JP2019162023A - Wireless power transmission device and power receiving side current detection circuit thereof - Google Patents

Wireless power transmission device and power receiving side current detection circuit thereof Download PDF

Info

Publication number
JP2019162023A
JP2019162023A JP2019042088A JP2019042088A JP2019162023A JP 2019162023 A JP2019162023 A JP 2019162023A JP 2019042088 A JP2019042088 A JP 2019042088A JP 2019042088 A JP2019042088 A JP 2019042088A JP 2019162023 A JP2019162023 A JP 2019162023A
Authority
JP
Japan
Prior art keywords
current
waveform
coil
power transmission
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019042088A
Other languages
Japanese (ja)
Inventor
片岡 義範
Yoshinori Kataoka
義範 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TECMO CO Ltd
Original Assignee
NIPPON TECMO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TECMO CO Ltd filed Critical NIPPON TECMO CO Ltd
Publication of JP2019162023A publication Critical patent/JP2019162023A/en
Pending legal-status Critical Current

Links

Abstract

To provide a wireless power transmission device capable of accurately adjusting a frequency to a resonance frequency without depending on a coupling coefficient or a circuit constant between a power transmission side coil and a power reception side coil.SOLUTION: A wireless power transmission device includes a dummy coil 4 connected in parallel to a power transmission side coil 3 with respect to a power supply circuit 6 and not magnetically coupled to a power reception side coil 11, and difference current detection means 7 for detecting a difference current between the dummy coil current iflowing through the dummy coil 4 and a primary current iflowing through the power transmission side coil 3, and the difference current detection means 7 detects a current difference (αi-i) for the ratio α=L/Lof inductance Lof the dummy coil 4 to the inductance Lof the power transmission side coil 3. The current difference (αi-i) is proportional to the power receiving coil current i, and the frequency can be adjusted to the exact series resonance frequency fby using the detected value of the current difference.SELECTED DRAWING: Figure 4

Description

本発明は、金属接点やコネクタなどを介さず非接触で電力を伝送するワイヤレス電力伝送技術に関し、特に送電側コイルと受電側コイルとの間の電磁誘導を利用して電力伝送を行う磁界結合方式のワイヤレス電力伝送技術に関する。   The present invention relates to a wireless power transmission technology that transmits power in a contactless manner without using a metal contact or a connector, and more particularly, a magnetic field coupling method that transmits power using electromagnetic induction between a power transmission side coil and a power reception side coil. Related to wireless power transmission technology.

近年、各種電気機器の充電、電気自動車への給電等の幅広い分野に於いて、非接触で電力を伝送するワイヤレス電力伝送技術が用いられるようになってきている。ワイヤレス電力伝送技術は、大きく分けて、対向する電極板間のキャパシタンス結合(電界結合)を利用する電界結合方式と、並列するコイル間の相互インダクタンス結合(磁界結合)を利用する磁界結合方式に分類できるが、送電側と受電側との間のエアギャップが広い場合には、一般に送電距離を長くとることが可能な磁界結合方式が利用されている(非特許文献1,2参照)。磁界結合方式のワイヤレス電力伝送技術においては、送電側に1次側コイル(送電側コイル)、受電側に2次側コイル(受電側コイル)を設け、1次側コイルと2次側コイルを向かい合わせて配置することにより磁界結合させ、1次側コイルに交流電流を通電し、2次側コイルに誘導電流を発生させることにより送電を行う。このとき、送電効率を最大化するため、2次側コイルに直列に共振コンデンサを設け、送電側から共振周波数で送電することによって送電効率を最大化する。この方式は、電磁誘導方式と呼ばれている(特許文献1−2,非特許文献1−2参照)。   In recent years, wireless power transmission technology for transmitting power in a contactless manner has been used in a wide range of fields such as charging various electric devices and feeding electric vehicles. Wireless power transfer technology can be broadly classified into electric field coupling method using capacitance coupling (electric field coupling) between opposing electrode plates and magnetic field coupling method using mutual inductance coupling (magnetic field coupling) between parallel coils. However, when the air gap between the power transmission side and the power reception side is wide, a magnetic field coupling method that can generally increase the power transmission distance is used (see Non-Patent Documents 1 and 2). In the magnetic field coupling type wireless power transmission technology, a primary side coil (power transmission side coil) is provided on the power transmission side, and a secondary side coil (power reception side coil) is provided on the power reception side, and the primary side coil and the secondary side coil face each other. By arranging them together, magnetic field coupling is performed, an alternating current is passed through the primary side coil, and an induction current is generated in the secondary side coil to transmit power. At this time, in order to maximize power transmission efficiency, a resonance capacitor is provided in series with the secondary coil, and power transmission efficiency is maximized by transmitting power from the power transmission side at the resonance frequency. This method is called an electromagnetic induction method (see Patent Documents 1-2 and 1-2).

図25に、代表的な磁界共鳴方式のワイヤレス電力伝送の原理図を示す。磁界共鳴方式は、1次側(送電側)における共振コンデンサCの有無と、2次側(受電側)における共振コンデンサCと負荷抵抗Rの接続関係により、(a)N−S型(Non-resonant-Series type)、(b)N−P型(Non-resonant-Parallel type)、(c)S−S型(Series-Series type)、(d)S−P型(Series-Parallel type)、(e)N−L型(Non-resonant-Load type)、(f)S−L型(Series -Load type)などに大別される(例えば、非特許文献1,2参照)。N−L型,S−L型は、2次側の受電側コイルを、1次側との共振を生じさせる共振用受電側コイルLと、電力を取り出す受電側ロードコイルLとに分離したものである。尚、この他にも、1次側の送電側コイルを、2次側との共振を生じさせる共振用送電側コイルと、電源電力を給電する給電コイル(給電エキサイトコイル)とに分離した方式もある(特許文献7の図3参照)。これらの磁界共鳴方式は、1次側の1次側コイルLの鎖交磁束と2次側の2次側コイルLの鎖交磁束とが逆向きとなる「並列共振モード(反共振モード)」と、1次側の1次側コイルLの鎖交磁束と2次側の2次側コイルLの鎖交磁束とが同向き(磁界調相結合状態)となる「直列共振モード」との2つの共振モードが存在し、各共振モードの共振周波数は、例えば、N−S型の場合には次のように表される(図26,又は非特許文献3の60頁・図9参照)。 FIG. 25 shows a principle diagram of a typical magnetic field resonance type wireless power transmission. Magnetic resonance method has a presence or absence of the resonance capacitor C 1 at the primary side (transmission side), the connection relationship between the resonant capacitor C 2 load resistance R L at the secondary side (power receiving side), (a) N-S-type (Non-resonant-Series type), (b) NP type (Non-resonant-Parallel type), (c) SS type (Series-Series type), (d) SP type (Series-Parallel) type), (e) N-L type (Non-resonant-Load type), (f) S-L type (Series-Load type), etc. (for example, refer nonpatent literatures 1 and 2). In the NL type and the SL type, the secondary power receiving side coil is separated into a resonance power receiving side coil L 2 that causes resonance with the primary side and a power receiving side load coil L L that extracts power. It is a thing. In addition to this, there is a method in which the primary power transmission side coil is separated into a resonance power transmission side coil that causes resonance with the secondary side and a power supply coil (power supply excite coil) that supplies power to the power supply. Yes (see FIG. 3 of Patent Document 7). In these magnetic field resonance systems, a “parallel resonance mode (antiresonance mode) in which the interlinkage magnetic flux of the primary coil L 1 on the primary side and the interlinkage magnetic flux of the secondary coil L 2 on the secondary side are opposite to each other. ) and "primary interlinkage magnetic flux of the coil L 1 of the primary side and is the flux linkage of the secondary coil L 2 of the secondary side becomes the same direction (the magnetic field compensator coupled state)" series resonant mode In the case of the NS type, for example, the resonance frequency of each resonance mode is expressed as follows (see FIG. 26 or page 60 of Non-Patent Document 3). 9).

ここで、ω,ωは、其々並列共振モード,直列共振モードの角周波数、f,fは、其々並列共振モード,直列共振モードの周波数、Lは2次側コイルのインダクタンス,Cは2次側共振コンデンサのキャパシタンス、k12は1次側コイルLと2次側コイルLとの結合定数である。2次側の負荷抵抗Rに流れる電流は、直列共振モードにおいて最大となるので、磁界共鳴方式では一般に直列共振モードによる磁界調相結合が使用される。 Here, ω 2 and ω 0 are the angular frequencies of the parallel resonance mode and the series resonance mode, f 2 and f 0 are the frequencies of the parallel resonance mode and the series resonance mode, respectively, and L 2 is the secondary coil. Inductance, C 2 is the capacitance of the secondary side resonance capacitor, and k 12 is a coupling constant between the primary side coil L 1 and the secondary side coil L 2 . Since the current flowing through the load resistance RL on the secondary side becomes the maximum in the series resonance mode, the magnetic field resonance method generally uses magnetic field phase coupling in the series resonance mode.

然し乍ら、直列共振モードの共振周波数ωは、式(1b)に示すように結合定数k12に依存するが、結合定数k12は1次側コイルLと2次側コイルLとの位置関係によって大きく変化する。また、直列共振モードと並列共振モードの双方に於いて言えることとして、2次側のインダクタンスLやキャパシタンスCは、製造誤差や経時劣化などによりバラツキが大きく、これらのバラツキによって共振周波数ω,ωが変動する。従って、このような共振周波数ωや共振周波数ωの変動に追随して、1次側コイルLに通電する電流の周波数を調整することが、高効率の送電を行う上で技術的に重要である。 However, although the resonance frequency ω 0 of the series resonance mode depends on the coupling constant k 12 as shown in the equation (1b), the coupling constant k 12 is a position between the primary side coil L 1 and the secondary side coil L 2. It varies greatly depending on the relationship. Further, as can be said at the both of the series resonance mode and the parallel resonance mode, the inductance L 1 and the capacitance C 2 of the secondary side has a large variation due to manufacturing error or aging deterioration, the resonance frequency by these variations omega 2 , Ω 0 fluctuates. Therefore, such following the variations in the resonance frequency omega 2 and the resonance frequency omega 0, to adjust the frequency of the current supplied to the primary coil L 1, technically in performing power transmission with high efficiency is important.

このように、1次側コイルLに通電する電流の周波数を調整する技術としては、特許文献3及び非特許文献3、並びに特許文献4−6に記載のものが公知である。特許文献3及び非特許文献3には、受電側装置に於いて、共振コンデンサCに流れる共振電流の位相情報を、共振電流位相検出手段により検出し、位相情報伝達手段(位相情報送信手段及び位相情報受信手段)により検出された位相情報を位相遅延なく送電側装置に伝達し、送電側装置の駆動回路は、位相情報伝達手段により伝達される位相情報に基づいて駆動周波数を定め、1次側コイル(送電側コイル)を駆動するワイヤレス電力伝送装置が記載されている(特許文献3の図1参照)。位相情報伝達手段は、受電側装置と送電側装置との間をワイヤレスで情報伝達するものであり、LEDとフォトトランジスタを用いた光伝送方法や、高周波無線伝達する電磁波伝送方法などが例として記載されている。この2次側の位相情報に基づいて、1次側の1次側コイル(送電側コイル)に流す電流(1次電流)の周波数を調節することで、式(1b)の共振周波数に適応して、1次側の周波数制御を行い、高伝送効率を実現している。 Thus, as a technique for adjusting the frequency of the current supplied to the primary coil L 1, Patent Document 3 and Non-Patent Document 3, and is known as described in Patent Document 4-6. Patent Document 3 and Non-Patent Document 3, in the power receiving side device, the phase information of the resonance current flowing through the resonant capacitor C 2, is detected by the resonance current phase detecting means, phase information transmission means (phase information transmitting means and The phase information detected by the phase information receiving means) is transmitted to the power transmission side device without phase delay, and the drive circuit of the power transmission side device determines the drive frequency based on the phase information transmitted by the phase information transmission means. A wireless power transmission device that drives a side coil (power transmission side coil) is described (see FIG. 1 of Patent Document 3). The phase information transmission means wirelessly transmits information between the power receiving side device and the power transmission side device, and an optical transmission method using an LED and a phototransistor, an electromagnetic wave transmission method for high-frequency wireless transmission, and the like are described as examples. Has been. By adjusting the frequency of the current (primary current) that flows through the primary side coil (power transmission side coil) based on the phase information on the secondary side, the resonance frequency of the equation (1b) is adapted. Thus, the primary side frequency control is performed to achieve high transmission efficiency.

特許文献4には、給電コイル(L2)と受電側コイル(L3)の磁場共振現象に基づき、給電コイル(L2)から受電側コイル(L3)にワイヤレス給電するための装置であって、給電コイル(L2)と、給電コイル(L2)に駆動周波数にて交流電力を供給することにより、給電コイル(L2)から受電側コイル(L3)に交流電力を給電させる送電制御回路(200)と、交流電力の電圧位相と電流位相の位相差を検出する位相検出回路(150)とを備え、位相検出回路(150)は、交流電力の電圧波形および交流電力の電流波形のうちの一方の位相を90度ずらした上で、交流電力の電圧レベルが所定範囲内となる第1検出期間と交流電力の電流レベルが所定範囲内となる第2検出期間のずれを検出することにより、0度〜180度の範囲の位相差を検出し、送電制御回路(200)は、検出された位相差に応じて駆動周波数を調整するワイヤレス給電装置が記載されている(仝文献の図1〜図3参照)。このワイヤレス給電装置では、給電コイル(L2)に流れる電流の位相と、送電制御回路(200)が出力する電圧波形の位相とを比較して、両者の位相が90度ずれた状態となるように、送電制御回路(200)の駆動周波数を調整するものである。これにより、駆動周波数を共振周波数に追随させることで、送電効率の向上を図っている。特許文献5,6にもこれと類似の原理構成のワイヤレス給電装置が記載されている(但し、特許文献5は、共振周波数に式(1a)が記載されており、並列共振(受電側コイル側のみの共振)の共振周波数に調整するものと思われる)。   Patent Document 4 discloses an apparatus for wirelessly feeding power from a power supply coil (L2) to a power reception side coil (L3) based on the magnetic field resonance phenomenon of the power supply coil (L2) and power reception side coil (L3). (L2), a power transmission control circuit (200) for supplying AC power from the power supply coil (L2) to the power receiving coil (L3) by supplying AC power to the power supply coil (L2) at the drive frequency, and AC A phase detection circuit (150) for detecting a phase difference between the voltage phase of the electric power and the phase of the current, and the phase detection circuit (150) outputs one of the voltage waveform of the AC power and the current waveform of the AC power by 90 Then, by detecting a shift between the first detection period in which the voltage level of the AC power is within a predetermined range and the second detection period in which the current level of the AC power is within the predetermined range, 0 degrees to 180 degrees. Detecting a phase difference in the range of, the power transmission control circuit (200), (see FIGS. 1 to 3 of 仝 document) the detected wireless power supply apparatus is described for adjusting the drive frequency in accordance with the phase difference. In this wireless power supply device, the phase of the current flowing through the power supply coil (L2) is compared with the phase of the voltage waveform output from the power transmission control circuit (200) so that the phases of both are shifted by 90 degrees. The drive frequency of the power transmission control circuit (200) is adjusted. Thereby, the power transmission efficiency is improved by causing the drive frequency to follow the resonance frequency. Patent Documents 5 and 6 also describe a wireless power supply apparatus having a similar principle configuration (however, Patent Document 5 describes the equation (1a) for the resonance frequency, and the parallel resonance (on the power-receiving side coil side). It seems to adjust to the resonance frequency of only the resonance)).

国際公開WO2007/008646号公報International Publication WO2007 / 008646 国際公開WO2008/118178号公報International Publication WO2008 / 118178 国際公開WO2015/173850号公報International Publication WO2015 / 173850 特開2012−182975号公報JP 2012-182975 A 特開平10−225129号公報Japanese Patent Laid-Open No. 10-225129 特開2010−166693号公報JP 2010-166893 A 国際公開WO2012/090700号公報International Publication WO2012 / 090700

居村岳広,「磁界共鳴によるワイヤレス電力伝送」,第1版,森北出版株式会社,2017年2月,pp.2−11.Takemura Imura, “Wireless Power Transmission by Magnetic Resonance”, 1st Edition, Morikita Publishing Co., Ltd., February 2017, pp.2-11. 居村岳広,堀洋一,「電磁誘導方式と磁界共振結合方式の統一理論」,電気学会論文誌D(産業応用部門誌),一般社団法人電気学会,2015年,Vol.135,No.6,pp.697-710.Takehiro Imura, Yoichi Hori, “Unified Theory of Electromagnetic Induction and Magnetic Resonance Coupling”, IEEJ Transactions D (Industrial Application Division), The Institute of Electrical Engineers of Japan, 2015, Vol.135, No.6, pp.697-710. 牛嶋昌和,「磁界共振理論の問題を微修正して効率とロバスト性を改善」,グリーンエレクトロニクス,CQ出版株式会社,2017年, Vol.19, pp.52-69.Masakazu Ushijima, “Improved Efficiency and Robustness by Correcting Problems in Magnetic Resonance Theory”, Green Electronics, CQ Publishing Co., Ltd., 2017, Vol.19, pp.52-69.

上記特許文献3及び非特許文献3に記載のワイヤレス電力伝送装置は、受電装置において検出される共振コンデンサCに流れる共振電流の位相情報を、送電装置の側に無線伝送する必要がある。従って、送電装置と受電装置の双方に無線伝送のための位相情報伝達手段を設ける必要があり、装置が複雑化するという問題がある。また、異物、汚れ等の何らかの環境変化や外乱などの障害により無線伝送に支障を来した場合には、送電装置の側において共振周波数が取得できなるという問題もある。 Wireless power transmission device described in Patent Document 3 and Non-Patent Document 3, the phase information of the resonance current flowing through the resonant capacitor C 2 to be detected in the power receiving device, it is necessary to wirelessly transmitted to the side of the power transmitting device. Accordingly, it is necessary to provide phase information transmission means for wireless transmission in both the power transmission device and the power reception device, and there is a problem that the device becomes complicated. In addition, when wireless transmission is hindered due to some environmental change such as foreign matter or dirt, or disturbance such as disturbance, there is also a problem that the resonance frequency cannot be acquired on the power transmission device side.

一方、特許文献4に記載のワイヤレス給電装置は、共振周波数を送電装置の側のみで検出し周波数調整を行うことから、上記問題は生じない。然し乍ら、給電側コイルの電流波形は、受電側コイルの電流の影響を受けて歪みやすいため、実機に於いては給電側コイルの電流波形が安定せず、安定した位相の検出と周波数調節が難しいという問題があった。   On the other hand, the wireless power supply device described in Patent Document 4 detects the resonance frequency only on the power transmission device side and performs frequency adjustment, and thus the above problem does not occur. However, since the current waveform of the power supply coil is easily distorted due to the effect of the current of the power reception coil, in the actual machine, the current waveform of the power supply coil is not stable, and stable phase detection and frequency adjustment are difficult. There was a problem.

また、L,L,C,C,Rなどの回路定数や結合係数k12の組合せによっては、直列共振点と並列共振点が近接する場合が生じる。このような場合、直列共振点における給電側コイルの電流の位相は、並列共振点の影響によって大きくシフトするため、特許文献4に記載のワイヤレス給電装置では、直列共振周波数への周波数調整ができなくなるという問題もある。この問題点については、実施例4の図11において詳述する。 Further, depending on the combination of circuit constants such as L 1 , L 2 , C 1 , C 2 , and R L and the coupling coefficient k 12 , the series resonance point and the parallel resonance point may be close to each other. In such a case, the phase of the current of the power supply side coil at the series resonance point is greatly shifted due to the influence of the parallel resonance point. Therefore, the wireless power supply device described in Patent Literature 4 cannot adjust the frequency to the series resonance frequency. There is also a problem. This problem will be described in detail with reference to FIG.

そこで、本発明の目的は、送電側コイルと受電側コイルとの結合係数や回路定数に依らず正確な共振周波数への周波数調整を行うことを可能とするために、送電側装置の装置において受電側装置の受電側コイルに流れる電流を検出することの可能なワイヤレス電力伝送装置を提供することにある。また、検出された受電側装置の受電側コイルに流れる電流に基づき、安定的に共振周波数への周波数調整を行うことが可能なワイヤレス電力伝送装置及びその受電側電流検出回路を提供することにある。   In view of the above, an object of the present invention is to make it possible to perform the frequency adjustment to an accurate resonance frequency regardless of the coupling coefficient and circuit constant between the power transmission side coil and the power reception side coil. An object of the present invention is to provide a wireless power transmission device capable of detecting a current flowing in a power receiving coil of a side device. Another object of the present invention is to provide a wireless power transmission device capable of stably adjusting the frequency to the resonance frequency based on the detected current flowing in the power receiving side coil of the power receiving side device, and a power receiving side current detection circuit thereof. .

本発明の受電側電流検出回路の第1の構成は、送電側コイルと、前記送電側コイルに通電する交流波形を生成する波形生成器と、前記波形生成器が生成する交流波形に従って前記送電側コイルに交流電力を給電する給電回路と、を備え、前記送電側コイルから、外部の受電装置に備えられた受電側コイルに対して電力をワイヤレス送電するワイヤレス電力伝送装置において用いられる受電側電流検出回路であって、
前記給電回路から前記送電側コイルに通電される送電電流iの波形に相似な波形である送電電流検出波形wi1を生成する送電電流波形検出手段と、
前記送電側コイルが前記受電側コイルに磁界結合していない状態(以下「非結合状態」という。)の前記送電側コイルに前記給電回路から通電した場合の送電電流i (0)の波形と相似な波形である参照電流相似波形wrefを生成する参照電流相似波形生成手段と、
前記送電電流検出波形wi1と前記参照電流相似波形wrefとの加重差の波形である受電側電流検出波形woutを生成し出力する差分波形生成手段と、を備え、
非結合状態において、前記受電側電流検出波形woutの振幅が略0となるように、前記差分波形生成手段における差分加重値、又は前記参照電流相似波形生成手段における前記参照電流相似波形の出力振幅値が調整され、又は調整可能とされていることを特徴とする。
The first configuration of the power receiving side current detection circuit according to the present invention includes a power transmission side coil, a waveform generator that generates an AC waveform to be passed through the power transmission side coil, and the power transmission side according to the AC waveform generated by the waveform generator. A power receiving circuit for supplying AC power to the coil; and power receiving side current detection used in a wireless power transmission device that wirelessly transmits power from the power transmitting side coil to a power receiving side coil provided in an external power receiving device A circuit,
A power transmission current waveform detecting means for generating a power transmission current detection waveform w i1 having a waveform similar to the waveform of the power transmission current i 1 energized from the power feeding circuit to the power transmission side coil;
The waveform of the transmission current i 1 (0) when the power transmission side coil is energized from the power feeding circuit in a state where the power transmission side coil is not magnetically coupled to the power reception side coil (hereinafter referred to as “non-coupled state”) A reference current similarity waveform generating means for generating a reference current similarity waveform w ref which is a similar waveform;
Differential waveform generation means for generating and outputting a power receiving side current detection waveform w out that is a waveform of a weighted difference between the transmission current detection waveform w i1 and the reference current similarity waveform w ref ,
In a non-coupled state, the differential weight generation value in the differential waveform generation means or the output amplitude of the reference current similarity waveform in the reference current similarity waveform generation means so that the amplitude of the power reception side current detection waveform w out becomes substantially zero The value is adjusted or adjustable.

この構成に依れば、差分波形生成手段が出力する参照電流相似波形wrefとして、受電側コイルに通電される受電電流iの波形に相似な波形を得ることが出来る(後述の式(16a),(16b)を参照)。即ち、後述の式(15a)に示すように、送電側コイルと受電側コイルとが相互インダクタンスM12で結合している場合、送電側コイルの送電電流iの波形は、送電側コイルと受電側コイルとが非結合状態(M12=0)のときに送電側コイルを流れる送電電流i (0)の波形に、受電側コイルの電流iにより誘導された誘導電流の相似波形が重畳した波形となる。其処で、非結合状態の送電電流i (0)を送電側コイルと独立した別回路で生成し、生成された非結合状態の送電電流i (0)を適度な「重み係数」で重み付けして送電電流iから差し引くことにより、受電側コイルの電流iにより誘導された誘導電流の波形のみを抽出することができる。この受電側コイルの電流iにより誘導された誘導電流の波形は電流iと同相で振幅が定数倍であるため(式(15a)参照)、電流iの相似波形が抽出できたことになる。この際、「重み係数」を、送電側コイルが受電側コイルと磁界結合していない状態において、受電側電流検出波形woutの振幅が略0となるように決定することで、送電電流iから非結合状態の送電電流i (0)の成分を完全に打ち消すことが出来る。非結合状態では、受電側コイルとの結合は関係ないため、送電側の回路のみで「重み係数」を事前に決定し、回路定数を事前に設定することができる。 According to this configuration, a waveform similar to the waveform of the received current i 2 energized in the power receiving coil can be obtained as the reference current similar waveform w ref output from the differential waveform generating means (formula (16a described later) ), (See 16b)). That is, as shown in equation (15a) will be described later, when the power transmission coil and the receiver coil are attached at mutual inductance M 12, the transmission current i 1 of the waveform of the power transmission coil, the power transmission coil receiving A similar waveform of the induced current induced by the current i 2 of the power receiving coil is superimposed on the waveform of the power transmission current i 1 (0) flowing through the power transmitting coil when the side coil is in a non-coupled state (M 12 = 0). The resulting waveform. Therefore, the non-coupled transmission current i 1 (0) is generated by a separate circuit independent of the power transmission side coil, and the generated non-coupled transmission current i 1 (0) is weighted with an appropriate “weighting factor”. by subtracting from the power transmitting current i 1 and can be extracted only the waveform of induced induced current by a current i 2 of the power receiving coil. Since the waveform of the induced current induced by the current i 2 of the power receiving coil is in phase with the current i 2 and the amplitude is a constant multiple (see equation (15a)), the similar waveform of the current i 2 can be extracted. Become. At this time, the “weighting coefficient” is determined so that the amplitude of the power reception side current detection waveform w out becomes substantially 0 in a state where the power transmission side coil is not magnetically coupled to the power reception side coil, thereby transmitting power transmission current i 1. Can completely cancel the component of the transmission current i 1 (0) in the non-coupled state. In the non-coupled state, the coupling with the power receiving coil is irrelevant. Therefore, the “weighting factor” can be determined in advance only by the circuit on the power transmitting side, and the circuit constant can be set in advance.

ここで、「送電電流検出波形」,「参照電流相似波形」,「受電側電流検出波形」は、其々、送電電流i,参照電流(送電側コイルと受電側コイルとが非結合状態(M12=0)のときに送電側コイルを流れる送電電流)i (0),受電側電流(送電電流iと参照電流i (0)との加重差i−c (0)(cは重み係数)の電流)iの電流そのものではなく、各々の電流の振動により作られる時間変化する波の形(wave shape)を意味する。従って、各々の電流波形そのものの他に、電流の波の形状が保たれていれば、各々の電流を電圧に変換した波形や、各々の電流波形をAD変換して量子化した波形であってもよい。「磁界結合」(magnetic coupling)とは、一方のコイルと他方のコイルとの間の相互インダクタンスが0でない状態である電気信号的な結合(トランス結合)をいう。「非結合状態」(non-coupling state)とは、送電側コイルが受電側コイルに磁界結合していない状態、即ち、送電側コイルと受電側コイルの相互インダクタンスが0の状態をいう。「差分波形生成手段における差分加重値」とは、送電電流検出波形wi1と参照電流相似波形wrefとの加重差を演算する際に、送電電流検出波形wi1及び/又は参照電流相似波形wrefに乗ぜられる「重み係数」をいう。差分加重値又は出力振幅値が「調整され」とは、非結合状態において受電側電流検出波形woutの振幅が略0となるように差分加重値又は出力振幅値が回路パラメータ等により予め調整されていることを意味する。差分加重値又は出力振幅値が「調整可能とされている」とは、非結合状態において受電側電流検出波形woutの振幅が略0となるように差分加重値又は出力振幅値を事後的に調整することが可能な調整手段(例えば、図17の半固定抵抗R9,図20の半固定抵抗R,図23の半固定抵抗R,R’など)が設けられていることを意味する。 Here, the “transmission current detection waveform”, “reference current similarity waveform”, and “reception-side current detection waveform” are respectively the transmission current i 1 and the reference current (the transmission-side coil and the reception-side coil are in a non-coupled state ( ( Transmission current flowing through the power transmission side coil when M 12 = 0)) i 1 (0) , power reception side current (weighted difference i 1 −c 0 i 1 ( transmission current i 1 and reference current i 1 (0)) 0) (c 0 is a weighting factor) current) i 3 , not the current itself, but the time-varying wave shape created by the oscillation of each current. Therefore, in addition to each current waveform itself, if the shape of the current wave is maintained, it is a waveform obtained by converting each current into a voltage, or a waveform obtained by converting each current waveform by AD conversion and quantizing. Also good. “Magnetic coupling” refers to electrical signal coupling (transformer coupling) in which the mutual inductance between one coil and the other coil is not zero. The “non-coupling state” means a state where the power transmission side coil is not magnetically coupled to the power reception side coil, that is, a state where the mutual inductance between the power transmission side coil and the power reception side coil is zero. The “difference weight value in the difference waveform generation means” means the transmission current detection waveform w i1 and / or the reference current similarity waveform w when calculating the weighted difference between the transmission current detection waveform w i1 and the reference current similarity waveform w ref. A “weighting factor” multiplied by ref . The difference weight value or the output amplitude value is “adjusted” means that the difference weight value or the output amplitude value is adjusted in advance by a circuit parameter or the like so that the amplitude of the power receiving side current detection waveform w out becomes substantially zero in the non-coupled state. Means that The difference weight value or the output amplitude value is “adjustable” means that the difference weight value or the output amplitude value is set afterwards so that the amplitude of the power receiving side current detection waveform w out becomes substantially zero in the non-coupled state. Meaning that adjustment means (for example, semi-fixed resistor R9 in FIG. 17, semi-fixed resistor R 6 in FIG. 20, semi-fixed resistors R 6 and R 9 ′ in FIG. 23, etc.) that can be adjusted is provided. To do.

本発明の受電側電流検出回路の第2の構成は、前記第1の構成に於いて、前記参照電流相似波形生成手段は、前記送電側コイルと並列に接続され、前記受電側コイルとは磁界結合しないダミーコイルを備え、前記ダミーコイルを流れる電流であるダミーコイル電流iの波形として前記参照電流相似波形wrefを生成するものであり、
前記差分波形生成手段は、前記ダミーコイルを流れる前記ダミーコイル電流iと、前記送電側コイルを流れる前記送電電流iとの加重差電流の波形を前記受電側電流検出波形woutとして出力するものであり、
前記ダミーコイルのインダクタンスLの前記送電側コイルのインダクタンスLに対する比L/Lをαd1としたとき、前記差分波形生成手段は、前記加重差電流の波形として、前記ダミーコイル電流iのαd1倍と前記1次側電流iとの加重差電流(αd1−i)の波形を出力するものであることを特徴とする。
According to a second configuration of the power receiving side current detection circuit of the present invention, in the first configuration, the reference current similar waveform generating means is connected in parallel with the power transmitting side coil, and the power receiving side coil is a magnetic field. comprising Unbound dummy coil, which generates the reference current waveform similar w ref as the waveform of the dummy coil current i d is the current flowing through the dummy coil,
Said differential waveform generating means outputs a dummy coil current i d flowing through the dummy coil, the waveform of the weighted difference current between the power current i 1 flowing through the power transmission coil as the power-receiving-side current detection waveform w out Is,
When the ratio L d / L 1 of the inductance L d of the dummy coil to the inductance L 1 of the coil on the power transmission side is α d1 , the difference waveform generation means uses the dummy coil current i as the waveform of the weighted difference current. A waveform of a weighted difference current (α d1 i d −i 1 ) between α d1 times d and the primary current i 1 is output.

この構成により、差分波形生成手段が検出する加重差電流(αd1−i)は、2次側の受電側コイルに流れる電流i(2次側に送電側コイルと結合した受電側コイルが複数ある場合には、これら各受電側コイルを流れる各電流i2k(k=1,…,N)の加重和)の定数倍となる。従って、この加重差電流(αd1−i)によって検出される2次側電流の検出値を用いて波形生成器が出力する交流波形の周波数を調整することにより、正確な共振周波数への周波数調整を行うことが可能となる。 With this configuration, the weighted difference current (α d1 i d −i 1 ) detected by the differential waveform generation means is the current i 2 flowing in the secondary power receiving coil (the power receiving side coupled to the power transmitting coil on the secondary side). In the case where there are a plurality of coils, this is a constant multiple of each current i 2k (k = 1,..., N) flowing through each power receiving coil. Therefore, by adjusting the frequency of the AC waveform output from the waveform generator using the detected value of the secondary current detected by the weighted difference current (α d1 i d −i 1 ), the accurate resonance frequency is obtained. Frequency adjustment can be performed.

また、この加重差電流(αd1−i)の検出値を用いれば、送電側コイルに近接する異物の検出を行うことも可能となる。 Further, by using the detected value of the weighted difference current (α d1 i d −i 1 ), it is possible to detect a foreign object that is close to the power transmission side coil.

本発明の受電側電流検出回路の第3の構成は、前記第2の構成に於いて、前記送電側コイル及び前記ダミーコイルに対して並列に接続された調整抵抗を備え、
前記差分波形生成手段は、前記ダミーコイルを流れる電流である前記ダミーコイル電流i及び前記調整抵抗を流れる電流である調整電流iajの和と、前記送電側コイルを流れる電流である前記1次側電流iとの加重差電流(αd1+iaj−i)を検出するものであり、
調整抵抗は、前記受電側コイルが前記送電側コイルに結合していない状態に於いて、前記加重差電流(αd1+iaj−i)が零となるように調整されていることを特徴とする。
A third configuration of the power reception side current detection circuit of the present invention includes an adjustment resistor connected in parallel to the power transmission side coil and the dummy coil in the second configuration,
Said differential waveform generating means, the sum of said dummy coil current is a current flowing through the dummy coil i d and adjustment current i aj is a current flowing through the adjustment resistor, wherein a current flowing through the power transmission coil the primary A weighted differential current (α d1 i d + i aj −i 1 ) with respect to the side current i 1 is detected,
The adjusting resistor is adjusted so that the weighted difference current (α d1 i d + i aj −i 1 ) becomes zero in a state where the power receiving coil is not coupled to the power transmitting coil. Features.

この構成によれば、ダミーコイルの内部抵抗が無視できない場合に於いて、調整電流iajにより加重差電流(αd1+iaj−i)を検出することで、ダミーコイルの内部抵抗による2次側電流iの検出誤差をキャンセルすることができる。
According to this configuration, when the internal resistance of the dummy coil cannot be ignored, the weighted difference current (α d1 i d + i aj −i 1 ) is detected based on the adjustment current i aj , so that the internal resistance of the dummy coil The detection error of the secondary current i 2 can be canceled.

本発明の受電側電流検出回路の第4の構成は、前記第2の構成に於いて、磁性体コアと、前記磁気コアが1回以上鎖交する巻線部が形成された第1、第2、及び第3の導線と、を具備し、且つ、
前記第1の導線が、前記送電側コイルの入出力配線上に、前記送電側コイルに直列且つ前記ダミーコイルと並列に接続され、
前記第2の導線が、前記ダミーコイルの入出力配線上に、前記ダミーコイルに直列且つ前記送電側コイルと並列に接続された、電流トランスを備え、
前記送電電流波形検出手段及び前記差分波形生成手段は、前記電流トランスにより一体として構成されており、
前記ダミーコイルから前記第2の導線の前記巻線部へ向かって電流を流し、且つ前記送電側コイルから前記第1の導線の前記巻線部へ向かって電流を流した場合に、
前記第2の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きが、前記第1の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きとは反対向きとなるように、
前記送電側コイルが前記第1の導線に接続され、前記ダミーコイルが前記第2の導線に接続されており、
且つ、前記第2の導線の前記巻線部の巻数が、前記第1の導線の前記巻線部の巻数のαd1倍であることを特徴とする。
According to a fourth configuration of the power receiving side current detection circuit of the present invention, in the second configuration, the first and second configurations are formed in which a magnetic core and a winding portion where the magnetic core is linked at least once are formed. 2 and a third conductor, and
The first conductive wire is connected in series with the power transmission side coil and in parallel with the dummy coil on the input / output wiring of the power transmission side coil,
The second conductive wire includes a current transformer connected in series with the dummy coil and in parallel with the power transmission side coil on the input / output wiring of the dummy coil,
The power transmission current waveform detection means and the difference waveform generation means are configured integrally with the current transformer,
When a current flows from the dummy coil toward the winding portion of the second conductor, and a current flows from the power transmission side coil toward the winding portion of the first conductor,
The direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the second conducting wire is the direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the first conducting wire. So that the opposite direction
The power transmission coil is connected to the first conductor, the dummy coil is connected to the second conductor,
In addition, the number of turns of the winding portion of the second conductor is α d1 times the number of turns of the winding portion of the first conductor.

この構成によれば、電流トランスの第3の導線に加重差電流(αd1−i)が出力される。差分波形生成手段として上記の電流トランスを用いることにより、回路が極めて単純化される。また、ダミーコイル電流iと1次側電流iとの加重差電流(αd1−i)を検出する際に、ダミーコイル電流iの検出及び1次側電流iの検出に、共通の磁性体コアが用いられることになるため、極めて精度の高い加重差電流(αd1−i)の検出が可能となる。 According to this configuration, the weighted difference current (α d1 i d −i 1 ) is output to the third conductor of the current transformer. By using the current transformer as the differential waveform generating means, the circuit is greatly simplified. Further, when detecting the weighted difference current (α d1 i d −i 1 ) between the dummy coil current i d and the primary side current i 1 , the dummy coil current i d and the primary side current i 1 are detected. In addition, since a common magnetic core is used, it is possible to detect the weighted difference current (α d1 i d −i 1 ) with extremely high accuracy.

本発明の受電側電流検出回路の第5の構成は、前記第3の構成に於いて、磁性体コアと、前記磁気コアが1回以上鎖交する巻線部が形成された第1、第2、第3、及び第4の導線と、を具備し、且つ、
前記第1の導線が、前記送電側コイルの入出力配線上に、前記送電側コイルに直列且つ前記ダミーコイル及び前記調整抵抗と並列に接続され、
前記第2の導線が、前記ダミーコイルの入出力配線上に、前記ダミーコイルに直列且つ前記送電側コイル及び前記調整抵抗と並列に接続され、
前記第4の導線が、前記調整抵抗の入出力配線上に、前記調整抵抗に直列且つ前記送電側コイル及び前記ダミーコイルと並列に接続された、電流トランスを備え、
前記送電電流波形検出手段及び前記差分波形生成手段は、前記電流トランスにより一体として構成されており、
前記ダミーコイルから前記第2の導線の前記巻線部へ向かって電流を流し、且つ前記送電側コイルから前記第1の導線の前記巻線部へ向かって電流を流し、且つ前記調整抵抗から前記第4の導線の前記巻線部へ向かって電流を流した場合に、
前記第2の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きが、前記第1の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きとは反対向き、且つ、前記第4の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きが、前記第1の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きとは反対向きとなるように、
前記送電側コイルが前記第1の導線に接続され、前記ダミーコイルが前記第2の導線に接続され、前記調整抵抗が前記第4の導線に接続されており、
且つ、前記第2の導線の前記巻線部の巻数が、前記第1の導線の前記巻線部の巻数のαd1倍であることを特徴とする。
According to a fifth configuration of the power receiving side current detection circuit of the present invention, in the third configuration, the magnetic core and the first and second winding portions where the magnetic core is linked at least once are formed. 2, 3rd and 4th conductors, and
The first conductive wire is connected in series with the power transmission side coil and in parallel with the dummy coil and the adjustment resistor on the input / output wiring of the power transmission side coil,
The second conductive wire is connected in series with the dummy coil and in parallel with the power transmission side coil and the adjustment resistor on the input / output wiring of the dummy coil,
The fourth conductor includes a current transformer connected to the adjustment resistor in series with the adjustment resistor and in parallel with the power transmission side coil and the dummy coil on the input / output wiring of the adjustment resistor,
The power transmission current waveform detection means and the difference waveform generation means are configured integrally with the current transformer,
Current flows from the dummy coil toward the winding portion of the second conductor, and current flows from the power transmission side coil toward the winding portion of the first conductor, and from the adjustment resistor When a current is passed toward the winding part of the fourth conductor,
The direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the second conducting wire is the direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the first conducting wire. The direction of the magnetic field created in the magnetic core by the current flowing in the winding portion of the fourth conductor is opposite to that of the fourth conductor, and the current flowing in the winding portion of the first conductor is the magnetic body. In the opposite direction to the direction of the magnetic field created in the core,
The power transmission side coil is connected to the first conductor, the dummy coil is connected to the second conductor, and the adjustment resistor is connected to the fourth conductor;
In addition, the number of turns of the winding portion of the second conductor is α d1 times the number of turns of the winding portion of the first conductor.

この構成によれば、電流トランスの第3の導線に加重差電流(αd1+iaj−i)が出力される。差分波形生成手段として上記の電流トランスを用いることにより、回路が極めて単純化される。また、ダミーコイル電流i及び調整電流iajも和と1次側電流iとの加重差電流(αd1+iaj−i)を検出する際に、ダミーコイル電流iの検出、調整電流iajの検出、及び1次側電流iの検出に、共通の磁性体コアが用いられることになるため、極めて精度の高い加重差電流(αd1+iaj−i)の検出が可能となる。
本発明の受電側電流検出回路の第6の構成は、前記第1の構成に於いて、前記参照電流相似波形生成手段は、前記送電側コイルに印加される電圧である送電電圧vの波形の積分波形を演算し参照電流相似波形wrefとして出力する送電電圧積分手段を備え、
前記差分波形生成手段は、前記送電電圧積分手段が出力する前記参照電流相似波形wrefと、前記送電電流波形検出手段が出力する前記送電電流検出波形wi1との加重差(γref−γi1)の波形を前記受電側電流検出波形woutとして出力するものであり、
前記送電側コイルが前記受電側コイルと磁界結合していない状態において、前記受電側電流検出波形woutの振幅が略0となるように、前記差分波形生成手段における差分加重値(γ,γ)、又は前記送電電圧積分手段における前記参照電流相似波形wrefの振幅が調整され、又は調整可能とされていることを特徴とする。
According to this configuration, the weighted difference current (α d1 i d + i aj −i 1 ) is output to the third conductor of the current transformer. By using the current transformer as the differential waveform generating means, the circuit is greatly simplified. Further, when detecting the dummy coil current i d and adjustment current i aj be weighted difference current between the sum and the primary current i 1 (α d1 i d + i aj -i 1), detection of the dummy coil current i d Since the common magnetic core is used for the detection of the adjustment current i aj and the detection of the primary current i 1 , the weighted difference current (α d1 i d + i aj −i 1 ) is extremely accurate. Can be detected.
According to a sixth configuration of the power receiving side current detection circuit of the present invention, in the first configuration, the reference current similar waveform generating means is a waveform of the power transmission voltage v 1 which is a voltage applied to the power transmission side coil. Power transmission voltage integrating means for calculating an integral waveform of the reference current and outputting it as a reference current similarity waveform w ref ,
The difference waveform generation means is a weighted difference (γ a w ref −) between the reference current similarity waveform w ref output from the transmission voltage integration means and the transmission current detection waveform w i1 output from the transmission current waveform detection means. a waveform of γ b w i1 ) is output as the power receiving side current detection waveform w out ,
In a state where the power transmission side coil is not magnetically coupled to the power reception side coil, the differential weight generation value (γ a , γ in the differential waveform generation means is set so that the amplitude of the power reception side current detection waveform w out becomes substantially zero. b ), or the amplitude of the reference current similar waveform w ref in the transmission voltage integrating means is adjusted or adjustable.

この構成に依れば、送電電圧積分手段が出力する送電電圧vの波形の積分波形は、受電側コイルに磁界結合していない状態の送電側コイルに通電した場合の送電電流i (0)の波形と相似な波形となる(後述の式(17a)参照)。従って、差分波形生成手段が出力する受電側電流検出波形woutにより、受電側コイルに通電される受電電流iの波形に相似な波形を得ることが出来る(後述の式(16a),(16b)を参照)。 According to this configuration, the integrated waveform of the waveform of the power transmission voltage v 1 output from the power transmission voltage integrating means is the power transmission current i 1 (0 when the power transmission side coil that is not magnetically coupled to the power reception side coil is energized. ) (Similar to the waveform (17a) described later). Therefore, a waveform similar to the waveform of the received current i 2 energized in the power receiving coil can be obtained from the power receiving side current detection waveform w out output from the differential waveform generating means (formulas (16a) and (16b described later). )).

本発明のワイヤレス電力伝送装置の第1の構成は、送電側コイルと、前記送電側コイルに通電する交流波形を生成する波形生成器と、前記波形生成器が生成する交流波形に従って前記送電側コイルに交流電力を給電する給電回路と、を備え、前記送電側コイルから、外部の受電装置に備えられた受電側コイルに対して電力をワイヤレス送電するワイヤレス電力伝送装置であって、
前記1乃至6の何れか一の構成の受電側電流検出回路と、
前記受電側電流検出波形の位相と前記送電側コイルに給電する給電電圧の位相の位相差が同相となるように給電電圧の周波数を調整する送電周波数調整手段と、を備えたことを特徴とする。
A first configuration of a wireless power transmission device according to the present invention includes: a power transmission side coil; a waveform generator that generates an AC waveform energized to the power transmission side coil; and the power transmission side coil according to the AC waveform generated by the waveform generator A power supply circuit that feeds AC power to the wireless power transmission device that wirelessly transmits power from the power transmission side coil to a power reception side coil provided in an external power reception device,
A power-receiving-side current detection circuit configured as described in any one of 1 to 6;
Power transmission frequency adjusting means for adjusting the frequency of the power supply voltage so that the phase difference between the phase of the power reception side current detection waveform and the phase of the power supply voltage supplied to the power transmission side coil is in phase. .

この構成によれば、参照電流相似波形wrefの位相と波形生成器が生成する交流波形の位相の位相差が同相となるように、波形生成器が生成する交流波形の周波数を調整することで、該周波数を直列共振周波数に正確に合わせることが可能となる。 According to this configuration, by adjusting the frequency of the AC waveform generated by the waveform generator so that the phase difference between the phase of the reference current similar waveform w ref and the phase of the AC waveform generated by the waveform generator is in phase. The frequency can be accurately adjusted to the series resonance frequency.

本発明のワイヤレス電力伝送装置の第2の構成は、前記1乃至5の何れか一の構成の受電側電流検出回路を備えた前記第1の構成に於いて、前記送電周波数調整手段は、
前記差分波形生成手段が出力する前記加重差電流(αd1−i)と前記ダミーコイル電流iとの位相差Δφ2d、又は前記差分波形生成手段により出力される前記加重差電流(αd1−i)の波形と前記波形生成器が生成する交流波形との位相差Δφ20を検出する位相差検出手段と、
前記位相差検出手段により検出される位相差に基づき、
前記加重差電流と前記ダミーコイル電流との位相差Δφ2dが90度となるように、
又は、前記加重差電流と前記波形生成器が生成する交流波形との位相差Δφ20が0度となるように、
前記波形生成器が生成する交流波形の周波数を制御する周波数制御手段と、を備えたことを特徴とする。
According to a second configuration of the wireless power transmission device of the present invention, in the first configuration including the power receiving side current detection circuit of any one of the configurations 1 to 5, the power transmission frequency adjusting unit includes:
The weight difference current (α d1 i d -i 1) and the phase difference [Delta] [phi 2d between the dummy coil current i d, or the weighted difference current output by said differential waveform generating means for outputting said difference waveform generating means ( phase difference detecting means for detecting a phase difference Δφ 20 between the waveform of α d1 i d −i 1 ) and the AC waveform generated by the waveform generator;
Based on the phase difference detected by the phase difference detection means,
The phase difference Δφ 2d between the weighted difference current and the dummy coil current is 90 degrees.
Alternatively, the phase difference Δφ 20 between the weighted difference current and the AC waveform generated by the waveform generator is 0 degree.
Frequency control means for controlling the frequency of the AC waveform generated by the waveform generator.

この構成によれば、位相差検出手段が加重差電流(αd1−i)とダミーコイル電流iとの位相差Δφ2dを検出する場合には、直列共振点に於いては、2次側の回路定数や送電側コイルと受電側コイルとの結合係数によらず、位相差Δφ2dは90度となる。また、位相差検出手段が加重差電流(αd1−i)と波形生成器が生成する交流波形との位相差Δφ20を検出する場合には、直列共振点に於いては、2次側の回路定数や送電側コイルと受電側コイルとの結合係数によらず、位相差Δφ20は0度となる。従って、周波数制御手段によりこの位相差Δφ2dが90度となるように、又は位相差Δφ20が0度となるように、波形生成器が生成する交流波形の周波数を制御することにより、受電側装置の回路定数や送電側コイルと受電側コイルとの結合係数に依らず正確な共振周波数への周波数調整を行うことが可能となる。 According to this configuration, when the phase difference detection unit detects the phase difference Δφ 2d between the weighted difference current (α d1 i d −i 1 ) and the dummy coil current i d , at the series resonance point, Regardless of the circuit constant on the secondary side and the coupling coefficient between the power transmission side coil and the power reception side coil, the phase difference Δφ 2d is 90 degrees. Further, when the phase difference detecting means detects the phase difference Δφ 20 between the weighted difference current (α d1 i d −i 1 ) and the AC waveform generated by the waveform generator, at the series resonance point, 2 Regardless of the circuit constant on the next side or the coupling coefficient between the power transmission side coil and the power reception side coil, the phase difference Δφ 20 is 0 degrees. Therefore, by controlling the frequency of the AC waveform generated by the waveform generator so that the phase difference Δφ 2d becomes 90 degrees or the phase difference Δφ 20 becomes 0 degrees by the frequency control means, the power receiving side Regardless of the circuit constants of the device and the coupling coefficient between the power transmission side coil and the power reception side coil, it is possible to accurately adjust the frequency to the resonance frequency.

ここで、並列共振点に於いては、1次側電流iは極小となり並列共振点の前後で180度の位相シフトを生じるのに対し、2次側電流iは並列共振点に於いては振幅・位相ともに共振の影響を受けることはなく、180度の位相シフトも生じない。従って、送電側コイルと受電側コイルとの結合係数及び各部の回路定数の組合せによって直列共振点が並列共振点に接近した場合、直列共振点に於ける1次側電流iは並列共振の影響を受けて位相シフトを生じ、直列共振点に於ける電源電圧の位相に対する1次側電流iの位相φは0度からずれる。その一方、2次側電流iは並列共振の影響を受けないため、直列共振点に於ける電源電圧の位相に対する2次側電流iの位相φは0度から動かない。差分波形生成手段により検出される加重差電流(αd1−i)は、2次側電流iに比例するので、電源電圧の位相に対する加重差電流(αd1−i)の位相はφであり、直列共振点が並列共振点に接近した場合にも、加重差電流(αd1−i)の位相は0度から動かない。故に、受電側装置の回路定数や送電側コイルと受電側コイルとの結合係数や回路定数に依らず正確な共振周波数への周波数調整を行うことが可能となる。 Here, at the parallel resonance point, the primary current i 1 is minimal and causes a phase shift of 180 degrees before and after the parallel resonance point, whereas the secondary current i 2 is at the parallel resonance point. Neither amplitude nor phase is affected by resonance, and no phase shift of 180 degrees occurs. Therefore, when the series resonance point approaches the parallel resonance point due to the combination of the coupling coefficient between the power transmission side coil and the power reception side coil and the circuit constant of each part, the primary side current i 1 at the series resonance point is affected by the parallel resonance. As a result, a phase shift occurs, and the phase φ 1 of the primary current i 1 with respect to the phase of the power supply voltage at the series resonance point deviates from 0 degrees. On the other hand, since the secondary current i 2 is not affected by the parallel resonance, the phase φ 2 of the secondary current i 2 with respect to the phase of the power supply voltage at the series resonance point does not move from 0 degree. Since the weighted difference current (α d1 i d −i 1 ) detected by the differential waveform generation means is proportional to the secondary current i 2 , the weighted difference current (α d1 i d −i 1 ) with respect to the phase of the power supply voltage. The phase of is a φ 2 , and even when the series resonance point approaches the parallel resonance point, the phase of the weighted difference current (α d1 i d −i 1 ) does not move from 0 degrees. Therefore, it is possible to accurately adjust the frequency to the resonance frequency regardless of the circuit constant of the power receiving side device, the coupling coefficient between the power transmitting side coil and the power receiving side coil, or the circuit constant.

なお、本発明において「位相差が0度」というとき、位相差が180度を法として0度と合同であることを意味する。また、「位相差が90度」というとき、位相差が180度を法として90度と合同であることを意味する。   In the present invention, when “the phase difference is 0 degree”, it means that the phase difference is congruent with 0 degree modulo 180 degrees. Further, when “the phase difference is 90 degrees”, it means that the phase difference is congruent with 90 degrees by modulo 180 degrees.

本発明のワイヤレス電力伝送装置の第3の構成は、前記1乃至5の何れか一の構成の受電側電流検出回路を備えた前記第1の構成に於いて、前記給電回路に対して並列に接続された前記送電側コイル及び前記ダミーコイルと、前記給電回路との間に、前記送電側コイル及び前記ダミーコイルに直列となるように接続された1次側コンデンサと、
前記差分波形生成手段により検出される前記加重差電流と前記波形生成器が生成する交流波形との位相差Δφ20を検出する位相差検出手段と、
前記位相差検出手段により検出される位相差に基づき、
前記加重差電流と前記波形生成器が生成する交流波形との位相差Δφ20が0度となるように、
前記波形生成器が生成する交流波形の周波数を制御する周波数制御手段と、を備えたことを特徴とする。
According to a third configuration of the wireless power transmission device of the present invention, in the first configuration including the power receiving side current detection circuit of any one of the configurations 1 to 5, the power transmission circuit is provided in parallel. A primary side capacitor connected in series with the power transmission side coil and the dummy coil, between the connected power transmission side coil and the dummy coil, and the power feeding circuit;
Phase difference detection means for detecting a phase difference Δφ 20 between the weighted difference current detected by the difference waveform generation means and the AC waveform generated by the waveform generator;
Based on the phase difference detected by the phase difference detection means,
The phase difference Δφ 20 between the weighted difference current and the AC waveform generated by the waveform generator is 0 degree.
Frequency control means for controlling the frequency of the AC waveform generated by the waveform generator.

この構成によれば、位相差検出手段が検出する、加重差電流(αd1−i)と波形生成器が生成する交流波形との位相差Δφ20は、直列共振点に於いては、2次側の回路定数や送電側コイルと受電側コイルとの結合係数によらず、0度となる。従って、周波数制御手段によりこの位相差Δφ20が0度となるように、波形生成器が生成する交流波形の周波数を制御することにより、受電側装置の回路定数や送電側コイルと受電側コイルとの結合係数に依らず正確な共振周波数への周波数調整を行うことが可能となる。 According to this configuration, the phase difference Δφ 20 between the weighted difference current (α d1 i d −i 1 ) detected by the phase difference detection means and the AC waveform generated by the waveform generator is the same at the series resonance point. Regardless of the circuit constants on the secondary side and the coupling coefficient between the power transmission side coil and the power reception side coil, it is 0 degrees. Therefore, by controlling the frequency of the AC waveform generated by the waveform generator so that the phase difference Δφ 20 becomes 0 degrees by the frequency control means, the circuit constants of the power receiving side device and the power transmitting side coil and the power receiving side coil It is possible to perform frequency adjustment to an accurate resonance frequency regardless of the coupling coefficient.

以上のように、本発明によれば、送電側コイルと受電側コイルとの結合係数や回路定数に依らず正確な共振周波数への周波数調整を行うことを可能とするために、送電側装置の装置において受電側装置の受電側コイルに流れる電流を検出することの可能なワイヤレス電力伝送装置を提供することができる。また、検出された受電側装置の受電側コイルに流れる電流に基づき、安定的に共振周波数への周波数調整を行うことが可能なワイヤレス電力伝送装置を提供することができる。   As described above, according to the present invention, in order to enable frequency adjustment to an accurate resonance frequency regardless of the coupling coefficient and circuit constant between the power transmission side coil and the power reception side coil, It is possible to provide a wireless power transmission device capable of detecting a current flowing in a power receiving side coil of a power receiving side device. In addition, it is possible to provide a wireless power transmission device that can stably adjust the frequency to the resonance frequency based on the detected current flowing in the power receiving coil of the power receiving device.

本発明に係るワイヤレス電力伝送装置の受電側コイル(2次コイル)電流の検出原理を説明する図である。It is a figure explaining the detection principle of the receiving side coil (secondary coil) electric current of the wireless power transmission apparatus which concerns on this invention. ダミーコイルを追加したN−S型磁気共振結合方式のワイヤレス電力給電回路を示す図である。It is a figure which shows the wireless electric power feeding circuit of NS type | mold magnetic resonance coupling system which added the dummy coil. 図2の回路における各部電流の周波数変化を示す図である。(a)各電流の電流振幅、(b)各電流の電源電圧vに対する位相。It is a figure which shows the frequency change of each part current in the circuit of FIG. (A) current amplitude of each current, (b) a phase with respect to the power supply voltage v 0 of each current. 本発明の実施例1に係るワイヤレス電力伝送装置の基本構成を表す図である。It is a figure showing the basic composition of the wireless power transmission device concerning Example 1 of the present invention. 本発明の実施例2に係るワイヤレス電力伝送装置の基本構成を表す図である。It is a figure showing the basic composition of the wireless power transmission apparatus which concerns on Example 2 of this invention. 図5の回路における各部電流の周波数変化を示す図である。(a)各電流の電流振幅、(b)各電流の電源電圧vに対する位相。It is a figure which shows the frequency change of each part current in the circuit of FIG. (A) current amplitude of each current, (b) a phase with respect to the power supply voltage v 0 of each current. 本発明の実施例3に係るワイヤレス電力伝送装置の基本構成を表す図である。It is a figure showing the basic composition of the wireless power transmission apparatus which concerns on Example 3 of this invention. 図7の回路における各部電流の周波数変化を示す図である。(a)各電流の電流振幅、(b)各電流の電源電圧vに対する位相。It is a figure which shows the frequency change of each part current in the circuit of FIG. (A) current amplitude of each current, (b) a phase with respect to the power supply voltage v 0 of each current. 図7の回路における各部電流の周波数変化を示す図である。(a)各電流の電流振幅、(b)各電流の電源電圧vに対する位相。It is a figure which shows the frequency change of each part current in the circuit of FIG. (A) current amplitude of each current, (b) a phase with respect to the power supply voltage v 0 of each current. 本発明の実施例4に係るワイヤレス電力伝送装置の基本構成を表す図である。It is a figure showing the basic composition of the wireless power transmission apparatus which concerns on Example 4 of this invention. 図10の回路における各部電流の周波数変化を示す図である。(a)各電流の電流振幅、(b)各電流の電源電圧vに対する位相。It is a figure which shows the frequency change of each part current in the circuit of FIG. (A) current amplitude of each current, (b) a phase with respect to the power supply voltage v 0 of each current. 図10の回路における各部電流の周波数変化を示す図である。(a)各電流の電流振幅、(b)各電流の電源電圧vに対する位相。It is a figure which shows the frequency change of each part current in the circuit of FIG. (A) current amplitude of each current, (b) a phase with respect to the power supply voltage v 0 of each current. 1次側コンデンサ14がない場合の一般的な直列共振を説明する図である。It is a figure explaining general series resonance in case there is no primary side capacitor. 1次側コンデンサ14がある場合の一般的な直列共振を説明する図である。It is a figure explaining general series resonance in case there is primary side capacitor. 本発明の実施例5に係るワイヤレス電力伝送装置の基本構成を表す図である。It is a figure showing the basic composition of the wireless power transmission apparatus which concerns on Example 5 of this invention. 図15の電流トランスCT1の構成を表す図である。It is a figure showing the structure of current transformer CT1 of FIG. 本発明の実施例6に係るワイヤレス電力伝送装置の基本構成を表す図である。It is a figure showing the basic composition of the wireless power transmission apparatus which concerns on Example 6 of this invention. 図17の電流トランスCT1の構成を表す図である。It is a figure showing the structure of current transformer CT1 of FIG. 一般化したワイヤレス電力伝送システムの基本構成を表す図である。It is a figure showing the basic composition of the generalized wireless power transmission system. 本発明の実施例7に係るワイヤレス電力伝送装置の基本構成を表す図である。It is a figure showing the basic composition of the wireless power transmission apparatus which concerns on Example 7 of this invention. 図20のワイヤレス電力伝送装置における1次側電流i,2次側電流i,受電側電流検出電圧voutの振幅及び位相の周波数変化を表す図である。FIG. 21 is a diagram illustrating frequency changes in amplitude and phase of primary side current i 1 , secondary side current i 2 , and power reception side current detection voltage v out in the wireless power transmission device of FIG. 20. 受電側電流検出電圧voutと2次側電流iの比vout/iの振幅及び位相の周波数変化を表す図である。Is a graph showing a frequency change of the power receiving side current detection voltage v out and the secondary current i 2 ratio v out / i 2 amplitude and phase. 本発明の実施例7に係るワイヤレス電力伝送装置の基本構成の他の例を表す図である。It is a figure showing the other example of the basic composition of the wireless power transmission apparatus which concerns on Example 7 of this invention. 送電電圧検出回路10aの例を示す図である。It is a figure which shows the example of the power transmission voltage detection circuit 10a. 代表的な磁界共鳴方式のワイヤレス電力伝送の原理図である。It is a principle figure of the wireless power transmission of a typical magnetic field resonance system. 並列共振状態(反共振状態)と直列共振状態(磁界調相結合状態)における電流と磁場の状態を示す模式図。The schematic diagram which shows the state of the electric current and magnetic field in a parallel resonance state (anti-resonance state) and a series resonance state (magnetic field phase coupling state).

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(1)ダミーコイル方式による受電側コイル(2次コイル)電流の検出原理
図1は、本発明に係るワイヤレス電力伝送装置の受電側コイル(2次コイル)電流の検出原理を説明する図である。図1の回路トポロジーによる受電側コイル(2次コイル)電流の検出方式を、以下「ダミーコイル方式」と呼ぶ。図1において、「1次側」はワイヤレス電力伝送装置(送電側装置)の側を表し、「2次側」は受電装置の側を表している。このワイヤレス電力伝送装置は、送電側コイルLに並列に接続されたダミーコイルLを備えている。r,rは、其々、送電側コイルL,ダミーコイルLの内部抵抗である。送電側コイルL及びダミーコイルLの両端には、交流電源の入力電圧vが印加される。このとき、送電側コイルLに流れる電流をi,ダミーコイルLに流れる電流をiとする。一方、受電装置の側は、送電側コイルLと磁気的に結合するN個(N≧1)の受電側コイルL21,…,L2Nを備えているとする。尚、ダミーコイルLは、各受電側コイルL21,…,L2Nとは磁気的に結合していない。通常、各受電側コイルL21,…,L2Nは、共通の磁性体コアに同軸に同向きに捲回され、又は、中心軸が同軸となるように中心軸に対し同向きに捲回された状態で密接して配列される。ここでは、受電側コイルの数Nは何個でもよい。各受電側コイルL21,…,L2Nと送電側コイルLとの結合係数を、其々、k21,…,k2Nとし、相互インダクタンスを、M2i=k2i√(L2i)とする。送電側コイルLに電流iが流れるときに各受電側コイルL21,…,L2Nに誘導される電流をi21,…,i2Nとする。このとき、入力電圧vと1次コイル電流i,ダミーコイル電流iとの関係は次の通りである。
(1) Detection Principle of Power-receiving-side Coil (Secondary Coil) Current by Dummy Coil Method FIG. 1 is a diagram for explaining the principle of detection of power-receiving-side coil (secondary coil) current of the wireless power transmission device according to the present invention. . The method of detecting the power receiving coil (secondary coil) current according to the circuit topology of FIG. 1 is hereinafter referred to as “dummy coil method”. In FIG. 1, “primary side” represents the wireless power transmission device (power transmission side device) side, and “secondary side” represents the power reception device side. The wireless power transmission apparatus includes a dummy coil L 3 connected in parallel to the power transmission coil L 1. r 1 and r 3 are internal resistances of the power transmission side coil L 1 and the dummy coil L 3 , respectively. The input voltage v 0 of the AC power supply is applied to both ends of the power transmission side coil L 1 and the dummy coil L 3 . At this time, the current flowing to the power transmission coil L 1 i 1, a current flowing through the dummy coil L 3 and i 3. On the other hand, it is assumed that the power receiving device side includes N (N ≧ 1) power receiving side coils L 21 ,..., L 2N that are magnetically coupled to the power transmitting side coil L 1 . The dummy coil L 3, each power receiving coil L 21, ..., unbound magnetically to the L 2N. Normally, each of the power receiving coils L 21 ,..., L 2N is wound around the common magnetic core in the same direction coaxially, or wound around the central axis in the same direction so that the central axis is coaxial. Arranged closely. Here, the number N of power receiving coils may be any number. The coupling coefficients between the power receiving coils L 21 ,..., L 2N and the power transmitting coils L 1 are k 21 ,..., K 2N , respectively, and the mutual inductance is M 2i = k 2i √ (L 1 L 2i ). The currents induced in the power receiving coils L 21 ,..., L 2N when the current i 1 flows through the power transmitting coil L 1 are i 21 ,. At this time, the relationship between the input voltage v 0 , the primary coil current i 1 , and the dummy coil current i 3 is as follows.

従って、 Therefore,

という関係が得られる。ここで、コイルL,Lの内部抵抗r,rは全相互インダクタンスjωM12に対して十分小さく無視できると仮定した。 The relationship is obtained. Here, it is assumed that the internal resistances r 1 and r 3 of the coils L 1 and L 3 are sufficiently small with respect to the total mutual inductance jωM 12 and can be ignored.

式(3a)において、左辺は、2次側電流i21,…,i2Nの加重和電流を表し、右辺はダミーコイル電流iと1次コイル電流iとの加重差電流(α31−i)の実数倍を表している。ここで、重み係数α31は、ダミーコイルのインダクタンスLの送電側コイルのインダクタンスLに対する比であり、重み係数βは全受電側コイルの相互インダクタンス和Σk=1 N12kに対する各受電側コイルL2kの相互インダクタンスM12kの比である。式(3a)より、ダミーコイル電流iと1次コイル電流iとの加重差電流(α31−i)は、各2次側電流i21,…,i2Nの加重和電流に比例するので、加重差電流(α31−i)を検出することにより、受電側の2次側電流i21,…,i2Nの加重和電流が検出できることが分かる。特に、N=1の場合(例えば、図25(a)〜(d)の場合)には、単一の受電側コイルLに誘導される誘導電流iそのものを直接検出することができる。 In formula (3a), the left side represents the weighted sum current of the secondary currents i 21 ,..., I 2N , and the right side represents the weighted difference current (α 31 i between the dummy coil current i 3 and the primary coil current i 1. 3− i 1 ) represents a real number multiple. Here, the weighting factor alpha 31 is the ratio of the inductance L 1 of the power transmission coil of the inductance L 3 of the dummy coil, the weighting factor beta k each for mutual inductance sum Σ k = 1 N M 12k of the total receiver coil it is the ratio of the mutual inductance M 12k of the power receiving coil L 2k. From the equation (3a), the weighted difference current (α 31 i 3 −i 1 ) between the dummy coil current i 3 and the primary coil current i 1 is the weighted sum current of the secondary side currents i 21 ,. Therefore, by detecting the weighted difference current (α 31 i 3 −i 1 ), it can be seen that the weighted sum current of the secondary currents i 21 ,..., I 2N on the power receiving side can be detected. In particular, when N = 1 (for example, in the case of FIGS. 25A to 25D), the induced current i 2 itself induced in the single power receiving coil L 2 can be directly detected.

(2)ダミーコイル方式における電源周波数調整の原理
図1において、コイルの内部抵抗r,rは無視できる程度に小さいとすれば、式(2a),(2b)より、ダミーコイル電流iは次のように表される。
(2) Principle of power supply frequency adjustment in the dummy coil system In FIG. 1, assuming that the internal resistances r 1 and r 3 of the coil are small enough to be ignored, the dummy coil current i 3 is obtained from the equations (2a) and (2b). Is expressed as:

ここでは、簡単な例として、図2のような、ダミーコイルを追加したN−S型磁気共振結合方式のワイヤレス電力給電回路について考える。図2において、vは交流電圧源、rは電源内部抵抗、Lは送電側コイル、Lはダミーコイル、Lは受電側コイル、Cは共振コンデンサ、Rは負荷抵抗を表している。負荷抵抗Rは、受電側で電力を取り出す回路(例えば、ダイオードブリッジによる整流回路等)の抵抗である。送電側コイルLと受電側コイルLとの相互インダクタンスをM12とし、送電側コイルL,受電側コイルLに流れる電流を、i,iとする。このとき、電流i,iは次のように表される。 Here, as a simple example, consider an NS magnetic resonance coupling type wireless power feeding circuit with a dummy coil added as shown in FIG. In FIG. 2, v 0 is an AC voltage source, r 0 is a power source internal resistance, L 1 is a power transmission side coil, L 3 is a dummy coil, L 2 is a power reception side coil, C 2 is a resonance capacitor, and R L is a load resistance. Represents. The load resistance RL is a resistance of a circuit (for example, a rectifier circuit using a diode bridge) that extracts power on the power receiving side. A mutual inductance between the power transmission side coil L 1 and the power reception side coil L 2 is M 12, and currents flowing through the power transmission side coil L 1 and the power reception side coil L 2 are i 1 and i 2 . At this time, the currents i 1 and i 2 are expressed as follows.

また、送電側コイルLの両側端子からみた1次側入力インピーダンスZin1は、次のようになる。 Further, the power transmission side primary input impedance Z in1 viewed from both sides terminals of the coil L 1 is as follows.

直列共振点では、1次側入力インピーダンスZin1が最小、即ち、分子のリアクタンス部分(分子のR=0とした部分)が0となるので、直列共振周波数ωは式(1b)のように表される。従って、直列共振点ω=ωにおいて、電流i,iは次のようになる。ここで、Δ=Δ(ω),r≪ω,r≪ωである。 At the series resonance point, the primary side input impedance Z in1 is minimum, that is, the reactance part of the molecule (the part where R L = 0 of the molecule) is 0, and therefore the series resonance frequency ω 0 is expressed by the equation (1b). It is expressed in Therefore, at the series resonance point ω = ω 0 , the currents i 1 and i 2 are as follows. Here, Δ 0 = Δ (ω 0 ), r 0 << ω 0 L 1 , r 0 << ω 0 L 3 .

式(7a),(7b)を式(4)に代入することにより、ダミーコイル電流iは次のようになる。 By substituting the equations (7a) and (7b) into the equation (4), the dummy coil current i 3 becomes as follows.

従って、ダミーコイル電流iは2次側電流iに対して、常にπ/2だけ位相がずれた状態となる。 Accordingly, the dummy coil current i 3 is always in a state shifted by π / 2 with respect to the secondary side current i 2 .

N−S型磁気共振結合方式以外のワイヤレス電力給電回路についても、直列共振点に於いて1次側コイル(送電側コイル)Lの両端端子からみた入力インピーダンスZin1は最小(即ち、分子のR=0とした部分が0)となる。従って、直列共振条件Zin1(R=0)=0から、一般的に、1次側コイルLに並列接続されるダミーコイルLを流れるダミーコイル電流iは、
(i)1次側コンデンサCがない場合には、直列共振点に於いて2次側電流iに対してπ/2だけ位相がずれた状態、
(ii)1次側コンデンサCがある場合には、2次側電流iに対して常に同相の状態
となる。従って、1次側コンデンサCがない場合には、ダミーコイル電流iの位相に対して2次側電流iの位相がπ/2だけずれた状態となるように、交流電源vの角周波数ωを制御することにより、交流電源vの角周波数ωを直列共振周波数ωに精度良く調整することが可能となる。尚、1次側コンデンサCがある場合に関しては実施例2,4で詳しく説明する。
For even wireless power feeding circuit other than the N-S magnetic resonant coupling system, the input impedance Z in1 viewed from both ends terminal at the series resonance point primary coil (transmitting coil) L 1 is a minimum (i.e., the molecular The portion where R L = 0 is 0). Therefore, from the series resonance condition Z in1 (R L = 0) = 0, generally, the dummy coil current i d flowing through the dummy coil L d connected in parallel to the primary coil L 1 is
(I) state in the absence primary capacitor C 1 is shifted in phase by [pi / 2 with respect to the secondary current i 2 at the series resonance point,
(Ii) if there is a primary-side capacitor C 1 is always in a state of phase with the secondary current i 2. Therefore, in the absence of the primary side capacitor C 1 , the AC power supply v 0 is set so that the phase of the secondary side current i 2 is shifted by π / 2 with respect to the phase of the dummy coil current i d . By controlling the angular frequency ω, the angular frequency ω of the AC power supply v 0 can be accurately adjusted to the series resonance frequency ω 0 . The case where the primary capacitor C 1 is provided will be described in detail in the second and fourth embodiments.

図3は、図2の回路における各部電流の周波数変化を示す図である。図3(a)は電流振幅、図3(b)は各電流の電源電圧vに対する位相を示している。回路定数は、L=100mH,L=100mH,k12=0.8,L=500mH,C=2.53nF,R=50Ω,r=1Ωとして計算している。図3において、fは並列共振周波数、fは直列共振周波数を示す。図3より、(α31−i)/iの振幅値が一定であることから差電流(α31−i)は2次側電流iに比例し、(α31−i)/iの位相は常に0度であるから、両者の位相も一致していることが分かる。また、直列共振点fの近傍に於いては、電流i,iは−180度の位相遷移を生じるため、この位相遷移の中心にある直列共振点fに於いては、電源電圧vの位相φに対する電流i,iの位相φ,φは、180度を法として合同、即ち、位相φ,φ,φは同相となる。一方、ダミーコイル4はこの直列共振には関与しないため、ダミーコイル電流iの位相φは直列共振点fの近傍に於いても一定であり、電源電圧vの位相φに対して90度の位相差に保たれる。故に、直列共振点に於いては、電流i,i及び差電流(α31−i)は同相、電流i,(α31−i)の位相差は90度となることが分かる。 FIG. 3 is a diagram showing a frequency change of each part current in the circuit of FIG. 3 (a) is current amplitude, FIG. 3 (b) shows the phase with respect to the power supply voltage v 0 of each current. The circuit constants are calculated as L 1 = 100 mH, L 2 = 100 mH, k 12 = 0.8, L 3 = 500 mH, C 2 = 2.53 nF, R L = 50Ω, r 0 = 1Ω. In FIG. 3, f 2 denotes a parallel resonance frequency, f 0 is the series resonance frequency. From FIG. 3, since the amplitude value of (α 31 i 3 -i 1 ) / i 2 is constant, the difference current (α 31 i 3 -i 1 ) is proportional to the secondary current i 2 and (α 31 Since the phase of i 3 -i 1 ) / i 2 is always 0 degree, it can be seen that the phases of both are also in agreement. Further, in the vicinity of the series resonance point f 0 , the currents i 1 and i 2 cause a phase transition of −180 degrees, so that the power supply voltage is applied at the series resonance point f 0 at the center of the phase transition. Phases φ 1 and φ 2 of currents i 1 and i 2 with respect to phase φ 0 of v 0 are congruent modulo 180 degrees, that is, phases φ 0 , φ 1 , and φ 2 are in phase. On the other hand, since the dummy coil 4 does not participate in this series resonance, the phase φ 3 of the dummy coil current i 3 is constant in the vicinity of the series resonance point f 0 , and with respect to the phase φ 0 of the power supply voltage v 0. The phase difference of 90 degrees is maintained. Therefore, at the series resonance point, the currents i 1 and i 2 and the difference current (α 31 i 3 -i 1 ) are in phase, and the phase difference between the currents i 3 and (α 31 i 3 -i 1 ) is 90 degrees. It turns out that it becomes.

(3)ダミーコイル方式による電源周波数制御の基本構成
図4は、本発明に係るワイヤレス電力伝送装置の基本構成を表す図である。図4において、本発明に係るワイヤレス電力伝送装置1(以下、「送電装置1」)は、受電装置2に対してワイヤレス送電を行う装置である。送電装置1は、送電側コイル3、ダミーコイル4、波形生成器5、給電回路6、差分波形生成手段7、位相差検出手段8、及び周波数制御手段9を備えている。受電装置2は、受電側コイル11、共振コンデンサ12、及び負荷抵抗13を備えている。
(3) Basic Configuration of Power Supply Frequency Control by Dummy Coil System FIG. 4 is a diagram showing the basic configuration of the wireless power transmission device according to the present invention. In FIG. 4, a wireless power transmission device 1 (hereinafter “power transmission device 1”) according to the present invention is a device that performs wireless power transmission to the power reception device 2. The power transmission device 1 includes a power transmission side coil 3, a dummy coil 4, a waveform generator 5, a power feeding circuit 6, a differential waveform generation unit 7, a phase difference detection unit 8, and a frequency control unit 9. The power receiving device 2 includes a power receiving side coil 11, a resonance capacitor 12, and a load resistor 13.

送電側コイル3は、電力送電用のコイルであり、受電側コイル11に対峙し磁界結合が可能となるように配設される。ダミーコイル4は、送電側コイル3に対して並列接続される。ダミーコイル4、受電側コイル11を送電側コイル3に対峙させた場合でも、受電側コイル11とは磁界結合はしない。ここでは、送電側コイル3、受電側コイル11、ダミーコイル4のインダクタンスを、其々、L,L,Lと記し、送電側コイル3と受電側コイル11との相互インダクタンスをM12=k12√(L)(k12は送電側コイル3と受電側コイル11との結合係数)と記す。波形生成器5は、送電側コイル3に通電する交流波形を生成する回路である。給電回路6は、波形生成器5が生成する交流波形に従って前記送電側コイルに交流電力を給電する電源回路である。ここでは、給電回路6の出力する交流電圧をv、給電回路6の内部抵抗をrと記す。差分波形生成手段7は、送電側コイル3に流れる電流である1次側電流iと、ダミーコイル4に流れる電流であるダミーコイル電流iとの差電流(α31−i)を検出する。ここで、重み係数α31は、α31=L/Lである。差分波形生成手段7は、機能的には、1次側電流iを検出する電流センサ7a、ダミーコイル電流iを検出する電流センサ7b、及び差電流(α31−i)を演算する差電流演算回路7cにより構成されている。差電流演算回路7cは、アナログ回路として構成してもデジタル回路として構成しても良い。また、後述するように、電流トランスを用いれば、電流センサ7a,7b及び差電流演算回路7cを1つの電流トランスにより一体に構成することもできる。位相差検出手段8は、差分波形生成手段7により検出される差電流(α31−i)とダミーコイル電流iとの位相差Δφを検出する回路である。周波数制御手段9は、位相差検出手段8が出力する差電流(α31−i)とダミーコイル電流iとの位相差Δφが90度となるように、波形生成器が生成する交流波形の周波数を制御する回路である。 The power transmission side coil 3 is a coil for power transmission, and is disposed so as to face the power reception side coil 11 and enable magnetic field coupling. The dummy coil 4 is connected in parallel to the power transmission side coil 3. Even when the dummy coil 4 and the power receiving side coil 11 are opposed to the power transmitting side coil 3, the magnetic field coupling with the power receiving side coil 11 is not performed. Here, the inductances of the power transmission side coil 3, the power reception side coil 11, and the dummy coil 4 are denoted as L 1 , L 2 , and L 3 , respectively, and the mutual inductance between the power transmission side coil 3 and the power reception side coil 11 is M 12. = K 12 √ (L 1 L 2 ) (k 12 is a coupling coefficient between the power transmission side coil 3 and the power reception side coil 11). The waveform generator 5 is a circuit that generates an AC waveform for energizing the power transmission side coil 3. The power supply circuit 6 is a power supply circuit that supplies AC power to the power transmission coil according to the AC waveform generated by the waveform generator 5. Here, the AC voltage output from the power feeding circuit 6 is denoted as v 0 , and the internal resistance of the power feeding circuit 6 is denoted as r 0 . The differential waveform generation means 7 is a difference current (α 31 i 3 −i 1 ) between a primary current i 1 that is a current flowing through the power transmission side coil 3 and a dummy coil current i 3 that is a current flowing through the dummy coil 4. Is detected. Here, the weighting coefficient α 31 is α 31 = L 3 / L 1 . Differential waveform generating means 7 functionally includes a current sensor 7a for detecting the primary current i 1, a current sensor 7b for detecting the dummy coil current i 3, and the difference current (α 31 i 3 -i 1) The differential current calculation circuit 7c is configured to calculate. The difference current calculation circuit 7c may be configured as an analog circuit or a digital circuit. In addition, as will be described later, if a current transformer is used, the current sensors 7a and 7b and the difference current calculation circuit 7c can be integrally configured by one current transformer. The phase difference detection means 8 is a circuit that detects the phase difference Δφ between the difference current (α 31 i 3 −i 1 ) detected by the difference waveform generation means 7 and the dummy coil current i 3 . The frequency control unit 9 generates the waveform generator so that the phase difference Δφ between the difference current (α 31 i 3 -i 1 ) output from the phase difference detection unit 8 and the dummy coil current i 3 is 90 degrees. This circuit controls the frequency of the AC waveform.

受電側コイル11は、送電側コイル3と磁界結合し、送電側コイル3から電力を受電するためのコイルである。共振コンデンサ12及び負荷抵抗13は、受電側コイル11に直列に接続されている。共振コンデンサ12のキャパシタンスはC、負荷抵抗13のレジスタンスはRとする。 The power reception side coil 11 is a coil that is magnetically coupled to the power transmission side coil 3 and receives power from the power transmission side coil 3. The resonant capacitor 12 and the load resistor 13 are connected in series with the power receiving side coil 11. The capacitance of the resonant capacitor 12 is C 2 , and the resistance of the load resistor 13 is R L.

図1において、波形生成器5は、基本角周波数ωの交流波形を生成し、給電回路6へ出力する。給電回路6は、この交流波形に基づいて、基本角周波数ωの交流電圧vを発生して、送電側コイル3及びダミーコイル4に印加する。ここで、交流電圧vの波形は、送電効率の観点からは正弦波が好適であるが、実際の回路構成を容易にするため矩形波としてもよい。これにより、送電側コイル3及びダミーコイル4には、其々、1次側電流i,ダミーコイル電流iが流れる。そして、送電側コイル3に1次側電流iが流れることによって、受電側コイル11に2次側電流iが誘導される。このときの電流i,i,iは、其々、式(5a),(5a),(4)に示したようになる。ここで、もし交流電圧vの角周波数ωが、式(1b)の直列共振角周波数ωの場合には、送電側コイル3の両側端子からみた入力インピーダンスZin1が最小となり、電流i,iが同位相の状態(磁界調相結合状態)となり、ダミーコイル電流iの位相は2次側電流iの位相に対してπ/2だけずれた状態となる。 In FIG. 1, the waveform generator 5 generates an AC waveform having a basic angular frequency ω and outputs it to the power feeding circuit 6. The power feeding circuit 6 generates an AC voltage v 0 having a basic angular frequency ω based on the AC waveform and applies it to the power transmission side coil 3 and the dummy coil 4. Here, the waveform of the AC voltage v 0 is preferably a sine wave from the viewpoint of power transmission efficiency, but may be a rectangular wave in order to facilitate the actual circuit configuration. Thereby, the primary side current i 1 and the dummy coil current i 3 flow through the power transmission side coil 3 and the dummy coil 4, respectively. Then, when the primary current i 1 flows in the power transmission side coil 3, the secondary side current i 2 is induced in the power reception side coil 11. The currents i 1 , i 2 and i 3 at this time are as shown in the equations (5a), (5a) and (4), respectively. Here, if the angular frequency ω of the AC voltage v 0 is the series resonance angular frequency ω 0 of the equation (1b), the input impedance Z in1 viewed from both terminals of the power transmission side coil 3 is minimized, and the current i 1 , I 2 are in the same phase state (magnetic field phase coupling state), and the phase of the dummy coil current i 3 is shifted by π / 2 with respect to the phase of the secondary current i 2 .

差分波形生成手段7は、1次側電流iとダミーコイル電流iと差電流(α31−i)を検出する。この差電流(α31−i)は、式(3a)で示したように、2次側電流iの実数倍の値をとる。即ち、差電流(α31−i)の位相は2次側電流iの位相に一致する。 The differential waveform generation means 7 detects the primary side current i 1 , the dummy coil current i 3, and the difference current (α 31 i 3 −i 1 ). This difference current (α 31 i 3 −i 1 ) takes a value that is a real number multiple of the secondary current i 2 , as shown in the equation (3a). That is, the phase of the difference current (α 31 i 3 −i 1 ) matches the phase of the secondary current i 2 .

位相差検出手段8は、差電流(α31−i)の位相(即ち、2次側電流iの位相)φと、電流センサ7bで検出されるダミーコイル電流iの位相φとの差分(φ−φ)を演算し、この位相差(φ−φ)に比例する位相差検出信号を出力する。 The phase difference detection means 8 has a phase of the difference current (α 31 i 3 −i 1 ) (ie, a phase of the secondary current i 2 ) φ 2 and a phase of the dummy coil current i 3 detected by the current sensor 7 b. It calculates the difference (φ 23) and phi 3, and outputs a phase difference detection signal proportional to the phase difference (φ 23).

周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が90度相当となるように、波形生成器5の生成する交流波形の角周波数ωをフィードバック制御する。これにより、波形生成器5が出力する交流波形は、直列共振角周波数ωに調整される。 The frequency control unit 9 feedback-controls the angular frequency ω of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection unit 8 corresponds to 90 degrees. As a result, the AC waveform output from the waveform generator 5 is adjusted to the series resonance angular frequency ω 0 .

尚、ここでは、位相差検出手段8は、差分波形生成手段7により検出される差電流(α31−i)の位相φとダミーコイル電流iの位相φの位相差(φ−φ)を検出することとしているが、位相差検出手段8は、差分波形生成手段7により検出される差電流(α31−i)の位相φと波形生成器5が生成する交流波形の位相φとの位相差(φ−φ)を検出するように構成することもできる。この場合、周波数制御手段9は、位相差検出手段8により検出される位相差が0度となるように、波形生成器5が生成する交流波形の周波数を制御すればよい。 Here, the phase difference detection means 8 is the phase difference between the phase φ 2 of the difference current (α 31 i 3 −i 1 ) detected by the difference waveform generation means 7 and the phase φ 3 of the dummy coil current i 3 ( (φ 2 −φ 3 ) is detected, but the phase difference detection means 8 detects the phase φ 2 of the difference current (α 31 i 3 −i 1 ) detected by the difference waveform generation means 7 and the waveform generator 5. The phase difference (φ 2 −φ 0 ) with respect to the phase φ 0 of the AC waveform generated by can be detected. In this case, the frequency control unit 9 may control the frequency of the AC waveform generated by the waveform generator 5 so that the phase difference detected by the phase difference detection unit 8 becomes 0 degrees.

さらに、位相差検出手段8は、差分波形生成手段7により検出される差電流(α31−i)の位相φと波形生成器5が生成する交流波形の位相φを90度シフトした位相φ±90°の位相差(φ−φ±90°)を検出するように構成することもできる。この場合、周波数制御手段9は、位相差検出手段8により検出される位相差が90度となるように、波形生成器5が生成する交流波形の周波数を制御すればよい。 Further, the phase difference detection means 8 sets the phase φ 2 of the difference current (α 31 i 3 -i 1 ) detected by the difference waveform generation means 7 and the phase φ 0 of the AC waveform generated by the waveform generator 5 to 90 degrees. The phase difference (φ 2 −φ 0 ± 90 °) of the shifted phase φ 0 ± 90 ° can also be detected. In this case, the frequency control unit 9 may control the frequency of the AC waveform generated by the waveform generator 5 so that the phase difference detected by the phase difference detection unit 8 is 90 degrees.

図5は、本発明の実施例2に係るワイヤレス電力伝送装置の基本構成を表す図である。図5において、図4と同様の構成部分には同符号を附している。実施例1(図4)とは、1次側(送電側)の回路に位相調整用の1次側コンデンサ14を追加した点が相違する。1次側コンデンサ14のキャパシタンスはCとする。この場合、並列共振角周波数ω及び直列共振角周波数ωは次のようになる。 FIG. 5 is a diagram illustrating a basic configuration of a wireless power transmission device according to the second embodiment of the present invention. In FIG. 5, the same components as those in FIG. 4 are denoted by the same reference numerals. This embodiment is different from the first embodiment (FIG. 4) in that a primary side capacitor 14 for phase adjustment is added to a circuit on the primary side (power transmission side). The capacitance of the primary side capacitor 14 is a C 1. In this case, the parallel resonance angular frequency ω 2 and the series resonance angular frequency ω 0 are as follows.

従って、並列共振点及び直列共振点は、低周波側と高周波側に2つ生じることが分かる。図6は、図5の回路における各部電流の周波数変化を示す図である。図6(a)各電流の電流振幅、図6(b)各電流の電源電圧vに対する位相を表している。図6においては、回路定数は、L=100mH,L=100mH,k12=0.8,L=500mH,C=50pF,C=2.53nF,R=50Ω,r=1Ωとして計算している。また、図6において、f (i1),f (i3)は並列共振周波数、f0Lは低周波側の直列共振周波数、f0Hは高周波側の直列共振周波数を示す。図6より、(α31−i)/iの振幅値が一定であることから差電流(α31−i)は2次側電流iに比例し、(α31−i)/iの位相は常に0度であるから、両者の位相も一致していることが分かる。また、直列共振点f0L,f0Hの近傍に於いて電流i,iは180度の位相遷移を生じるため、この位相遷移の中心にある直列共振点f0L,f0Hに於いては、電源電圧vの位相φに対する電流i,iの位相φ,φは、180度を法として合同、即ち、位相φ,φ,φは同相となる。一方、1次側コンデンサCを追加した場合には、1次側コンデンサCもこの直列共振に関与することから、ダミーコイル電流iの位相も、直列共振点f0L,f0Hの近傍に於いて電流i,iは180度の位相遷移を生じる。従って、この位相遷移の中心にある直列共振点f0L,f0Hに於いては、電源電圧vの位相φに対する電流iの位相φは、180度を法として合同、即ち、位相φ,φは同相となる。 Therefore, it can be seen that two parallel resonance points and two series resonance points occur on the low frequency side and the high frequency side. FIG. 6 is a diagram showing a frequency change of each part current in the circuit of FIG. FIG. 6A shows the current amplitude of each current, and FIG. 6B shows the phase of each current with respect to the power supply voltage v 0 . In FIG. 6, the circuit constants are L 1 = 100 mH, L 2 = 100 mH, k 12 = 0.8, L 3 = 500 mH, C 1 = 50 pF, C 2 = 2.53 nF, R L = 50Ω, r 0 = Calculated as 1Ω. In FIG. 6, f 2 (i1) and f 2 (i3) are parallel resonance frequencies, f 0L is a series resonance frequency on the low frequency side, and f 0H is a series resonance frequency on the high frequency side. From FIG. 6, since the amplitude value of (α 31 i 3 -i 1 ) / i 2 is constant, the difference current (α 31 i 3 -i 1 ) is proportional to the secondary current i 2 and (α 31 Since the phase of i 3 -i 1 ) / i 2 is always 0 degree, it can be seen that the phases of both are also in agreement. Also, the series resonance point f 0L, since the current i 1, i 2 is caused a phase transition of 180 ° at the vicinity of f 0H, this phase is in the center of the transition series resonance point f 0L, is In f 0H The phases φ 1 and φ 2 of the currents i 1 and i 2 with respect to the phase φ 0 of the power supply voltage v 0 are congruent modulo 180 degrees, that is, the phases φ 0 , φ 1 , and φ 2 are in phase. On the other hand, when the primary side capacitor C 1 is added, the primary side capacitor C 1 is also involved in this series resonance, so that the phase of the dummy coil current i 3 is also in the vicinity of the series resonance points f 0L and f 0H . In this case, the currents i 1 and i 2 cause a phase transition of 180 degrees. Accordingly, at the series resonance points f 0L and f 0H at the center of this phase transition, the phase φ 3 of the current i 3 with respect to the phase φ 0 of the power supply voltage v 0 is congruent modulo 180 degrees, ie, the phase φ 0 and φ 3 are in phase.

従って、本実施例においては、位相差検出手段8は、差分波形生成手段7により検出される差電流(α31−i)の位相φと電源電圧vの位相φとの位相差を検出するように構成し、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が0度相当となるように、波形生成器5の生成する交流波形の角周波数ωをフィードバック制御する。又は、位相差検出手段8は、差分波形生成手段7により検出される差電流(α31−i)の位相φと電源電圧vの位相φを90度シフトした位相との位相差を検出し、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が90度相当となるように、波形生成器5の生成する交流波形の角周波数ωをフィードバック制御する。これにより、波形生成器5が出力する交流波形は、直列共振角周波数ωに調整される。 Therefore, in the present embodiment, the phase difference detection means 8 has the difference between the phase φ 2 of the difference current (α 31 i 3 −i 1 ) detected by the difference waveform generation means 7 and the phase φ 0 of the power supply voltage v 0 . The frequency control unit 9 is configured to detect the phase difference, and the frequency control unit 9 generates an angle of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection unit 8 corresponds to 0 degree. The frequency ω is feedback controlled. Alternatively, the phase difference detection means 8 has a phase φ 2 of the difference current (α 31 i 3 −i 1 ) detected by the difference waveform generation means 7 and a phase shifted by 90 degrees from the phase φ 0 of the power supply voltage v 0 . The phase difference is detected, and the frequency control unit 9 feeds back the angular frequency ω of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection unit 8 corresponds to 90 degrees. Control. As a result, the AC waveform output from the waveform generator 5 is adjusted to the series resonance angular frequency ω 0 .

図7は、本発明の実施例3に係るワイヤレス電力伝送装置の基本構成を表す図である。図7において、図4と同様の構成部分には同符号を附している。実施例1(図4)とは、2次側の受電側コイル11を、1次側との共振を生じさせる共振用受電側コイル11aと、電力を取り出す受電側ロードコイル11bとに分離した点が相違する。2次側コンデンサ12は共振用受電側コイル11aの両端に接続されており、共振用受電側コイル11aと2次側コンデンサ12によるLC共振回路が形成されている。尚、抵抗rは、このLC共振回路の内部抵抗を表す。一方、受電側ロードコイル11bの両端には負荷抵抗13が接続されている。共振用受電側コイル11a,受電側ロードコイル11bのインダクタンスを、其々、L,Lとする。ダミーコイル4のインダクタンスはLとする。送電側コイル3と共振用受電側コイル11aとの相互インダクタンスをM12=k12√(L)、共振用受電側コイル11aと受電側ロードコイル11bとの相互インダクタンスをM13=k13√(L)、受電側ロードコイル11bと送電側コイル3との相互インダクタンスをM31=k31√(L)とする。この場合、並列共振角周波数ω及び直列共振角周波数ωは次のようになる。 FIG. 7 is a diagram illustrating a basic configuration of a wireless power transmission device according to the third embodiment of the present invention. In FIG. 7, the same components as those in FIG. In Example 1 (FIG. 4), the secondary power receiving side coil 11 is separated into a power receiving side coil 11a for resonance that causes resonance with the primary side and a power receiving side load coil 11b that extracts power. Is different. The secondary side capacitor 12 is connected to both ends of the resonance power receiving side coil 11 a, and an LC resonance circuit is formed by the resonance power receiving side coil 11 a and the secondary side capacitor 12. The resistor r 2 represents the internal resistance of this LC resonance circuit. On the other hand, load resistors 13 are connected to both ends of the power receiving side load coil 11b. The inductances of the resonance power receiving side coil 11a and the power receiving side load coil 11b are L 2 and L 3 , respectively. The inductance of the dummy coil 4 and L 4. The mutual inductance between the power transmission side coil 3 and the resonance power reception side coil 11a is M 12 = k 12 √ (L 1 L 2 ), and the mutual inductance between the resonance power reception side coil 11a and the power reception side load coil 11b is M 13 = k. Let 13 √ (L 2 L 3 ) and the mutual inductance of the power receiving side load coil 11b and the power transmitting side coil 3 be M 31 = k 31 √ (L 3 L 1 ). In this case, the parallel resonance angular frequency ω 2 and the series resonance angular frequency ω 0 are as follows.

図8,図9は、図7の回路における各部電流の周波数変化を示す図である。図8(a),図9(a)は各電流の電流振幅、図8(b),図9(b)は各電流の電源電圧vに対する位相を表している。図8においては、回路定数は、L=100mH,L=100mH,L=100mH,k12=0.8,k23=0.8,k31=0.8,L=500mH,C=2.53nF,R=50Ω,r=r=1Ωとして計算している。図9においては、回路定数は、L=46μH,L=50μH,L=5μH,k12=0.8,k23=0.8,k31=0.8,L=460μH,C=66nF,R=50Ω,r=r=1Ωとして計算している。また、図8,図9において、fは並列共振周波数、fは直列共振周波数を示す。図8より、(α41−i)/(β+β)の振幅値が一定であることから差電流(α41−i)は2次側電流iに比例し、(α41−i)/(β+β)の位相は常に0度であるから、両者の位相も一致していることが分かる。また、直列共振点fの近傍に於いて電流i,iは−180度の位相遷移を生じるため、この位相遷移の中心にある直列共振点fに於いては、電源電圧vの位相φに対する電流i,iの位相φ,φは、180度を法として合同、即ち、位相φ,φ,φは同相となる。一方、ダミーコイル4はこの直列共振には関与しないため、ダミーコイル電流iの位相φは直列共振点fの近傍に於いても一定であり、電源電圧vの位相φに対して90度の位相差に保たれる。故に、直列共振点に於いては、電流i,i及び差電流(α41−i)は同相、電流i,(α41−i)の位相差は90度となることが分かる。 8 and 9 are diagrams showing the frequency change of each part current in the circuit of FIG. FIG. 8 (a), the FIG. 9 (a) current amplitude of each current, FIG. 8 (b), the FIG. 9 (b) represents the phase with respect to the power supply voltage v 0 of each current. In FIG. 8, the circuit constants are L 1 = 100 mH, L 2 = 100 mH, L 3 = 100 mH, k 12 = 0.8, k 23 = 0.8, k 31 = 0.8, L 4 = 500 mH, The calculation is performed with C 2 = 2.53 nF, R L = 50Ω, and r 0 = r 2 = 1Ω. In FIG. 9, the circuit constants are L 1 = 46 μH, L 2 = 50 μH, L 3 = 5 μH, k 12 = 0.8, k 23 = 0.8, k 31 = 0.8, L 4 = 460 μH, The calculation is performed with C 2 = 66 nF, R L = 50Ω, and r 0 = r 2 = 1Ω. Further, FIG. 8, in FIG. 9, f 2 denotes a parallel resonance frequency, f 0 is the series resonance frequency. From FIG. 8, since the amplitude value of (α 41 i 4 −i 1 ) / (β 2 i 2 + β 3 i 3 ) is constant, the difference current (α 41 i 4 −i 1 ) is the secondary current i. Since the phase of (α 41 i 4 −i 1 ) / (β 2 i 2 + β 3 i 3 ) is always 0 degree, it can be seen that the phases of both are also in agreement. Further, to produce a phase shift of the current i 1, i 2 is -180 degrees at the vicinity of the series resonance point f 0, is at the series resonance point f 0 in the center of the phase transition, the power supply voltage v 0 The phases φ 1 and φ 2 of the currents i 1 and i 2 with respect to the phase φ 0 are congruent modulo 180 degrees, that is, the phases φ 0 , φ 1 and φ 2 are in phase. On the other hand, since the dummy coil 4 does not participate in this series resonance, the phase φ 3 of the dummy coil current i 3 is constant in the vicinity of the series resonance point f 0 , and with respect to the phase φ 0 of the power supply voltage v 0. The phase difference of 90 degrees is maintained. Therefore, at the series resonance point, the currents i 1 and i 2 and the difference current (α 41 i 4 −i 1 ) are in phase, and the phase difference between the currents i 4 and (α 41 i 4 −i 1 ) is 90 degrees. It turns out that it becomes.

従って、本実施例においては、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が90度相当となるように、波形生成器5の生成する交流波形の角周波数ωをフィードバック制御する。これにより、波形生成器5が出力する交流波形は、直列共振角周波数ωに調整される。 Therefore, in the present embodiment, the frequency control means 9 uses the angular frequency ω of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection means 8 corresponds to 90 degrees. Feedback control. As a result, the AC waveform output from the waveform generator 5 is adjusted to the series resonance angular frequency ω 0 .

また、位相差検出手段8は、差分波形生成手段7により検出される差電流(α41−i)の位相φと波形生成器5が生成する交流波形の位相φとの位相差(φ−φ)を検出するように構成することもできる。この場合、周波数制御手段9は、位相差検出手段8により検出される位相差が0度となるように、波形生成器5が生成する交流波形の周波数を制御すればよい。 Further, the phase difference detection means 8 is a position between the phase φ 2 of the difference current (α 41 i 4 −i 1 ) detected by the difference waveform generation means 7 and the phase φ 0 of the AC waveform generated by the waveform generator 5. It can also be configured to detect the phase difference (φ 2 −φ 0 ). In this case, the frequency control unit 9 may control the frequency of the AC waveform generated by the waveform generator 5 so that the phase difference detected by the phase difference detection unit 8 becomes 0 degrees.

さらに、位相差検出手段8は、差分波形生成手段7により検出される差電流(α41−i)の位相φと波形生成器5が生成する交流波形の位相φを90度シフトした位相φ±90°の位相差(φ−φ±90°)を検出するように構成することもできる。この場合、周波数制御手段9は、位相差検出手段8により検出される位相差が90度となるように、波形生成器5が生成する交流波形の周波数を制御すればよい。 Further, the phase difference detection means 8 sets the phase φ 2 of the difference current (α 41 i 4 −i 1 ) detected by the difference waveform generation means 7 and the phase φ 0 of the AC waveform generated by the waveform generator 5 to 90 degrees. The phase difference (φ 2 −φ 0 ± 90 °) of the shifted phase φ 0 ± 90 ° may be detected. In this case, the frequency control unit 9 may control the frequency of the AC waveform generated by the waveform generator 5 so that the phase difference detected by the phase difference detection unit 8 is 90 degrees.

図10は、本発明の実施例4に係るワイヤレス電力伝送装置の基本構成を表す図である。図10において、図7と同様の構成部分には同符号を附している。実施例3(図7)とは、1次側(送電側)の回路に位相調整用の1次側コンデンサ14を追加した点が相違する。1次側コンデンサ14のキャパシタンスはCとする。この場合、並列共振角周波数ω及び直列共振角周波数ωは次のようになる。 FIG. 10 is a diagram illustrating a basic configuration of a wireless power transmission device according to a fourth embodiment of the present invention. In FIG. 10, the same components as those in FIG. This embodiment is different from the third embodiment (FIG. 7) in that a primary side capacitor 14 for phase adjustment is added to the primary side (power transmission side) circuit. The capacitance of the primary side capacitor 14 is a C 1. In this case, the parallel resonance angular frequency ω 2 and the series resonance angular frequency ω 0 are as follows.

従って、並列共振点及び直列共振点は、低周波側と高周波側に2つ生じることが分かる。図11,図12は、図10の回路における各部電流の周波数変化を示す図である。図11(a),図12(a)は各電流の電流振幅、図11(b),図12(b)は各電流の電源電圧vに対する位相を表している。図11においては、回路定数は、L=100mH,L=100mH,L=100mH,k12=0.8,k23=0.8,k31=0.8,L=500mH,C=200pF,C=2.53nF,R=50Ω,r=r=1Ωとして計算している。図12においては、回路定数は、L=46μH,L=50μH,L=5μH,k12=0.8,k23=0.8,k31=0.8,L=460μH,C=144nF,C=66nF,R=50Ω,r=r=1Ωとして計算している。また、図11,図12において、f (i1),f (i4)は並列共振周波数、f0Lは低周波側の直列共振周波数、f0Hは高周波側の直列共振周波数を示す。図11より、(α41−i)/(β+β)の振幅値が一定であることから差電流(α41−i)は2次側電流iに比例し、(α41−i)/(β+β)の位相は常に0度であるから、両者の位相も一致していることが分かる。また、直列共振点f0L,f0Hの近傍に於いて電流i,iは180度の位相遷移を生じるため、この位相遷移の中心にある直列共振点f0L,f0Hに於いては、電源電圧vの位相φに対する電流i,iの位相φ,φは、180度を法として合同、即ち、位相φ,φ,φは同相となる。一方、1次側コンデンサCを追加した場合には、1次側コンデンサCもこの直列共振に関与することから、ダミーコイル電流iの位相も、直列共振点f0L,f0Hの近傍に於いて電流i,iは180度の位相遷移を生じる。従って、この位相遷移の中心にある直列共振点f0L,f0Hに於いては、電源電圧vの位相φに対する電流iの位相φは、180度を法として合同、即ち、位相φ,φは同相となる。 Therefore, it can be seen that two parallel resonance points and two series resonance points occur on the low frequency side and the high frequency side. 11 and 12 are diagrams showing the frequency change of each part current in the circuit of FIG. FIG. 11 (a), the 12 (a) is current amplitude of each current, FIG. 11 (b), the FIG. 12 (b) represents the phase with respect to the power supply voltage v 0 of each current. In FIG. 11, the circuit constants are L 1 = 100 mH, L 2 = 100 mH, L 3 = 100 mH, k 12 = 0.8, k 23 = 0.8, k 31 = 0.8, L 4 = 500 mH, The calculation is performed with C 1 = 200 pF, C 2 = 2.53 nF, R L = 50Ω, and r 0 = r 2 = 1Ω. In FIG. 12, the circuit constants are L 1 = 46 μH, L 2 = 50 μH, L 3 = 5 μH, k 12 = 0.8, k 23 = 0.8, k 31 = 0.8, L 4 = 460 μH, The calculation is made assuming that C 1 = 144 nF, C 2 = 66 nF, R L = 50Ω, and r 0 = r 2 = 1Ω. 11 and 12, f 2 (i1) and f 2 (i4) are parallel resonance frequencies, f 0L is a series resonance frequency on the low frequency side, and f 0H is a series resonance frequency on the high frequency side. From FIG. 11, since the amplitude value of (α 41 i 4 −i 1 ) / (β 2 i 2 + β 3 i 3 ) is constant, the difference current (α 41 i 4 −i 1 ) is the secondary current i. Since the phase of (α 41 i 4 −i 1 ) / (β 2 i 2 + β 3 i 3 ) is always 0 degree, it can be seen that the phases of both are also in agreement. Also, the series resonance point f 0L, since the current i 1, i 2 is caused a phase transition of 180 ° at the vicinity of f 0H, this phase is in the center of the transition series resonance point f 0L, is In f 0H The phases φ 1 and φ 2 of the currents i 1 and i 2 with respect to the phase φ 0 of the power supply voltage v 0 are congruent modulo 180 degrees, that is, the phases φ 0 , φ 1 , and φ 2 are in phase. On the other hand, if you add a primary capacitor C 1 is near from also primary side capacitor C 1 is involved in this series resonance, the phase also dummy coil current i 4, the series resonance point f 0L, f 0H In this case, the currents i 1 and i 2 cause a phase transition of 180 degrees. Therefore, at the series resonance points f 0L and f 0H at the center of the phase transition, the phase φ 4 of the current i 4 with respect to the phase φ 0 of the power supply voltage v 0 is congruent modulo 180 degrees, that is, the phase φ 0 and φ 4 are in phase.

従って、本実施例においては、位相差検出手段8は、差分波形生成手段7により検出される差電流(α41−i)の位相φと電源電圧vの位相φとの位相差を検出するように構成し、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が0度相当となるように、波形生成器5の生成する交流波形の角周波数ωをフィードバック制御する。又は、位相差検出手段8は、差分波形生成手段7により検出される差電流(α41−i)の位相φと電源電圧vの位相φを90度シフトした位相との位相差を検出し、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が90度相当となるように、波形生成器5の生成する交流波形の角周波数ωをフィードバック制御する。これにより、波形生成器5が出力する交流波形は、直列共振角周波数ωに調整される。 Therefore, in the present embodiment, the phase difference detection means 8 has a difference between the phase φ 2 of the difference current (α 41 i 4 −i 1 ) detected by the difference waveform generation means 7 and the phase φ 0 of the power supply voltage v 0 . The frequency control unit 9 is configured to detect the phase difference, and the frequency control unit 9 generates an angle of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection unit 8 corresponds to 0 degree. The frequency ω is feedback controlled. Alternatively, the phase difference detection means 8 has a phase φ 2 of the difference current (α 41 i 4 −i 1 ) detected by the difference waveform generation means 7 and a phase shifted by 90 degrees from the phase φ 0 of the power supply voltage v 0 . The phase difference is detected, and the frequency control unit 9 feeds back the angular frequency ω of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection unit 8 corresponds to 90 degrees. Control. As a result, the AC waveform output from the waveform generator 5 is adjusted to the series resonance angular frequency ω 0 .

尚、図11の場合、直列共振点f0Lに於いて、1次側電流iの位相が0度とはならず、80.6度と大きくずれているが、これは、直列共振点f0Lが並列共振点fに近接しているため、並列共振の影響を受けて1次側電流iの位相が大きくシフトしたことによる。特許文献4に記載されているような、1次側電流iと電源電圧vの位相を用いる場合には、このように並列共振の影響を受けて1次側電流iの位相が大きくシフトした場合には適切な周波数調節が出来なくなる。これは、並列共振点付近において、1次側電流iの位相が直列共振点とは逆向きに180度遷移するため、直列共振点が並列共振点に近接すると位相遷移の打ち消し合いが生じるためである。一方、本発明では、差電流(α41−i)から2次側電流(β+β)を抽出して、この2次側電流(β+β)の位相とダミーコイル電流i(又は電源電圧vでもよい。)の位相を比較して電源周波数の調節を行う。並列共振点付近においては、2次側電流の180度位相シフトは生じない。そのため、図11に示したように、並列共振の影響を受けて1次側電流iの位相が大きくシフトしている場合にも、差電流(α41−i)の位相は直列共振点f0Lで0となり、正確に電源周波数を直列共振点f0Lに調整することが可能となる。 In the case of FIG. 11, at the series resonance point f 0L , the phase of the primary-side current i 1 does not become 0 degrees, but is greatly deviated from 80.6 degrees. since 0L is close to the parallel resonance point f 2, due to shifted primary current i 1 of the phase is large due to the influence of parallel resonance. When the phase of the primary side current i 1 and the power supply voltage v 0 as described in Patent Document 4 is used, the phase of the primary side current i 1 is greatly affected by the parallel resonance. When shifted, proper frequency adjustment cannot be performed. This is because, near the parallel resonance point, the phase of the primary current i 1 changes by 180 degrees in the opposite direction to the series resonance point, so that the phase transition cancels out when the series resonance point is close to the parallel resonance point. It is. On the other hand, in the present invention, by extracting the secondary current (β 2 i 2 + β 3 i 3) from the difference current (α 41 i 4 -i 1) , the secondary current (β 2 i 2 + β 3 i 3 ) and the phase of the dummy coil current i 4 (or the power supply voltage v 0 ) may be compared to adjust the power supply frequency. In the vicinity of the parallel resonance point, the 180 ° phase shift of the secondary current does not occur. Therefore, as shown in FIG. 11, even when the phase of the primary current i 1 is greatly shifted due to the influence of parallel resonance, the phase of the difference current (α 41 i 4 −i 1 ) is in series. It becomes 0 at the resonance point f0L , and the power supply frequency can be accurately adjusted to the series resonance point f0L .

以上の解析から、一般に、1次側コンデンサ14がない場合には、直列共振点ωにおいては、ダミーコイル電流iの位相φは、2次側電流i(2次側電流が複数ある場合には式(3a)左辺の2次側電流の加重和。以下同じ。)の位相φと90度ずれた状態となり、1次側コンデンサ14がある場合には、直列共振点において、ダミーコイル電流iの位相φは2次側電流iの位相φと同相となることが分かる。これは次のような理由による。 From the above analysis, in general, 1 to if there is no primary-side capacitor 14, in series resonance point omega 0, the phase phi d of the dummy coil current i d is secondary current i 2 (secondary current is more in some cases a state in which the phase phi 2 and 90 degrees out of the formula (3a) a weighted sum of the left side of the secondary current. hereinafter the same.) If there is a primary-side capacitor 14, the series resonance point, phase phi d of the dummy coil current i d it is seen that the phase phi 2 and phase secondary current i 2. This is due to the following reason.

1次側コンデンサ14がない場合には、図13の点線で囲んだ部分が独立した直列共振回路となる。そのため、ダミーコイル4は直列共振には関与しない。故に、直列共振点近傍に於いては、送電側コイル3を流れる1次側電流i及び2次側電流iの位相は180度遷移するが、ダミーコイル4はこの共振には関係しないため、ダミーコイル4を流れるダミーコイル電流iの位相は遷移せず一定値を保つ。故に、直列共振点ωでは、電源電圧vに対する1次側電流i及び2次側電流iの位相は、+90度から−90度又は−90度から+90度への遷移の丁度中間の0度となるため、電源電圧vの位相φと同相となり、その一方、ダミーコイル電流iの電源電圧vに対する位相φは−90度の状態が維持される。従って、直列共振点ωでは、ダミーコイル電流iの位相は2次側電流iの位相に対して90度ずれた状態となる。 When the primary side capacitor 14 is not provided, a portion surrounded by a dotted line in FIG. 13 is an independent series resonance circuit. Therefore, the dummy coil 4 does not participate in series resonance. Therefore, in the vicinity of the series resonance point, the phases of the primary side current i 1 and the secondary side current i 2 flowing through the power transmission side coil 3 transition 180 degrees, but the dummy coil 4 is not related to this resonance. , the phase of the dummy coil current i d flowing through the dummy coil 4 is kept at a constant value without transition. Therefore, at the series resonance point ω 0 , the phase of the primary side current i 1 and the secondary side current i 2 with respect to the power supply voltage v 0 is just intermediate between the transition from +90 degrees to −90 degrees or from −90 degrees to +90 degrees. since the 0-degree, it becomes phase phi 0 in phase with the power supply voltage v 0, while the phase phi 3 with respect to the power supply voltage v 0 of the dummy coil current i d is maintained in the -90 degrees state. Therefore, the series resonance point omega 0, the dummy coil current i d of the phase is in a state of 90 degrees with respect to the secondary current i 2 phase.

一方、1次側コンデンサ14がある場合には、送電側コイル3に直列に接続される1次側コンデンサ14も直列共振に関与する。そのため、図14の点線で囲んだ部分が直列共振回路となる。これにより、ダミーコイル4も直列共振回路の一部となり、直列共振点ω近傍に於いては、送電側コイル3を流れる1次側電流i及び2次側電流iの位相φ,φは180度遷移し、ダミーコイル4を流れるダミーコイル電流iの位相φも1次側電流i及び2次側電流iの位相φ,φとともに180度遷移する。故に、直列共振点ωでは、電源電圧vの位相φに対する1次側電流i及び2次側電流i並びにダミーコイル電流iの位相φ,φ,φは、+90度から−90度又は−90度から+90度への遷移の丁度中間となるため、電源電圧vの位相φと同相となる。従って、直列共振点ωでは、ダミーコイル電流iの位相と2次側電流iの位相は同相の状態となる。 On the other hand, when there is the primary side capacitor 14, the primary side capacitor 14 connected in series with the power transmission side coil 3 is also involved in the series resonance. Therefore, the part surrounded by the dotted line in FIG. 14 is a series resonance circuit. As a result, the dummy coil 4 also becomes a part of the series resonance circuit, and in the vicinity of the series resonance point ω 0 , the phases φ 1 , 1 of the primary side current i 1 and the secondary side current i 2 flowing through the power transmission side coil 3. φ 2 changes by 180 degrees, and the phase φ d of the dummy coil current i d flowing through the dummy coil 4 also changes by 180 degrees together with the phases φ 1 and φ 2 of the primary current i 1 and the secondary current i 2 . Therefore, at the series resonance point ω 0 , the primary side current i 1 and the secondary side current i 2 with respect to the phase φ 0 of the power supply voltage v 0 and the phases φ 1 , φ 2 , and φ d of the dummy coil current i d are +90 Since the transition from the degree to −90 degrees or from −90 degrees to +90 degrees is just in the middle, it is in phase with the phase φ 0 of the power supply voltage v 0 . Therefore, at the series resonance point ω 0 , the phase of the dummy coil current id and the phase of the secondary current i 2 are in phase.

従って、1次側コンデンサ14がない場合には、位相差検出手段8は、以下のいずれかの構成を採ることが出来る。
(a)差分波形生成手段7により検出される差電流(αd1−i)の位相φとダミーコイル電流iの位相φとの位相差(φ−φ)を検出するように構成する。
(b)差分波形生成手段7により検出される差電流(αd1−i)の位相φと電源電圧vの位相φを90度シフトした位相φ±90°との位相差(φ−φ±90°)を検出するように構成する。
(c)差分波形生成手段7により検出される差電流(αd1−i)の位相φと電源電圧vの位相φとの位相差(φ−φ)を検出するように構成する。
Therefore, when the primary side capacitor 14 is not provided, the phase difference detecting means 8 can take one of the following configurations.
(A) The phase difference (φ 2 −φ d ) between the phase φ 2 of the difference current (α d1 i d −i 1 ) detected by the differential waveform generation means 7 and the phase φ d of the dummy coil current i d is detected. To be configured.
(B) the differential waveform phase phi 2 and the power supply voltage v 0 of the phase phi 0 to 90 degree shifted phase phi 0-position of the ± 90 ° of the differential current detected by the generating means 7 (α d1 i d -i 1 ) The phase difference (φ 2 −φ 0 ± 90 °) is detected.
(C) The phase difference (φ 2 −φ 0 ) between the phase φ 2 of the difference current (α d1 i d −i 1 ) detected by the difference waveform generation means 7 and the phase φ 0 of the power supply voltage v 0 is detected. Configure as follows.

そして、上記(a),(b)の場合には、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が90度相当となるように波形生成器5の生成する交流波形の角周波数ωをフィードバック制御するように構成し、上記(c)の場合には、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が0度相当となるように波形生成器5の生成する交流波形の角周波数ωをフィードバック制御するように構成すればよい。   In the cases (a) and (b), the frequency control unit 9 generates the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection unit 8 corresponds to 90 degrees. The configuration is such that the angular frequency ω of the AC waveform is feedback-controlled. In the case of (c) above, the frequency control means 9 has a value of the phase difference detection signal output by the phase difference detection means 8 corresponding to 0 degrees. In this way, the angular frequency ω of the AC waveform generated by the waveform generator 5 may be feedback controlled.

一方、1次側コンデンサ14がある場合には、位相差検出手段8は、上記(b),(c)のいずれかの構成を採ることが出来る。この場合には、直流共振点ωの近傍に於いてダミーコイル電流iの位相φは2次側電流iの位相φはとともに180度の位相遷移を生じるため、上記(a)のような差電流(αd1−i)の位相φとダミーコイル電流iの位相φとの比較は意味を為さない。上記(b)の場合には、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が90度相当となるように波形生成器5の生成する交流波形の角周波数ωをフィードバック制御するように構成し、上記(c)の場合には、周波数制御手段9は、位相差検出手段8が出力する位相差検出信号の値が0度相当となるように波形生成器5の生成する交流波形の角周波数ωをフィードバック制御するように構成すればよい。 On the other hand, when the primary side capacitor 14 is present, the phase difference detecting means 8 can adopt any one of the configurations (b) and (c). In this case, in the vicinity of the DC resonance point ω 0 , the phase φ d of the dummy coil current i d causes a phase transition of 180 degrees together with the phase φ 2 of the secondary current i 2. comparison of the phase phi 2 and the phase phi 3 of the dummy coil current i d of the differential current (α d1 i d -i 1) such as will not make sense. In the case of (b) above, the frequency control means 9 uses the angular frequency ω of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection means 8 corresponds to 90 degrees. In the case of (c) above, the frequency control means 9 causes the waveform generator 5 so that the value of the phase difference detection signal output from the phase difference detection means 8 is equivalent to 0 degrees. The angular frequency ω of the AC waveform generated by the above may be feedback-controlled.

図15は、本発明の実施例5に係るワイヤレス電力伝送装置の基本構成を表す図である。本実施例は、実施例3に係るワイヤレス電力伝送装置(図7)の回路構成をより具体化した例である。図15において、図7の構成部分に対応する構成部分には同符号を附している。本実施例では、図7における電流センサ7a,7b及び差電流演算回路7cを、1個の電流トランスCT1によって実現している。電流トランスCT1は、図16に示したように、環状の磁性体により形成された磁性体コア21、並びに、磁気コア21が1回以上鎖交する巻線部が形成された第1の導線22,第2の導線23,及び第3の導線24を備えている。図16に記載されている電流トランスCT1の各端子n1〜n6は、図15の電流トランスCT1の各端子n1〜n6に対応する。第1の導線22は、送電側コイル3の入出力配線上に、送電側コイル3と直列、且つダミーコイル4とは並列となるように接続されている。第2の導線23は、ダミーコイル4の入出力配線上に、ダミーコイル4に直列、且つ送電側コイル3とは並列となるように接続されている。尚、第3の導線24は、差電流検出用の配線である。図15の電流トランスCT1は、第1の導線22,第2の導線23,第3の導線24は、ともに、磁性体コア21に対して同方向に捲回されており、第1の導線22の巻数Ntと第2の導線23の巻数Ntとの比Nt/Ntは、Nt/Nt=α41=L/Lとされている。ここで、Lは送電側コイル3の自己インダクタンスであり、Lはダミーコイル4の自己インダクタンスである。インダクタンスL,Lは比α41=L/Lは整数となるように調整されている。また、送電側コイル3と第1の導線22の接続方向、及び、ダミーコイル4と第2の導線23との接続方向は、ダミーコイル4から第2の導線23の巻線部へ向かって電流iを流し、且つ送電側コイル3から第1の導線22の巻線部へ向かって電流iを流した場合に、第2の導線23の巻線部に流れる電流iが磁性体コア21内に作る磁場Hの向きが、第1の導線22の巻線部に流れる電流iが磁性体コア21内に作る磁場Hの向きとは反対向きとなるように、接続されている。従って、磁性体コア21内の磁場は、H−Hとなるので、第3の導線24の巻数をNtとすると、第3の導線24に誘導される電流iは次のようになる。 FIG. 15 is a diagram illustrating a basic configuration of a wireless power transmission device according to the fifth embodiment of the present invention. The present embodiment is an example in which the circuit configuration of the wireless power transmission apparatus (FIG. 7) according to the third embodiment is more concrete. In FIG. 15, the same reference numerals are given to the components corresponding to the components in FIG. In the present embodiment, the current sensors 7a and 7b and the difference current calculation circuit 7c in FIG. 7 are realized by one current transformer CT1. As shown in FIG. 16, the current transformer CT <b> 1 includes a magnetic core 21 formed of an annular magnetic body, and a first conductor 22 in which a winding portion where the magnetic core 21 is linked one or more times is formed. , Second conductive wire 23 and third conductive wire 24. The terminals n1 to n6 of the current transformer CT1 illustrated in FIG. 16 correspond to the terminals n1 to n6 of the current transformer CT1 of FIG. The first conducting wire 22 is connected on the input / output wiring of the power transmission side coil 3 in series with the power transmission side coil 3 and in parallel with the dummy coil 4. The second conducting wire 23 is connected on the input / output wiring of the dummy coil 4 so as to be in series with the dummy coil 4 and in parallel with the power transmission side coil 3. The third conductor 24 is a wiring for detecting a difference current. In the current transformer CT1 of FIG. 15, the first conducting wire 22, the second conducting wire 23, and the third conducting wire 24 are all wound around the magnetic core 21 in the same direction. the ratio Nt 2 / Nt 1 and turns Nt 2 turns Nt 1 and second conductor 23 of is the Nt 2 / Nt 1 = α 41 = L 4 / L 1. Here, L 1 is the self-inductance of the power transmission side coil 3, and L 4 is the self-inductance of the dummy coil 4. The inductances L 1 and L 4 are adjusted so that the ratio α 41 = L 4 / L 1 is an integer. The connection direction between the power transmission side coil 3 and the first conductive wire 22 and the connection direction between the dummy coil 4 and the second conductive wire 23 are currents from the dummy coil 4 toward the winding portion of the second conductive wire 23. i 4 to flow, and when a current flows i 1 flows from the power transmission coil 3 to the winding portion of the first conductor 22, second current i 4 flowing through the winding portions are magnetic core conductor 23 The direction of the magnetic field H 4 created in the magnetic field 21 is connected so that the current i 1 flowing in the winding portion of the first conductor 22 is opposite to the direction of the magnetic field H 1 created in the magnetic core 21. Yes. Therefore, since the magnetic field in the magnetic core 21 is H 4 −H 1 , when the number of turns of the third conductor 24 is Nt 5 , the current i 5 induced in the third conductor 24 is as follows: Become.

従って、出力線である第3の導線24からは、差電流(α41−i)に比例した電流iが出力されるので、電流トランスCT1は、これ一つで差分波形生成手段7として機能していることが分かる。 Therefore, since the current i 5 proportional to the difference current (α 41 i 4 −i 1 ) is output from the third conductor 24 that is the output line, the current transformer CT 1 is the differential waveform generating means. It can be seen that it functions as 7.

また、ダミーコイル4を流れるダミーコイル電流i自体は、電流トランスCT1とは別に設けられた電流トランスCT2により検出される。電流トランスCT1の出力電流iは、ツェナーダイオードZD1,ZD2、コンデンサC8、及びダイオードD1,D2から構成された矩形化回路によって矩形化される。電流トランスCT2の出力電流iは、ツェナーダイオードZD3,ZD4、コンデンサC9、及びダイオードD3,D4から構成された矩形化回路によって矩形化される。矩形化された出力電流i,iは、EXOR回路IC1に入力されて、位相差Δφ24=φ−φに比例したパルス幅の矩形波信号に変換された後ローパスフィルタ8aに通され、ローパスフィルタ8aからは出力電流i,iの位相差Δφ24に比例する電圧信号s(Δφ24)が出力される。ここで、φは2次側電流iの位相であり、φはダミーコイル電流iの位相である。電圧信号s(Δφ24)は、周波数制御手段9(周波数制御回路)に入力され、周波数制御手段9は、電圧信号s(Δφ24)が90度に相当する値s(90°)となるように、波形生成器5の出力各周波数ωをフィードバック制御する。 Further, the dummy coil current i4 itself flowing through the dummy coil 4 is detected by a current transformer CT2 provided separately from the current transformer CT1. The output current i 5 of the current transformer CT1 is a Zener diode ZD1, ZD2, is rectangular by squaring circuit composed of a capacitor C8, and a diode D1, D2. The output current i 6 of the current transformer CT2 are Zener diode ZD3, ZD4, it is rectangular by squaring circuit composed of the capacitor C9, and diodes D3, D4. The rectangularized output currents i 5 and i 6 are input to the EXOR circuit IC1, converted into a rectangular wave signal having a pulse width proportional to the phase difference Δφ 24 = φ 2 −φ 4 , and then passed to the low-pass filter 8a. The low-pass filter 8a outputs a voltage signal s (Δφ 24 ) proportional to the phase difference Δφ 24 between the output currents i 5 and i 6 . Here, phi 2 is the secondary current i 2 phase, phi 4 is the phase of the dummy coil current i 4. The voltage signal s (Δφ 24 ) is input to the frequency control unit 9 (frequency control circuit), and the frequency control unit 9 sets the voltage signal s (Δφ 24 ) to a value s (90 °) corresponding to 90 degrees. In addition, each output frequency ω of the waveform generator 5 is feedback-controlled.

このように、差分波形生成手段7として電流トランスCT1を用いることにより、回路が極めて単純化される。また、ダミーコイル電流iと1次側電流iとの差電流(α41−i)を検出する際に、ダミーコイル電流iの検出及び1次側電流iの検出に、共通の磁性体コア21が用いられることになるため、極めて精度の高い差電流(α41−i)の検出が可能となる。 Thus, the circuit is greatly simplified by using the current transformer CT1 as the differential waveform generating means 7. Further, when detecting the difference current (α 41 i 4 −i 1 ) between the dummy coil current i 4 and the primary side current i 1 , the dummy coil current i 4 and the primary side current i 1 are detected. Since the common magnetic core 21 is used, it is possible to detect the difference current (α 41 i 4 −i 1 ) with extremely high accuracy.

図17は、本発明の実施例6に係るワイヤレス電力伝送装置の基本構成を表す図である。本実施例のワイヤレス電力伝送装置1は、基本的には実施例5に係るワイヤレス電力伝送装置(図15)と同様であるが、
(i)送電側コイル3及びダミーコイル4に並列に調整抵抗15を追加した点、
(ii)電流トランスCT1に、新たに第4の巻線(第4の導線25)を追加した点
において相違している。調整抵抗15は、固定抵抗R10と半固定抵抗R9を直列接続して構成されている。そして、半固定抵抗R9の抵抗値を調整することで、調整抵抗15は、受電側コイル11が送電側コイル3に結合していない状態(受電側コイル11を遠方に除いた状態)に於いて、電流トランスCT1の第3の導線24に出力される電流が零となるように調整されている。
FIG. 17 is a diagram illustrating a basic configuration of a wireless power transmission device according to a sixth embodiment of the present invention. The wireless power transmission device 1 of the present embodiment is basically the same as the wireless power transmission device (FIG. 15) according to the fifth embodiment,
(I) The adjustment resistor 15 is added in parallel to the power transmission side coil 3 and the dummy coil 4;
(Ii) A difference is that a fourth winding (fourth conductive wire 25) is newly added to the current transformer CT1. The adjustment resistor 15 is configured by connecting a fixed resistor R10 and a semi-fixed resistor R9 in series. Then, by adjusting the resistance value of the semi-fixed resistor R9, the adjustment resistor 15 is in a state where the power receiving side coil 11 is not coupled to the power transmitting side coil 3 (a state where the power receiving side coil 11 is removed far away). The current output to the third conductor 24 of the current transformer CT1 is adjusted to be zero.

電流トランスCT1は、図18に示したように、環状の磁性体により形成された磁性体コア21、並びに、磁気コア21が1回以上鎖交する巻線部が形成された第1の導線22,第2の導線23,第3の導線24,及び第4の導線25を備えている。図16に記載されている電流トランスCT1の各端子n1〜n8は、図17の電流トランスCT1の各端子n1〜n8に対応する。   As shown in FIG. 18, the current transformer CT <b> 1 includes a magnetic core 21 formed of an annular magnetic body, and a first conductor 22 formed with a winding portion in which the magnetic core 21 is linked one or more times. , Second conductive wire 23, third conductive wire 24, and fourth conductive wire 25. The terminals n1 to n8 of the current transformer CT1 illustrated in FIG. 16 correspond to the terminals n1 to n8 of the current transformer CT1 of FIG.

図17の電流トランスCT1は、第1の導線22,第2の導線23,第3の導線24,第4の導線25は、ともに、磁性体コア21に対して同方向に捲回されており、第1の導線22の巻数Ntと第2の導線23の巻数Ntとの比Nt/Ntは、Nt/Nt=α41=L/Lとされている。ここで、Lは送電側コイル3の自己インダクタンスであり、Lはダミーコイル4の自己インダクタンスである。インダクタンスL,Lは比α41=L/Lは整数となるように調整されている。第1の導線22、第2の導線23、及び第3の導線24の接続に関しては、実施例5と同様である。 In the current transformer CT1 of FIG. 17, the first conductor 22, the second conductor 23, the third conductor 24, and the fourth conductor 25 are all wound around the magnetic core 21 in the same direction. , the number of turns Nt 1 of the first conductor 22 the ratio Nt 2 / Nt 1 and turns Nt 2 of the second conductor 23 is a Nt 2 / Nt 1 = α 41 = L 4 / L 1. Here, L 1 is the self-inductance of the power transmission side coil 3, and L 4 is the self-inductance of the dummy coil 4. The inductances L 1 and L 4 are adjusted so that the ratio α 41 = L 4 / L 1 is an integer. The connection of the first conducting wire 22, the second conducting wire 23, and the third conducting wire 24 is the same as in the fifth embodiment.

また、調整抵抗15と第4の導線25の接続方向は、ダミーコイル4から第2の導線23の巻線部へ向かって電流iを流し、且つ送電側コイル3から第1の導線22の巻線部へ向かって電流iを流し、且つ調整抵抗15から第4の導線25の巻線部へ向かって電流iadを流した場合に、第4の導線25の巻線部に流れる電流iajが磁性体コア21内に作る磁場Hajの向きが、第1の導線22の巻線部に流れる電流iが磁性体コア21内に作る磁場Hの向きとは反対向き、第2の導線23の巻線部に流れる電流iが磁性体コア21内に作る磁場Hの向きと同向きとなるように、接続されている。従って、磁性体コア21内の磁場は、H+Haj−Hとなるので、第3の導線24の巻数をNt、第4の導線24の巻数をNtajとすると、第3の導線24に誘導される電流iは次のようになる。 In addition, the connection direction of the adjustment resistor 15 and the fourth conductor 25 is such that a current i 4 flows from the dummy coil 4 toward the winding portion of the second conductor 23 and the first conductor 22 is connected from the power transmission side coil 3. When the current i 1 flows toward the winding portion and the current i ad flows from the adjustment resistor 15 toward the winding portion of the fourth conducting wire 25, the current flowing through the winding portion of the fourth conducting wire 25 The direction of the magnetic field H aj that i aj creates in the magnetic core 21 is opposite to the direction of the magnetic field H 1 that the current i 1 flowing in the winding portion of the first conductor 22 creates in the magnetic core 21; The current i 4 flowing in the winding portion of the second conductive wire 23 is connected in the same direction as the direction of the magnetic field H 4 created in the magnetic core 21. Accordingly, since the magnetic field in the magnetic core 21 is H 4 + H aj −H 1 , assuming that the number of turns of the third conductor 24 is Nt 5 and the number of turns of the fourth conductor 24 is Nt aj , the third conductor The current i 5 induced in 24 is as follows:

従って、出力線である第3の導線24からは、差電流(α41+iaj’−i)に比例した電流iが出力されるので、電流トランスCT1は、これ一つで差分波形生成手段7として機能していることが分かる。尚、Ntaj=Ntとすればiaj’=iajとなる。iajの値は巻数Ntaj及び調整抵抗15の抵抗値によって調整する。 Therefore, since the current i 5 proportional to the difference current (α 41 i 4 + i aj ′ −i 1 ) is output from the third conductor 24 that is the output line, the current transformer CT1 is the only difference. It can be seen that it functions as the waveform generation means 7. If Nt aj = Nt 1 , then i aj ′ = i aj . The value of i aj is adjusted by the number of turns Nt aj and the resistance value of the adjusting resistor 15.

このように、差分波形生成手段として上記の電流トランスCT1を用いることにより、回路が極めて単純化される。また、ダミーコイル電流i及び調整電流iajも和と1次側電流iとの差電流(α41+iaj’−i)を検出する際に、ダミーコイル電流iの検出、調整電流iajの検出、及び1次側電流iの検出に、共通の磁性体コアが用いられることになるため、極めて精度の高い差電流(α41+iaj’−i)の検出が可能となる。 In this way, the circuit is greatly simplified by using the current transformer CT1 as the differential waveform generating means. The dummy coil current i d and adjustment current i aj even when detecting the differential current (α 41 i 4 + i aj '-i 1) of the sum and the primary current i 1, the detection of the dummy coil current i d Since the common magnetic core is used for the detection of the adjustment current i aj and the detection of the primary current i 1 , the difference current (α 41 i 4 + i aj ′ −i 1 ) with extremely high accuracy is used. Can be detected.

また、ダミーコイルの内部抵抗が無視できない場合に於いて、調整電流iajにより差電流(α41+iaj−i)を検出することで、ダミーコイルの内部抵抗による2次側電流iの検出誤差をキャンセルすることができるため、波形生成器5が出力する交流波形の周波数を、極めて精度よく直列共振周波数ωに合わせ込むことが可能となる。 Further, when the internal resistance of the dummy coil cannot be ignored, the secondary current i due to the internal resistance of the dummy coil is detected by detecting the difference current (α 41 i 4 + i aj −i 1 ) based on the adjustment current i aj. Since the detection error of 2 can be canceled, the frequency of the AC waveform output from the waveform generator 5 can be adjusted to the series resonance frequency ω 0 with extremely high accuracy.

本実施例では、まず、ワイヤレス電力伝送システムの共振と送電側(1次側)及び受電側(2次側)の電圧・電流について再考する。図19(a)は、一般化したワイヤレス電力伝送システムの基本構成を表す図である。図19(a)において、通常、1次側回路の内部抵抗Rは、送電ロスを抑えるために小さく設計されており、使用周波数領域では無視することができる。2次側回路は、N個(Nは1以上の整数)の受電側コイルL2,1,…,L2,Nが、1次側回路の送電側コイルLと電磁誘導結合している。送電側コイルLと各受電側コイルL2,k(k=1,…,N)との相互インダクタンスをM12,k、各受電側コイルL2,k,L2,l(k,l=1,…,N;k≠l)間の相互インダクタンスをM2,kl=M2,lkとする。各受電側コイルL2,k(k=1,…,N)には、其々、負荷インピーダンスZ2,k (Load)が接続されており、其々、電流i2,kが流れる。負荷インピーダンスZ2,k (Load)(k=1,…,N)のうちの少なくとも1つには、共振用キャパシタンスが含まれる。図19(a)の回路の回路方程式は次のようになる。 In this embodiment, first, the resonance of the wireless power transmission system and the voltage / current on the power transmission side (primary side) and the power reception side (secondary side) are reconsidered. FIG. 19A is a diagram illustrating a basic configuration of a generalized wireless power transmission system. In FIG. 19 (a), normally, the internal resistance R 1 of the primary circuit, the power transmission is designed small in order to suppress the loss can be ignored in use frequency domain. In the secondary side circuit, N (N is an integer of 1 or more) power receiving side coils L 2,1 ,..., L 2, N are electromagnetically coupled to the power transmitting side coil L 1 of the primary side circuit. . Transmitting coil L 1 and the power receiving side coil L 2, k (k = 1 , ..., N) the mutual inductance M 12, k, each receiver coil L 2, k with, L 2, l (k, l = 1, ..., N; a k ≠ l) the mutual inductance between the M 2, kl = M 2, lk. Each of the power receiving coils L 2, k (k = 1,..., N ) is connected to a load impedance Z 2, k (Load) , and a current i 2, k flows therethrough. At least one of the load impedances Z 2, k (Load) (k = 1,..., N) includes a resonance capacitance. The circuit equation of the circuit of FIG. 19A is as follows.

ここで、vは送電側コイルLに印加される電圧(1次コイル電圧)、iは送電側コイルLを流れる電流(1次コイル電流)、i2,k(k=1,…,N)は各受電側コイルL2,kを流れる電流(2次コイル電流)、Z≒jωLである。従って、1次コイル電流iは、次のように表される。 Here, v 1 is a voltage (primary coil voltage) applied to the power transmission side coil L 1 , i 1 is a current (primary coil current) flowing through the power transmission side coil L 1 , and i 2, k (k = 1, ..., N) is the current flowing through each receiver coil L 2, k (2 coil current), a Z 1 jωL 1. Therefore, the primary coil current i 1 is expressed as follows.

ここで、i (0)は非結合状態(M12=0)における1次コイル電流、iは各2次コイル電流i2,k(k=1,…,N)の荷重平均(以下「平均2次コイル電流」という。)、β12,k(k=1,…,N)は各受電側コイルL2,kに対する重み係数、M12は相互インダクタンスをM12,k(k=1,…,N)の総和である。式(15a)より、図19(a)の回路は図19(b)の等価回路で表すことが出来る。ここで、Z (Load)は2次側回路の総合的な負荷インピーダンスを表す。 Here, i 1 (0) is the primary coil current in the non-coupled state (M 12 = 0), i 2 is the load average of each secondary coil current i 2, k (k = 1,..., N) (Referred to as “average secondary coil current”), β 12, k (k = 1,..., N) is a weighting factor for each of the power receiving coils L 2, k , M12 is a mutual inductance M 12, k (k = 1). ,..., N). From equation (15a), the circuit of FIG. 19A can be represented by the equivalent circuit of FIG. Here, Z 2 (Load) represents the total load impedance of the secondary circuit.

直列共振状態(磁界調相結合状態)においては、N個の2次側回路に何れかの2次側回路kの2次コイル電流i2,kが極大となって支配的となる。このとき、平均2次コイル電流iの位相は、2次コイル電流i2,kの位相と略一致するので、平均2次コイル電流iの位相は1次コイル電圧vの位相と同相となる。従って、1次側回路において、平均2次コイル電流iの相似波形を抽出し、抽出した平均2次コイル電流iの相似波形の位相が1次コイル電圧vの波形の位相と同相となるように1次コイル電圧vの周波数を調整することによって、1次コイル電圧vの周波数を直列共振周波数に合致させることができる。 In the series resonance state (magnetic field phase coupling state), the secondary coil currents i 2 and k of any of the secondary side circuits k become dominant in the N secondary side circuits and become dominant. At this time, since the phase of the average secondary coil current i 2 substantially matches the phase of the secondary coil currents i 2 and k , the phase of the average secondary coil current i 2 is in phase with the phase of the primary coil voltage v 1. It becomes. Accordingly, in the primary side circuit, a similar waveform of the average secondary coil current i 2 is extracted, and the phase of the extracted average waveform of the average secondary coil current i 2 is in phase with the phase of the waveform of the primary coil voltage v 1. By adjusting the frequency of the primary coil voltage v 1 in such a manner, the frequency of the primary coil voltage v 1 can be matched with the series resonance frequency.

図19において、送電電流検出回路は、1次コイル電流iの波形を、電流トランスCTを用いて送電電流検出回路の抵抗Rにかかる電圧(検出電圧)vの波形に変換する回路であり、回路定数は、使用周波数領域でR<<ωLとなるように設定される。従って、送電電流検出回路の電流(検出電流)i及び送電電流検出回路の抵抗Rにかかる電圧(検出電圧)vは次のようになる。 In FIG. 19, the transmission current detection circuit is a circuit that converts the waveform of the primary coil current i 1 into the waveform of the voltage (detection voltage) v 3 applied to the resistor R 3 of the transmission current detection circuit using the current transformer CT. Yes, the circuit constant is set so that R 3 << ωL 3 in the operating frequency region. Accordingly, the voltage (detected voltage) v 3 applied to the current (detected current) i 3 of the transmission current detection circuit and the resistor R 3 of the transmission current detection circuit is as follows.

上記式(16)より、検出電流i及び検出電圧vは、非結合状態における1次コイル電流i (0)と、平均2次コイル電流iとの加重和となっている。このことから、原理的には、検出電圧vから非結合状態における1次コイル電流i (0)のL/M12倍を差し引くことによって、平均2次コイル電流iの波形の相似波形を抽出できることが分かる。非結合状態における1次コイル電流i (0)を「参照電流」(reference current)と呼ぶ。 From the above equation (16), the detected current i 3 and the detected voltage v 3 are a weighted sum of the primary coil current i 1 (0) in the non-coupled state and the average secondary coil current i 2 . From this, in principle, by subtracting L 1 / M 12 times the primary coil current i 1 (0) in the non-coupled state from the detected voltage v 3 , the waveform similarity of the average secondary coil current i 2 is similar. It can be seen that the waveform can be extracted. The primary coil current i 1 (0) in the uncoupled state is referred to as “reference current”.

上記実施例1〜6に示したダミーコイル方式では、参照電流i (0)の相似波形を、ダミーコイルLを用いて、ダミーコイルLを流れる電流(ダミーコイル電流)iの波形として生成し、このダミーコイル電流iの定数α倍を検出電流iから差し引くことによって、差電流(αi−i)の波形として平均2次コイル電流iの波形の相似波形を抽出している。このとき、定数αは、1次側回路から2次側回路を十分遠方に離してM12=0とした状態(i=0の状態)で差電流(αi−i)が0となるように設定されている。 The dummy coil system shown in the above Examples 1-6, a similar waveform of the reference current i 1 (0), using a dummy coil L d, the current flowing through the dummy coil L d (dummy coil current) i d waveform By subtracting a constant α times the dummy coil current i d from the detection current i 3, a similar waveform of the average secondary coil current i 2 is extracted as the waveform of the difference current (α i d −i 3 ). is doing. At this time, the constant α is such that the difference current (α i d −i 3 ) is 0 in a state where M 12 = 0 (i 2 = 0) by separating the secondary side circuit from the primary side circuit sufficiently far away. It is set to be.

一方、式(15b)の第1式より、参照電流i (0)は次のように表すこともできる。 On the other hand, the reference current i 1 (0) can also be expressed as follows from the first expression of Expression (15b).

式(17a)より、積分回路により1次コイル電圧vを積分した積分電圧波形v1,intを生成することでi (0)の相似波形を生成し、積分電圧波形v1,intの定数γ倍を検出電圧vから差し引くことによって、加重差電圧(γv−v)の波形として平均2次コイル電流iの波形の相似波形を抽出することも可能であることが分かる。このとき、定数γは、1次側回路から2次側回路を十分遠方に離してM12=0とした状態(i=0の状態)で加重差電流(γv1,int−v)が0となるように設定すればよい。尚、式(17a)より、積分電圧v1,intは参照電流i (0)の定数倍であり、その波形は参照電流i (0)の波形に相似することから、積分電圧v1,intを「参照電流相似電圧」(similar voltage to the reference current)と呼び、その波形wrefを「参照電流相似波形」(waveform similar to the reference current waveform)と呼ぶ。このように、加重差電圧(γv1,int−v)の波形として平均2次コイル電流iの波形の相似波形を抽出する方式を「送電電圧積分方式」と呼ぶ。以下、本実施例7では送電電圧積分方式を適用したワイヤレス電力伝送装置の一実施例について説明する。 From Equation (17a), an integrated voltage waveform v 1, int obtained by integrating the primary coil voltage v 1 is generated by an integrating circuit to generate a similar waveform of i 1 (0) , and the integrated voltage waveform v 1, int It can be seen that by subtracting the constant γ times from the detection voltage v 3, it is possible to extract a similar waveform of the waveform of the average secondary coil current i 2 as the waveform of the weighted difference voltage (γv d −v 3 ). At this time, the constant γ is a weighted difference current (γv 1, int −v 3 ) in a state in which the secondary side circuit is sufficiently far away from the primary side circuit and M 12 = 0 (i 2 = 0 state). Should be set to 0. Incidentally, the equation (17a), the integrated voltage v 1, int is a constant multiple of the reference current i 1 (0), since the waveform is to be similar to the waveform of the reference current i 1 (0), the integrated voltage v 1 , Int are referred to as “similar voltage to the reference current”, and the waveform w ref is referred to as “waveform similar to the reference current waveform”. Thus, a method of extracting a similar waveform of the average secondary coil current i 2 as the waveform of the weighted differential voltage (γv 1, int −v 3 ) is referred to as a “transmission voltage integration method”. Hereinafter, in a seventh embodiment, an embodiment of a wireless power transmission device to which the transmission voltage integration method is applied will be described.

図20は、本発明の実施例7に係るワイヤレス電力伝送装置の基本構成を表す図である。実施例7では、一例としてN−S型磁界共鳴方式(図25(a)参照)について説明するが、他の磁界共鳴方式(図25(b)〜(f)参照)に対しても同様な構成で適用可能である。実施例7に係るワイヤレス電力伝送装置1(以下、「送電装置1」)は、送電側コイル3、波形生成器5、給電回路6、送電電流波形検出手段6a、差分波形生成手段7、位相差検出手段8、周波数制御手段9、及び送電電圧積分手段10を備えている。受電装置2は、受電側コイル11、共振コンデンサ12、及び負荷抵抗13を備えている。図20において、実施例1の図4と同様の構成部分については、同符号を附している。尚、本実施例における送電電流波形検出手段6aは、実施例1の図4における電流センサ7aに相当している。また、送電側抵抗Rは、使用周波数領域(直列共振角周波数ωの周辺の周波数領域)において、送電側コイル3のインダクタンスωLに対して無視できる程度に小さいとする。 FIG. 20 is a diagram illustrating a basic configuration of a wireless power transmission device according to a seventh embodiment of the present invention. In the seventh embodiment, the NS magnetic field resonance method (see FIG. 25A) will be described as an example, but the same applies to other magnetic field resonance methods (see FIGS. 25B to 25F). Applicable in configuration. A wireless power transmission device 1 (hereinafter, “power transmission device 1”) according to the seventh embodiment includes a power transmission side coil 3, a waveform generator 5, a power feeding circuit 6, a power transmission current waveform detection unit 6a, a difference waveform generation unit 7, a phase difference. A detection unit 8, a frequency control unit 9, and a transmission voltage integration unit 10 are provided. The power receiving device 2 includes a power receiving side coil 11, a resonance capacitor 12, and a load resistor 13. In FIG. 20, the same components as those in FIG. 4 of the first embodiment are denoted by the same reference numerals. The transmission current waveform detection means 6a in the present embodiment corresponds to the current sensor 7a in FIG. 4 of the first embodiment. Further, it is assumed that the power transmission side resistance R 1 is small enough to be ignored with respect to the inductance ωL 1 of the power transmission side coil 3 in the use frequency region (frequency region around the series resonance angular frequency ω 0 ).

送電電流波形検出手段6aは、電流トランスCT及び検出抵抗Rを備えている。電流トランスCTは、環状の磁性体コアに検出コイル(インダクタンスL)を捲回するとともに磁性体コアの環内に1次側電流iが流れる導線を貫通させたものである。磁性体コアを貫通する導線のインダクタンスをL、インダクタンスL,L間の相互インダクタンスをM34とする。回路定数は、使用周波数領域でR<<ωLとなるように設定されている。また、L<<Lである。以下、検出抵抗Rの端子間に生じる電圧vを「送電電流検出電圧」と呼ぶ。 Transmitting current waveform detecting means 6a is provided with a current transformer CT and the detection resistor R 3. In the current transformer CT, a detection coil (inductance L 3 ) is wound around an annular magnetic core and a conducting wire through which the primary current i 1 flows is passed through the ring of the magnetic core. Let L 4 be the inductance of the conductive wire passing through the magnetic core, and M 34 be the mutual inductance between the inductances L 3 and L 4 . The circuit constant is set so that R 3 << ωL 3 in the operating frequency range. Further, L 4 << L 1 is satisfied. Hereinafter, the voltage v 3 generated between the terminals of the detection resistor R 3 is referred to as “transmission current detection voltage”.

送電電圧積分手段10は、送電側コイル3に印加される電圧である送電電圧vの波形の積分電圧波形を参照電流に相似する電圧vの波形(参照電流相似波形wrefに相当。)として出力する回路である。図20では、送電電圧積分手段10は、抵抗R,Rで構成される送電電圧検出回路10aと、演算増幅器OP,キャパシタンスC,及び抵抗R,Rで構成される積分回路10bを備えている。送電電圧検出回路10aは、送電電圧vを分圧した分圧電圧(以下「送電検出電圧」と呼ぶ。)v=v/(R+R)を生成する分圧回路により構成されている。調整用の抵抗Rは半固定抵抗であり、出力電圧vの振幅の調整が可能である。積分回路10bは、送電検出電圧vの波形を積分し、電圧vとして出力する。ここで、抵抗RはDC成分を除去するための抵抗であり、使用周波数領域でωC>>1となるように設定されている。この積分電圧vが参照電流相似電圧である。 The transmission voltage integration means 10 has a waveform of a voltage v 6 that is similar to the reference voltage of the integrated voltage waveform of the waveform of the transmission voltage v 1 that is a voltage applied to the transmission coil 3 (corresponding to the reference current similarity waveform w ref ). Is output as a circuit. In Figure 20, the transmission voltage integration means 10, the resistor R 5, the transmission voltage detecting circuit 10a composed of R 6, operational amplifier OP 7, the capacitance C 7, and a resistor R 7, the integrating circuit composed of R 8 10b. Transmission voltage detecting circuit 10a, the dividing circuit for generating a transmission voltage v 1 obtained by dividing the divided voltage (hereinafter referred to as "transmission detection voltage".) V 8 = v 1 R 6 / (R 5 + R 6) It is configured. Resistance R 6 for adjustment is semi-fixed resistor, it is possible to amplitude adjustment of the output voltage v 8. Integrating circuit 10b integrates the waveform of the transmission detected voltage v 8, and outputs a voltage v 6. Here, the resistor R 6 is a resistor for removing a DC component, and is set to satisfy ωC 7 R 8 >> 1 in the use frequency region. The integrated voltage v 6 is a reference current similar voltage.

差分波形生成手段7は、演算増幅器OP11及び抵抗R,R10,R11,R12からなる減算回路によって構成されている。差分波形生成手段7は、送電電圧積分手段10が出力する参照電流相似電圧vと、送電電流波形検出手段6aが出力する送電電流検出電圧vとの加重差(γ−γ)の電圧を受電側電流検出電圧voutとして出力する。 The differential waveform generating means 7 is constituted by a subtracting circuit including an operational amplifier OP 11 and resistors R 9 , R 10 , R 11 , R 12 . The difference waveform generation means 7 is a weighted difference (γ a v 6 −γ b) between the reference current similarity voltage v 6 output from the transmission voltage integration means 10 and the transmission current detection voltage v 3 output from the transmission current waveform detection means 6 a. The voltage v 3 ) is output as the power receiving side current detection voltage v out .

位相差検出手段8は、差分波形生成手段7が出力する受電側電流検出電圧vout=(γ−γ)の位相(即ち、2次側電流iの位相)φと、送電電圧積分手段10から出力される参照電流相似電圧vの位相φとの差分Δφ=(φ−φ)を演算し、この位相差Δφに比例する位相差検出信号s(Δφ)を出力する。周波数制御手段9は、位相差検出手段8が出力する位相差検出信号s(Δφ)の値が90度相当となるように、波形生成器5の生成する交流波形の角周波数ωをフィードバック制御する。これにより、波形生成器5が出力する交流波形は、直列共振角周波数ωに調整される。 The phase difference detection means 8 is the phase of the power reception side current detection voltage v out = (γ a v 6 −γ b v 3 ) output from the differential waveform generation means 7 (that is, the phase of the secondary side current i 2 ) φ 2. And a difference Δφ = (φ 2 −φ 6 ) between the reference current similarity voltage v 6 output from the transmission voltage integrating means 10 and the phase φ 6, and a phase difference detection signal s (proportional to the phase difference Δφ) Δφ) is output. The frequency control unit 9 feedback-controls the angular frequency ω of the AC waveform generated by the waveform generator 5 so that the value of the phase difference detection signal s (Δφ) output from the phase difference detection unit 8 corresponds to 90 degrees. . As a result, the AC waveform output from the waveform generator 5 is adjusted to the series resonance angular frequency ω 0 .

尚、図20の例では、位相差検出手段8は、差分波形生成手段7により検出される差電圧(γ−γ)の位相の位相φと参照電流相似電圧vの位相φの位相差Δφ=(φ−φ)を検出することとしているが、位相差検出手段8は、差分波形生成手段7により検出される差電圧(γ−γ)の位相の位相φと波形生成器5が生成する交流波形の位相φとの位相差Δφ=(φ−φ)を検出するように構成することもできる。この場合、周波数制御手段9は、位相差検出手段8により検出される位相差が0度となるように、波形生成器5が生成する交流波形の周波数を制御すればよい。 In the example of FIG. 20, the phase difference detection unit 8 includes the phase φ 2 of the phase of the difference voltage (γ a v 6 −γ b v 3 ) detected by the difference waveform generation unit 7 and the reference current similarity voltage v 6. The phase difference Δφ = (φ 2 −φ 6 ) of the phase φ 6 is detected, but the phase difference detection unit 8 detects the difference voltage (γ a v 6 −γ b detected by the difference waveform generation unit 7. The phase difference Δφ = (φ 2 −φ 1 ) between the phase φ 2 of the phase v 3 ) and the phase φ 1 of the AC waveform generated by the waveform generator 5 can also be detected. In this case, the frequency control unit 9 may control the frequency of the AC waveform generated by the waveform generator 5 so that the phase difference detected by the phase difference detection unit 8 becomes 0 degrees.

以上のように構成された実施例7に係る送電装置1について、以下、その動作の詳細を説明する。   Details of the operation of the power transmission device 1 according to the seventh embodiment configured as described above will be described below.

(1)送受電回路
給電回路6、送電側コイル3、受電側コイル11、共振コンデンサ12、及び負荷抵抗13により構成された送受電回路の回路方程式は次の通りである。尚、1次側回路の内部抵抗Rは、送電ロスを抑えるために小さく設計されており、使用周波数領域では無視することができる。
(1) Power transmission / reception circuit The circuit equation of the power transmission / reception circuit configured by the power supply circuit 6, the power transmission side coil 3, the power reception side coil 11, the resonance capacitor 12, and the load resistor 13 is as follows. The internal resistance R 1 of the primary circuit, the power transmission is designed small in order to suppress the loss can be ignored in use frequency domain.

ここで、vは1次コイル電圧、iは1次側電流、iは2次側電流、Zは1次側インピーダンス、Zは2次側インピーダンス、Xは2次側リアクタンス、M12=k12√(L)は送電側コイル3と受電側コイル11との間の相互インダクタンス、k12は結合係数である。Cramerの定理を用いると、1次側電流i及び2次側電流iは次のように表される。 Where v 1 is the primary coil voltage, i 1 is the primary current, i 2 is the secondary current, Z 1 is the primary impedance, Z 2 is the secondary impedance, and X 2 is the secondary reactance. , M 12 = k 12 √ (L 1 L 2 ) is a mutual inductance between the power transmission side coil 3 and the power reception side coil 11, and k 12 is a coupling coefficient. Using Cramer's theorem, the primary current i 1 and the secondary current i 2 are expressed as follows.

直列共振状態においては1次側電流iが極大となるので、この送受電回路の直列共振各周波数ωs0は、Δ|R2=0=0の条件より、次のように表される。 In the series resonance state, the primary-side current i 1 is maximized, and therefore the series resonance frequency ω s0 of the power transmission / reception circuit is expressed as follows under the condition of Δ | R2 = 0 = 0.

ここで、非結合状態(M12=0の状態)を考える。このとき、i=0であり、Δ=Zであるので、式(19a)より、非結合状態の1次側電流i (0)は次のように表される。 Here, a non-bonded state (state where M 12 = 0) is considered. At this time, since i 2 = 0 and Δ = Z 1 Z 2 , the primary-side current i 1 (0) in the uncoupled state is expressed as follows from the equation (19a).

(2)送電電流波形検出手段6a
送電電流波形検出手段6aを構成するインダクタンスL及び検出抵抗Rの回路に於いて、Kirchhoffの法則を適用すると、送電電流検出電圧vは次のように表される。
(2) Transmission current waveform detection means 6a
In the circuit of the inductance L 3 and the detection resistor R 3 that constitute the power transmission current waveform detecting means 6a, Applying the laws of Kirchhoff, transmission current detection voltage v 3 is expressed as follows.

(3)送電電圧積分手段10
送電電圧積分手段10の積分回路のゲインA7vは、次のように表される。
(3) Transmission voltage integrating means 10
The gain A 7v of the integrating circuit of the transmission voltage integrating means 10 is expressed as follows.

故に、参照電流相似電圧vは、次のように表される。 Thus, the reference current similar voltage v 6 is expressed as follows.

ここで、電圧(v/jω)は、1次コイル電圧vの積分電圧である。 Here, the voltage (v 1 / jω) is an integrated voltage of the primary coil voltage v 1 .

(4)差分波形生成手段7
差分波形生成手段7の減算回路において、R=R10,R11=R12とすると、受電側電流検出電圧はvout=(R11/R)(v−v)となり差電圧(v−v)の定数倍となる。ここで、差電圧(v−v)は次のようになる。
(4) Difference waveform generation means 7
When R 9 = R 10 and R 11 = R 12 in the subtraction circuit of the differential waveform generation means 7, the power receiving side current detection voltage becomes v out = (R 11 / R 9 ) (v 6 −v 3 ), and the differential voltage It is a constant multiple of (v 6 −v 3 ). Here, the differential voltage (v 6 −v 3 ) is as follows.

ここで、定数Aは、式(24b)より、角周波数ωに依存しない回路定数であり、送電電圧積分手段10の各回路定数によって自由に調整することが可能である。そこで、定数Aを、1次側回路から2次側回路を十分遠方に離して非結合状態(M12=0の状態)としたときの差電圧(v−v)が0となるように決定する。この条件により、定数Aは次のように決定される。 Here, the constant A 7 is a circuit constant that does not depend on the angular frequency ω from the equation (24b), and can be freely adjusted by each circuit constant of the transmission voltage integrating means 10. Therefore, the difference voltage (v 6 −v 3 ) when the constant A 7 is separated from the primary side circuit sufficiently far away from the primary side circuit to be in a non-coupled state (M 12 = 0 state) becomes zero. To be determined. Under this condition, the constant A 7 is determined as follows.

式(26)を式(25)に代入すれば、受電側電流検出電圧voutは次のように表されることが分かる。 If Expression (26) is substituted into Expression (25), it is understood that the power receiving side current detection voltage v out is expressed as follows.

即ち、受電側電流検出電圧voutの波形は、2次側電流iの波形の逆相の相似波形となることが分かる。 That is, it can be seen that the waveform of the power-receiving-side current detection voltage v out is a similar waveform that is opposite in phase to the waveform of the secondary-side current i 2 .

(5)周波数特性
図21は、図20のワイヤレス電力伝送装置における1次側電流i,2次側電流i,受電側電流検出電圧voutの振幅及び位相(電源電圧(1次コイル電圧)vに対する位相)の周波数変化を表す図である。また、図22は、受電側電流検出電圧voutと2次側電流iの比vout/iの振幅及び位相の周波数変化を表す図である。図21,図22において、f0pは並列共振周波数、f0sは直列共振周波数を表している。図20のワイヤレス電力伝送装置では、給電回路6が出力する1次コイル電圧vの周波数が直列共振周波数f0sとなるように制御される。直列共振周波数f0sの周辺に於いて、比vout/iの振幅は略一定の値となっており、比vout/iの位相は略180度(逆相)で一定となっていることが分かる。従って、受電側電流検出電圧voutとして2次側電流iの波形が得られていることが分かる。また、直列共振周波数f0sにおいて、2次側電流iの位相は1次コイル電圧vの位相に対して逆相、受電側電流検出電圧voutの位相は1次コイル電圧vの位相に対して同相となっていることが分かる。式(24a)より、参照電流相似電圧vの位相φは1次コイル電圧vの位相に対して90度ずれているので、周波数制御手段9は、位相差検出手段8により検出される位相差Δφ=(φ−φ)が90度となるように、波形生成器5が生成する交流波形の周波数を制御すれば、1次コイル電圧vの周波数が直列共振周波数f0sに一致するように制御できることが分かる。
(5) Frequency Characteristics FIG. 21 shows the amplitude and phase of the primary side current i 1 , secondary side current i 2 , and receiving side current detection voltage v out in the wireless power transmission device of FIG. 20 (power supply voltage (primary coil voltage). FIG. 4 is a diagram illustrating a frequency change of a phase with respect to v 1 . FIG. 22 is a diagram illustrating the frequency change of the amplitude and phase of the ratio v out / i 2 of the power receiving side current detection voltage v out and the secondary side current i 2 . 21 and 22, f 0p represents a parallel resonance frequency, and f 0s represents a series resonance frequency. In the wireless power transmission device of FIG. 20, the frequency of the primary coil voltage v 1 output from the power feeding circuit 6 is controlled to be the series resonance frequency f 0s . In the periphery of the series resonance frequency f 0 s, the amplitude of the ratio v out / i 2 is a substantially constant value, the ratio v out / i 2 phase is kept constant at approximately 180 degrees (reverse phase) I understand that. Therefore, it can be seen that the waveform of the secondary current i 2 is obtained as the power receiving side current detection voltage v out . Further, in the serial resonance frequency f 0 s, the secondary current i 2 of the phase opposite phase to the primary coil voltage v 1 of the phase, the power receiving side current detection voltage v out of phase primary coil voltage v 1 of the phase It turns out that it is in phase with respect to. From the equation (24a), the phase φ 6 of the reference current similarity voltage v 6 is shifted by 90 degrees with respect to the phase of the primary coil voltage v 1 , so the frequency control means 9 is detected by the phase difference detection means 8. If the frequency of the AC waveform generated by the waveform generator 5 is controlled so that the phase difference Δφ = (φ 2 −φ 6 ) is 90 degrees, the frequency of the primary coil voltage v 1 becomes the series resonance frequency f 0s . It can be seen that they can be controlled to match.

尚、図20では、差分波形生成手段7に減算回路を使用したが、電流トランスCTの接続方向を反対にすれば、差分波形生成手段7をより簡単な加算回路を用いて構成することが可能である。図23に、差分波形生成手段7に、演算増幅器OP11及び抵抗R,R’,R10,R11からなる加算回路を使用して構成した実施例7に係るワイヤレス電力伝送装置の基本構成を示す。電流トランスCTの接続方向を反対とすることにより、インダクタンスL,Lの間の相互インダクタンスM34は−M34に変更される。従って、式(22)においてvの付号は逆転するので、加算器によって電圧vと電圧vの和電圧を演算することにより、1次コイル電流iの電流波形と、非結合状態(M12=0の状態)の1次側電流i (0)の電流波形との差分波形を得ることができる。尚、図23の加算回路では、電圧vと電圧vの加重和を演算する際の重み係数(本発明の受電側電流検出回路の第6の構成における加重差(γref−γi1)の差分加重値(γ,γ)に相当)を調節可能とするため、抵抗Rに直列接続された調整用の抵抗R’に半固定抵抗を使用している。 In FIG. 20, a subtraction circuit is used for the difference waveform generation means 7. However, if the connection direction of the current transformer CT is reversed, the difference waveform generation means 7 can be configured using a simpler addition circuit. It is. FIG. 23 shows the basics of the wireless power transmission apparatus according to the seventh embodiment, in which the difference waveform generating means 7 is configured by using an adder circuit composed of an operational amplifier OP 11 and resistors R 9 , R 9 ′, R 10 , R 11. The configuration is shown. By the connection direction of the current transformer CT and opposite, mutual inductance M 34 between the inductance L 3, L 4 is changed to -M 34. Accordingly, since the issue with the v 3 in the formula (22) is reversed, by calculating the sum voltage of the voltage v 3 and the voltage v 6 by the adder, and the current waveform of the primary coil current i 1, uncoupled A difference waveform from the current waveform of the primary-side current i 1 (0) in the state (M 12 = 0) can be obtained. In the addition circuit of FIG. 23, a weighting factor (weight difference (γ a w ref −γ in the sixth configuration of the power receiving side current detection circuit of the present invention) when calculating the weighted sum of the voltage v 3 and the voltage v 6 is used. b w difference weights of i1) (γ a, to enable adjusting the equivalent) to gamma b), using the semi-fixed resistor to the resistor R 9 'for adjustment connected in series to the resistor R 9.

さらに、図20,図23の例では、送電電圧検出回路10aとして分圧回路を用いた例を示したが、送電電圧検出回路10aとしては、これ以外にも、電圧検出トランスVTやアイソレーションアンプ(絶縁増幅器)等で送電電圧vをアイソレーションして検出する回路を使用することもできる。図24に、送電電圧検出回路10aのいくつかの例を示す。図24(a)は、図20,図23の送電電圧検出回路10aの周辺部分を抜き出したものである。図24(b),(c)は、図24(a)の部分を置き換える他の例を示した図である。図24(b)は、送電電圧検出回路10aに電圧検出トランスと分圧回路を使用した例、図24(c)は、送電電圧検出回路10aに分圧回路とアイソレーションアンプを使用した例である。送電電圧vが高電圧の場合には、送電電圧vと積分回路10bの入力電圧との電位を分離するために、絶縁させて検出する必要があるので、図24(b),(c)のようにアイソレーションする構成を採るのがよい。 Furthermore, in the examples of FIGS. 20 and 23, an example in which a voltage dividing circuit is used as the transmission voltage detection circuit 10a is shown. However, as the transmission voltage detection circuit 10a, besides this, a voltage detection transformer VT or an isolation amplifier is used. A circuit for isolating and detecting the transmission voltage v 1 with an (insulation amplifier) or the like can also be used. FIG. 24 shows some examples of the transmission voltage detection circuit 10a. FIG. 24 (a) shows a portion around the transmission voltage detection circuit 10a shown in FIGS. FIGS. 24B and 24C are diagrams showing another example in which the part of FIG. 24A is replaced. FIG. 24B is an example in which a voltage detection transformer and a voltage dividing circuit are used in the transmission voltage detection circuit 10a, and FIG. 24C is an example in which a voltage dividing circuit and an isolation amplifier are used in the transmission voltage detection circuit 10a. is there. When the transmission voltage v 1 is a high voltage, it is necessary to insulate and detect the potential between the transmission voltage v 1 and the input voltage of the integration circuit 10b. It is better to adopt an isolation configuration as in (1).

また、本実施例では、送電電圧積分手段10,差分波形生成手段7をアナログ回路により構成した例を示したが、送電電圧検出回路10aが出力する送電検出電圧v、及び送電電流波形検出手段6aが出力する送電電流検出電圧vをAD変換し、積分回路10b及び差分波形生成手段7をデジタル回路によって構成することも可能である。また、マイコンや、FPGA(Field-Programmable Gate Array)などの再構成可能論理回路を使用して構成することも可能である。 In the present embodiment, the transmission voltage integration means 10 and the difference waveform generation means 7 are configured by analog circuits. However, the transmission detection voltage v 8 output from the transmission voltage detection circuit 10a and the transmission current waveform detection means are shown. 6a is a transmission current detection voltage v 3 to output AD-converted, it is also possible to configure the integration circuit 10b and the differential waveform generating means 7 by a digital circuit. It is also possible to configure using a reconfigurable logic circuit such as a microcomputer or FPGA (Field-Programmable Gate Array).

1 ワイヤレス電力伝送装置(送電装置)
2 受電装置
3 送電側コイル
4 ダミーコイル
5 波形生成器
6 給電回路
6a 送電電流波形検出手段
7 差分波形生成手段
7a,7b 電流センサ
7c 差電流演算回路
8 位相差検出手段
9 周波数制御手段
10 送電電圧積分手段
10a 送電電圧検出回路
10b 積分回路11 受電側コイル
11a 共振用受電側コイル
11b 受電側ロードコイル
12 共振コンデンサ
13 負荷抵抗
14 1次側コンデンサ
15 調整抵抗
CT1 電流トランス
21 磁性体コア
22 第1の導線
23 第2の導線
24 第3の導線
25 第4の導線
1 Wireless power transmission equipment (power transmission equipment)
2 Power receiving device 3 Power transmission side coil 4 Dummy coil 5 Waveform generator 6 Power feeding circuit 6a Power transmission current waveform detection means 7 Difference waveform generation means 7a, 7b Current sensor 7c Difference current calculation circuit 8 Phase difference detection means 9 Frequency control means 10 Transmission voltage Integration means 10a Transmission voltage detection circuit 10b Integration circuit 11 Power receiving side coil 11a Receiving side coil 11b Receiving side load coil 12 Resonant capacitor 13 Load resistor 14 Primary side capacitor 15 Adjustment resistor CT1 Current transformer 21 Magnetic core 22 First Conductor 23 Second conductor 24 Third conductor 25 Fourth conductor

Claims (9)

送電側コイルと、前記送電側コイルに通電する交流波形を生成する波形生成器と、前記波形生成器が生成する交流波形に従って前記送電側コイルに交流電力を給電する給電回路と、を備え、前記送電側コイルから、外部の受電装置に備えられた受電側コイルに対して電力をワイヤレス送電するワイヤレス電力伝送装置において用いられる受電側電流検出回路であって、
前記給電回路から前記送電側コイルに通電される送電電流iの波形に相似な波形である送電電流検出波形wi1を生成する送電電流波形検出手段と、
前記送電側コイルが前記受電側コイルに磁界結合していない状態(以下「非結合状態」という。)の前記送電側コイルに前記給電回路から通電した場合の電流波形と相似な波形である参照電流相似波形wrefを生成する参照電流相似波形生成手段と、
前記送電電流検出波形wi1と前記参照電流相似波形wrefとの加重差の波形である受電側電流検出波形woutを生成し出力する差分波形生成手段と、を備え、
非結合状態において、前記受電側電流検出波形woutの振幅が略0となるように、前記差分波形生成手段における差分加重値、又は前記参照電流相似波形生成手段における前記参照電流相似波形の出力振幅値が調整され、又は調整可能とされていることを特徴とする受電側電流検出回路。
A power transmission side coil, a waveform generator that generates an AC waveform to be passed through the power transmission side coil, and a power supply circuit that supplies AC power to the power transmission side coil according to the AC waveform generated by the waveform generator, A power receiving side current detection circuit used in a wireless power transmission device that wirelessly transmits power to a power receiving side coil provided in an external power receiving device from a power transmitting side coil,
A power transmission current waveform detecting means for generating a power transmission current detection waveform w i1 having a waveform similar to the waveform of the power transmission current i 1 energized from the power feeding circuit to the power transmission side coil;
A reference current having a waveform similar to a current waveform when the power transmission side coil is energized from the power feeding circuit in a state where the power transmission side coil is not magnetically coupled to the power reception side coil (hereinafter referred to as “non-coupled state”). A reference current similar waveform generating means for generating a similar waveform w ref ;
Differential waveform generation means for generating and outputting a power receiving side current detection waveform w out that is a waveform of a weighted difference between the transmission current detection waveform w i1 and the reference current similarity waveform w ref ,
In a non-coupled state, the differential weight generation value in the differential waveform generation means or the output amplitude of the reference current similarity waveform in the reference current similarity waveform generation means so that the amplitude of the power reception side current detection waveform w out becomes substantially zero A power receiving side current detection circuit, characterized in that a value is adjusted or adjustable.
前記参照電流相似波形生成手段は、前記送電側コイルと並列に接続され、前記受電側コイルとは磁界結合しないダミーコイルを備え、前記ダミーコイルを流れる電流であるダミーコイル電流iの波形として前記参照電流相似波形wrefを生成するものであり、
前記差分波形生成手段は、前記ダミーコイルを流れる前記ダミーコイル電流iと、前記送電側コイルを流れる前記送電電流iとの加重差電流の波形を前記受電側電流検出波形woutとして出力するものであり、
前記ダミーコイルのインダクタンスLの前記送電側コイルのインダクタンスLに対する比L/Lをαd1としたとき、前記差分波形生成手段は、前記加重差電流の波形として、前記ダミーコイル電流iのαd1倍と前記1次側電流iとの加重差電流(αd1−i)の波形を出力するものであることを特徴とする請求項1記載の受電側電流検出回路。
The reference current waveform similar generating means, the power transmission coil and is connected in parallel, the comprises a dummy coil not magnetically coupled to the power receiving coil, said as the waveform of the dummy coil current i d is a current flowing through the dummy coil A reference current similarity waveform w ref is generated,
Said differential waveform generating means outputs a dummy coil current i d flowing through the dummy coil, the waveform of the weighted difference current between the power current i 1 flowing through the power transmission coil as the power-receiving-side current detection waveform w out Is,
When the ratio L d / L 1 for the inductance L 1 of the power transmission coil of the inductance L d of the dummy coil and alpha d1, the differential waveform generating means as the waveform of the weighted difference current, the dummy coil current i 2. The power receiving side current detection circuit according to claim 1, which outputs a waveform of a weighted difference current (α d1 i d −i 1 ) between α d1 times d and the primary side current i 1. .
前記送電側コイル及び前記ダミーコイルに対して並列に接続された調整抵抗を備え、
前記差分波形生成手段は、前記ダミーコイルを流れる電流である前記ダミーコイル電流i及び前記調整抵抗を流れる電流である調整電流iajの和と、前記送電側コイルを流れる電流である前記1次側電流iとの加重差電流(αd1+iaj−i)を検出するものであり、
調整抵抗は、前記受電側コイルが前記送電側コイルに結合していない状態に於いて、前記加重差電流(αd1+iaj−i)が零となるように調整されていることを特徴とする請求項2記載の受電側電流検出回路。
An adjustment resistor connected in parallel to the power transmission side coil and the dummy coil;
Said differential waveform generating means, the sum of said dummy coil current is a current flowing through the dummy coil i d and adjustment current i aj is a current flowing through the adjustment resistor, wherein a current flowing through the power transmission coil the primary A weighted differential current (α d1 i d + i aj −i 1 ) with respect to the side current i 1 is detected,
The adjusting resistor is adjusted so that the weighted difference current (α d1 i d + i aj −i 1 ) becomes zero in a state where the power receiving coil is not coupled to the power transmitting coil. The power receiving side current detection circuit according to claim 2, wherein:
磁性体コアと、前記磁気コアが1回以上鎖交する巻線部が形成された第1、第2、及び第3の導線と、を具備し、且つ、
前記第1の導線が、前記送電側コイルの入出力配線上に、前記送電側コイルに直列且つ前記ダミーコイルと並列に接続され、
前記第2の導線が、前記ダミーコイルの入出力配線上に、前記ダミーコイルに直列且つ前記送電側コイルと並列に接続された、電流トランスを備え、
前記送電電流波形検出手段及び前記差分波形生成手段は、前記電流トランスにより一体として構成されており、
前記ダミーコイルから前記第2の導線の前記巻線部へ向かって電流を流し、且つ前記送電側コイルから前記第1の導線の前記巻線部へ向かって電流を流した場合に、
前記第2の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きが、前記第1の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きとは反対向きとなるように、
前記送電側コイルが前記第1の導線に接続され、前記ダミーコイルが前記第2の導線に接続されており、
且つ、前記第2の導線の前記巻線部の巻数が、前記第1の導線の前記巻線部の巻数のαd1倍であることを特徴とする請求項2記載の受電側電流検出回路。
A magnetic core, and first, second, and third conductors formed with winding portions where the magnetic core is linked one or more times, and
The first conductive wire is connected in series with the power transmission side coil and in parallel with the dummy coil on the input / output wiring of the power transmission side coil,
The second conductive wire includes a current transformer connected in series with the dummy coil and in parallel with the power transmission side coil on the input / output wiring of the dummy coil,
The power transmission current waveform detection means and the difference waveform generation means are configured integrally with the current transformer,
When a current flows from the dummy coil toward the winding portion of the second conductor, and a current flows from the power transmission side coil toward the winding portion of the first conductor,
The direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the second conducting wire is the direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the first conducting wire. So that the opposite direction
The power transmission coil is connected to the first conductor, the dummy coil is connected to the second conductor,
3. The power receiving side current detection circuit according to claim 2, wherein the number of turns of the winding portion of the second conducting wire is α d1 times the number of turns of the winding portion of the first conducting wire.
磁性体コアと、前記磁気コアが1回以上鎖交する巻線部が形成された第1、第2、第3、及び第4の導線と、を具備し、且つ、
前記第1の導線が、前記送電側コイルの入出力配線上に、前記送電側コイルに直列且つ前記ダミーコイル及び前記調整抵抗と並列に接続され、
前記第2の導線が、前記ダミーコイルの入出力配線上に、前記ダミーコイルに直列且つ前記送電側コイル及び前記調整抵抗と並列に接続され、
前記第4の導線が、前記調整抵抗の入出力配線上に、前記調整抵抗に直列且つ前記送電側コイル及び前記ダミーコイルと並列に接続された、電流トランスを備え、
前記送電電流波形検出手段及び前記差分波形生成手段は、前記電流トランスにより一体として構成されており、
前記ダミーコイルから前記第2の導線の前記巻線部へ向かって電流を流し、且つ前記送電側コイルから前記第1の導線の前記巻線部へ向かって電流を流し、且つ前記調整抵抗から前記第4の導線の前記巻線部へ向かって電流を流した場合に、
前記第2の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きが、前記第1の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きとは反対向き、且つ、前記第4の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きが、前記第1の導線の前記巻線部に流れる電流が前記磁性体コア内に作る磁場の向きとは反対向きとなるように、
前記送電側コイルが前記第1の導線に接続され、前記ダミーコイルが前記第2の導線に接続され、前記調整抵抗が前記第4の導線に接続されており、
且つ、前記第2の導線の前記巻線部の巻数が、前記第1の導線の前記巻線部の巻数のαd1倍であることを特徴とする請求項3記載の受電側電流検出回路。
A magnetic core, and first, second, third, and fourth conductors formed with winding portions where the magnetic core is linked one or more times, and
The first conductive wire is connected in series with the power transmission side coil and in parallel with the dummy coil and the adjustment resistor on the input / output wiring of the power transmission side coil,
The second conductive wire is connected in series with the dummy coil and in parallel with the power transmission side coil and the adjustment resistor on the input / output wiring of the dummy coil,
The fourth conductor includes a current transformer connected to the adjustment resistor in series with the adjustment resistor and in parallel with the power transmission side coil and the dummy coil on the input / output wiring of the adjustment resistor,
The power transmission current waveform detection means and the difference waveform generation means are configured integrally with the current transformer,
Current flows from the dummy coil toward the winding portion of the second conductor, and current flows from the power transmission side coil toward the winding portion of the first conductor, and from the adjustment resistor When a current is passed toward the winding part of the fourth conductor,
The direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the second conducting wire is the direction of the magnetic field created in the magnetic core by the current flowing in the winding part of the first conducting wire. The direction of the magnetic field created in the magnetic core by the current flowing in the winding portion of the fourth conductor is opposite to that of the fourth conductor, and the current flowing in the winding portion of the first conductor is the magnetic body. In the opposite direction to the direction of the magnetic field created in the core,
The power transmission side coil is connected to the first conductor, the dummy coil is connected to the second conductor, and the adjustment resistor is connected to the fourth conductor;
4. The power receiving side current detection circuit according to claim 3, wherein the number of turns of the winding portion of the second conducting wire is α d1 times the number of turns of the winding portion of the first conducting wire.
前記参照電流相似波形生成手段は、前記送電側コイルに印加される電圧である送電電圧vの波形の積分波形を演算し参照電流相似波形wrefとして出力する送電電圧積分手段を備え、
前記差分波形生成手段は、前記送電電圧積分手段が出力する前記参照電流相似波形wrefと、前記送電電流波形検出手段が出力する前記送電電流検出波形wi1との加重差(γref−γi1)の波形を前記受電側電流検出波形woutとして出力するものであり、
前記送電側コイルが前記受電側コイルと磁界結合していない状態において、前記受電側電流検出波形woutの振幅が略0となるように、前記差分波形生成手段における差分加重値(γ,γ)、又は前記送電電圧積分手段における前記参照電流相似波形wrefの振幅が調整され、又は調整可能とされていることを特徴とする請求項1記載の受電側電流検出回路。
The reference current similar waveform generating means comprises a transmission voltage integration means for outputting the integrated waveform of the power transmission side is a voltage applied to the coil transmission voltage v 1 of the waveform as an operation reference current waveform similar w ref,
The difference waveform generation means is a weighted difference (γ a w ref −) between the reference current similarity waveform w ref output from the transmission voltage integration means and the transmission current detection waveform w i1 output from the transmission current waveform detection means. a waveform of γ b w i1 ) is output as the power receiving side current detection waveform w out ,
In a state where the power transmission side coil is not magnetically coupled to the power reception side coil, the differential weight generation value (γ a , γ in the differential waveform generation means is set so that the amplitude of the power reception side current detection waveform w out becomes substantially zero. 2. The power receiving side current detection circuit according to claim 1, wherein an amplitude of the reference current similarity waveform w ref in the power transmission voltage integrating means is adjusted or adjustable.
送電側コイルと、前記送電側コイルに通電する交流波形を生成する波形生成器と、前記波形生成器が生成する交流波形に従って前記送電側コイルに交流電力を給電する給電回路と、を備え、前記送電側コイルから、外部の受電装置に備えられた受電側コイルに対して電力をワイヤレス送電するワイヤレス電力伝送装置であって、
請求項1乃至6の何れか一に記載の受電側電流検出回路と、
前記受電側電流検出波形の位相と前記送電側コイルに給電する給電電圧の位相が同相となるように給電電圧の周波数を調整する送電周波数調整手段と、を備えたことを特徴とするワイヤレス電力伝送装置。
A power transmission side coil, a waveform generator that generates an AC waveform to be passed through the power transmission side coil, and a power supply circuit that supplies AC power to the power transmission side coil according to the AC waveform generated by the waveform generator, A wireless power transmission device that wirelessly transmits power from a power transmission side coil to a power reception side coil provided in an external power reception device,
A power receiving side current detection circuit according to any one of claims 1 to 6,
A power transmission frequency adjusting means for adjusting a frequency of the power supply voltage so that a phase of the power reception side current detection waveform and a phase of the power supply voltage supplied to the power transmission side coil are in phase with each other. apparatus.
前記送電周波数調整手段は、
前記差分波形生成手段が出力する前記加重差電流(αd1−i)と前記ダミーコイル電流iとの位相差Δφ2d、又は前記差分波形生成手段により出力される前記加重差電流(αd1−i)の波形と前記波形生成器が生成する交流波形との位相差Δφ20を検出する位相差検出手段と、
前記位相差検出手段により検出される位相差に基づき、
前記加重差電流と前記ダミーコイル電流との位相差Δφ2dが90度となるように、
又は、前記加重差電流と前記波形生成器が生成する交流波形との位相差Δφ20が0度となるように、
前記波形生成器が生成する交流波形の周波数を制御する周波数制御手段と、を備えたことを特徴とする請求項2乃至5の何れか一を引用する請求項7記載のワイヤレス電力伝送装置。
The power transmission frequency adjusting means is
The weight difference current (α d1 i d -i 1) and the phase difference [Delta] [phi 2d between the dummy coil current i d, or the weighted difference current output by said differential waveform generating means for outputting said difference waveform generating means ( phase difference detecting means for detecting a phase difference Δφ 20 between the waveform of α d1 i d −i 1 ) and the AC waveform generated by the waveform generator;
Based on the phase difference detected by the phase difference detection means,
The phase difference Δφ 2d between the weighted difference current and the dummy coil current is 90 degrees.
Alternatively, the phase difference Δφ 20 between the weighted difference current and the AC waveform generated by the waveform generator is 0 degree.
The wireless power transmission device according to any one of claims 2 to 5, further comprising frequency control means for controlling a frequency of an AC waveform generated by the waveform generator.
前記給電回路に対して並列に接続された前記送電側コイル及び前記ダミーコイルと、前記給電回路との間に、前記送電側コイル及び前記ダミーコイルに直列となるように接続された1次側コンデンサと、
前記差分波形生成手段により検出される前記加重差電流と前記波形生成器が生成する交流波形との位相差Δφ20を検出する位相差検出手段と、
前記位相差検出手段により検出される位相差に基づき、
前記加重差電流と前記波形生成器が生成する交流波形との位相差Δφ20が0度となるように、
前記波形生成器が生成する交流波形の周波数を制御する周波数制御手段と、を備えたことを特徴とする請求項2乃至5の何れか一を引用する請求項7記載のワイヤレス電力伝送装置。
A primary side capacitor connected in series with the power transmission side coil and the dummy coil between the power transmission side coil and the dummy coil connected in parallel to the power supply circuit, and the power supply circuit. When,
Phase difference detection means for detecting a phase difference Δφ 20 between the weighted difference current detected by the difference waveform generation means and the AC waveform generated by the waveform generator;
Based on the phase difference detected by the phase difference detection means,
The phase difference Δφ 20 between the weighted difference current and the AC waveform generated by the waveform generator is 0 degree.
The wireless power transmission device according to any one of claims 2 to 5, further comprising frequency control means for controlling a frequency of an AC waveform generated by the waveform generator.
JP2019042088A 2018-03-12 2019-03-07 Wireless power transmission device and power receiving side current detection circuit thereof Pending JP2019162023A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018044799 2018-03-12
JP2018044799 2018-03-12

Publications (1)

Publication Number Publication Date
JP2019162023A true JP2019162023A (en) 2019-09-19

Family

ID=67993667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042088A Pending JP2019162023A (en) 2018-03-12 2019-03-07 Wireless power transmission device and power receiving side current detection circuit thereof

Country Status (1)

Country Link
JP (1) JP2019162023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131676A1 (en) * 2020-12-16 2022-06-23 삼성전자 주식회사 Electronic device for stabilizing output current of charging circuit and method for controlling same
CN116780793A (en) * 2023-08-23 2023-09-19 中山大学 Parameter design and frequency modulation method for maximizing wireless charging output capacity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131676A1 (en) * 2020-12-16 2022-06-23 삼성전자 주식회사 Electronic device for stabilizing output current of charging circuit and method for controlling same
CN116780793A (en) * 2023-08-23 2023-09-19 中山大学 Parameter design and frequency modulation method for maximizing wireless charging output capacity
CN116780793B (en) * 2023-08-23 2023-12-12 中山大学 Parameter design and frequency modulation method for maximizing wireless charging output capacity

Similar Documents

Publication Publication Date Title
Mur-Miranda et al. Wireless power transfer using weakly coupled magnetostatic resonators
CN108462260B (en) Detector, power transmitter and receiver, and power supply system
Niculae et al. A review of electric vehicles charging technologies stationary and dynamic
EP2782214B1 (en) Power transmission system
US10923966B2 (en) Coil structures for alignment and inductive wireless power transfer
US8669677B2 (en) Wireless power feeder, wireless power receiver, and wireless power transmission system
TWI555295B (en) Resonant non-contact power supply and power receiver
JP6406225B2 (en) Non-contact power feeding device
EP3031129A1 (en) Methods for parameter identification, load monitoring and output power control in wireless power transfer systems
CN103782472A (en) System and method for compensating a battery charger installed in a vehicle
Ni et al. Design and comparison of parallel and series resonant topology in wireless power transfer
JP2018102054A (en) Contactless power reception device and contactless power transmission system
Agcal et al. Wireless power transfer by using magnetically coupled resonators
JP2019162023A (en) Wireless power transmission device and power receiving side current detection circuit thereof
JPWO2015053246A1 (en) Wireless power transmission system
Alphones et al. Review on wireless power transfer technology
JP2013162611A (en) Wireless power feeding device
WO2016208402A1 (en) Power transmitting device, power receiving device, and power transmission system
Tiwari et al. Misalignment tolerant primary controller for series-series compensated static wireless charging of battery
JP2012039692A (en) Noncontact power transmission apparatus
Huh et al. Optimal transmitter selection method for maximum power efficiency for wireless power transfer system using multi-transmitter
Gulzar et al. A comprehensive electromagnetic design, simulation and analysis of wireless charging coils for large power applications
Murliky et al. Multivariable optimization method for inductive power transfer in wireless sensors nodes
CN108008173A (en) Alternating current-direct current is superimposed test device
Wang et al. An intermediate-coil and ferrite-based coupling structure with load-independent constant outputs for inductive power transfer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191113