaging optical system 85A: Solid-state imaging device 85B: Solid-state imaging device 127: Bonding hole 133: Bonding hole 227: Bonding hole 233: Bonding hole A: Wide-angle lens system AF: Front group AI: Imaging Sensor AP1: First prism AP2: Second prism AP3: Third prism AR: Rear group AS: Variable aperture stop B: Wide-angle lens system BF: Front group BI: Imaging sensor BP1: First prism BP2: Second prism BP3: Third prism BR: Rear group BS: Variable aperture stop U: Claim (filler)
X1: Optical axis (incident optical axis)
X2: Optical axis X3: Optical axis X4: Optical axis

Claims (10)

2つの部材が対向する対向面に開口する穴を有し、前記穴が連通する状態で流体又は粉体の充填体が双方の前記穴内に充填され、該充填体によって前記2つの部材が相対的に固定される接合構造において、
前記2つの部材の前記穴はそれぞれ、前記開口側よりも前記開口から離れた位置の方が内部が広いことを特徴とする接合構造。
The two members have holes that are open on opposite surfaces, and a fluid or powder filler is filled in both the holes in a state where the holes communicate with each other, and the two members are relative to each other by the filler. In the joint structure fixed to
Each of the holes of the two members has a wider inside at a position away from the opening than at the opening side.
前記充填体は接着剤である請求項1に記載の接合構造。   The joining structure according to claim 1, wherein the filler is an adhesive. 前記穴は、前記対向面と反対側を向く抜け止め面を有し、
前記抜け止め面は、前記対向面から離れるにつれて前記穴の内部間隔を広くする傾斜形状を備える請求項1又は請求項2に記載の接合構造。
The hole has a retaining surface facing away from the facing surface;
The joining structure according to claim 1, wherein the retaining surface has an inclined shape that widens the internal spacing of the holes as the distance from the facing surface increases.
前記穴は、前記対向面と反対側を向く抜け止め面を有し、
前記抜け止め面は、前記対向面と反対方向を向く平面である請求項1又は請求項2に記載の接合構造。
The hole has a retaining surface facing away from the facing surface;
The joining structure according to claim 1, wherein the retaining surface is a flat surface facing a direction opposite to the facing surface.
前記2つの部材は撮像装置に備えられている請求項1から請求項4のいずれか1項に記載の接合構造。   The joining structure according to any one of claims 1 to 4, wherein the two members are provided in an imaging apparatus. 前記2つの部材は、前記充填体による接合前の状態で、前記対向面に沿う方向に位置調整可能である請求項1から請求項5のいずれか1項に記載の接合構造。   The joining structure according to any one of claims 1 to 5, wherein the position of the two members can be adjusted in a direction along the facing surface in a state before joining by the filler. 前記2つの部材の少なくとも一方は、撮像光学系を構成する光学要素を支持し、前記位置調整の方向は前記光学要素を通る光軸と垂直な方向である請求項6に記載の接合構造。   The joining structure according to claim 6, wherein at least one of the two members supports an optical element constituting an imaging optical system, and the direction of the position adjustment is a direction perpendicular to an optical axis passing through the optical element. 前記2つの部材の前記穴は、前記対向面上の開口の大きさが互いに異なる請求項1から請求項7のいずれか1項に記載の接合構造。   The joint structure according to any one of claims 1 to 7, wherein the holes of the two members have different sizes of openings on the facing surfaces. 前記2つの部材の前記穴はそれぞれ長穴である請求項1から請求項8のいずれか1項に記載の接合構造。   The joint structure according to claim 1, wherein each of the holes of the two members is a long hole. 2つの部材が対向する対向面に開口する穴を有し、前記穴が連通する状態で流体又は粉体の充填体が双方の前記穴内に充填され、該充填体によって前記2つの部材が相対的に固定される接合構造において、
前記2つの部材の前記穴はそれぞれ、前記対向面と反対側を向く抜け止め面を内部に有し、前記対向面を離間させる方向の力が前記2つの部材間に加わったときに、固化状態の前記充填体と双方の前記抜け止め面との接触によって前記2つの部材の相対移動を規制することを特徴とする接合構造。
The two members have holes that are open on opposite surfaces, and a fluid or powder filler is filled in both the holes in a state where the holes communicate with each other, and the two members are relative to each other by the filler. In the joint structure fixed to
Each of the holes of the two members has a retaining surface facing away from the opposing surface, and is solidified when a force in a direction to separate the opposing surfaces is applied between the two members. The joint structure is characterized in that relative movement of the two members is restricted by contact between the filler and the retaining surfaces.
JP2019029668A 2018-03-20 2019-02-21 Bonding structure Pending JP2019164340A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910192480.9A CN110308534A (en) 2018-03-20 2019-03-13 Connected structure
US16/356,586 US10852503B2 (en) 2018-03-20 2019-03-18 Joint structure
EP19163675.2A EP3543547A1 (en) 2018-03-20 2019-03-19 Joint structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018053349 2018-03-20
JP2018053349 2018-03-20

Publications (1)

Publication Number Publication Date
JP2019164340A true JP2019164340A (en) 2019-09-26

Family

ID=68065138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029668A Pending JP2019164340A (en) 2018-03-20 2019-02-21 Bonding structure

Country Status (2)

Country Link
JP (1) JP2019164340A (en)
CN (1) CN110308534A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2257001A (en) * 1937-12-31 1941-09-23 American Cyanamid & Chem Corp Building unit and construction
BE1006374A5 (en) * 1991-12-20 1994-08-02 Erven Waltherus Joseph Maria V Method and apparatus for the production of a panel and panel manufactured according to this method.
US5724189A (en) * 1995-12-15 1998-03-03 Mcdonnell Douglas Corporation Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby

Also Published As

Publication number Publication date
CN110308534A (en) 2019-10-08

Similar Documents

Publication Publication Date Title
JP2019164303A (en) Optical system and imaging apparatus
JP7419311B2 (en) Multi-lens camera module combination stand, multi-lens camera module, and its use
KR20080035601A (en) Imaging device and assembling method for imaging device
JP7081473B2 (en) Imaging optical system, imaging system and imaging device
CN108572431A (en) Camera lens module
JP2009048024A (en) Lens unit, imaging module, and optical apparatus
CN111886542B (en) Optical system and imaging device
US10852503B2 (en) Joint structure
CN216013833U (en) Optical system
JP7293698B2 (en) Optical system, imaging system and imaging device
US6643460B2 (en) Camera and focal point detection apparatus
JP2019164340A (en) Bonding structure
JP2009258557A (en) Imaging apparatus
JP7124366B2 (en) Imaging element fixing structure and imaging device
JP7286983B2 (en) Imaging device
US7616884B2 (en) Viewfinder for single lens reflex camera
US20200252529A1 (en) Imaging device
JP2006215443A (en) Method for fixing lens frame of lens device, and imaging apparatus and optical apparatus using the same
JP7286956B2 (en) Imaging device
US20230176340A1 (en) Camera module and terminal device
WO2022188166A1 (en) Camera lens module, photographing module and electronic device
WO2020171099A1 (en) Imaging optical system and imaging device
JPH1062690A (en) Optical element and optical system using it