JP2019158237A - Re-liquefier - Google Patents

Re-liquefier Download PDF

Info

Publication number
JP2019158237A
JP2019158237A JP2018045437A JP2018045437A JP2019158237A JP 2019158237 A JP2019158237 A JP 2019158237A JP 2018045437 A JP2018045437 A JP 2018045437A JP 2018045437 A JP2018045437 A JP 2018045437A JP 2019158237 A JP2019158237 A JP 2019158237A
Authority
JP
Japan
Prior art keywords
gas
channel
flow path
additional
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018045437A
Other languages
Japanese (ja)
Other versions
JP6623244B2 (en
Inventor
野一色 公二
Koji Noisshiki
公二 野一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018045437A priority Critical patent/JP6623244B2/en
Priority to KR1020207025876A priority patent/KR102429817B1/en
Priority to US16/975,986 priority patent/US11754337B2/en
Priority to EP19766710.8A priority patent/EP3767210B1/en
Priority to CN201980018876.XA priority patent/CN111819412B/en
Priority to PCT/JP2019/009009 priority patent/WO2019176703A1/en
Publication of JP2019158237A publication Critical patent/JP2019158237A/en
Application granted granted Critical
Publication of JP6623244B2 publication Critical patent/JP6623244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a re-liquefier capable of effectively re-liquefying gas evaporated from liquid.SOLUTION: A re-liquefier comprises: an admixture flow channel for permitting to flow a fluid mixture in which the plurality of channels are connected to a downstream end of one of the liquid channel and the gas channel, and the re-liquefaction promoting liquid flowing in the liquid channel and the re-liquefaction target gas flowing in the gas channel are the re-liquefaction promoting gas is promoted by the direct heat exchange between the re-liquefaction promoting liquid and the re-liquefied gas by mixing and generating a mixed fluid; and a gas cooling flow channel for permitting to flow gas cooling coolant in which the re-liquefaction target gas flowing in the gas flow channel is cooled before being mixed with the re-liquefaction promoting liquid flowing in the liquid flow path by indirect heat exchange with the re-liquefaction target gas through the separation wall. In order to suppress vaporization of the re-liquefaction promoting liquid when the re-liquefaction target gas flowing through the gas flow channel is mixed with the re-liquefaction promoting liquid flowing through the liquid flow channel.SELECTED DRAWING: Figure 2

Description

本発明は、液体から気化したガスを再液化する再液化装置に関する。   The present invention relates to a reliquefaction apparatus for reliquefying gas vaporized from a liquid.

容器内で保管されている液体が気化してガスが発生すると、利用できる液体の総量が減少する。例えば、液化天然ガス(LNG)等の液化ガスの一部が貯蔵タンク内で気化してボイルオフガスが発生すると、液化ガスの貯蔵量が減少する。その結果、利用できる液化ガスの総量が減少する。   When the liquid stored in the container is vaporized and gas is generated, the total amount of available liquid is reduced. For example, when a part of the liquefied gas such as liquefied natural gas (LNG) is vaporized in the storage tank and boil-off gas is generated, the storage amount of the liquefied gas is reduced. As a result, the total amount of available liquefied gas is reduced.

そこで、液体から気化したガスを再液化する装置が提案されている。例えば、下記特許文献1は、ボイルオフガスに液化天然ガスを混合することによって当該ボイルオフガスを冷却した後、この冷却されたボイルオフガスをボイルオフガス液化器にて液化天然ガスの冷熱を利用して再液化する装置を開示している。   Therefore, an apparatus for re-liquefying gas evaporated from a liquid has been proposed. For example, in the following Patent Document 1, after cooling the boil-off gas by mixing liquefied natural gas with the boil-off gas, the cooled boil-off gas is recycled using the cold heat of the liquefied natural gas in the boil-off gas liquefier. An apparatus for liquefying is disclosed.

特開2000−146430号公報JP 2000-146430 A

しかしながら、特許文献1に記載の装置では、ボイルオフガスの再液化を効率よく行うことが難しいという課題がある。すなわち、ボイルオフガスを再液化する際に液化天然ガスとボイルオフガスを混合すると、ボイルオフガスの熱により液化天然ガスが気化してしまう。これを防止するには、ボイルオフガスと混合する液化天然ガスを大量に準備し且つ当該液化天然ガスとボイルオフガスをゆっくりと混合する必要がある。したがって、特許文献1に記載の装置では、ボイルオフガスを効率よく再液化することが難しい。   However, the apparatus described in Patent Document 1 has a problem that it is difficult to efficiently reliquefy the boil-off gas. That is, when liquefied natural gas and boil-off gas are mixed when re-liquefying the boil-off gas, the liquefied natural gas is vaporized by the heat of the boil-off gas. In order to prevent this, it is necessary to prepare a large amount of liquefied natural gas to be mixed with the boil-off gas and to slowly mix the liquefied natural gas and the boil-off gas. Therefore, in the apparatus described in Patent Document 1, it is difficult to efficiently liquefy the boil-off gas.

本発明の目的は、液体から気化したガスを効率よく再液化することができる再液化装置を提供することである。   The objective of this invention is providing the reliquefaction apparatus which can reliquefy efficiently the gas vaporized from the liquid.

本発明により提供されるのは、液体から気化したガスであって再液化の対象となる再液化対象ガスと前記再液化対象ガスに混合される前記液体であって前記再液化対象ガスの再液化を促進する再液化促進液体とを混合して直接的に熱交換することにより前記再液化対象ガスを再液化する再液化装置であって、前記再液化対象ガスと前記再液化促進液体とを含む流体を流通させる複数の流路が形成された流路形成体を備え、前記流路形成体は、所定の方向に積層された状態で互いに接合された複数の基板であって前記複数の基板の積層方向で重なる2つの基板の各々が有する重ね合わせ面の少なくとも一方において当該重ね合わせ面に沿うように延びて前記複数の流路の少なくとも一部を形成する複数の溝が設けられた複数の流路基板を備え、前記複数の流路は、それぞれ、前記重ね合わせ面に沿って延びるように形成され、前記再液化促進液体が流れるのを許容する液体流路と、前記積層方向において前記液体流路との間に存在する仕切壁を介して前記液体流路に隣接することで前記液体流路から独立して設けられるとともに前記重ね合わせ面に沿って延びるように形成され、前記再液化対象ガスが流れるのを許容するガス流路と、前記積層方向に延びるように形成され、前記液体流路と前記ガス流路とを接続する混合接続流路と、前記液体流路及び前記ガス流路のうちの何れかの流路の下流端部に接続された状態で前記重ね合わせ面に沿って延びるように形成され、前記混合流体が流れるのを許容する混合流路と、前記積層方向において前記ガス流路との間に存在する分離壁を介して前記ガス流路に隣接することで前記ガス流路から独立して設けられ、前記再液化対象ガスとの間で前記分離壁を介して間接的に熱交換するためにガス冷却冷媒が流れるのを許容するガス冷却流路とを含む。   Provided by the present invention is a gas that is vaporized from a liquid and is a reliquefaction target gas to be reliquefied, and the liquid that is mixed with the reliquefaction target gas, and the reliquefaction of the reliquefaction target gas A reliquefaction apparatus for reliquefying the reliquefaction target gas by mixing and directly exchanging heat with a reliquefaction promotion liquid that promotes the reliquefaction promotion liquid, including the reliquefaction target gas and the reliquefaction promotion liquid A flow path forming body having a plurality of flow paths through which a fluid flows, wherein the flow path forming body is a plurality of substrates bonded together in a stacked state in a predetermined direction. A plurality of streams provided with a plurality of grooves extending along the overlapping surface and forming at least a part of the plurality of flow paths in at least one of the overlapping surfaces of each of the two substrates overlapping in the stacking direction With a road substrate, Each of the plurality of channels is formed so as to extend along the overlapping surface, and between the liquid channel that allows the reliquefaction promoting liquid to flow and the liquid channel in the stacking direction. Adjacent to the liquid flow path through an existing partition wall, the liquid flow path is formed independently of the liquid flow path and extends along the overlapping surface, and allows the gas to be reliquefied to flow. A gas flow path that extends in the stacking direction, a mixed connection flow path that connects the liquid flow path and the gas flow path, and any one of the liquid flow path and the gas flow path Between the mixed flow path formed to extend along the overlapping surface in a state connected to the downstream end of the flow path and allowing the mixed fluid to flow, and the gas flow path in the stacking direction Through the separation wall The gas cooling refrigerant flows in order to exchange heat indirectly with the reliquefaction target gas via the separation wall by being adjacent to the gas flow path. And a gas cooling flow path that allows

上記再液化装置においては、液体流路を流れる再液化促進液体とガス流路を流れる再液化対象ガスとが混合されて混合流体が生成されることによる再液化促進液体と再液化対象ガスとの間での直接的な熱交換により再液化対象ガスの再液化が促進されるので、再液化対象ガスを再液化することができる。   In the reliquefaction apparatus, the reliquefaction promoting liquid and the reliquefaction target gas produced by mixing the reliquefaction promoting liquid flowing in the liquid flow path and the reliquefaction target gas flowing in the gas flow path to generate a mixed fluid. Since the reliquefaction target gas is promoted by direct heat exchange between the two, the reliquefaction target gas can be reliquefied.

ここで、上記再液化装置においては、ガス流路を流れる再液化対象ガスが予め冷却された後で液体流路を流れる再液化促進液体と混合されるので、ガス流路を流れる再液化対象ガスと液体流路を流れる再液化促進液体とが混合される際の再液化促進液体の気化を抑制することができる。その結果、再液化対象ガスの再液化を効率よく行うことができる。   Here, in the reliquefaction apparatus, the reliquefaction target gas flowing in the gas flow path is mixed with the reliquefaction promoting liquid flowing in the liquid flow path after being cooled in advance, so that the reliquefaction target gas flowing in the gas flow path Vaporization of the reliquefaction promoting liquid when the reliquefaction promoting liquid flowing through the liquid flow path is mixed. As a result, the reliquefaction target gas can be efficiently reliquefied.

加えて、上記再液化装置においては、ガス流路を流れる再液化対象ガスの予冷がガス冷却流路を流れるガス冷却冷媒と再液化対象ガスとの間での分離壁を介しての間接的な熱交換によって行われるので、ガス冷却冷媒を再液化対象ガスに混ぜずに、ガス流路を流れる再液化対象ガスの予冷を行うことができる。   In addition, in the reliquefaction apparatus, the precooling of the gas to be reliquefied flowing in the gas flow path is indirectly performed through a separation wall between the gas cooling refrigerant flowing in the gas cooling flow path and the gas to be reliquefied. Since it is performed by heat exchange, it is possible to precool the liquefaction target gas flowing through the gas flow path without mixing the gas cooling refrigerant with the liquefaction target gas.

上記再液化装置において、好ましくは、前記複数の流路基板は、前記積層方向の一方側に位置する前記重ね合わせ面である第1のベース重ね合わせ面と前記積層方向の他方側に位置する前記重ね合わせ面である第2のベース重ね合わせ面とを有するベース基板と、前記第1のベース重ね合わせ面に重ね合わされた状態で前記ベース基板に接合され、前記ベース基板との間に前記ガス流路を形成するガス流路基板と、前記第2のベース重ね合わせ面に重ね合わされた状態で前記ベース基板に接合され、前記ベース基板との間に前記液体流路を形成する流体流路基板と、前記ガス流路基板のうち前記積層方向において一方側に位置する前記重ね合わせ面に重ね合わされた状態で前記ガス流路基板に接合され、前記ガス流路基板との間に前記ガス冷却流路を形成するガス冷却流路基板とを含む。   In the reliquefaction apparatus, preferably, the plurality of flow path substrates are a first base overlapping surface that is the overlapping surface positioned on one side in the stacking direction and the other base in the stacking direction. A base substrate having a second base overlapping surface, which is an overlapping surface, and the base substrate bonded to the base substrate in a state of being overlapped with the first base overlapping surface, and the gas flow between the base substrate and the base substrate. A gas flow path substrate that forms a path, a fluid flow path substrate that is bonded to the base substrate in a state of being superimposed on the second base overlapping surface, and that forms the liquid flow path between the base substrate and The gas flow path substrate is joined to the gas flow path substrate in a state of being superimposed on the overlapping surface located on one side in the stacking direction, and the gas cooling substrate is bonded to the gas flow path substrate. And a gas cooling channel substrate forming the channel.

上記態様においては、積層方向において重ね合わせられる2つの流路基板の間に流路が形成されるので、流路を形成するのに必要な基板の数を少なくすることができる。   In the above aspect, since the flow path is formed between the two flow path substrates stacked in the stacking direction, the number of substrates necessary for forming the flow path can be reduced.

上記再液化装置において、好ましくは、前記ベース基板に設けられた前記複数の溝は、それぞれ、前記第1のベース重ね合わせ面に設けられ、前記ガス流路を形成するガス流路溝と、前記第2のベース重ね合わせ面に設けられ、前記液体流路を形成する液体流路溝とを含み、前記混合接続流路は、前記ベース基板を前記積層方向に貫通するように設けられ、前記ガス流路溝と前記液体流路溝とを接続する混合孔によって形成されており、前記積層方向において前記ガス流路と前記液体流路との間に存在する前記仕切壁は、前記ベース基板のうち前記積層方向において前記ガス流路溝と前記液体流路溝との間に位置する部分によって形成されている。   In the reliquefaction apparatus, preferably, the plurality of grooves provided in the base substrate are provided on the first base overlapping surface, respectively, and the gas flow channel grooves forming the gas flow channel, A liquid channel groove formed on the second base overlapping surface and forming the liquid channel, wherein the mixed connection channel is provided so as to penetrate the base substrate in the stacking direction, and the gas The partition wall formed between the channel and the liquid channel is formed by a mixing hole that connects the channel and the liquid channel, and the partition wall existing between the gas channel and the liquid channel in the stacking direction includes the base substrate. It is formed by a portion located between the gas flow channel groove and the liquid flow channel groove in the stacking direction.

上記態様においては、ベース基板に混合孔を形成するだけでベース基板のうち第1のベース重ね合わせ面に設けられたガス流路溝と第2のベース重ね合わせ面に設けられた液体流路溝とを連通することができる。その結果、ガス流路、液体流路及び混合接続流路を形成するのに必要な加工をベース基板に行うだけでよい。   In the above aspect, the gas channel groove provided on the first base overlapping surface and the liquid channel groove provided on the second base overlapping surface of the base substrate simply by forming the mixing hole in the base substrate. Can communicate with each other. As a result, it is only necessary to perform processing necessary for forming the gas flow path, the liquid flow path, and the mixing connection flow path on the base substrate.

上記再液化装置において、好ましくは、前記ガス冷却流路基板に設けられた前記複数の溝は、それぞれ、前記第1のベース重ね合わせ面に設けられ、前記ガス冷却流路を形成するガス冷却流路溝を含み、前記積層方向において前記ガス流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記ガス流路溝に隣接する部分によって形成されている。   In the reliquefaction apparatus, preferably, the plurality of grooves provided in the gas cooling flow path substrate are provided in the first base overlapping surface, respectively, to form the gas cooling flow path. The separation wall including a channel and existing between the gas channel and the gas cooling channel in the stacking direction is a portion of the gas channel substrate adjacent to the gas channel groove in the stacking direction. Is formed by.

上記態様においては、ガス流路基板に流路を形成するための溝を形成する必要がなくなるので、ガス流路基板そのものの厚みを薄くすることができる。その結果、ガス流路を流れる再液化対象ガスとガス冷却流路を流れるガス冷却冷媒との間での分離壁を介しての間接的な熱交換を効率よく行うことができる。   In the above aspect, since it is not necessary to form a groove for forming a flow path in the gas flow path substrate, the thickness of the gas flow path substrate itself can be reduced. As a result, indirect heat exchange between the reliquefaction target gas flowing in the gas flow path and the gas cooling refrigerant flowing in the gas cooling flow path via the separation wall can be efficiently performed.

上記再液化装置において、好ましくは、前記混合流路は、前記積層方向において前記ガス冷却流路との間に存在する分離壁を介して前記ガス冷却流路に隣接することで前記ガス冷却流路から独立して設けられるとともに前記ガス流路から連続して延びるように、前記ガス流路の下流端部に接続されており、前記ガス冷却流路は、前記混合流路を流れる前記混合流体と前記ガス冷却冷媒との間での前記分離壁を介しての間接的な熱交換によって前記混合流路を流れる前記混合流体が冷却されることで前記混合流路を流れる前記混合流体に含まれる前記再液化対象ガスの再液化が促進されるように、前記ガス冷却冷媒が流れるのを許容する。   In the reliquefaction apparatus, preferably, the mixing channel is adjacent to the gas cooling channel via a separation wall existing between the mixing channel and the gas cooling channel in the stacking direction. Connected to the downstream end of the gas flow path so as to extend continuously from the gas flow path, and the gas cooling flow path is connected to the mixed fluid flowing in the mixing flow path. The mixed fluid flowing in the mixed flow path is cooled by cooling the mixed fluid flowing in the mixed flow path through indirect heat exchange with the gas-cooled refrigerant through the separation wall. The gas cooling refrigerant is allowed to flow so that the reliquefaction of the gas to be reliquefied is promoted.

上記態様においては、混合流路を流れる混合流体とガス冷却流路を流れるガス冷却冷媒との間での分離壁を介しての間接的な熱交換によって混合流路を流れる混合流体が冷却されるので、混合流路を流れる混合流体に含まれる再液化対象ガスの再液化が促進される。その結果、再液化対象ガスの再液化を効率よく行うことができる。   In the above aspect, the mixed fluid flowing through the mixing channel is cooled by indirect heat exchange via the separation wall between the mixed fluid flowing through the mixing channel and the gas cooling refrigerant flowing through the gas cooling channel. Therefore, reliquefaction of the reliquefaction target gas contained in the mixed fluid flowing through the mixing channel is promoted. As a result, the reliquefaction target gas can be efficiently reliquefied.

上記再液化装置において、好ましくは、前記ベース基板に設けられた前記複数の溝は、それぞれ、前記第1のベース重ね合わせ面において前記ガス流路溝に連続するように設けられ、前記混合流路を形成する混合流路溝をさらに含み、前記積層方向において前記混合流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記混合流路溝に隣接する部分によって形成されている。   In the reliquefaction apparatus, preferably, the plurality of grooves provided in the base substrate are each provided to be continuous with the gas flow path groove on the first base overlapping surface, and the mixing flow path And the separation wall existing between the mixing channel and the gas cooling channel in the stacking direction is the mixed flow channel in the stacking direction of the gas channel substrate. It is formed by a portion adjacent to the road groove.

上記態様においては、混合流路を形成する混合流路溝がベース基板における第1のベース重ね合わせ面に形成されているので、ガス流路、液体流路、混合接続流路及び混合流路を形成するのに必要な加工をベース基板に行うだけでよい。   In the above aspect, since the mixing channel groove forming the mixing channel is formed on the first base overlapping surface of the base substrate, the gas channel, the liquid channel, the mixing connection channel, and the mixing channel are provided. It is only necessary to perform processing necessary for forming the base substrate.

上記再液化装置において、好ましくは、前記複数の流路は、それぞれ、前記重ね合わせ面に沿って延びるように形成され、前記混合流路を流れる前記混合流体に追加される前記液体であって前記混合流体に含まれる前記再液化対象ガスとの間での直接的な熱交換により前記再液化対象ガスの再液化を促進する再液化促進追加液体が流れるのを許容する追加液体流路と、前記積層方向に延びるように形成され、前記混合流路と前記追加液体流路とを接続する追加混合接続流路と、前記積層方向において前記追加液体流路との間に存在する仕切壁を介して前記追加液体流路に隣接することで前記追加液体流路から独立して設けられるとともに前記混合流路の下流端部に接続された状態で前記重ね合わせ面に沿って延びるように形成され、前記液体追加混合流体が流れるのを許容する液体追加混合流路とをさらに含む。   In the reliquefaction apparatus, preferably, each of the plurality of flow paths is formed to extend along the overlapping surface, and is the liquid added to the mixed fluid flowing through the mixed flow path, An additional liquid flow path for allowing a reliquefaction promoting additional liquid to flow through the direct heat exchange with the reliquefied target gas contained in the mixed fluid to allow the reliquefaction promoting additional liquid to flow; and An additional mixing connection channel that is formed to extend in the stacking direction and connects the mixing channel and the additional liquid channel, and a partition wall that exists between the additional liquid channel in the stacking direction Adjacent to the additional liquid flow path and provided independently of the additional liquid flow path and connected to the downstream end of the mixing flow path so as to extend along the overlapping surface, liquid Further comprising a liquid additional mixing channel that allows the pressurized fluid mixture flow.

上記態様においては、混合流路を流れる混合流体に対して追加液体流路を流れる再液化促進追加液体がさらに混合されるので、混合流体に含まれる再液化対象ガスと混合流体に混合される再液化促進追加液体との間での直接的な熱交換によって混合流体に含まれる再液化対象ガスの再液化を促進することができる。その結果、再液化対象ガスの再液化を効率よく行うことができる。   In the above aspect, since the re-liquefaction promoting additional liquid flowing in the additional liquid channel is further mixed with the mixed fluid flowing in the mixing channel, the re-liquefied target gas contained in the mixed fluid and the re-mixed liquid are mixed. Liquefaction promotion The reliquefaction of the gas to be reliquefied contained in the mixed fluid can be promoted by direct heat exchange with the additional liquid. As a result, the reliquefaction target gas can be efficiently reliquefied.

上記再液化装置において、好ましくは、前記ベース基板に設けられた前記複数の溝は、それぞれ、前記第2のベース重ね合わせ面に設けられ、前記追加液体流路を形成する追加液体流路溝と、前記第1のベース重ね合わせ面において前記混合流路溝に連続するように設けられ、前記液体追加混合流路を形成する追加混合流路溝とを含み、前記追加混合接続流路は、前記ベース基板を前記積層方向に貫通するように設けられ、前記混合流路溝と前記追加液体流路溝とを接続する追加混合孔によって形成されており、前記積層方向において前記追加液体流路と前記液体追加混合流路との間に存在する前記仕切壁は、前記ベース基板のうち前記積層方向において前記追加液体流路溝と前記追加混合流路溝との間に位置する部分によって形成されており、前記積層方向において前記液体追加混合流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記追加混合流路溝に隣接する部分によって形成されている。   In the reliquefaction apparatus, preferably, the plurality of grooves provided in the base substrate are each provided in the second base overlapping surface, and an additional liquid channel groove that forms the additional liquid channel. An additional mixing channel groove that is provided to be continuous with the mixing channel groove on the first base overlapping surface and forms the liquid additional mixing channel, The base substrate is provided so as to penetrate in the stacking direction, and is formed by an additional mixing hole that connects the mixing channel groove and the additional liquid channel groove. The partition wall existing between the liquid additional mixing channel is formed by a portion of the base substrate located between the additional liquid channel groove and the additional mixing channel groove in the stacking direction. The separation wall existing between the liquid additional mixing channel and the gas cooling channel in the stacking direction is formed by a portion of the gas channel substrate adjacent to the additional mixing channel groove in the stacking direction. Is formed.

上記態様においては、追加液体流路を形成する追加液体流路溝がベース基板における第2のベース重ね合わせ面に設けられ、且つ、液体追加混合流路を形成する追加混合流路溝がベース基板における第1のベース重ね合わせ面に設けられているので、ガス流路、液体流路、混合接続流路、混合流路、追加液体流路、追加混合接続流路及び液体追加混合流路を形成するのに必要な加工をベース基板に行うだけでよい。   In the above aspect, the additional liquid flow channel forming the additional liquid flow channel is provided on the second base overlapping surface of the base substrate, and the additional mixing flow channel forming the liquid additional mixing flow channel is the base substrate. Are provided on the first base overlapping surface in the above, forming a gas flow path, a liquid flow path, a mixing connection flow path, a mixing flow path, an additional liquid flow path, an additional mixing connection flow path, and a liquid additional mixing flow path It is only necessary to perform processing necessary for the base substrate.

上記再液化装置において、好ましくは、前記液体追加混合流路は、前記積層方向において前記ガス冷却流路との間に存在する分離壁を介して前記ガス冷却流路に隣接することで前記ガス冷却流路から独立して設けられるとともに前記混合流路から連続して延びるように、前記混合流路の下流端部に接続されており、前記ガス冷却流路は、前記液体追加混合流路を流れる前記液体追加混合流体と前記ガス冷却冷媒との間での前記分離壁を介しての間接的な熱交換によって前記液体追加混合流路を流れる前記液体追加混合流体が冷却されることで前記液体追加混合流路を流れる前記液体追加混合流体に含まれる前記再液化対象ガスの再液化が促進されるように、前記ガス冷却冷媒が流れるのを許容する。   In the reliquefaction apparatus, preferably, the liquid additional mixing channel is adjacent to the gas cooling channel via a separation wall existing between the liquid cooling channel and the gas cooling channel in the stacking direction. Connected to the downstream end of the mixing channel so as to be provided independently of the channel and continuously extending from the mixing channel, and the gas cooling channel flows through the liquid additional mixing channel The liquid addition mixed fluid is cooled by cooling the liquid addition mixed fluid flowing through the liquid addition mixing flow path through indirect heat exchange between the liquid addition mixed fluid and the gas cooling refrigerant through the separation wall. The gas cooling refrigerant is allowed to flow so as to promote reliquefaction of the reliquefaction target gas contained in the liquid additional mixed fluid flowing through the mixing flow path.

上記態様においては、液体追加混合流路を流れる液体追加混合流体とガス冷却流路を流れるガス冷却冷媒との間での分離壁を介しての間接的な熱交換によって液体追加混合流路を流れる液体追加混合流体が冷却されるので、液体追加混合流路を流れる液体追加混合流体に含まれる再液化対象ガスの再液化が促進される。その結果、再液化対象ガスの再液化を効率よく行うことができる。   In the above aspect, the liquid additional mixing flow channel flows by indirect heat exchange via the separation wall between the liquid additional mixing fluid flowing through the liquid additional mixing flow channel and the gas cooling refrigerant flowing through the gas cooling flow channel. Since the liquid additional mixed fluid is cooled, the reliquefaction of the reliquefaction target gas contained in the liquid additional mixed fluid flowing through the liquid additional mixed flow path is promoted. As a result, the reliquefaction target gas can be efficiently reliquefied.

上記再液化装置において、好ましくは、前記混合流路は、前記液体流路から連続して延びるように、前記液体流路の下流端部に接続されており、前記複数の流路は、それぞれ、前記積層方向において前記混合流路との間に存在する隔離壁を介して前記混合流路に隣接することで前記混合流路から独立して設けられ、前記混合流路を流れる前記混合流体との間での前記隔離壁を介しての間接的な熱交換によって前記混合流路を流れる前記混合流体が冷却されることで前記混合流路を流れる前記混合流体に含まれる前記再液化対象ガスの再液化が促進されるように、流体冷却冷媒が流れるのを許容する流体冷却流路をさらに含む。   In the reliquefaction apparatus, preferably, the mixing channel is connected to a downstream end of the liquid channel so as to continuously extend from the liquid channel, and the plurality of channels are respectively In the laminating direction, adjacent to the mixing channel via an isolation wall existing between the mixing channel and the mixing channel, and provided independently of the mixing channel, and the mixed fluid flowing in the mixing channel The mixed fluid flowing in the mixed flow path is cooled by indirect heat exchange through the isolation wall therebetween, whereby the reliquefied gas contained in the mixed fluid flowing in the mixed flow path is re-recovered. Further included is a fluid cooling channel that allows the fluid cooling refrigerant to flow to facilitate liquefaction.

上記態様においては、混合流路を流れる混合流体と流体冷却流路を流れる流体冷却冷媒との間での分離壁を介しての間接的な熱交換によって混合流路を流れる混合流体が冷却されるので、混合流路を流れる混合流体に含まれる再液化対象ガスの再液化が促進される。その結果、再液化対象ガスの再液化を効率よく行うことができる。   In the above aspect, the mixed fluid flowing in the mixing channel is cooled by indirect heat exchange via the separation wall between the mixed fluid flowing in the mixing channel and the fluid cooling refrigerant flowing in the fluid cooling channel. Therefore, reliquefaction of the reliquefaction target gas contained in the mixed fluid flowing through the mixing channel is promoted. As a result, the reliquefaction target gas can be efficiently reliquefied.

上記再液化装置において、好ましくは、前記ベース基板に設けられた前記複数の溝は、それぞれ、前記第2のベース重ね合わせ面において前記液体流路溝に連続するように設けられ、前記混合流路を形成する混合流路溝をさらに含み、前記積層方向において前記混合流路と前記流体冷却流路との間に存在する前記隔離壁は、前記流体流路基板のうち前記積層方向において前記混合流路溝に隣接する部分によって形成されている。   In the reliquefaction apparatus, preferably, the plurality of grooves provided in the base substrate are each provided so as to be continuous with the liquid channel groove on the second base overlapping surface, and the mixing channel And the separation wall existing between the mixing channel and the fluid cooling channel in the stacking direction is the mixed flow channel in the stacking direction of the fluid channel substrate. It is formed by a portion adjacent to the road groove.

上記態様においては、混合流路を形成する混合流路溝がベース基板における第2のベース重ね合わせ面に形成されているので、ガス流路、液体流路、混合接続流路及び混合流路を形成するのに必要な加工をベース基板に行うだけでよい。   In the above aspect, since the mixing channel groove forming the mixing channel is formed on the second base overlapping surface of the base substrate, the gas channel, the liquid channel, the mixing connection channel, and the mixing channel are provided. It is only necessary to perform processing necessary for forming the base substrate.

上記再液化装置において、好ましくは、前記複数の流路は、それぞれ、前記積層方向において前記ガス冷却流路との間に存在する分離壁を介して前記ガス冷却流路に隣接することで前記ガス冷却流路から独立して設けられるとともに前記重ね合わせ面に沿って延びるように形成され、前記混合流路を流れる前記混合流体に追加される前記ガスであって前記混合流体に含まれる前記再液化促進液体との間での直接的な熱交換により再液化の対象となる再液化追加対象ガスが流れるのを許容する追加ガス流路と、前記積層方向に延びるように形成され、前記混合流路と前記追加ガス流路とを接続する追加混合接続流路と、前記積層方向において前記追加ガス流路との間に存在する仕切壁を介して前記追加ガス流路に隣接することで前記追加ガス流路から独立して設けられるとともに前記混合流路の下流端部に接続された状態で前記重ね合わせ面に沿って延びるように形成され、前記ガス追加混合流体が流れるのを許容するガス追加混合流路とをさらに含む。   In the reliquefaction apparatus, preferably, each of the plurality of flow paths is adjacent to the gas cooling flow path via a separation wall existing between the gas cooling flow path in the stacking direction. The gas that is provided independently of the cooling flow path and extends along the overlapping surface, and is added to the mixed fluid flowing through the mixed flow path, and is included in the mixed fluid An additional gas channel that allows a reliquefied additional target gas to be reliquefied by direct heat exchange with the accelerating liquid; and the mixing channel that is formed to extend in the stacking direction. And the additional gas flow path adjacent to the additional gas flow path through a partition wall existing between the additional gas flow path and the additional gas flow path in the stacking direction. Flow And a gas additional mixing channel that is formed to extend along the overlapping surface in a state of being connected to the downstream end of the mixing channel and that allows the gas additional mixed fluid to flow therethrough And further including.

上記態様においては、混合流路を流れる混合流体に対して追加ガス流路を流れる再液化追加対象ガスがさらに混合されるので、混合流体に含まれる再液化促進液体と混合流体に混合される再液化追加対象ガスとの間での直接的な熱交換によって混合流体に混合される再液化追加対象ガスの再液化を促進することができる。その結果、再液化追加対象ガスの再液化を効率よく行うことができる。   In the above aspect, the reliquefaction additional target gas flowing in the additional gas flow channel is further mixed with the mixed fluid flowing in the mixed flow channel, so that the reliquefaction promoting liquid contained in the mixed fluid is mixed with the mixed fluid. The reliquefaction of the reliquefaction additional target gas mixed into the mixed fluid can be promoted by direct heat exchange with the liquefied additional target gas. As a result, the reliquefaction additional target gas can be efficiently reliquefied.

ここで、上記態様においては、再液化の対象となるガスが再液化対象ガスと再液化追加対象ガスとに分割されて再液化促進液体に順次混合されるので、再液化対象ガス及び再液化追加対象ガスが再液化促進液体に対して一度に混合される場合と比べて、再液化対象ガス及び再液化追加対象ガスの各々の再液化促進液体に対する混合量を減らすことができる。そのため、再液化対象ガス及び再液化追加対象ガスの各々を再液化促進液体に混合する際の再液化促進液体の気化を抑制することができる。その結果、再液化対象ガス及び再液化追加対象ガスの再液化を効率よく行うことができる。   Here, in the above aspect, the gas to be reliquefied is divided into the reliquefied target gas and the reliquefied additional target gas and sequentially mixed with the reliquefaction promoting liquid, so that the reliquefied target gas and the reliquefied additional gas are added. Compared with the case where the target gas is mixed with the reliquefaction promoting liquid at once, the amount of the reliquefaction target gas and the reliquefaction additional target gas mixed with each reliquefaction promoting liquid can be reduced. Therefore, vaporization of the reliquefaction promoting liquid when each of the reliquefaction target gas and the reliquefaction additional target gas is mixed with the reliquefaction promoting liquid can be suppressed. As a result, the reliquefaction target gas and the reliquefaction additional target gas can be efficiently reliquefied.

上記再液化装置において、好ましくは、前記ベース基板に設けられた前記複数の溝は、それぞれ、前記第1のベース重ね合わせ面に設けられ、前記追加ガス流路を形成する追加ガス流路溝と、前記第2のベース重ね合わせ面において前記混合流路溝に連続するように設けられ、前記ガス追加混合流路を形成する追加混合流路溝とを含み、前記追加混合接続流路は、前記ベース基板を前記積層方向に貫通するように設けられ、前記混合流路溝と前記追加ガス流路溝とを接続する追加混合孔によって形成されており、前記積層方向において前記追加ガス流路と前記ガス追加混合流路との間に存在する前記仕切壁は、前記ベース基板のうち前記積層方向において前記追加ガス流路溝と前記追加混合流路溝との間に位置する部分によって形成されており、前記積層方向において前記ガス追加混合流路と前記流体冷却流路との間に存在する前記隔離壁は、前記ガス流路基板のうち前記積層方向において前記追加混合流路溝に隣接する部分によって形成されている。   In the reliquefaction apparatus, preferably, the plurality of grooves provided in the base substrate are each provided in the first base overlapping surface, and an additional gas channel groove that forms the additional gas channel. An additional mixing channel groove provided to be continuous with the mixing channel groove on the second base overlapping surface and forming the gas additional mixing channel, and the additional mixing connection channel is A base substrate is provided so as to penetrate in the stacking direction, and is formed by an additional mixing hole that connects the mixing channel groove and the additional gas channel groove, and in the stacking direction, the additional gas channel and the The partition wall existing between the gas additional mixing channel is formed by a portion of the base substrate located between the additional gas channel groove and the additional mixing channel groove in the stacking direction. The isolation wall existing between the gas additional mixing channel and the fluid cooling channel in the stacking direction is formed by a portion of the gas channel substrate adjacent to the additional mixing channel groove in the stacking direction. Is formed.

上記態様においては、追加ガス流路を形成する追加ガス流路溝がベース基板における第1のベース重ね合わせ面に設けられ、且つ、ガス追加混合流路を形成する追加混合流路溝がベース基板における第2のベース重ね合わせ面に設けられているので、ガス流路、液体流路、混合接続流路、混合流路、追加ガス流路、追加混合接続流路及びガス追加混合流路を形成するのに必要な加工をベース基板に行うだけでよい。   In the above aspect, the additional gas channel groove that forms the additional gas channel is provided on the first base overlapping surface of the base substrate, and the additional mixing channel groove that forms the gas additional mixing channel is the base substrate. Are provided on the second base overlapping surface in the above, forming a gas flow path, a liquid flow path, a mixing connection flow path, a mixing flow path, an additional gas flow path, an additional mixing connection flow path, and a gas additional mixing flow path It is only necessary to perform processing necessary for the base substrate.

上記再液化装置において、好ましくは、前記ガス追加混合流路は、前記積層方向において前記流体冷却流路との間に存在する隔離壁を介して前記流体冷却流路に隣接することで前記流体冷却流路から独立して設けられるとともに前記混合流路から連続して延びるように、前記混合流路の下流端部に接続されており、前記流体冷却流路は、前記ガス追加混合流路を流れる前記ガス追加混合流体と前記流体冷却冷媒との間での前記隔離壁を介しての間接的な熱交換によって前記ガス追加混合流路を流れる前記ガス追加混合流体が冷却されることで前記ガス追加混合流路を流れる前記ガス追加混合流体に含まれる前記再液化追加対象ガスの再液化が促進されるように、前記流体冷却冷媒が流れるのを許容する。   In the reliquefaction apparatus, preferably, the gas additional mixing channel is adjacent to the fluid cooling channel via an isolation wall existing between the gas cooling channel and the fluid cooling channel in the stacking direction. Connected to the downstream end of the mixing channel so as to be provided independently of the channel and continuously extending from the mixing channel, the fluid cooling channel flows through the gas additional mixing channel The gas addition mixed fluid is cooled by cooling the gas addition mixed fluid flowing through the gas addition mixing flow path by indirect heat exchange between the gas addition mixed fluid and the fluid cooling refrigerant through the isolation wall. The fluid cooling refrigerant is allowed to flow so that reliquefaction of the reliquefaction additional target gas included in the gas additional mixed fluid flowing through the mixing flow path is promoted.

上記態様においては、ガス追加混合流路を流れるガス追加混合流体と流体冷却流路を流れる流体冷却冷媒との間での分離壁を介しての間接的な熱交換によってガス追加混合流路を流れるガス追加混合流体が冷却されるので、ガス追加混合流路を流れるガス追加混合流体に含まれる再液化追加対象ガスの再液化が促進される。その結果、再液化追加対象ガスの再液化を効率よく行うことができる。   In the above aspect, the gas additional mixing flow channel flows through indirect heat exchange via the separation wall between the gas additional mixed fluid flowing in the gas additional mixing flow channel and the fluid cooling refrigerant flowing in the fluid cooling flow channel. Since the gas additional mixed fluid is cooled, the reliquefaction of the reliquefaction additional target gas contained in the gas additional mixed fluid flowing through the gas additional mixed flow path is promoted. As a result, the reliquefaction additional target gas can be efficiently reliquefied.

本発明の再液化装置によれば、液体から気化したガスを効率よく再液化することができる。   According to the reliquefaction apparatus of the present invention, the gas vaporized from the liquid can be efficiently reliquefied.

本発明の第1の実施の形態による再液化装置を備えるボイルオフガスの再液化システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the reliquefaction system of boil off gas provided with the reliquefaction apparatus by the 1st Embodiment of this invention. 本発明の第1の実施の形態による再液化装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the reliquefaction apparatus by the 1st Embodiment of this invention. 図2に示す再液化装置が備える複数の基板のうち第1基板を図2に示す複数の基板の積層方向の下側から見た状態を示す平面図である。It is a top view which shows the state which looked at the 1st board | substrate among the several board | substrates with which the reliquefaction apparatus shown in FIG. 2 is provided from the lamination direction of the several board | substrate shown in FIG. 図2に示す再液化装置が備える複数の基板のうち第1基板を図2に示す複数の基板の積層方向の上側から見た状態を示す平面図である。It is a top view which shows the state which looked at the 1st board | substrate among the several board | substrates with which the reliquefaction apparatus shown in FIG. 2 is provided from the upper side of the lamination direction of the several board | substrate shown in FIG. 図2に示す再液化装置が備える複数の基板のうち第4基板を図2に示す複数の基板の積層方向の下側から見た状態を示す平面図である。It is a top view which shows the state which looked at the 4th board | substrate among the several board | substrates with which the reliquefaction apparatus shown in FIG. 2 is provided from the lamination direction of the several board | substrate shown in FIG. 本発明の第2の実施の形態による再液化装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the reliquefaction apparatus by the 2nd Embodiment of this invention.

以下、添付図面を参照しながら、本発明の実施の形態について詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[第1の実施の形態]
図1を参照しながら、本発明の第1の実施の形態による再液化装置10を備える液化天然ガス再液化システム20について説明する。図1は、液化天然ガス再液化システム20の概略構成を示す模式図である。
[First Embodiment]
A liquefied natural gas reliquefaction system 20 including a reliquefaction apparatus 10 according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing a schematic configuration of a liquefied natural gas reliquefaction system 20.

液化天然ガス再液化システム20は、貯蔵タンク30内に貯蔵される液体である液化天然ガスの気化によって発生するガスであるボイルオフガスを再液化するためのものである。   The liquefied natural gas reliquefaction system 20 is for reliquefying boil-off gas that is gas generated by vaporization of liquefied natural gas that is liquid stored in the storage tank 30.

液化天然ガス再液化システム20では、貯蔵タンク30内に発生するボイルオフガスが貯蔵タンク30に接続された循環流路40を流れる。循環流路40を流れるボイルオフガスは、循環流路40の途中に設けられている圧縮機50によって圧縮された後、循環流路40の途中に設けられた再液化装置10によって再液化される。ボイルオフガスが再液化されることで生成される液化天然ガスは、循環流路40を流れた後、貯蔵タンク30に戻る。   In the liquefied natural gas reliquefaction system 20, boil-off gas generated in the storage tank 30 flows through the circulation passage 40 connected to the storage tank 30. The boil-off gas flowing through the circulation channel 40 is compressed by the compressor 50 provided in the middle of the circulation channel 40 and then reliquefied by the reliquefaction apparatus 10 provided in the middle of the circulation channel 40. The liquefied natural gas produced by re-liquefying the boil-off gas returns to the storage tank 30 after flowing through the circulation channel 40.

液化天然ガス再液化システム20では、貯蔵タンク30に貯蔵されている液化天然ガスが、貯蔵タンク30に接続された供給流路60を流れる。供給流路60を流れる液化天然ガスは、供給流路60の途中に設けられたポンプ70によって貯蔵タンク30の外部に送り出された後、再液化装置10や冷却流路80に供給される。   In the liquefied natural gas reliquefaction system 20, liquefied natural gas stored in the storage tank 30 flows through a supply flow path 60 connected to the storage tank 30. The liquefied natural gas flowing through the supply channel 60 is sent out of the storage tank 30 by a pump 70 provided in the middle of the supply channel 60 and then supplied to the reliquefaction apparatus 10 and the cooling channel 80.

具体的には、供給流路60は、その途中で2つの流路60A、60Bに分岐されている。流路60Aは、再液化装置10に接続されている。流路60Aの途中には、バルブ61が設けられている。バルブ61は、液化天然ガスが再液化装置10に供給される状態と供給されない状態とを切り換えることができる。流路60Bは、冷却流路80に接続されている。流路60Bの途中には、バルブ62が設けられている。バルブ62は、液化天然ガスが冷却流路80に供給される状態と供給されない状態とを切り換えることができる。   Specifically, the supply flow path 60 is branched into two flow paths 60A and 60B in the middle thereof. The flow path 60 </ b> A is connected to the reliquefaction device 10. A valve 61 is provided in the middle of the flow path 60A. The valve 61 can switch between a state in which liquefied natural gas is supplied to the reliquefaction device 10 and a state in which it is not supplied. The channel 60 </ b> B is connected to the cooling channel 80. A valve 62 is provided in the middle of the flow path 60B. The valve 62 can switch between a state where liquefied natural gas is supplied to the cooling flow path 80 and a state where it is not supplied.

再液化装置10に供給される液化天然ガスは、再液化装置10を流れるボイルオフガスとの間で直接的な熱交換を行う。冷却流路80に供給される液化天然ガスは、再液化装置10を流れるボイルオフガスとの間で間接的な熱交換を行う。   The liquefied natural gas supplied to the reliquefaction apparatus 10 performs direct heat exchange with the boil-off gas flowing through the reliquefaction apparatus 10. The liquefied natural gas supplied to the cooling channel 80 performs indirect heat exchange with the boil-off gas flowing through the reliquefaction apparatus 10.

冷却流路80には、供給流路60を介して貯蔵タンク30から供給される液化天然ガスの代わりに、ボイルオフガスよりも低温で冷却に用いることができる液体窒素等を流してもよい。具体的には、冷却流路80は、その途中であって且つ再液化装置10よりも下流側において2つの流路80A、80Bに分岐されている。流路80Aの途中にはバルブ81が設けられている。流路80Bの途中には、バルブ82が設けられている。流路80Bは、貯蔵タンク30に接続されている。液体窒素等の冷媒(液化天然ガスとは異なるもの)が冷却流路80を流れる場合には、流路60Bの途中に設けられたバルブ62と流路80Bの途中に設けられたバルブ82が閉じられた状態で、流路80Aの途中に設けられたバルブ81が開けられている。これにより、液体窒素等の冷媒(液化天然ガスとは異なるもの)が貯蔵タンク30に流れ込むのを阻止している。なお、液化天然ガスが冷却流路80を流れる場合には、流路60Bの途中に設けられたバルブ62と流路80Bの途中に設けられたバルブ82が開けられた状態で、流路80Aの途中に設けられたバルブ81が閉じられている。   Instead of the liquefied natural gas supplied from the storage tank 30 via the supply flow path 60, liquid nitrogen or the like that can be used for cooling at a lower temperature than the boil-off gas may flow through the cooling flow path 80. Specifically, the cooling flow path 80 is branched into two flow paths 80 </ b> A and 80 </ b> B in the middle and downstream of the reliquefaction apparatus 10. A valve 81 is provided in the middle of the flow path 80A. A valve 82 is provided in the middle of the flow path 80B. The flow path 80 </ b> B is connected to the storage tank 30. When a refrigerant such as liquid nitrogen (different from liquefied natural gas) flows through the cooling flow path 80, the valve 62 provided in the middle of the flow path 60B and the valve 82 provided in the middle of the flow path 80B are closed. In this state, the valve 81 provided in the middle of the flow path 80A is opened. Thus, a refrigerant such as liquid nitrogen (different from liquefied natural gas) is prevented from flowing into the storage tank 30. When liquefied natural gas flows through the cooling flow path 80, the valve 62 provided in the middle of the flow path 60B and the valve 82 provided in the middle of the flow path 80B are opened, and the flow path 80A A valve 81 provided on the way is closed.

図2を参照しながら、再液化装置10について説明する。図2は、再液化装置10の概略構成を示す断面図である。   The reliquefaction apparatus 10 will be described with reference to FIG. FIG. 2 is a cross-sectional view illustrating a schematic configuration of the reliquefaction apparatus 10.

再液化装置10は、液体である液化天然ガスから気化したガスであるボイルオフガスを再液化する装置である。再液化装置10は、流路形成体12を備える。流路形成体12には、再液化の対象となるガスであるボイルオフガスと再液化を促進する液体である液化天然ガスとを含む複数の流体を流通させる複数の流路が形成されている。流路形成体12は、複数の流路基板14が積層された状態で互いに接合された構造を有する。複数の流路基板14のうち複数の流路基板14の積層方向で重なる2つの流路基板14の各々が有する重ね合わせ面の少なくとも一方には、当該重ね合わせ面に沿うように延びて上記複数の流路の少なくとも一部を形成する複数の溝が設けられている。   The reliquefaction apparatus 10 is an apparatus that reliquefies boil-off gas that is gas evaporated from liquefied natural gas that is liquid. The reliquefaction apparatus 10 includes a flow path forming body 12. The flow path forming body 12 is formed with a plurality of flow paths for circulating a plurality of fluids including a boil-off gas that is a gas to be reliquefied and a liquefied natural gas that is a liquid that promotes reliquefaction. The flow path forming body 12 has a structure in which a plurality of flow path substrates 14 are joined together in a stacked state. At least one of the overlapping surfaces of each of the two flow path substrates 14 that overlap each other in the stacking direction of the plurality of flow path substrates 14 among the plurality of flow path substrates 14 extends along the overlapping surface, and A plurality of grooves forming at least a part of the flow path are provided.

複数の流路基板14は、ベース基板141と、ガス流路基板142と、流体流路基板143と、ガス冷却流路基板144とを含む。なお、図2では、流路形成体12がベース基板141、ガス流路基板142、流体流路基板143及びガス冷却流路基板144からなるユニットを1つだけ備える場合を示しているが、流路形成体12は複数のユニットが積層された構造であってもよい。   The plurality of flow path substrates 14 include a base substrate 141, a gas flow path substrate 142, a fluid flow path substrate 143, and a gas cooling flow path substrate 144. 2 shows the case where the flow path forming body 12 includes only one unit including the base substrate 141, the gas flow path substrate 142, the fluid flow path substrate 143, and the gas cooling flow path substrate 144. The path forming body 12 may have a structure in which a plurality of units are stacked.

ベース基板141、ガス流路基板142、流体流路基板143及びガス冷却流路基板144は、それぞれ、全体として矩形の板形状を有する。ベース基板141、ガス流路基板142、流体流路基板143及びガス冷却流路基板144は、それぞれ、複数の流路基板14が積層される積層方向(図2中の上下方向)において一方側(図2中の上側)に位置する第1面と他方側(図2中の下側)に位置する第2面とを有する。ベース基板141、ガス流路基板142、流体流路基板143及びガス冷却流路基板144は、平面視で互いに同じ形状を有する。   Each of the base substrate 141, the gas flow path substrate 142, the fluid flow path substrate 143, and the gas cooling flow path substrate 144 has a rectangular plate shape as a whole. Each of the base substrate 141, the gas channel substrate 142, the fluid channel substrate 143, and the gas cooling channel substrate 144 is one side in the stacking direction (vertical direction in FIG. 2) in which the plurality of channel substrates 14 are stacked ( It has the 1st surface located in the upper side in FIG. 2, and the 2nd surface located in the other side (lower side in FIG. 2). The base substrate 141, the gas channel substrate 142, the fluid channel substrate 143, and the gas cooling channel substrate 144 have the same shape in a plan view.

ベース基板141は、上記第1面からなる重ね合わせ面としての第1のベース重ね合わせ面14S1と、上記第2面からなる重ね合わせ面としての第2のベース重ね合わせ面14S2とを有する。ガス流路基板142は、その第2面からなる重ね合わせ面がベース基板141における第1のベース重ね合わせ面14S1に重ね合わされた状態でベース基板141に接合される。流体流路基板143は、その第1面からなる重ね合わせ面がベース基板141における第2のベース重ね合わせ面14S2に重ね合わされた状態でベース基板141に接合される。ガス冷却流路基板144は、その第2面からなる重ね合わせ面がガス流路基板142の第1面からなる重ね合わせ面に重ね合わされた状態でガス流路基板142に接合される。   The base substrate 141 has a first base overlapping surface 14S1 as an overlapping surface made of the first surface, and a second base overlapping surface 14S2 as an overlapping surface made of the second surface. The gas flow path substrate 142 is bonded to the base substrate 141 in a state where the overlapping surface formed of the second surface is overlapped with the first base overlapping surface 14S1 of the base substrate 141. The fluid flow path substrate 143 is joined to the base substrate 141 in a state in which the overlapping surface including the first surface is overlapped with the second base overlapping surface 14S2 of the base substrate 141. The gas cooling flow path substrate 144 is joined to the gas flow path substrate 142 in a state in which the overlapping surface formed of the second surface is overlapped with the overlapping surface formed of the first surface of the gas flow path substrate 142.

流路形成体12には、複数の流路が形成されている。複数の流路は、複数の流体流路16と、複数のガス冷却流路18とを含む。複数の流体流路16は、各々がボイルオフガスと液化天然ガスを混合して流通させる流路である。複数のガス冷却流路18は、複数の流路基板14の積層方向において複数の流体流路16に隣接して形成され、各々が冷媒を流通させる。   A plurality of flow paths are formed in the flow path forming body 12. The plurality of channels include a plurality of fluid channels 16 and a plurality of gas cooling channels 18. Each of the plurality of fluid flow paths 16 is a flow path for mixing and circulating the boil-off gas and the liquefied natural gas. The plurality of gas cooling channels 18 are formed adjacent to the plurality of fluid channels 16 in the stacking direction of the plurality of channel substrates 14, and each distributes the refrigerant.

複数の流体流路16は、互いに平行な状態で延びるように形成されている。複数の流体流路16は、それぞれ、液体流路としてのLNG流路161と、ガス流路としてのBOG流路162と、混合接続流路163と、混合流路164と、追加液体流路としての追加LNG流路165と、追加混合接続流路166と、液体追加混合流路167とを含む。   The plurality of fluid flow paths 16 are formed to extend in parallel with each other. The plurality of fluid flow paths 16 are respectively an LNG flow path 161 as a liquid flow path, a BOG flow path 162 as a gas flow path, a mixing connection flow path 163, a mixing flow path 164, and an additional liquid flow path. The additional LNG flow path 165, the additional mixing connection flow path 166, and the liquid additional mixing flow path 167 are included.

液体流路としてのLNG流路161には、再液化促進液体としての液化天然ガスが流れる。つまり、LNG流路161の上流端は、貯蔵タンク30内に貯蔵されている液化天然ガスが流れる供給流路60に接続されている。液体流路としてのLNG流路161は、複数の流路基板14の積層方向(図2中の上下方向)に対して直交する方向に延びるように、つまり、流路基板14が有する重ね合わせ面に沿って延びるように形成されている。   The liquefied natural gas as the reliquefaction promoting liquid flows through the LNG channel 161 as the liquid channel. That is, the upstream end of the LNG channel 161 is connected to the supply channel 60 through which the liquefied natural gas stored in the storage tank 30 flows. The LNG flow path 161 as the liquid flow path extends in a direction orthogonal to the stacking direction (vertical direction in FIG. 2) of the plurality of flow path substrates 14, that is, the overlapping surface of the flow path substrate 14 Is formed so as to extend along.

LNG流路161は、図3にも示すように、ベース基板141における第2のベース重ね合わせ面14S2に開口して且つ当該第2のベース重ね合わせ面14S2に沿って延びるように形成された液体流路溝としてのLNG流路溝14Aによって実現されている。具体的には、LNG流路161は、ベース基板141と流体流路基板143が接合された状態でLNG流路溝14Aの開口(ベース基板141における第2のベース重ね合わせ面14S2に形成された開口)が流体流路基板143によって覆われることでトンネル状に形成される。別の表現をすれば、LNG流路溝14Aの内面と流体流路基板143における重ね合わせ面との間にLNG流路161が画定される。なお、液体流路溝は、ベース基板141及び流体流路基板143の少なくとも一方に形成されていればよい。   As shown in FIG. 3, the LNG flow channel 161 is a liquid formed so as to open to the second base overlapping surface 14S2 of the base substrate 141 and extend along the second base overlapping surface 14S2. This is realized by the LNG flow channel 14A as the flow channel. Specifically, the LNG channel 161 is formed in the opening of the LNG channel groove 14A (the second base overlapping surface 14S2 in the base substrate 141) in a state where the base substrate 141 and the fluid channel substrate 143 are joined. The opening) is covered with the fluid flow path substrate 143 to form a tunnel shape. In other words, the LNG flow path 161 is defined between the inner surface of the LNG flow path groove 14 </ b> A and the overlapping surface of the fluid flow path substrate 143. Note that the liquid flow channel groove may be formed in at least one of the base substrate 141 and the fluid flow channel substrate 143.

ガス流路としてのBOG流路162には、液化天然ガスから気化した再液化対象ガスであるボイルオフガスが流れる。つまり、BOG流路162の上流端は、貯蔵タンク30内に発生したボイルオフガスが流れる循環流路40に接続されている。BOG流路162は、複数の流路基板14の積層方向(図2中の上下方向)においてLNG流路161に対して隣接するように形成される。BOG流路162は、複数の流路基板14の積層方向(図2中の上下方向)に対して直交する方向に延びるように、つまり、流路基板14が有する重ね合わせ面に沿って延びるように形成されている。   A boil-off gas that is a gas to be reliquefied and vaporized from the liquefied natural gas flows through the BOG channel 162 as a gas channel. That is, the upstream end of the BOG flow path 162 is connected to the circulation flow path 40 through which the boil-off gas generated in the storage tank 30 flows. The BOG flow path 162 is formed so as to be adjacent to the LNG flow path 161 in the stacking direction of the flow path substrates 14 (vertical direction in FIG. 2). The BOG flow path 162 extends in a direction orthogonal to the stacking direction of the flow path substrates 14 (vertical direction in FIG. 2), that is, extends along the overlapping surface of the flow path substrate 14. Is formed.

BOG流路162は、図4にも示すように、ベース基板141における第1のベース重ね合わせ面14S1に開口して且つ当該第1のベース重ね合わせ面14S1に沿って延びるように形成されたガス流路溝としてのBOG流路溝14Bによって実現されている。具体的には、ボイルオフガス流路162は、ベース基板141とガス流路基板142が接合された状態でBOG流路溝14Bの開口(ベース基板141における第1のベース重ね合わせ面14S1に形成された開口)がガス流路基板142によって覆われることでトンネル状に形成される。別の表現をすれば、BOG流路溝14Bの内面とガス流路基板142における重ね合わせ面との間にBOG流路162が画定される。なお、第1液体流路溝は、ベース基板141及びガス流路基板142の少なくとも一方に形成されていればよい。   As shown in FIG. 4, the BOG flow path 162 opens to the first base overlapping surface 14S1 of the base substrate 141 and is formed so as to extend along the first base overlapping surface 14S1. This is realized by the BOG flow channel 14B as the flow channel. Specifically, the boil-off gas channel 162 is formed in the opening of the BOG channel groove 14B (the first base overlapping surface 14S1 in the base substrate 141) in a state where the base substrate 141 and the gas channel substrate 142 are joined. Are formed in a tunnel shape by being covered with the gas flow path substrate 142. In other words, the BOG flow path 162 is defined between the inner surface of the BOG flow path groove 14 </ b> B and the overlapping surface of the gas flow path substrate 142. The first liquid flow channel groove may be formed in at least one of the base substrate 141 and the gas flow channel substrate 142.

LNG流路161とBOG流路162との間には、仕切壁1411が存在している。仕切壁1411は、LNG流路161とボイルオフガス流路162が独立して設けられるように、LNG流路161とBOG流路162を分離している。仕切壁1411は、ベース基板141のうちLNG流路溝14AとBOG流路溝14Bとの間に位置する部分によって形成されている。   A partition wall 1411 exists between the LNG channel 161 and the BOG channel 162. The partition wall 1411 separates the LNG channel 161 and the BOG channel 162 so that the LNG channel 161 and the boil-off gas channel 162 are provided independently. The partition wall 1411 is formed by a portion of the base substrate 141 located between the LNG flow channel 14A and the BOG flow channel 14B.

混合接続流路163は、複数の流路基板14の積層方向(図2中の上下方向)に延びるように形成され、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とが混合されるように、LNG流路161とBOG流路162とを接続する。混合接続流路163は、BOG流路162の下流端部とLNG流路161の下流端部とを接続している。LNG流路161を流れてきた液化天然ガスは混合接続流路163をBOG流路162に向かって流れる。   The mixed connection channel 163 is formed so as to extend in the stacking direction (vertical direction in FIG. 2) of the plurality of channel substrates 14, and the liquefied natural gas (reliquefaction promoting liquid) and the BOG channel flowing in the LNG channel 161. The LNG flow path 161 and the BOG flow path 162 are connected so that the boil-off gas (reliquefaction target gas) flowing through 162 is mixed. The mixing connection channel 163 connects the downstream end of the BOG channel 162 and the downstream end of the LNG channel 161. The liquefied natural gas that has flowed through the LNG flow path 161 flows through the mixed connection flow path 163 toward the BOG flow path 162.

混合接続流路163は、図3や図4にも示すように、ベース基板141を複数の流路基板14の積層方向(図2中の上下方向)に貫通する混合孔14Cによって形成されている。   As shown in FIGS. 3 and 4, the mixing connection channel 163 is formed by a mixing hole 14 </ b> C that penetrates the base substrate 141 in the stacking direction of the plurality of channel substrates 14 (vertical direction in FIG. 2). .

混合流路164には、LNG流路161を流れる液化天然ガス(再液化促進液体)とボイルオフガス流路162を流れるボイルオフガス(再液化対象ガス)とが混合されることによって生成される混合流体が流れる。混合流路164は、BOG流路162から連続して延びるように、BOG流路162の下流端部に接続されている。混合流路164は、複数の流路基板14の積層方向(図2中の上下方向)に対して直交する方向に延びるように、つまり、流路基板14が有する重ね合わせ面に沿って延びるように形成されている。   In the mixing channel 164, a mixed fluid generated by mixing liquefied natural gas (reliquefaction promoting liquid) flowing through the LNG channel 161 and boil-off gas (gas to be reliquefied) flowing through the boil-off gas channel 162. Flows. The mixing channel 164 is connected to the downstream end of the BOG channel 162 so as to continuously extend from the BOG channel 162. The mixing channel 164 extends in a direction orthogonal to the stacking direction of the plurality of channel substrates 14 (vertical direction in FIG. 2), that is, extends along the overlapping surface of the channel substrate 14. Is formed.

混合流路164は、図4にも示すように、ベース基板141における第1のベース重ね合わせ面14S1に開口して且つ当該第1のベース重ね合わせ面14S1に沿って延びるように形成された混合流路溝14Dによって実現されている。具体的には、混合流路164は、ベース基板141とガス流路基板142が接合された状態で混合流路溝14Dの開口(ベース基板141における第1のベース重ね合わせ面14S1に形成された開口)がガス流路基板142によって覆われることでトンネル状に形成されている。別の表現をすれば、混合流路溝14Dの内面とガス流路基板142における重ね合わせ面との間に混合流路163が画定される。混合流路溝14Dは、その上流端がBOG流路162を形成するBOG流路溝14Bの下流端に接続されている。つまり、混合流路溝14Dは、ボイルオフガス流路溝14Bに連続して形成されている。なお、混合流路溝は、ベース基板141及びガス流路基板142の少なくとも一方に形成されていればよい。   As shown in FIG. 4, the mixing channel 164 opens to the first base overlapping surface 14S1 of the base substrate 141 and is formed so as to extend along the first base overlapping surface 14S1. This is realized by the flow channel 14D. Specifically, the mixing channel 164 is formed in the opening of the mixing channel groove 14D (the first base overlapping surface 14S1 in the base substrate 141 in a state where the base substrate 141 and the gas channel substrate 142 are joined). The opening) is covered with the gas flow path substrate 142 to form a tunnel shape. In other words, the mixing channel 163 is defined between the inner surface of the mixing channel groove 14 </ b> D and the overlapping surface of the gas channel substrate 142. The upstream end of the mixing channel groove 14 </ b> D is connected to the downstream end of the BOG channel groove 14 </ b> B that forms the BOG channel 162. That is, the mixing channel groove 14D is formed continuously with the boil-off gas channel groove 14B. The mixing channel groove may be formed on at least one of the base substrate 141 and the gas channel substrate 142.

追加液体流路としての追加LNG流路165には、再液化促進追加液体としての液化天然ガスが流れる。つまり、追加LNG流路165の上流端は、貯蔵タンク30内に貯蔵されている液化天然ガスが流れる供給流路60に接続されている。追加LNG流路165は、複数の流路基板14の積層方向(図2中の上下方向)においてLNG流路161と同じ位置に形成されている。追加LNG流路165は、平面視においてLNG流路161とは異なる位置に形成されている。追加LNG流路165は、複数の流路基板14の積層方向に対して直交する方向に延びるように、つまり、流路基板14が有する重ね合わせ面に沿って延びるように形成されている。   The liquefied natural gas as the reliquefaction promoting additional liquid flows through the additional LNG channel 165 as the additional liquid channel. That is, the upstream end of the additional LNG flow path 165 is connected to the supply flow path 60 through which the liquefied natural gas stored in the storage tank 30 flows. The additional LNG channel 165 is formed at the same position as the LNG channel 161 in the stacking direction of the plurality of channel substrates 14 (up and down direction in FIG. 2). The additional LNG channel 165 is formed at a position different from the LNG channel 161 in plan view. The additional LNG flow path 165 is formed to extend in a direction orthogonal to the stacking direction of the plurality of flow path substrates 14, that is, to extend along the overlapping surface of the flow path substrate 14.

追加LNG流路165は、図3にも示すように、ベース基板141における第2のベース重ね合わせ面14S2に開口して且つ当該第2のベース重ね合わせ面14S2に沿って延びるように形成された追加液体流路溝としての追加LNG流路溝14Eによって実現されている。具体的には、追加LNG流路165は、ベース基板141と流体流路基板143が接合された状態で追加LNG流路溝14Eの開口(ベース基板141における第2のベース重ね合わせ面14S2に形成された開口)が流体流路基板143によって覆われることでトンネル状に形成される。別の表現をすれば、追加LNG流路溝14Eの内面と流体流路基板143における重ね合わせ面との間に追加LNG流路165が画定される。なお、追加液体流路溝は、ベース基板141及び流体流路基板143の少なくとも一方に形成されていればよい。   As shown in FIG. 3, the additional LNG flow path 165 is formed to open to the second base overlapping surface 14S2 of the base substrate 141 and extend along the second base overlapping surface 14S2. This is realized by an additional LNG flow channel 14E as an additional liquid flow channel. Specifically, the additional LNG channel 165 is formed in the opening of the additional LNG channel groove 14E (the second base overlapping surface 14S2 of the base substrate 141 in the state where the base substrate 141 and the fluid channel substrate 143 are joined). Are formed in a tunnel shape by being covered with the fluid flow path substrate 143. In other words, the additional LNG channel 165 is defined between the inner surface of the additional LNG channel groove 14E and the overlapping surface of the fluid channel substrate 143. Note that the additional liquid channel groove may be formed in at least one of the base substrate 141 and the fluid channel substrate 143.

追加混合接続流路166は、複数の流路基板14の積層方向(図2中の上下方向)に延びるように形成され、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)と追加LNG流路165を流れる液化天然ガス(再液化促進追加液体)とが混合されるように混合流路164と追加LNG流路165とを接続する。追加混合接続流路166は、混合流路164の下流端部と追加LNG流路165の下流端部とを接続している。追加LNG流路165を流れてきた液化天然ガスは追加混合接続流路166を混合流路164に向かって流れる。   The additional mixing connection channel 166 is formed so as to extend in the stacking direction of the plurality of channel substrates 14 (vertical direction in FIG. 2), and the mixed fluid flowing in the mixing channel 164 (that is, liquefaction flowing in the LNG channel 161). A mixture of natural gas (reliquefaction promoting liquid) and boil-off gas (reliquefaction target gas) flowing through the BOG flow channel 162 and liquefied natural gas (reliquefaction promoting additional liquid) flowing through the additional LNG flow channel 165 are mixed. In this manner, the mixing channel 164 and the additional LNG channel 165 are connected. The additional mixing connection channel 166 connects the downstream end of the mixing channel 164 and the downstream end of the additional LNG channel 165. The liquefied natural gas that has flowed through the additional LNG flow path 165 flows through the additional mixing connection flow path 166 toward the mixing flow path 164.

追加混合接続流路166は、図3や図4にも示すように、ベース基板141を複数の流路基板14の積層方向(図2中の上下方向)に貫通する追加混合孔14Fによって形成されている。   As shown in FIGS. 3 and 4, the additional mixing connection channel 166 is formed by an additional mixing hole 14 </ b> F that penetrates the base substrate 141 in the stacking direction of the plurality of channel substrates 14 (vertical direction in FIG. 2). ing.

液体追加混合流路167には、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)と追加LNG流路165を流れる液化天然ガス(再液化促進追加液体)とが混合されることによって生成される液体追加混合流体が流れる。液体追加混合流路167は、混合流路164から連続して延びるように、混合流路164の下流端部に接続されている。液体追加混合流路167は、複数の流路基板14の積層方向(図2中の上下方向)に対して直交する方向に延びるように、つまり、流路基板14が有する重ね合わせ面に沿って延びるように形成されている。   In the liquid additional mixing channel 167, the mixed fluid flowing in the mixing channel 164 (that is, liquefied natural gas (reliquefaction promoting liquid) flowing in the LNG channel 161 and boil-off gas (reliquefaction target gas) flowing in the BOG channel 162 are provided. And a liquefied natural gas (reliquefaction promoting additional liquid) flowing through the additional LNG flow path 165 is mixed to flow a liquid additional mixed fluid generated. The liquid additional mixing channel 167 is connected to the downstream end of the mixing channel 164 so as to continuously extend from the mixing channel 164. The liquid additional mixing channel 167 extends in a direction orthogonal to the stacking direction of the plurality of channel substrates 14 (vertical direction in FIG. 2), that is, along the overlapping surface of the channel substrate 14. It is formed to extend.

液体追加混合流路167は、図4にも示すように、ベース基板141における第1のベース重ね合わせ面14S1に開口して且つ当該第1のベース重ね合わせ面14S1に沿って延びるように形成された追加混合流路溝14Gによって実現されている。具体的には、液体追加混合流路167は、ベース基板141とガス流路基板142が接合された状態で追加混合流路溝14Gの開口(ベース基板141における第1のベース重ね合わせ面14S1に形成された開口)がガス流路基板142によって覆われることでトンネル状に形成される。別の表現をすれば、追加混合流路溝14Gの内面とガス流路基板142における重ね合わせ面との間に液体追加混合流路167が画定される。追加混合流路溝14Gは、その上流端が混合流路164を形成する混合流路溝14Dの下流端に接続されている。つまり、追加混合流路溝14Gは、混合流路溝14Dに連続して形成されている。なお、追加混合流路溝は、ベース基板141及びガス流路基板142の少なくとも一方に形成されていればよい。   As shown also in FIG. 4, the liquid additional mixing channel 167 is formed to open to the first base overlapping surface 14S1 of the base substrate 141 and extend along the first base overlapping surface 14S1. This is realized by the additional mixing channel groove 14G. Specifically, the liquid additional mixing channel 167 is formed in the opening of the additional mixing channel groove 14G (on the first base overlapping surface 14S1 in the base substrate 141) in a state where the base substrate 141 and the gas channel substrate 142 are joined. The formed opening) is covered with the gas flow path substrate 142 to form a tunnel shape. In other words, a liquid additional mixing channel 167 is defined between the inner surface of the additional mixing channel groove 14G and the overlapping surface of the gas channel substrate 142. The upstream end of the additional mixing channel groove 14G is connected to the downstream end of the mixing channel groove 14D forming the mixing channel 164. That is, the additional mixing channel groove 14G is formed continuously with the mixing channel groove 14D. The additional mixing channel groove may be formed on at least one of the base substrate 141 and the gas channel substrate 142.

追加LNG流路165と液体追加混合流路167との間には、仕切壁1412が存在している。仕切壁1412は、追加LNG流路165と液体追加混合流路167が独立して設けられるように、追加LNG流路165と液体追加混合流路167を分離している。仕切壁1411は、ベース基板141のうち追加LNG流路溝14Eと追加混合流路溝14Gとの間に位置する部分によって形成されている。   A partition wall 1412 exists between the additional LNG channel 165 and the liquid additional mixing channel 167. The partition wall 1412 separates the additional LNG channel 165 and the liquid additional mixing channel 167 so that the additional LNG channel 165 and the liquid additional mixing channel 167 are provided independently. The partition wall 1411 is formed by a portion of the base substrate 141 located between the additional LNG flow channel 14E and the additional mixing flow channel 14G.

続いて、複数のガス冷却流路18について説明する。複数のガス冷却流路18は、互いに平行な状態で延びるように形成されている。複数のガス冷却流路18は、複数の流路基板14の積層方向(図2中の上下方向)から見て、複数の流体流路16に重なるように形成されている。   Subsequently, the plurality of gas cooling channels 18 will be described. The plurality of gas cooling channels 18 are formed so as to extend in parallel with each other. The plurality of gas cooling channels 18 are formed so as to overlap the plurality of fluid channels 16 when viewed from the stacking direction (vertical direction in FIG. 2) of the plurality of channel substrates 14.

ガス冷却流路18には、ガス冷却冷媒が流れる。ガス冷却冷媒は、例えば、貯蔵タンク30に貯蔵されている液化天然ガスであってもよいし、外部から供給され且つボイルオフガスよりも低温の液体窒素であってもよい。ガス冷却流路18は、BOG流路162を流れるボイルオフガス、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)及び液体追加混合流路167を流れる液体追加混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)と追加LNG流路165を流れる液化天然ガス(再液化促進追加液体)を混合した流体)が冷却されるように、複数の流路基板14の積層方向(図2中の上下方向)においてボイルオフガス流路162、混合流路164及び液体追加混合流路167に対して隣接するように形成されている。ガス冷却流路18は、複数の流路基板14の積層方向に対して直交する方向に延びるように、つまり、流路基板14が有する重ね合わせ面に沿って延びるように形成されている。   A gas cooling refrigerant flows through the gas cooling channel 18. The gas cooling refrigerant may be, for example, liquefied natural gas stored in the storage tank 30, or liquid nitrogen supplied from outside and having a temperature lower than that of the boil-off gas. The gas cooling channel 18 is a boil-off gas that flows through the BOG channel 162, a mixed fluid that flows through the mixing channel 164 (that is, a liquefied natural gas (reliquefaction promoting liquid) that flows through the LNG channel 161, and a boil-off that flows through the BOG channel 162. Gas (fluid mixed with gas (reliquefaction target gas)) and liquid additional mixed fluid flowing through the liquid additional mixing channel 167 (that is, liquefied natural gas (reliquefaction promoting liquid) flowing through the LNG channel 161 and the BOG channel 162 The stacking direction of the plurality of flow path substrates 14 (FIG. 5) is cooled so that the flowing boil-off gas (reliquefaction target gas) and the liquefied natural gas (reliquefaction promoting additional liquid) flowing in the additional LNG flow path 165 are cooled. 2 in the vertical direction) is formed adjacent to the boil-off gas channel 162, the mixing channel 164, and the liquid additional mixing channel 167. The gas cooling channel 18 is formed so as to extend in a direction orthogonal to the stacking direction of the plurality of channel substrates 14, that is, to extend along the overlapping surface of the channel substrate 14.

ガス冷却流路18は、図5にも示すように、ガス冷却流路基板144の第2面からなる重ね合わせ面に開口して且つ当該重ね合わせ面に沿って延びるように形成されたガス冷却流路溝14Hによって実現されている。具体的には、ガス冷却流路18は、ガス流路基板142とガス冷却流路基板144が接合された状態でガス冷却流路溝14Hの開口(ガス冷却流路基板144における第2面からなる重ね合わせ面に形成された開口)がガス流路基板142によって覆われることでトンネル状に形成される。別の表現をすれば、ガス冷却流路溝14Hの内面とガス流路基板142における重ね合わせ面との間にガス冷却流路18が画定される。なお、ガス冷却流路溝は、ガス流路基板142及びガス冷却流路基板144の少なくとも一方に形成されていればよい。   As shown in FIG. 5, the gas cooling channel 18 is formed in such a manner that it opens to the overlapping surface formed of the second surface of the gas cooling channel substrate 144 and extends along the overlapping surface. This is realized by the flow channel 14H. Specifically, the gas cooling channel 18 is formed by opening the gas cooling channel groove 14H (from the second surface of the gas cooling channel substrate 144) in a state where the gas channel substrate 142 and the gas cooling channel substrate 144 are joined. The opening formed in the overlapping surface is covered with the gas flow path substrate 142 to form a tunnel shape. In other words, the gas cooling channel 18 is defined between the inner surface of the gas cooling channel groove 14 </ b> H and the overlapping surface of the gas channel substrate 142. Note that the gas cooling channel groove may be formed in at least one of the gas channel substrate 142 and the gas cooling channel substrate 144.

ガス冷却流路18とBOG流路162、混合流路164及び液体追加混合流路167との間には、分離壁1421が存在している。分離壁1421は、ガス冷却流路18とBOG流路162、混合流路164及び液体追加混合流路167とが独立して設けられるように、ガス冷却流路18とBOG流路162、混合流路164及び液体追加混合流路167とを分離している。分離壁1421は、ガス流路基板142によって形成されている。   A separation wall 1421 exists between the gas cooling channel 18, the BOG channel 162, the mixing channel 164, and the liquid additional mixing channel 167. The separation wall 1421 is configured so that the gas cooling channel 18, the BOG channel 162, the mixing channel 164, and the liquid additional mixing channel 167 are provided independently. The channel 164 and the liquid additional mixing channel 167 are separated. The separation wall 1421 is formed by the gas flow path substrate 142.

続いて、このような再液化装置10によるボイルオフガスの再液化方法について説明する。再液化装置10においては、BOG流路162を流れるボイルオフガス(再液化対象ガス)とLNG流路161を流れる液化天然ガス(再液化促進ガス)とが混合されることによるボイルオフガスと液化天然ガスとの間での直接的な熱交換によって、ボイルオフガスの再液化が促進される。そのため、ボイルオフガスを再液化することができる。   Next, a boil-off gas reliquefaction method using the reliquefaction apparatus 10 will be described. In the reliquefaction apparatus 10, boil-off gas and liquefied natural gas produced by mixing boil-off gas (reliquefaction target gas) flowing through the BOG flow path 162 and liquefied natural gas (re-liquefaction promoting gas) flowing through the LNG flow path 161 are mixed. The direct heat exchange with the gas promotes reliquefaction of the boil-off gas. Therefore, the boil-off gas can be reliquefied.

ここで、BOG流路162は分離壁1421を介してガス冷却流路18に隣接しているので、BOG流路162を流れるボイルオフガス(再液化対象ガス)とガス冷却流路18を流れるガス冷却冷媒との間での分離壁1421を介しての間接的な熱交換によって、BOG流路162を流れるボイルオフガス(再液化対象ガス)とLNG流路161を流れる液化天然ガス(再液化促進ガス)とを混合するときの液化天然ガスの気化を抑制することができる。その結果、ボイルオフガスの再液化を効率よく行うことができる。   Here, since the BOG flow path 162 is adjacent to the gas cooling flow path 18 via the separation wall 1421, the boil-off gas (reliquefaction target gas) that flows through the BOG flow path 162 and the gas cooling that flows through the gas cooling flow path 18. The boil-off gas (reliquefaction target gas) flowing through the BOG flow path 162 and the liquefied natural gas (reliquefaction promoting gas) flowing through the LNG flow path 161 by indirect heat exchange with the refrigerant through the separation wall 1421. The vaporization of the liquefied natural gas when mixing with can be suppressed. As a result, the boil-off gas can be efficiently reliquefied.

また、再液化装置10においては、混合流路164が分離壁1421を介してガス冷却流路18に隣接しているので、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)とガス冷却流路18を流れるガス冷却冷媒との間での分離壁1421を介しての間接的な熱交換によって、第1混合流体に含まれるボイルオフガス(再液化対象ガス)の再液化が促進される。その結果、ボイルオフガスの再液化を効率よく行うことができる。   In the reliquefaction apparatus 10, since the mixing channel 164 is adjacent to the gas cooling channel 18 via the separation wall 1421, the mixed fluid flowing through the mixing channel 164 (that is, the liquefaction flowing through the LNG channel 161). A separation wall 1421 between a natural gas (reliquefaction promoting liquid) and a boil-off gas (reliquefaction target gas) flowing through the BOG flow channel 162 and a gas cooling refrigerant flowing through the gas cooling flow channel 18 is provided. Through indirect heat exchange, reliquefaction of boil-off gas (reliquefaction target gas) contained in the first mixed fluid is promoted. As a result, the boil-off gas can be efficiently reliquefied.

さらに、再液化装置10においては、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)に対して追加LNG流路165を流れる液化天然ガス(再液化促進追加液体)が混合されることによる混合流体と追加された液化天然ガスとの間での直接的な熱交換によって、混合流体に含まれるボイルオフガス(再液化対象ガス)の再液化が促進される。その結果、ボイルオフガスの再液化を効率よく行うことができる。   Further, in the reliquefaction apparatus 10, the mixed fluid flowing in the mixing flow path 164 (that is, liquefied natural gas (reliquefaction promoting liquid) flowing in the LNG flow path 161 and boil-off gas (reliquefaction target gas) flowing in the BOG flow path 162. The liquefied natural gas (reliquefaction promoting additional liquid) flowing through the additional LNG flow path 165 is mixed with the mixed fluid and the added liquefied natural gas. The exchange promotes reliquefaction of the boil-off gas (reliquefaction target gas) contained in the mixed fluid. As a result, the boil-off gas can be efficiently reliquefied.

加えて、再液化装置10においては、混合流路164を流れる混合流体と追加LNG流路165を流れる液化天然ガス(再液化促進追加液体)を混合することで生成される液体追加混合流体が流れる液体追加混合流路167が分離壁1421を介してガス冷却流路18に隣接しているので、液体追加混合流路167を流れる液体追加混合流体とガス冷却流路18を流れるガス冷却冷媒との間での分離壁1421を介しての間接的な熱交換によって、液体追加混合流路167を流れる混合流体に含まれるボイルオフガス(再液化対象ガス)の再液化が促進される。その結果、ボイルオフガスの再液化を効率よく行うことができる。   In addition, in the reliquefaction apparatus 10, a liquid additional mixed fluid generated by mixing the mixed fluid flowing in the mixing channel 164 and the liquefied natural gas (reliquefaction promoting additional liquid) flowing in the additional LNG channel 165 flows. Since the liquid additional mixing channel 167 is adjacent to the gas cooling channel 18 through the separation wall 1421, the liquid additional mixing fluid flowing through the liquid additional mixing channel 167 and the gas cooling refrigerant flowing through the gas cooling channel 18 Indirect heat exchange via the separation wall 1421 between them promotes reliquefaction of the boil-off gas (reliquefaction target gas) contained in the mixed fluid flowing in the liquid additional mixing channel 167. As a result, the boil-off gas can be efficiently reliquefied.

このような再液化装置10においては、複数の流路基板14のうち積層方向において重ね合わされる2つの流路基板14の間に流路が形成されるので、流路を形成するのに必要な基板の数を少なくすることができる。   In such a reliquefaction apparatus 10, since a flow path is formed between two flow path substrates 14 that are stacked in the stacking direction among the plurality of flow path substrates 14, it is necessary to form a flow path. The number of substrates can be reduced.

また、再液化装置10においては、複数の流体流路16を形成するのに必要な溝及び孔がベース基板141だけに形成されているので、これらの溝及び孔の形成に必要な加工をベース基板141だけに行えばよい。   Further, in the reliquefaction apparatus 10, since the grooves and holes necessary for forming the plurality of fluid flow paths 16 are formed only in the base substrate 141, the processing necessary for forming these grooves and holes is used as a base. It may be performed only on the substrate 141.

また、再液化装置10においては、ガス流路基板142に流路を形成するための溝が形成されていないので、ガス流路基板142そのものの厚みを薄くすることができる。その結果、BOG流路162を流れるボイルオフガスとガス冷却流路18を流れるガス冷却冷媒との間での分離壁1421を介しての間接的な熱交換を効率よく行うことができる。   Moreover, in the reliquefaction apparatus 10, since the groove | channel for forming a flow path is not formed in the gas flow path substrate 142, the thickness of the gas flow path substrate 142 itself can be made thin. As a result, indirect heat exchange between the boil-off gas flowing through the BOG flow channel 162 and the gas cooling refrigerant flowing through the gas cooling flow channel 18 via the separation wall 1421 can be efficiently performed.

[第2の実施の形態]
続いて、図6を参照しながら、本発明の第2の実施の形態による再液化装置10Aについて説明する。図6は、再液化装置10Aの概略構成を示す断面図である。なお、図6では、複数の流路基板14が積層される積層方向(図6中の上下方向)の一方側が図6中の下側に相当し、他方側が図6中の上側に相当する。
[Second Embodiment]
Subsequently, a reliquefaction apparatus 10A according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view showing a schematic configuration of the reliquefaction apparatus 10A. In FIG. 6, one side in the stacking direction (vertical direction in FIG. 6) in which the plurality of flow path substrates 14 are stacked corresponds to the lower side in FIG. 6, and the other side corresponds to the upper side in FIG.

再液化装置10Aでは、再液化装置10と比べて、混合流路164が、LNG流路161から連続して延びるように形成されて、LNG流路161の下流端部に接続されている。BOG流路162を流れるボイルオフガスが混合接続流路163をLNG流路161に向かって流れる。   In the reliquefaction apparatus 10 </ b> A, as compared with the reliquefaction apparatus 10, the mixing flow path 164 is formed so as to continuously extend from the LNG flow path 161 and is connected to the downstream end of the LNG flow path 161. The boil-off gas flowing through the BOG flow path 162 flows through the mixed connection flow path 163 toward the LNG flow path 161.

再液化装置10Aは、再液化装置10と比べて、追加LNG流路165の代わりに、追加BOG流路165Aを有している。追加BOG流路165Aは、追加LNG流路165と同様に、ベース基板141とガス流路基板142との間に形成されている。つまり、追加BOG流路165Aは、複数の流路基板14の積層方向(図6中の上下方向)においてBOG流路162と同じ位置に形成されている。追加BOG流路165Aを流れるボイルオフガスは追加混合接続流路166を混合流路164に向かって流れる。   Compared to the reliquefaction apparatus 10, the reliquefaction apparatus 10A has an additional BOG flow path 165A instead of the additional LNG flow path 165. The additional BOG flow path 165A is formed between the base substrate 141 and the gas flow path substrate 142 in the same manner as the additional LNG flow path 165. That is, the additional BOG flow path 165A is formed at the same position as the BOG flow path 162 in the stacking direction of the flow path substrates 14 (vertical direction in FIG. 6). The boil-off gas flowing through the additional BOG flow path 165A flows through the additional mixing connection flow path 166 toward the mixing flow path 164.

再液化装置10Aでは、再液化装置10と比べて、ガス冷却流路18が、BOG流路162を流れるボイルオフガスと追加BOG流路165Aを流れるボイルオフガスとを冷却するように、複数の流路基板14の積層方向(図6中の上下方向)においてBOG流路162及び追加BOG流路165Aに対して分離壁1421を介して隣接するように形成されている。   In the reliquefaction apparatus 10A, compared with the reliquefaction apparatus 10, the gas cooling flow path 18 has a plurality of flow paths so that the boil-off gas flowing through the BOG flow path 162 and the boil-off gas flowing through the additional BOG flow path 165A are cooled. The substrate 14 is formed so as to be adjacent to the BOG flow channel 162 and the additional BOG flow channel 165A via the separation wall 1421 in the stacking direction (vertical direction in FIG. 6).

再液化装置10Aは、再液化装置10と比べて、液体追加混合流路167の代わりに、ガス追加混合流路167Aを有している。ガス追加混合流路167Aは、液体追加混合流路167と同様に、ベース基板141と流体流路基板143との間に形成されている。つまり、ガス追加混合流路167Aは、複数の流路基板14の積層方向(図6中の上下方向)においてBOG流路162と同じ位置に形成されている。ガス追加混合流路167Aを流れる流体は、混合流体(LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)に追加BOG流路165Aを流れるボイルオフガス(再液化追加対象ガス)を混合したガス追加混合流体である。   Compared to the reliquefaction apparatus 10, the reliquefaction apparatus 10 </ b> A has a gas additional mixing flow path 167 </ b> A instead of the liquid additional mixing flow path 167. The gas additional mixing channel 167A is formed between the base substrate 141 and the fluid channel substrate 143, similarly to the liquid additional mixing channel 167. That is, the gas additional mixing channel 167A is formed at the same position as the BOG channel 162 in the stacking direction of the plurality of channel substrates 14 (vertical direction in FIG. 6). The fluid flowing through the gas additional mixing channel 167A is a mixed fluid (a fluid obtained by mixing liquefied natural gas (reliquefaction promoting liquid) flowing through the LNG channel 161 and boil-off gas (reliquefaction target gas) flowing through the BOG channel 162). And a boil-off gas (reliquefied addition target gas) flowing through the additional BOG flow path 165A.

再液化装置10Aは、再液化装置10と比べて、複数の流路基板14が流体冷却流路基板145をさらに含む。流体冷却流路基板145は、ベース基板141と同様に、全体として矩形の板形状を有する。流体冷却流路基板145は、ベース基板141と同様に、複数の流路基板14が積層される積層方向(図6中の上下方向)において一方側(図6中の下側)に位置する第1面と他方側(図6中の上側)に位置する第2面とを有する。流体冷却流路基板145とベース基板141は、平面視で互いに同じ形状を有する。流体冷却流路基板145は、その第1面からなる重ね合わせ面が流体流路基板143の第2面からなる重ね合わせ面に重ね合わされた状態で流体流路基板143に接合される。   In the reliquefaction apparatus 10 </ b> A, as compared with the reliquefaction apparatus 10, the plurality of flow path substrates 14 further include a fluid cooling flow path substrate 145. Similar to the base substrate 141, the fluid cooling flow path substrate 145 has a rectangular plate shape as a whole. Similar to the base substrate 141, the fluid cooling channel substrate 145 is positioned on one side (the lower side in FIG. 6) in the stacking direction (the vertical direction in FIG. 6) in which the plurality of channel substrates 14 are stacked. 1 surface and the 2nd surface located in the other side (upper side in FIG. 6). The fluid cooling flow path substrate 145 and the base substrate 141 have the same shape in plan view. The fluid cooling flow path substrate 145 is joined to the fluid flow path substrate 143 in a state where the overlap surface formed by the first surface is overlapped with the overlap surface formed by the second surface of the fluid flow path substrate 143.

再液化装置10Aは、再液化装置10と比べて、流路形成体12が、複数の流体冷却流路19をさらに含む。複数の流体冷却流路19は、互いに平行に延びる状態で形成されている。   In the reliquefaction apparatus 10 </ b> A, the flow path forming body 12 further includes a plurality of fluid cooling flow paths 19 compared to the reliquefaction apparatus 10. The plurality of fluid cooling channels 19 are formed so as to extend in parallel to each other.

流体冷却流路19には、流体冷却冷媒が流れる。流体冷却冷媒は、例えば、貯蔵タンク30に貯蔵されている液化天然ガスであってもよいし、外部から供給される液体窒素であってもよい。流体冷却流路19は、混合流路164を流れる混合流体(LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)及びガス追加混合流路167Aを流れるガス追加混合流体(LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)と追加BOG流路165Aを流れるボイルオフガス(再液化追加対象ガス)とを混合した流体)が冷却されるように、複数の流路基板14の積層方向(図6中の上下方向)において混合流路164及びガス追加混合流路167Aに対して隣接するように形成されている。流体冷却流路19は、複数の流路基板14の積層方向に対して直交する方向に延びるように、つまり、流路基板14が有する重ね合わせ面に沿って延びるように形成されている。   A fluid cooling refrigerant flows through the fluid cooling channel 19. The fluid cooling refrigerant may be, for example, liquefied natural gas stored in the storage tank 30 or liquid nitrogen supplied from the outside. The fluid cooling flow path 19 is a mixture of a mixed fluid flowing through the mixing flow path 164 (a liquefied natural gas flowing through the LNG flow path 161 (reliquefaction promoting liquid) and a boil-off gas flowing through the BOG flow path 162 (reliquefaction target gas). Fluid) and gas additional mixed fluid flowing through the gas additional mixing channel 167A (liquefied natural gas (reliquefaction promoting liquid) flowing through the LNG channel 161, boil-off gas (reliquefaction target gas) flowing through the BOG channel 162, and additional BOG flow The mixed flow path 164 and the gas in the stacking direction (vertical direction in FIG. 6) of the plurality of flow path substrates 14 so that the boil-off gas (fluid mixed with the reliquefaction additional target gas) flowing through the path 165A is cooled. It is formed adjacent to the additional mixing channel 167A. The fluid cooling channel 19 is formed so as to extend in a direction orthogonal to the stacking direction of the plurality of channel substrates 14, that is, to extend along the overlapping surface of the channel substrate 14.

流体冷却流路19は、流体冷却流路基板145の第2面からなる重ね合わせ面に開口して且つ当該重ね合わせ面に沿って延びるように形成された流体冷却流路溝14Iによって実現されている。具体的には、流体冷却流路19は、流体流路基板143と流体冷却流路基板145が接合された状態で流体冷却流路溝14Iの開口(流体冷却流路基板145の第2面からなる重ね合わせ面に形成された開口)が流体流路基板143によって覆われることでトンネル状に形成される。別の表現をすれば、流体冷却流路溝14Iの内面と流体流路基板143における重ね合わせ面との間に流体冷却流路19が画定される。なお、流体冷却流路溝は、流体流路基板143及び流体冷却流路基板145の少なくとも一方に形成されていればよい。   The fluid cooling flow path 19 is realized by a fluid cooling flow path groove 14 </ b> I formed so as to open and extend along the overlapping surface composed of the second surface of the fluid cooling flow path substrate 145. Yes. Specifically, the fluid cooling channel 19 is formed by opening the fluid cooling channel groove 14I (from the second surface of the fluid cooling channel substrate 145) in a state where the fluid channel substrate 143 and the fluid cooling channel substrate 145 are joined. The opening formed in the overlapped surface) is covered with the fluid flow path substrate 143 to form a tunnel shape. In other words, the fluid cooling channel 19 is defined between the inner surface of the fluid cooling channel groove 14 </ b> I and the overlapping surface of the fluid channel substrate 143. Note that the fluid cooling channel groove may be formed in at least one of the fluid channel substrate 143 and the fluid cooling channel substrate 145.

流体冷却流路19と混合流路164及びガス追加混合流路167Aとの間には、分離壁1431が存在している。分離壁1431は、流体冷却流路19と混合流路164及びガス追加混合流路167Aとが独立して設けられるように、流体冷却流路19と混合流路164及びガス追加混合流路167Aとを分離している。分離壁1431は、流体流路基板143によって形成されている。   A separation wall 1431 exists between the fluid cooling channel 19 and the mixing channel 164 and the gas additional mixing channel 167A. The separation wall 1431 includes the fluid cooling channel 19, the mixing channel 164, and the gas additional mixing channel 167A so that the fluid cooling channel 19, the mixing channel 164, and the gas additional mixing channel 167A are provided independently. Are separated. The separation wall 1431 is formed by the fluid flow path substrate 143.

続いて、このような再液化装置10Aによるボイルオフガスの再液化方法について説明する。再液化装置10Aにおいては、BOG流路162を流れるボイルオフガスとLNG流路161を流れる液化天然ガスとが混合されることによるボイルオフガスと液化天然ガスとの間での直接的な熱交換によって、ボイルオフガスの再液化が促進される。その結果、ボイルオフガスを再液化することができる。   Next, a boil-off gas reliquefaction method using such a reliquefaction apparatus 10A will be described. In the reliquefaction apparatus 10A, by direct heat exchange between the boil-off gas and the liquefied natural gas by mixing the boil-off gas flowing through the BOG flow path 162 and the liquefied natural gas flowing through the LNG flow path 161, Reliquefaction of boil-off gas is promoted. As a result, the boil-off gas can be reliquefied.

ここで、BOG流路162は分離壁1421を介してガス冷却流路18に隣接しているので、BOG流路162を流れるボイルオフガスとガス冷却流路18を流れる冷媒との間での分離壁1421を介しての間接的な熱交換によって、BOG流路161を流れるボイルオフガスとLNG流路162を流れる液化天然ガスとを混合するときの液化天然ガスの気化を抑制することができる。その結果、ボイルオフガスの再液化を効率よく行うことができる。   Here, since the BOG flow path 162 is adjacent to the gas cooling flow path 18 via the separation wall 1421, the separation wall between the boil-off gas flowing through the BOG flow path 162 and the refrigerant flowing through the gas cooling flow path 18. By indirect heat exchange via 1421, vaporization of the liquefied natural gas when the boil-off gas flowing through the BOG flow channel 161 and the liquefied natural gas flowing through the LNG flow channel 162 are mixed can be suppressed. As a result, the boil-off gas can be efficiently reliquefied.

また、再液化装置10Aにおいては、混合流路164が分離壁1431を介してガス冷却流路18に隣接しているので、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)と流体冷却流路19を流れる流体冷却冷媒との間での分離壁1431を介しての間接的な熱交換によって、混合流体に含まれるボイルオフガスの再液化が促進される。その結果、ボイルオフガスの再液化を効率よく行うことができる。   Further, in the reliquefaction apparatus 10A, since the mixing channel 164 is adjacent to the gas cooling channel 18 via the separation wall 1431, the mixed fluid flowing through the mixing channel 164 (that is, liquefaction flowing through the LNG channel 161). A separation fluid 1431 between the fluid cooling refrigerant flowing in the fluid cooling flow path 19 and the fluid mixed with natural gas (reliquefaction promoting liquid) and boil-off gas (reliquefaction target gas) flowing in the BOG flow path 162. The indirect heat exchange promotes reliquefaction of the boil-off gas contained in the mixed fluid. As a result, the boil-off gas can be efficiently reliquefied.

さらに、再液化装置10Aにおいては、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)に対して追加BOG流路165Aを流れる追加ボイルオフガス(再液化追加対象ガス)が混合されることによる液化天然ガス(混合流体に含まれる液化天然ガス)と追加ボイルオフガスとの間での直接的な熱交換によって、混合流体に追加されたボイルオフガスの再液化が促進される。その結果、追加ボイルオフガスの再液化を効率よく行うことができる。   Further, in the reliquefaction apparatus 10A, the mixed fluid flowing in the mixing flow path 164 (that is, liquefied natural gas (reliquefaction promoting liquid) flowing in the LNG flow path 161 and boil-off gas (reliquefaction target gas) flowing in the BOG flow path 162 are used. Liquefied natural gas (liquefied natural gas contained in the mixed fluid) and additional boil-off gas produced by mixing the additional boil-off gas (reliquefied additional target gas) flowing through the additional BOG flow path 165A with respect to the fluid). Direct heat exchange between the two promotes reliquefaction of the boil-off gas added to the mixed fluid. As a result, the additional boil-off gas can be efficiently reliquefied.

加えて、再液化装置10Aにおいては、混合流路164を流れる混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)とを混合した流体)と追加BOG流路165Aを流れるボイルオフガスを混合することで生成されるガス追加混合流体(つまり、LNG流路161を流れる液化天然ガス(再液化促進液体)とBOG流路162を流れるボイルオフガス(再液化対象ガス)と追加BOG流路165Aを流れるボイルオフガス(再液化追加対象ガス)とを混合した流体)が流れるガス追加混合流路167Aが分離壁1431を介して流体冷却流路19に隣接しているので、ガス追加混合流路167Aを流れるガス追加混合流体と流体冷却流路19を流れる流体冷却冷媒との間での分離壁1431を介しての間接的な熱交換によって、ガス追加混合流路167Aを流れるガス追加混合流体に含まれる追加ボイルオフガスの再液化が促進される。その結果、追加ボイルオフガスの再液化を効率よく行うことができる。   In addition, in the reliquefaction apparatus 10A, the mixed fluid flowing through the mixing flow path 164 (that is, liquefied natural gas (reliquefaction promoting liquid) flowing through the LNG flow path 161 and boil-off gas flowing through the BOG flow path 162 (reliquefaction target gas). ) And the boil-off gas flowing through the additional BOG flow path 165A (ie, the liquefied natural gas (reliquefaction promoting liquid) flowing through the LNG flow path 161 and the BOG flow) A gas additional mixing channel 167A through which the boil-off gas (reliquefaction target gas) flowing through the path 162 and the boil-off gas (reliquefaction additional target gas) flowing through the additional BOG flow channel 165A flow) passes through the separation wall 1431. Since it is adjacent to the fluid cooling channel 19, it flows through the gas additional mixed fluid flowing through the gas additional mixing channel 167 A and the fluid cooling channel 19. By indirect heat exchange through the separation wall 1431 between the fluid cooling medium, re-liquefaction is promoted additional BOG contained in the gas added mixed fluid flowing through the gas additional mixing channel 167A. As a result, the additional boil-off gas can be efficiently reliquefied.

このような再液化装置10Aにおいては、再液化装置10と同様な効果を得ることができる。   In such a reliquefaction apparatus 10A, the same effect as that of the reliquefaction apparatus 10 can be obtained.

また、再液化装置10Aにおいては、流体流路基板143に流路を形成するための溝が形成されていないので、流体流路基板143そのものの厚みを薄くすることができる。その結果、混合流路164を流れる混合流体及びガス追加混合流路167Aを流れるガス追加混合流体と流体冷却流路19を流れる流体冷却冷媒との間での分離壁1431を介しての間接的な熱交換を効率よく行うことができる。   Further, in the reliquefaction apparatus 10A, since the groove for forming the flow path is not formed in the fluid flow path substrate 143, the thickness of the fluid flow path substrate 143 itself can be reduced. As a result, indirect via the separation wall 1431 between the mixed fluid flowing through the mixing flow channel 164 and the gas additional mixed fluid flowing through the gas additional mixing flow channel 167A and the fluid cooling refrigerant flowing through the fluid cooling flow channel 19 Heat exchange can be performed efficiently.

また、再液化装置10Aにおいては、再液化の対象となるガスが再液化対象ガスであるボイルオフガスと再液化追加対象ガスである追加ボイルオフガスとに分割されて再液化促進液体である液化天然ガスに順次混合されるので、再液化対象ガスであるボイルオフガスと再液化追加対象ガスである追加ボイルオフガスとが再液化促進液体である液化天然ガスに対して一度に混合される場合と比べて、再液化対象ガスであるボイルオフガスと再液化追加対象ガスである追加ボイルオフガスの各々の再液化促進液体である液化天然ガスに対する混合量を減らすことができる。そのため、再液化対象ガスであるボイルオフガスと再液化追加対象ガスである追加ボイルオフガスの各々を再液化促進液体である液化天然ガスに混合する際の液化天然ガスの気化を抑制することができる。その結果、再液化対象ガスであるボイルオフガスと再液化追加対象ガスである追加ボイルオフガスの再液化を効率よく行うことができる。   In the reliquefaction apparatus 10A, the gas to be reliquefied is divided into a boiloff gas that is a reliquefaction target gas and an additional boiloff gas that is a reliquefaction additional target gas, and is a liquefied natural gas that is a reliquefaction promoting liquid. As compared with the case where the boil-off gas that is the reliquefaction target gas and the additional boiloff gas that is the reliquefaction additional target gas are mixed at once with the liquefied natural gas that is the reliquefaction promoting liquid, It is possible to reduce the amount of the boil-off gas that is the reliquefaction target gas and the additional boil-off gas that is the reliquefaction additional target gas to the liquefied natural gas that is the reliquefaction promoting liquid. Therefore, it is possible to suppress the vaporization of the liquefied natural gas when mixing each of the boil-off gas that is the reliquefaction target gas and the additional boil-off gas that is the reliquefaction additional target gas with the liquefied natural gas that is the reliquefaction promoting liquid. As a result, it is possible to efficiently re-liquefy the boil-off gas that is the re-liquefaction target gas and the additional boil-off gas that is the re-liquefaction additional target gas.

以上、本発明の実施の形態について詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施の形態の記載によって、何等、限定的に解釈されるものではない。   As mentioned above, although embodiment of this invention was explained in full detail, these are illustrations to the last, Comprising: This invention is not interpreted restrictively at all by description of the above-mentioned embodiment.

例えば、各流路基板において流路溝が形成される位置や流路溝が延びる方向、流路溝の長さ等は、上記実施の形態に記載のものに限定されない。   For example, the position where the flow channel is formed in each flow channel substrate, the direction in which the flow channel extends, the length of the flow channel, and the like are not limited to those described in the above embodiment.

10 再液化装置
12 流路形成体
14 流路基板
141 ベース基板
142 ガス流路基板
143 流体流路基板
144 ガス冷却流路基板
145 流体冷却流路基板
14A LNG流路溝
14B BOG流路溝
14C 混合孔
14D 混合流路溝
14E 追加LNG流路溝
14F 追加混合孔
14G 追加混合流路溝
14H ガス冷却流路溝
14I 流体冷却流路溝
16 流体流路
161 LNG流路
162 BOG流路
163 混合接続流路
164 混合流路
165 追加LNG流路
165A 追加BOG流路
166 追加混合接続流路
167 液体追加混合流路
167A ガス追加混合流路
18 ガス冷却流路
19 流体冷却流路
DESCRIPTION OF SYMBOLS 10 Reliquefaction apparatus 12 Channel formation body 14 Channel substrate 141 Base substrate 142 Gas channel substrate 143 Fluid channel substrate 144 Gas cooling channel substrate 145 Fluid cooling channel substrate 14A LNG channel groove 14B BOG channel groove 14C Mixing Hole 14D Mixing channel groove 14E Additional LNG channel groove 14F Additional mixing hole 14G Additional mixing channel groove 14H Gas cooling channel groove 14I Fluid cooling channel groove 16 Fluid channel 161 LNG channel 162 BOG channel 163 Mixed connection flow Channel 164 Mixing channel 165 Additional LNG channel 165A Additional BOG channel 166 Additional mixing connection channel 167 Liquid additional mixing channel 167A Gas additional mixing channel 18 Gas cooling channel 19 Fluid cooling channel

上記再液化装置において、好ましくは、前記ガス冷却流路基板に設けられた前記複数の溝は、それぞれ、前記ガス冷却流路基板が有する前記重ね合わせ面であって前記ガス流路基板に重ね合わされる前記重ね合わせ面に設けられ、前記ガス冷却流路を形成するガス冷却流路溝を含み、前記積層方向において前記ガス流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記ガス流路溝に隣接する部分によって形成されている。 In the reliquefaction apparatus, preferably, the plurality of grooves provided in the gas cooling flow path substrate are the overlapping surfaces of the gas cooling flow path substrate and overlapped with the gas flow path substrate. The separation wall provided between the gas flow path and the gas cooling flow path in the stacking direction includes a gas cooling flow path groove provided on the overlapping surface and forming the gas cooling flow path, The gas flow path substrate is formed by a portion adjacent to the gas flow path groove in the stacking direction.

上記再液化装置において、好ましくは、前記ベース基板に設けられた前記複数の溝は、それぞれ、前記第2のベース重ね合わせ面に設けられ、前記追加液体流路を形成する追加液体流路溝と、前記第1のベース重ね合わせ面において前記ガス流路溝に連続するように設けられ、前記混合流路を形成する混合流路溝と、前記第1のベース重ね合わせ面において前記混合流路溝に連続するように設けられ、前記液体追加混合流路を形成する追加混合流路溝とを含み、前記追加混合接続流路は、前記ベース基板を前記積層方向に貫通するように設けられ、前記混合流路溝と前記追加液体流路溝とを接続する追加混合孔によって形成されており、前記積層方向において前記追加液体流路と前記液体追加混合流路との間に存在する前記仕切壁は、前記ベース基板のうち前記積層方向において前記追加液体流路溝と前記追加混合流路溝との間に位置する部分によって形成されており、前記積層方向において前記液体追加混合流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記追加混合流路溝に隣接する部分によって形成されている。 In the reliquefaction apparatus, preferably, the plurality of grooves provided in the base substrate are each provided in the second base overlapping surface, and an additional liquid channel groove that forms the additional liquid channel. A mixing channel groove that is provided to be continuous with the gas channel groove on the first base overlapping surface and forms the mixing channel; and the mixing channel groove on the first base overlapping surface. And an additional mixing channel groove that forms the liquid additional mixing channel, and the additional mixing connection channel is provided so as to penetrate the base substrate in the stacking direction, The partition wall is formed by an additional mixing hole that connects the mixing channel groove and the additional liquid channel groove, and the partition wall existing between the additional liquid channel and the liquid additional mixing channel in the stacking direction is , Formed in the stacking direction between the additional liquid channel groove and the additional mixing channel groove, and the liquid additional mixing channel and the gas cooling channel in the stacking direction. The separation wall existing between each of the gas flow path substrates is formed by a portion of the gas flow path substrate adjacent to the additional mixing flow path groove in the stacking direction.

Claims (14)

液体から気化したガスであって再液化の対象となる再液化対象ガスと前記再液化対象ガスに混合される前記液体であって前記再液化対象ガスの再液化を促進する再液化促進液体とを混合して直接的に熱交換することにより前記再液化対象ガスを再液化する再液化装置であって、
前記再液化対象ガスと前記再液化促進液体とを含む流体を流通させる複数の流路が形成された流路形成体を備え、
前記流路形成体は、
所定の方向に積層された状態で互いに接合された複数の基板であって前記複数の基板の積層方向で重なる2つの基板の各々が有する重ね合わせ面の少なくとも一方において当該重ね合わせ面に沿うように延びて前記複数の流路の少なくとも一部を形成する複数の溝が設けられた複数の流路基板を備え、
前記複数の流路は、それぞれ、
前記重ね合わせ面に沿って延びるように形成され、前記再液化促進液体が流れるのを許容する液体流路と、
前記積層方向において前記液体流路との間に存在する仕切壁を介して前記液体流路に隣接することで前記液体流路から独立して設けられるとともに前記重ね合わせ面に沿って延びるように形成され、前記再液化対象ガスが流れるのを許容するガス流路と、
前記積層方向に延びるように形成され、前記液体流路と前記ガス流路とを接続する混合接続流路と、
前記液体流路及び前記ガス流路のうちの何れかの流路の下流端部に接続された状態で前記重ね合わせ面に沿って延びるように形成され、前記混合流体が流れるのを許容する混合流路と、
前記積層方向において前記ガス流路との間に存在する分離壁を介して前記ガス流路に隣接することで前記ガス流路から独立して設けられ、前記再液化対象ガスとの間で前記分離壁を介して間接的に熱交換するためにガス冷却冷媒が流れるのを許容するガス冷却流路とを含む、再液化装置。
A gas to be reliquefied, which is a gas that has been vaporized from a liquid, and a reliquefaction promoting liquid that is mixed with the gas to be reliquefied and that promotes reliquefaction of the gas to be reliquefied. A re-liquefaction apparatus for re-liquefying the re-liquefaction target gas by mixing and directly exchanging heat,
A flow path forming body in which a plurality of flow paths for circulating a fluid containing the reliquefaction target gas and the reliquefaction promoting liquid are formed;
The flow path forming body is:
A plurality of substrates bonded to each other in a stacked state in a predetermined direction, and at least one of the overlapping surfaces of each of the two substrates overlapping in the stacking direction of the plurality of substrates so as to be along the overlapping surface A plurality of flow path substrates provided with a plurality of grooves extending to form at least a part of the plurality of flow paths;
Each of the plurality of flow paths is
A liquid flow path formed to extend along the overlapping surface and allowing the reliquefaction promoting liquid to flow;
Formed so as to be provided independently of the liquid flow path and to extend along the overlapping surface by being adjacent to the liquid flow path via a partition wall existing between the liquid flow path in the stacking direction. A gas flow path that allows the gas to be reliquefied to flow;
A mixed connection flow path formed to extend in the stacking direction and connecting the liquid flow path and the gas flow path;
A mixture that is formed to extend along the overlapping surface while being connected to a downstream end portion of any one of the liquid channel and the gas channel, and allows the mixed fluid to flow. A flow path;
It is provided independently of the gas flow path by being adjacent to the gas flow path via a separation wall existing between the gas flow path in the stacking direction, and the separation from the gas to be reliquefied. A re-liquefaction apparatus including a gas cooling flow path that allows a gas cooling refrigerant to flow for heat exchange indirectly through a wall.
請求項1に記載の再液化装置であって、
前記複数の流路基板は、
前記積層方向の一方側に位置する前記重ね合わせ面である第1のベース重ね合わせ面と前記積層方向の他方側に位置する前記重ね合わせ面である第2のベース重ね合わせ面とを有するベース基板と、
前記第1のベース重ね合わせ面に重ね合わされた状態で前記ベース基板に接合され、前記ベース基板との間に前記ガス流路を形成するガス流路基板と、
前記第2のベース重ね合わせ面に重ね合わされた状態で前記ベース基板に接合され、前記ベース基板との間に前記液体流路を形成する流体流路基板と、
前記ガス流路基板のうち前記積層方向において一方側に位置する前記重ね合わせ面に重ね合わされた状態で前記ガス流路基板に接合され、前記ガス流路基板との間に前記ガス冷却流路を形成するガス冷却流路基板とを含む、再液化装置。
The reliquefaction device according to claim 1,
The plurality of flow path substrates are:
A base substrate having a first base overlapping surface that is the overlapping surface located on one side in the stacking direction and a second base overlapping surface that is the overlapping surface positioned on the other side in the stacking direction When,
A gas flow path substrate that is bonded to the base substrate in a state of being superimposed on the first base overlapping surface, and that forms the gas flow path between the base substrate,
A fluid flow path substrate that is bonded to the base substrate in a state of being superimposed on the second base overlapping surface, and forms the liquid flow path between the base substrate,
The gas flow path substrate is joined to the gas flow path substrate in a state of being overlapped with the overlapping surface located on one side in the stacking direction, and the gas cooling flow path is interposed between the gas flow path substrate and the gas flow path substrate. A reliquefaction apparatus including a gas cooling flow path substrate to be formed.
請求項2に記載の再液化装置であって、
前記ベース基板に設けられた前記複数の溝は、それぞれ、
前記第1のベース重ね合わせ面に設けられ、前記ガス流路を形成するガス流路溝と、
前記第2のベース重ね合わせ面に設けられ、前記液体流路を形成する液体流路溝とを含み、
前記混合接続流路は、前記ベース基板を前記積層方向に貫通するように設けられ、前記ガス流路溝と前記液体流路溝とを接続する混合孔によって形成されており、
前記積層方向において前記ガス流路と前記液体流路との間に存在する前記仕切壁は、前記ベース基板のうち前記積層方向において前記ガス流路溝と前記液体流路溝との間に位置する部分によって形成されている、再液化装置。
A reliquefaction device according to claim 2,
The plurality of grooves provided in the base substrate are respectively
A gas channel groove provided on the first base overlapping surface and forming the gas channel;
A liquid channel groove provided on the second base overlapping surface and forming the liquid channel;
The mixing connection channel is provided so as to penetrate the base substrate in the stacking direction, and is formed by a mixing hole that connects the gas channel groove and the liquid channel groove,
The partition wall existing between the gas flow channel and the liquid flow channel in the stacking direction is located between the gas flow channel groove and the liquid flow channel groove in the stacking direction of the base substrate. A reliquefaction device formed by parts.
請求項3に記載の再液化装置であって、
前記ガス冷却流路基板に設けられた前記複数の溝は、それぞれ、
前記第1のベース重ね合わせ面に設けられ、前記ガス冷却流路を形成するガス冷却流路溝を含み、
前記積層方向において前記ガス流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記ガス流路溝に隣接する部分によって形成されている、再液化装置。
The reliquefaction device according to claim 3,
The plurality of grooves provided in the gas cooling flow path substrate are respectively
A gas cooling channel groove provided on the first base overlapping surface and forming the gas cooling channel;
The separation wall existing between the gas flow path and the gas cooling flow path in the stacking direction is formed by a portion of the gas flow path substrate adjacent to the gas flow path groove in the stacking direction. , Reliquefaction equipment.
請求項1〜4の何れか1項に記載の再液化装置であって、
前記混合流路は、前記積層方向において前記ガス冷却流路との間に存在する分離壁を介して前記ガス冷却流路に隣接することで前記ガス冷却流路から独立して設けられるとともに前記ガス流路から連続して延びるように、前記ガス流路の下流端部に接続されており、
前記ガス冷却流路は、前記混合流路を流れる前記混合流体と前記ガス冷却冷媒との間での前記分離壁を介しての間接的な熱交換によって前記混合流路を流れる前記混合流体が冷却されることで前記混合流路を流れる前記混合流体に含まれる前記再液化対象ガスの再液化が促進されるように、前記ガス冷却冷媒が流れるのを許容する、再液化装置。
The reliquefaction apparatus according to any one of claims 1 to 4,
The mixing channel is provided independently of the gas cooling channel by being adjacent to the gas cooling channel via a separation wall existing between the gas cooling channel in the stacking direction and the gas Connected to the downstream end of the gas flow path so as to extend continuously from the flow path,
The gas cooling channel cools the mixed fluid flowing through the mixing channel by indirect heat exchange via the separation wall between the mixed fluid flowing through the mixing channel and the gas cooling refrigerant. Thus, the reliquefaction apparatus permits the gas cooling refrigerant to flow so as to promote reliquefaction of the reliquefaction target gas contained in the mixed fluid flowing through the mixing flow channel.
請求項5に記載の再液化装置であって、
前記ベース基板に設けられた前記複数の溝は、それぞれ、
前記第1のベース重ね合わせ面において前記ガス流路溝に連続するように設けられ、前記混合流路を形成する混合流路溝をさらに含み、
前記積層方向において前記混合流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記混合流路溝に隣接する部分によって形成されている、再液化装置。
The reliquefaction device according to claim 5,
The plurality of grooves provided in the base substrate are respectively
The first base overlapping surface further includes a mixing channel groove provided to be continuous with the gas channel groove and forming the mixing channel,
The separation wall existing between the mixing channel and the gas cooling channel in the stacking direction is formed by a portion of the gas channel substrate adjacent to the mixing channel groove in the stacking direction. , Reliquefaction equipment.
請求項1〜6の何れか1項に記載の再液化装置であって、
前記複数の流路は、それぞれ、
前記重ね合わせ面に沿って延びるように形成され、前記混合流路を流れる前記混合流体に追加される前記液体であって前記混合流体に含まれる前記再液化対象ガスとの間での直接的な熱交換により前記再液化対象ガスの再液化を促進する再液化促進追加液体が流れるのを許容する追加液体流路と、
前記積層方向に延びるように形成され、前記混合流路と前記追加液体流路とを接続する追加混合接続流路と、
前記積層方向において前記追加液体流路との間に存在する仕切壁を介して前記追加液体流路に隣接することで前記追加液体流路から独立して設けられるとともに前記混合流路の下流端部に接続された状態で前記重ね合わせ面に沿って延びるように形成され、前記液体追加混合流体が流れるのを許容する液体追加混合流路とをさらに含む、再液化装置。
The reliquefaction apparatus according to any one of claims 1 to 6,
Each of the plurality of flow paths is
Directly between the liquid to be reliquefied and the liquid added to the mixed fluid flowing in the mixed flow path and extending along the overlapping surface and included in the mixed fluid An additional liquid flow path that allows a reliquefaction promoting additional liquid to flow through the heat exchange to promote reliquefaction of the gas to be reliquefied,
An additional mixing connection channel formed so as to extend in the laminating direction and connecting the mixing channel and the additional liquid channel;
It is provided independently of the additional liquid channel by being adjacent to the additional liquid channel via a partition wall existing between the additional liquid channel in the stacking direction and the downstream end of the mixing channel A re-liquefaction apparatus further comprising: a liquid additional mixing channel that is formed so as to extend along the overlapping surface in a state of being connected to the liquid and allows the liquid additional mixed fluid to flow.
請求項7に記載の再液化装置であって、
前記ベース基板に設けられた前記複数の溝は、それぞれ、
前記第2のベース重ね合わせ面に設けられ、前記追加液体流路を形成する追加液体流路溝と、
前記第1のベース重ね合わせ面において前記混合流路溝に連続するように設けられ、前記液体追加混合流路を形成する追加混合流路溝とを含み、
前記追加混合接続流路は、
前記ベース基板を前記積層方向に貫通するように設けられ、前記混合流路溝と前記追加液体流路溝とを接続する追加混合孔によって形成されており、
前記積層方向において前記追加液体流路と前記液体追加混合流路との間に存在する前記仕切壁は、前記ベース基板のうち前記積層方向において前記追加液体流路溝と前記追加混合流路溝との間に位置する部分によって形成されており、
前記積層方向において前記液体追加混合流路と前記ガス冷却流路との間に存在する前記分離壁は、前記ガス流路基板のうち前記積層方向において前記追加混合流路溝に隣接する部分によって形成されている、再液化装置。
The reliquefaction device according to claim 7,
The plurality of grooves provided in the base substrate are respectively
An additional liquid channel groove provided on the second base overlapping surface and forming the additional liquid channel;
An additional mixing channel groove that is provided to be continuous with the mixing channel groove on the first base overlapping surface and forms the liquid additional mixing channel;
The additional mixing connection channel is
Provided so as to penetrate the base substrate in the stacking direction, and formed by an additional mixing hole connecting the mixing channel groove and the additional liquid channel groove;
The partition wall that exists between the additional liquid channel and the liquid additional mixing channel in the stacking direction includes the additional liquid channel groove and the additional mixing channel groove in the stacking direction of the base substrate. Formed by the part located between
The separation wall that exists between the liquid additional mixing channel and the gas cooling channel in the stacking direction is formed by a portion of the gas channel substrate that is adjacent to the additional mixing channel groove in the stacking direction. Reliquefaction equipment.
請求項7又は8に記載の再液化装置であって、
前記液体追加混合流路は、前記積層方向において前記ガス冷却流路との間に存在する分離壁を介して前記ガス冷却流路に隣接することで前記ガス冷却流路から独立して設けられるとともに前記混合流路から連続して延びるように、前記混合流路の下流端部に接続されており、
前記ガス冷却流路は、前記液体追加混合流路を流れる前記液体追加混合流体と前記ガス冷却冷媒との間での前記分離壁を介しての間接的な熱交換によって前記液体追加混合流路を流れる前記液体追加混合流体が冷却されることで前記液体追加混合流路を流れる前記液体追加混合流体に含まれる前記再液化対象ガスの再液化が促進されるように、前記ガス冷却冷媒が流れるのを許容する、再液化装置。
Reliquefaction apparatus according to claim 7 or 8,
The liquid additional mixing channel is provided independently of the gas cooling channel by being adjacent to the gas cooling channel via a separation wall existing between the liquid cooling channel and the gas cooling channel in the stacking direction. Connected to the downstream end of the mixing channel so as to extend continuously from the mixing channel,
The gas cooling flow path is formed by indirect heat exchange between the liquid additional mixed fluid flowing through the liquid additional mixing flow path and the gas cooling refrigerant through the separation wall. The gas cooling refrigerant flows so that the re-liquefaction of the re-liquefaction target gas contained in the liquid additional mixed fluid flowing through the liquid additional mixing fluid channel is promoted by cooling the flowing liquid additional mixed fluid. Allow re-liquefaction equipment.
請求項1〜4の何れか1項に記載の再液化装置であって、
前記混合流路は、前記液体流路から連続して延びるように、前記液体流路の下流端部に接続されており、
前記複数の流路は、それぞれ、
前記積層方向において前記混合流路との間に存在する隔離壁を介して前記混合流路に隣接することで前記混合流路から独立して設けられ、前記混合流路を流れる前記混合流体との間での前記隔離壁を介しての間接的な熱交換によって前記混合流路を流れる前記混合流体が冷却されることで前記混合流路を流れる前記混合流体に含まれる前記再液化対象ガスの再液化が促進されるように、流体冷却冷媒が流れるのを許容する流体冷却流路をさらに含む、再液化装置。
The reliquefaction apparatus according to any one of claims 1 to 4,
The mixing channel is connected to the downstream end of the liquid channel so as to continuously extend from the liquid channel,
Each of the plurality of flow paths is
In the laminating direction, adjacent to the mixing channel via an isolation wall existing between the mixing channel and the mixing channel, and provided independently of the mixing channel, and the mixed fluid flowing in the mixing channel The mixed fluid flowing in the mixed flow path is cooled by indirect heat exchange through the isolation wall therebetween, whereby the reliquefied gas contained in the mixed fluid flowing in the mixed flow path is re-recovered. A reliquefaction device further comprising a fluid cooling channel that allows fluid cooling refrigerant to flow to facilitate liquefaction.
請求項10に記載の再液化装置であって、
前記ベース基板に設けられた前記複数の溝は、それぞれ、
前記第2のベース重ね合わせ面において前記液体流路溝に連続するように設けられ、前記混合流路を形成する混合流路溝をさらに含み、
前記積層方向において前記混合流路と前記流体冷却流路との間に存在する前記隔離壁は、前記流体流路基板のうち前記積層方向において前記混合流路溝に隣接する部分によって形成されている、再液化装置。
A reliquefaction device according to claim 10,
The plurality of grooves provided in the base substrate are respectively
A mixing channel groove provided to be continuous with the liquid channel groove on the second base overlapping surface and forming the mixing channel;
The isolation wall existing between the mixing channel and the fluid cooling channel in the stacking direction is formed by a portion of the fluid channel substrate adjacent to the mixing channel groove in the stacking direction. , Reliquefaction equipment.
請求項10又は11に記載の再液化装置であって、
前記複数の流路は、それぞれ、
前記積層方向において前記ガス冷却流路との間に存在する分離壁を介して前記ガス冷却流路に隣接することで前記ガス冷却流路から独立して設けられるとともに前記重ね合わせ面に沿って延びるように形成され、前記混合流路を流れる前記混合流体に追加される前記ガスであって前記混合流体に含まれる前記再液化促進液体との間での直接的な熱交換により再液化の対象となる再液化追加対象ガスが流れるのを許容する追加ガス流路と、
前記積層方向に延びるように形成され、前記混合流路と前記追加ガス流路とを接続する追加混合接続流路と、
前記積層方向において前記追加ガス流路との間に存在する仕切壁を介して前記追加ガス流路に隣接することで前記追加ガス流路から独立して設けられるとともに前記混合流路の下流端部に接続された状態で前記重ね合わせ面に沿って延びるように形成され、前記ガス追加混合流体が流れるのを許容するガス追加混合流路とをさらに含む、再液化装置。
The reliquefaction apparatus according to claim 10 or 11,
Each of the plurality of flow paths is
Adjacent to the gas cooling channel via a separation wall existing between the gas cooling channel in the stacking direction and provided independently of the gas cooling channel and extending along the overlapping surface. The gas added to the mixed fluid flowing in the mixed flow path, and subject to reliquefaction by direct heat exchange with the reliquefaction promoting liquid contained in the mixed fluid An additional gas flow path that allows the re-liquefied additional target gas to flow,
An additional mixing connection channel formed to extend in the stacking direction and connecting the mixing channel and the additional gas channel;
It is provided independently of the additional gas channel by being adjacent to the additional gas channel via a partition wall existing between the additional gas channel and the downstream end of the mixing channel in the stacking direction A re-liquefaction apparatus, further comprising: a gas addition mixing channel that is formed to extend along the overlapping surface in a state of being connected to the gas, and that allows the gas addition mixing fluid to flow.
請求項12に記載の再液化装置であって、
前記ベース基板に設けられた前記複数の溝は、それぞれ、
前記第1のベース重ね合わせ面に設けられ、前記追加ガス流路を形成する追加ガス流路溝と、
前記第2のベース重ね合わせ面において前記混合流路溝に連続するように設けられ、前記ガス追加混合流路を形成する追加混合流路溝とを含み、
前記追加混合接続流路は、
前記ベース基板を前記積層方向に貫通するように設けられ、前記混合流路溝と前記追加ガス流路溝とを接続する追加混合孔によって形成されており、
前記積層方向において前記追加ガス流路と前記ガス追加混合流路との間に存在する前記仕切壁は、前記ベース基板のうち前記積層方向において前記追加ガス流路溝と前記追加混合流路溝との間に位置する部分によって形成されており、
前記積層方向において前記ガス追加混合流路と前記流体冷却流路との間に存在する前記隔離壁は、前記ガス流路基板のうち前記積層方向において前記追加混合流路溝に隣接する部分によって形成されている、再液化装置。
The reliquefaction device according to claim 12,
The plurality of grooves provided in the base substrate are respectively
An additional gas channel groove provided on the first base overlapping surface and forming the additional gas channel;
An additional mixing channel groove that is provided to be continuous with the mixing channel groove on the second base overlapping surface and forms the gas additional mixing channel;
The additional mixing connection channel is
Provided so as to penetrate the base substrate in the stacking direction, and formed by an additional mixing hole connecting the mixing channel groove and the additional gas channel groove,
The partition wall existing between the additional gas flow channel and the gas additional mixing flow channel in the stacking direction includes the additional gas flow channel groove and the additional mixing flow channel groove in the stacking direction of the base substrate. Formed by the part located between
The isolation wall that exists between the gas additional mixing channel and the fluid cooling channel in the stacking direction is formed by a portion of the gas channel substrate that is adjacent to the additional mixing channel groove in the stacking direction. Reliquefaction equipment.
請求項12又は13に記載の再液化装置であって、
前記ガス追加混合流路は、前記積層方向において前記流体冷却流路との間に存在する隔離壁を介して前記流体冷却流路に隣接することで前記流体冷却流路から独立して設けられるとともに前記混合流路から連続して延びるように、前記混合流路の下流端部に接続されており、
前記流体冷却流路は、前記ガス追加混合流路を流れる前記ガス追加混合流体と前記流体冷却冷媒との間での前記隔離壁を介しての間接的な熱交換によって前記ガス追加混合流路を流れる前記ガス追加混合流体が冷却されることで前記ガス追加混合流路を流れる前記ガス追加混合流体に含まれる前記再液化追加対象ガスの再液化が促進されるように、前記流体冷却冷媒が流れるのを許容する、再液化装置。
The reliquefaction device according to claim 12 or 13,
The gas additional mixing channel is provided independently of the fluid cooling channel by being adjacent to the fluid cooling channel via an isolation wall existing between the gas cooling channel and the fluid cooling channel in the stacking direction. Connected to the downstream end of the mixing channel so as to extend continuously from the mixing channel,
The fluid cooling flow path is formed by indirect heat exchange between the gas additional mixed fluid flowing through the gas additional mixing flow path and the fluid cooling refrigerant through the isolation wall. The fluid cooling refrigerant flows so that the re-liquefaction of the re-liquefaction additional target gas contained in the gas additional mixed fluid flowing through the gas additional mixing flow channel is promoted by cooling the flowing gas additional mixed fluid. Re-liquefaction equipment that allows
JP2018045437A 2018-03-13 2018-03-13 Reliquefaction device Active JP6623244B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018045437A JP6623244B2 (en) 2018-03-13 2018-03-13 Reliquefaction device
KR1020207025876A KR102429817B1 (en) 2018-03-13 2019-03-07 reliquefaction device
US16/975,986 US11754337B2 (en) 2018-03-13 2019-03-07 Reliquefaction device
EP19766710.8A EP3767210B1 (en) 2018-03-13 2019-03-07 Reliquefaction device
CN201980018876.XA CN111819412B (en) 2018-03-13 2019-03-07 Reliquefaction device
PCT/JP2019/009009 WO2019176703A1 (en) 2018-03-13 2019-03-07 Reliquefaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045437A JP6623244B2 (en) 2018-03-13 2018-03-13 Reliquefaction device

Publications (2)

Publication Number Publication Date
JP2019158237A true JP2019158237A (en) 2019-09-19
JP6623244B2 JP6623244B2 (en) 2019-12-18

Family

ID=67906671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045437A Active JP6623244B2 (en) 2018-03-13 2018-03-13 Reliquefaction device

Country Status (6)

Country Link
US (1) US11754337B2 (en)
EP (1) EP3767210B1 (en)
JP (1) JP6623244B2 (en)
KR (1) KR102429817B1 (en)
CN (1) CN111819412B (en)
WO (1) WO2019176703A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103543B1 (en) * 2019-11-21 2021-10-22 Air Liquide Heat exchanger with arrangement of mixing devices improving the distribution of a two-phase mixture
CN115529789B (en) * 2022-06-26 2024-07-02 弘大博远(北京)智能制造技术有限公司 Multi-runner circulating type heat dissipation electrical cabinet

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE575166A (en) * 1958-01-29
US3410092A (en) * 1961-07-17 1968-11-12 Marquardt Corp Reliquefaction cycle for liquid air cycle engine
US3559722A (en) * 1969-09-16 1971-02-02 Trane Co Method and apparatus for two-phase heat exchange fluid distribution in plate-type heat exchangers
FR2456924A2 (en) * 1979-05-18 1980-12-12 Air Liquide THERMAL EXCHANGE ASSEMBLY OF THE PLATE HEAT EXCHANGER TYPE
US4450903A (en) * 1982-09-20 1984-05-29 The Trane Company Plate type heat exchanger with transverse hollow slotted bar
DE3415807A1 (en) * 1984-04-27 1985-10-31 Linde Ag, 6200 Wiesbaden HEAT EXCHANGER
US4846862A (en) * 1988-09-06 1989-07-11 Air Products And Chemicals, Inc. Reliquefaction of boil-off from liquefied natural gas
US4843829A (en) * 1988-11-03 1989-07-04 Air Products And Chemicals, Inc. Reliquefaction of boil-off from liquefied natural gas
JP3610251B2 (en) 1998-11-13 2005-01-12 大阪瓦斯株式会社 BOG reliquefaction method using LNG
US6622519B1 (en) * 2002-08-15 2003-09-23 Velocys, Inc. Process for cooling a product in a heat exchanger employing microchannels for the flow of refrigerant and product
KR101290032B1 (en) * 2006-04-07 2013-07-30 배르질래 오일 & 가스 시스템즈 아에스 Method and apparatus for pre-heating lng boil-off gas to ambient temperature prior to compression in a reliquefaction system
US7637112B2 (en) * 2006-12-14 2009-12-29 Uop Llc Heat exchanger design for natural gas liquefaction
DE102008052875A1 (en) * 2008-10-23 2010-04-29 Linde Ag Soldered aluminum plate-type heat exchanger for exchanging between two fluid streams, has heat exchange section comprising non-flow layer that is arranged between two passages, where reinforcement element is provided in non-flow layer
JP5884995B2 (en) * 2013-12-02 2016-03-15 Jfeエンジニアリング株式会社 Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
CN104390136B (en) * 2014-11-11 2017-01-11 南京工业大学 BOG recovery method
RU2017145884A (en) * 2015-06-02 2019-07-10 Дэу Шипбилдинг Энд Марин Инджиниринг Ко., Лтд. VESSEL
JP6218867B2 (en) * 2015-07-13 2017-10-25 Jfeエンジニアリング株式会社 Condensing equipment
CN204963420U (en) * 2015-09-14 2016-01-13 成都深冷液化设备股份有限公司 A BOG is liquefying plant again that LNG storage tank, LNG transport ship that is used for LNG accepting station and peak regulation to stand
KR20180117144A (en) * 2016-02-26 2018-10-26 밥콕 아이피 매니지먼트 (넘버 원) 리미티드 Method for cooling boil-off gas and apparatus therefor
FR3053452B1 (en) * 2016-07-01 2018-07-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude HEAT EXCHANGER COMPRISING A DEVICE FOR DISPENSING A LIQUID / GAS MIXTURE
JP6718806B2 (en) * 2016-12-14 2020-07-08 株式会社神戸製鋼所 Fluid distribution device
KR20170029450A (en) * 2017-02-24 2017-03-15 정해원 Heat Exchanger

Also Published As

Publication number Publication date
CN111819412A (en) 2020-10-23
KR20200118178A (en) 2020-10-14
KR102429817B1 (en) 2022-08-08
EP3767210A4 (en) 2021-12-01
CN111819412B (en) 2022-01-18
WO2019176703A1 (en) 2019-09-19
US11754337B2 (en) 2023-09-12
JP6623244B2 (en) 2019-12-18
EP3767210B1 (en) 2023-09-13
US20210041164A1 (en) 2021-02-11
EP3767210A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US10488105B2 (en) Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen
EP3390939B1 (en) Expander-based lng production processes enhanced with liquid nitrogen
US11760462B2 (en) Boil-off gas re-liquefying device and method for ship
KR101670925B1 (en) Lng boil off gas reliquefaction system and method of the same
JP2017525910A (en) Boil-off gas cooling method and apparatus
JP6623244B2 (en) Reliquefaction device
US20140060111A1 (en) Process for liquefying a hydrocarbon-rich fraction
US11079176B2 (en) Method and system for liquefaction of natural gas using liquid nitrogen
KR101675879B1 (en) Device and method for re-liquefying BOG
US12066219B2 (en) Cooling system
KR101945473B1 (en) Reliquefaction system
CN114616434B (en) Method and device for cooling evaporated gas
US11692771B2 (en) Process and apparatus for treating lean LNG
KR20210145202A (en) Method for cooling boil-off gas and apparatus therefor
US20220099365A1 (en) Method of Cooling Boil-Off Gas and Apparatus Therefor
JPH04307200A (en) Vaporized gas reliquefying device for liquefied natural gas marine storage facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6623244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150