JP2019157148A - Pulverized coal injection method to blast furnace - Google Patents

Pulverized coal injection method to blast furnace Download PDF

Info

Publication number
JP2019157148A
JP2019157148A JP2018040826A JP2018040826A JP2019157148A JP 2019157148 A JP2019157148 A JP 2019157148A JP 2018040826 A JP2018040826 A JP 2018040826A JP 2018040826 A JP2018040826 A JP 2018040826A JP 2019157148 A JP2019157148 A JP 2019157148A
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
purge
blowing
coal injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018040826A
Other languages
Japanese (ja)
Other versions
JP6870633B2 (en
Inventor
玄弥 大和
Genya Yamato
玄弥 大和
桑原 稔
Minoru Kuwabara
稔 桑原
日高 渥美
Hidaka Atsumi
日高 渥美
茂幸 木村
Shigeyuki Kimura
茂幸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018040826A priority Critical patent/JP6870633B2/en
Publication of JP2019157148A publication Critical patent/JP2019157148A/en
Application granted granted Critical
Publication of JP6870633B2 publication Critical patent/JP6870633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

To provide a method enabling stable pulverized coal injection into a blast furnace to maintain a good thermal balance in a blast furnace circumferential direction by removing with a relatively short purge a deposition of pulverized coal before the pulverized coal adheres firmly to a piping.SOLUTION: In a pulverized coal injection method to the blast furnace that the pulverized coal to be injected into the blast furnace is sent by air using a plurality of pulverized coal injection lines and is injected into the furnace through a pulverized coal injection lance disposed in a tuyere at an end of the pulverized coal injection line, an operation in which a purge gas is blown for at least 15 minutes within 24 hours from an end of a previous purge is repeated for all the pulverized coal injection lines when supplying the purge gas to each of the pulverized coal injection lines.SELECTED DRAWING: Figure 1

Description

本発明は、微粉炭を高炉内へ吹き込むための微粉炭吹込み方法に関し、特に微粉炭吹込ラインから微粉炭を高炉内に安定的に吹き込むのに有効な微粉炭吹込み方法に関する。   The present invention relates to a pulverized coal blowing method for blowing pulverized coal into a blast furnace, and more particularly to a pulverized coal blowing method effective for stably blowing pulverized coal into a blast furnace from a pulverized coal blowing line.

高炉操業においては、還元材であるコークスの代わりとして高炉羽口から微粉炭を吹き込む、微粉炭吹込み操業が行なわれている。高炉への微粉炭吹込み操業は、高炉用コークスに比べて微粉炭の方が安価であるために、コスト低減効果に優れる。また、高炉への微粉炭吹き込み量を増やすことにより、高炉用コークスの製造設備であるコークス炉の負荷軽減を図ることができ、コークス炉の延命にも寄与する。そこで、従来の高炉操業においては、より多くの微粉炭を吹き込むための操業技術の開発が求められており、現在では150kg/t−溶銑以上の微粉炭多量吹込み操業も行われている。   In blast furnace operation, pulverized coal injection operation is performed in which pulverized coal is injected from a blast furnace tuyere instead of coke as a reducing material. The operation of injecting pulverized coal into the blast furnace is excellent in cost reduction effect because pulverized coal is less expensive than blast furnace coke. In addition, by increasing the amount of pulverized coal injected into the blast furnace, it is possible to reduce the load on the coke oven, which is a blast furnace coke manufacturing facility, and contribute to the extension of the life of the coke oven. Therefore, in the conventional blast furnace operation, development of an operation technique for injecting more pulverized coal has been demanded, and at present, a large amount of pulverized coal injection operation of 150 kg / t-molten or more is also performed.

このような微粉炭吹込み比率が高い高炉操業を行う場合、高炉内での微粉炭の燃焼性を向上させて、炉内の通気性の悪化を防ぐことが重要であり、吹込み微粉炭は74μm未満の割合を75mass%ないしそれ以上のものを用いることが知られている(特許文献1)。   When performing blast furnace operation with such a high ratio of pulverized coal injection, it is important to improve the flammability of the pulverized coal in the blast furnace and prevent deterioration of air permeability in the furnace. It is known to use a material having a ratio of less than 74 μm of 75 mass% or more (Patent Document 1).

一方で、微粉炭を高炉の炉内へ吹き込むまでには、いくつかの配管系やバルブ、吹込み装置等を経由させなければならない。ところが、微粉炭を過度に粉砕すると、微粉炭が配管系等の内部に付着し、閉塞させるという問題が発生する。例えば、微粉炭は、その輸送配管の内の、分配器以降の複数の枝管の場合、径が比較的小さく曲率の大きいベンド部において付着しやすいことが知られている(特許文献2)。もし、微粉炭の付着によって配管が閉塞した場合、高炉内の円周方向において微粉炭吹込み量にバラツキが発生し、溶銑の成分変動や炉況不調の原因となる。特に、微粉炭吹込み量が多い高炉操業の場合には、配管の一部において閉塞が発生すると減風や休風を余儀なくされて、減産その他の大きな問題となる。   On the other hand, in order to blow pulverized coal into the furnace of a blast furnace, it is necessary to pass through several piping systems, valves, blowing devices, and the like. However, if the pulverized coal is excessively pulverized, the problem arises that the pulverized coal adheres to the inside of the piping system and is blocked. For example, it is known that pulverized coal easily adheres to a bend portion having a relatively small diameter and a large curvature in the case of a plurality of branch pipes after the distributor in the transport pipe (Patent Document 2). If the piping is closed due to the adhesion of pulverized coal, the amount of pulverized coal injection varies in the circumferential direction in the blast furnace, causing hot metal component fluctuations and furnace condition failure. In particular, in the case of blast furnace operation where the amount of pulverized coal injection is large, if a blockage occurs in a part of the piping, it is forced to reduce or stop wind, resulting in a significant reduction in production and other problems.

特開2002−194408号公報JP 2002-194408 A 特開2015−187294号公報Japanese Patent Laying-Open No. 2015-187294

前記特許文献1,2に開示されているような従来技術では、微粉炭の粒度を厳格に管理しても配管内の閉塞を完全には防ぐことができなかった。例えば、これらの技術では、配管が閉塞した場合、配管内に強固に付着した微粉炭を除去するのに、少なくとも「3時間」、平均では「5時間」以上かかり、その間、微粉炭の吹込み停止が必要であった。その結果、吹込みを継続する羽口と吹込みを停止する羽口との間で炉内の羽口先の温度に較差が生じたり、荷下がり速度の偏差が発生したりする等、高炉円周方向のバランスの悪化が避けられなくなり、コークス比の増加やコストの上昇等を招くという問題があった。   In the prior art as disclosed in Patent Documents 1 and 2, even if the particle size of the pulverized coal is strictly controlled, blockage in the piping cannot be completely prevented. For example, in these techniques, when a pipe is blocked, it takes at least “3 hours” and, on average, “5 hours” or more to remove pulverized coal firmly adhered in the pipe. A stop was necessary. As a result, there is a difference in the temperature of the tuyere tip in the furnace between the tuyere that continues blowing and the tuyere that stops blowing, and deviation in unloading speed occurs, etc. There was a problem that deterioration in the balance of directions was unavoidable, resulting in an increase in coke ratio and cost.

本発明の目的は、配管内に微粉炭が強固に付着する前に、比較的短時間のパージで微粉炭の付着を除去し、高炉円周方向の熱バランスを良好に維持し、高炉への安定的な微粉炭吹込みを可能とする方法を提案しようとするものである。   The purpose of the present invention is to remove the adhesion of pulverized coal by a relatively short time purge before the pulverized coal adheres firmly in the pipe, to maintain a good thermal balance in the blast furnace circumferential direction, It is intended to propose a method that enables stable pulverized coal injection.

従来技術が抱えている前述の課題を解決し、前記の目的を実現するために鋭意研究した結果、発明者らは、以下に述べる新規な高炉への微粉炭吹込み方法を開発するに到った。   As a result of diligent research to solve the above-mentioned problems of the prior art and realize the above-mentioned object, the inventors have developed a new method for injecting pulverized coal into a blast furnace as described below. It was.

即ち、本発明は、高炉内に吹込む微粉炭を、複数の微粉炭吹込みラインを使って気送し、それぞれの微粉炭吹込みラインの末端部の羽口に配置された微粉炭吹込みランスを通じて炉内へ吹き込む高炉への微粉炭吹込み方法において、前記各微粉炭吹込みラインのパージガスの供給に当たっては、そのパージガスを前回パージの終了から24時間以内に15分間以上流す操作を微粉炭吹込みライン全数に対して繰返し行うことを特徴とする高炉への微粉炭吹込み方法である。   That is, the present invention uses a plurality of pulverized coal injection lines to feed the pulverized coal injected into the blast furnace, and the pulverized coal injection disposed at the tuyere at the end of each pulverized coal injection line. In the method of injecting pulverized coal into the blast furnace through the lance into the blast furnace, when supplying the purge gas to each pulverized coal injection line, the operation of flowing the purge gas for 15 minutes or more within 24 hours from the end of the previous purge is performed. This is a method for injecting pulverized coal into a blast furnace, which is repeated for all the injection lines.

なお、前記のように構成される本発明に係る高炉への微粉炭吹込み方法においては、
(1)前記微粉炭の吹込みは、150kg/t−溶銑以上の量を、羽口を30本以上有する大型高炉に対して行うこと
(2)前記微粉炭は、粒径74μm以下が70mass%以上90mass%以下の粒度分布を有すること、
(3)前記パージガスは、窒素ガスまたは、窒素ガスを乾燥空気にて酸素濃度を8vol%以下に調整したガスであること、
がより好ましい解決手段となるものと考えられる。
In the method for injecting pulverized coal into the blast furnace according to the present invention configured as described above,
(1) The pulverized coal is injected into a large blast furnace having 30 or more tuyere at an amount of 150 kg / t-molten iron or more. (2) The pulverized coal has a particle size of 74 μm or less and 70 mass%. Having a particle size distribution of 90 mass% or less,
(3) The purge gas is nitrogen gas or a gas in which nitrogen gas is adjusted to 8 vol% or less with dry air,
Is considered to be a more preferable solution.

本発明に係る高炉への微粉炭吹込み方法によれば、各々の微粉炭吹込みライン全てに対し、前回のパージ終了から24時間以内にパージガス(窒素ガスやその混合ガス)を15分間以上流す操作を繰返し行うことで、微粉炭吹込みラインを周期的にパージすることができる。そのため、微粉炭吹込みラインから微粉炭を炉内に吹込む際、円周バランスを維持したまま微粉炭の吹込み量を大幅に下げることなく、微粉炭吹込みラインの閉塞を抑制し、微粉炭を安定的に吹込み、低コストの高炉溶銑の製造を実現することができる。   According to the method for injecting pulverized coal into the blast furnace according to the present invention, the purge gas (nitrogen gas or a mixed gas thereof) is supplied to all of the pulverized coal injection lines for at least 15 minutes within 24 hours from the end of the previous purge. By repeating the operation, the pulverized coal blowing line can be periodically purged. Therefore, when blowing pulverized coal into the furnace from the pulverized coal blowing line, the blockage of the pulverized coal blowing line is suppressed without significantly reducing the amount of pulverized coal blowing while maintaining the circumferential balance. Charcoal can be stably injected to produce low-cost blast furnace hot metal.

また、本発明によれば、窒素やその混合ガスもしくは空気で微粉炭の配管付着を逐一取り除くことができるため、長期的に安定的な微粉炭吹き込みが可能となり、設備トラブルによる悪影響を小さく抑えることができる。   In addition, according to the present invention, it is possible to remove the pulverized coal piping by nitrogen, its mixed gas or air one by one, so that stable pulverized coal can be blown in the long term, and the adverse effects due to equipment troubles can be kept small. Can do.

本発明を実施するのに用いて好適な高炉への吹込み設備を模式的に示した図である。It is the figure which showed typically the injection equipment to the suitable blast furnace used for implementing this invention. 本発明を実施するに当たり、微粉炭吹込みラインのパージを行う順序の一例を説明するための図である。It is a figure for demonstrating an example of the order which purges a pulverized coal blowing line in implementing this invention. 図2に示す例において、同時にパージを行う微粉炭吹込みラインの一例を説明するための図である。In the example shown in FIG. 2, it is a figure for demonstrating an example of the pulverized coal injection line which purges simultaneously.

以下、図面を用いて本発明をより具体的に説明する。
図1は、本発明を実施するのに用いて好適な微粉炭吹込み設備(微粉炭吹込みライン)を模式的に示した図である(内容積5000mの高炉において、出銑比2.3における目標PCR(微粉炭吹込み比)を175kg/tとした例である。)。この例では、38か所の羽口11にそれぞれ二本の微粉炭吹込みランス12、13および各ランス毎に微粉炭吹込みライン9、10を備えたものを例として示してある。
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 is a diagram schematically showing a pulverized coal injection facility (pulverized coal injection line) suitable for use in carrying out the present invention (in a blast furnace having an internal volume of 5000 m 3 , an output ratio of 2. This is an example in which the target PCR (pulverized coal injection ratio) in 3 is 175 kg / t.) In this example, two pulverized coal injection lances 12 and 13 are provided at 38 tuyere 11 respectively, and pulverized coal injection lines 9 and 10 are provided for each lance as an example.

図1における符号1、2は、微粉炭を貯留する吹込みタンクである。この吹込みタンク1、2は、吹込み系統毎に設けられるものであって、2基で一組とした例(1基は予備タンクとして使用される。)である。また、3、4は吹込みタンク1、2からそれぞれ圧送された微粉炭を所定量に振り分ける分配器である。さらに、5、6は吹込みタンク1、2と分配器3、4それぞれをつなぐ送給配管である。この送給配管5、6には、微粉炭に窒素ガスを混合するための混合器7、8が設けられている。混合器7は、第1混合器7a、第2混合器7bからなり、混合器8は、第1混合器8a、第2混合器8bからなっている。さらにまた、9、10は分配器3、4の下流側(高炉側)においてつながる微粉炭吹込みラインである。この微粉炭吹込みライン9、10は、高炉に設けられた羽口と同数に分岐されており、該分配器3、4によって振り分けられた所定量の微粉炭が高炉羽口において吹き込まれる。   Reference numerals 1 and 2 in FIG. 1 are blowing tanks for storing pulverized coal. The blowing tanks 1 and 2 are provided for each blowing system, and are an example in which two sets are set as one set (one set is used as a reserve tank). Reference numerals 3 and 4 denote distributors that distribute the pulverized coal fed from the blowing tanks 1 and 2 into a predetermined amount. Further, 5 and 6 are supply pipes connecting the blowing tanks 1 and 2 and the distributors 3 and 4 respectively. The feeding pipes 5 and 6 are provided with mixers 7 and 8 for mixing nitrogen gas with pulverized coal. The mixer 7 includes a first mixer 7a and a second mixer 7b, and the mixer 8 includes a first mixer 8a and a second mixer 8b. Furthermore, 9 and 10 are pulverized coal injection lines connected on the downstream side (blast furnace side) of the distributors 3 and 4. The pulverized coal blowing lines 9 and 10 are branched in the same number as the tuyere provided in the blast furnace, and a predetermined amount of pulverized coal distributed by the distributors 3 and 4 is blown into the blast furnace tuyere.

また、図示の11は、高炉周壁に設けられた高炉羽口(高炉の周囲に配置された複数の羽口のうちの1つを表示している。)であり、12、13は高炉羽口11の送風通路内に配置された吹込みランスである。この吹込みランス12、13は、送給経路が異なる微粉炭吹込みライン9、10にそれぞれつながっており、吹込みタンク1、2から圧送された微粉炭をそれぞれ個別に独立して吹込むことができるようになっているものである。上記微粉炭吹込みライン9、10には、さらに、圧力調整器14、15、微粉炭遮断弁16a、17a、羽口遮断弁16b、17b、吹込みコック18、19が設けられている。   Also, 11 shown in the figure is a blast furnace tuyere (one of a plurality of tuyere arranged around the blast furnace) provided on the blast furnace peripheral wall, and 12 and 13 are blast furnace tuyere. 11 is a blowing lance disposed in the air passage 11. The blowing lances 12 and 13 are respectively connected to pulverized coal blowing lines 9 and 10 having different feeding paths, and individually blow the pulverized coal pumped from the blowing tanks 1 and 2 individually. Is something that can be done. The pulverized coal injection lines 9 and 10 are further provided with pressure regulators 14 and 15, pulverized coal cutoff valves 16a and 17a, tuyere cutoff valves 16b and 17b, and injection cocks 18 and 19, respectively.

上記設備は、1つの高炉羽口11に対して吹込みランス12、13が2つ配置されたダブルランス構造としたものである。吹込みランス12、13は、送給経路が異なる微粉炭吹込みライン9、10につながっているため、吹込みランス12、13毎の吹込みが可能である。   The above equipment has a double lance structure in which two blowing lances 12 and 13 are arranged for one blast furnace tuyere 11. Since the blowing lances 12 and 13 are connected to the pulverized coal blowing lines 9 and 10 having different feeding paths, the blowing lances 12 and 13 can be blown.

一例として、上記設備において、本発明を実施する際は、2系統の配管76本の内1本の微粉炭吹込みを停止する。吹込みを停止させる際は、微粉炭遮断弁16a、17aを閉め、微粉炭の吹込みを停止させる。次に、窒素パージ弁20、21からパージガスである例えば窒素ガスを吹込み、圧抜きコック配管22、23からその窒素ガスと共に微粉炭吹込みライン9、10の管内壁に付着している微粉炭を管外に排出する。パージガス(窒素)の流量は、通常の微粉炭吹込み時の搬送ガス流量の2〜6倍が好ましい。その理由は、搬送ガスの2倍未満ではパージ流量が足りず付着している微粉炭が除去できず、一方6倍を超えると配管が変形し微粉炭漏れなどのリスクが生じるためである。パージガスは外部に排出するのがより好ましいが、パージガスを高炉内に排出することもできる。パージガスとしては、微粉炭の異常燃焼を防止する理由から、窒素ガスを用いるのが好ましいが、窒素ガスを乾燥空気に混合して酸素濃度を8vol%以下に調整したガスを使うこともできる。   As an example, when the present invention is carried out in the above equipment, one of 76 pipes of two systems is stopped from blowing pulverized coal. When stopping the blowing, the pulverized coal shutoff valves 16a, 17a are closed to stop the blowing of pulverized coal. Next, for example, nitrogen gas, which is a purge gas, is blown from the nitrogen purge valves 20, 21, and the pulverized coal adhering to the inner wall of the pulverized coal blowing lines 9, 10 together with the nitrogen gas from the pressure relief cock pipes 22, 23. Is discharged outside the tube. The flow rate of the purge gas (nitrogen) is preferably 2 to 6 times the carrier gas flow rate during normal pulverized coal blowing. The reason is that if the amount of purge gas is less than twice the carrier gas, the adhering pulverized coal cannot be removed, while if it exceeds six times, the piping is deformed and risks such as pulverized coal leakage occur. The purge gas is more preferably discharged to the outside, but the purge gas can also be discharged into the blast furnace. Nitrogen gas is preferably used as the purge gas for the purpose of preventing abnormal combustion of pulverized coal, but a gas in which nitrogen gas is mixed with dry air and the oxygen concentration is adjusted to 8 vol% or less can also be used.

微粉炭吹込みラインの詰りが発生して間引き操業を行う場合においては、間引き本数が増加するに従って前記PCRが低下していく。そして、間引きした羽口と、所定量の微粉炭を吹き込んでいる羽口とで、羽口先(レースウェイ)温度の較差が拡大し、高炉内の周方向の状態に偏りが生じ、出銑比の低下等の問題が発生する。これに対して、本発明に適合する微粉炭の吹込み方法については、パージによる微粉炭吹込み停止時間が短く、微粉炭吹込みラインの詰りが発生しにくいため、羽口先温度の較差が少なくなり、長期的に安定した操業が可能となる。   When clogging occurs in the pulverized coal blowing line and the thinning operation is performed, the PCR decreases as the number of thinning lines increases. And the range of the tuyere tip (raceway) temperature is expanded between the thinned tuyere and the tuyere that has been blown with a predetermined amount of pulverized coal, resulting in a bias in the circumferential state in the blast furnace. Problems such as lowering of the level occur. On the other hand, in the pulverized coal injection method suitable for the present invention, the pulverized coal injection stop time due to purge is short, and clogging of the pulverized coal injection line is difficult to occur. Thus, stable operation over the long term is possible.

なお、本発明を実施する設備として、上述した設備では微粉炭の送給経路を2系統としてその最先端部にそれぞれ吹込みランスを配置したダブルランス構造とした例に従って説明した。しかしながら、吹込みランスの設置本数や開口径、微粉炭の送給経路の数や断面積は、適宜変更してもよく、この点についてはとくに限定されない。また、本発明においては、操業状況等を勘案して、種類、銘柄の異なる微粉炭(半無煙炭、非微粘結炭等)を適宜選択して吹込むことより、微粉炭吹込みラインの閉塞をさらに効率良く防ぐことが可能となる。   In addition, as an installation for implementing the present invention, the above-described installation has been described in accordance with an example of a double lance structure in which two pulverized coal feeding paths are provided and a blowing lance is disposed at the most advanced portion thereof. However, the number of blowing lances installed, the opening diameter, the number of pulverized coal feeding paths and the cross-sectional area may be appropriately changed, and this point is not particularly limited. Further, in the present invention, the pulverized coal injection line is blocked by appropriately selecting and blowing pulverized coal of different types and brands (semi-anthracite, non-slightly caking coal, etc.) in consideration of the operation status and the like. Can be prevented more efficiently.

図2は、上述した設備において、実際に本発明の微粉炭吹込み方法を実施するに当たり、微粉炭吹込みラインのパージを行う順序の一例を説明する図である。図2に示す例においては、高炉の炉壁下部の周壁に沿って等間隔に、38箇所(#1〜#38)で高炉羽口11を設けている。各高炉羽口11には、図1に示すように、各ランス毎に微粉炭吹込みおよびパージ操作が可能な微粉炭吹込みラインが設けられている。   FIG. 2 is a diagram for explaining an example of the order of purging the pulverized coal blowing line when actually implementing the pulverized coal blowing method of the present invention in the above-described facility. In the example shown in FIG. 2, the blast furnace tuyere 11 is provided at 38 locations (# 1 to # 38) at equal intervals along the peripheral wall at the bottom of the blast furnace wall. As shown in FIG. 1, each blast furnace tuyere 11 is provided with a pulverized coal injection line capable of performing pulverized coal injection and a purge operation for each lance.

図3は、図2に示す例において、同時にパージを行う微粉炭吹込みラインの一例を説明するための図である。ここでは、パージ可能な2つの微粉炭吹込みラインを右と左とで分類し、例えば#1の箇所の高炉羽口11の右ラインを右−#1として示し、#1の箇所の高炉羽口11の左ラインを左−#1として示している。図3に示す例においては、同時にパージを行う微粉炭吹込みラインの数を2本とした場合のパージローテーションの一例を示している。図3に示す例では、順番1〜38の順に2本の微粉炭吹込みラインでパージを行うに当たり、例えば、同時にパージを行う微粉炭吹込みラインを右−#1と右−#20とするように、円周上で対称な位置の2本の微粉炭吹込みラインで同時にパージを行うよう構成している。そうすることで、微粉炭の吹込みを実施しながら順番に微粉炭吹込みラインをパージしても、微粉炭吹込み時の円周バランスを良好に維持することが可能となる。   FIG. 3 is a diagram for explaining an example of a pulverized coal blowing line that performs purging simultaneously in the example shown in FIG. 2. Here, the two pulverized coal injection lines that can be purged are classified into right and left, for example, the right line of the blast furnace tuyere 11 at the location # 1 is shown as right- # 1, and the blast furnace feather at the location # 1. The left line of the mouth 11 is shown as left- # 1. In the example shown in FIG. 3, an example of purge rotation in the case where the number of pulverized coal blowing lines that perform purging at the same time is two is shown. In the example shown in FIG. 3, when purging with two pulverized coal blowing lines in the order of 1 to 38, for example, the pulverized coal blowing lines that are purged simultaneously are set to right- # 1 and right- # 20. Thus, it is comprised so that it may purge simultaneously with the two pulverized coal blowing lines of the symmetrical position on the circumference. By doing so, even if the pulverized coal blowing line is sequentially purged while the pulverized coal is being blown, the circumferential balance during the pulverized coal blowing can be maintained well.

なお、上述した本発明の高炉への微粉炭吹込み方法では、一部の微粉炭吹込みランスからの微粉炭の吹込みを止めて対応する微粉炭吹込みラインのパージを行う操作を、全ての微粉炭吹込みラインに対し、順番に繰返している。この際、パージ操作は、連続して実施しても良いし、間隔をあけて実施しても良い。ただし、いずれの場合でも、各々の微粉炭吹込みライン全てに対し、前回のパージ終了から24時間以内にパージガスを連続して15分間以上流す操作が可能となるように、パージ操作を順番に繰返す必要がある。   In the pulverized coal injection method of the present invention described above, all the operations of stopping the pulverized coal injection from a part of the pulverized coal injection lance and purging the corresponding pulverized coal injection line, The pulverized coal injection line is repeated in order. At this time, the purge operation may be performed continuously or at intervals. However, in any case, the purge operation is repeated in order so that the purge gas can be continuously flowed for 15 minutes or more within 24 hours from the end of the previous purge for all the pulverized coal injection lines. There is a need.

<実験例1>
図1に示す設備(微粉炭吹込みライン)を使用して、微粉炭の種類、粒度、ライン一本当たりの微粉炭の吹込み量、パージ条件を一定として、同時パージの本数、パージ間隔、パージ時間を変化させて、パージの効果を評価した。パージの効果は、微粉炭が付着する前およびパージ前後の吹込みラインの圧損を測定して評価した。そして、パージ後に微粉炭が付着する前のレベルまで圧損が低下した場合を効果有り(○)、パージ前後で圧損が低下したものの、付着前の圧損まで戻りきらなかった場合を効果不十分(△)、パージ前後で圧損の低下が確認できなかった場合を効果なし(×)とした。結果を以下の表1に示す。
<Experimental example 1>
Using the equipment (pulverized coal injection line) shown in FIG. 1, the number of simultaneous purges, the purge interval, the type of pulverized coal, the particle size, the amount of pulverized coal injected per line, and the purge conditions are constant. The purge effect was evaluated by changing the purge time. The effect of the purge was evaluated by measuring the pressure loss of the blowing line before the pulverized coal adhered and before and after the purge. And, it is effective when the pressure loss is reduced to the level before the pulverized coal adheres after purging (○), but the effect is insufficient when the pressure loss before and after the purge does not return to the level before the adhesion (△) ), The case where no drop in pressure loss was observed before and after purging was regarded as ineffective (x). The results are shown in Table 1 below.

表1の結果から、パージ時間が5分では、パージ前後で圧損が低下せず、付着した微粉炭が除去できなかった。パージ時間が10分では、パージ前後で圧損が低下したものの、付着前の圧損まで戻りきらなかった。パージ時間が15分以上では、パージ後に微粉炭が付着する前の圧損まで回復できることがわかった。   From the results in Table 1, when the purge time was 5 minutes, the pressure loss did not decrease before and after the purge, and the attached pulverized coal could not be removed. When the purge time was 10 minutes, the pressure loss decreased before and after the purge, but the pressure loss before the adhesion could not be fully restored. It has been found that when the purge time is 15 minutes or longer, the pressure loss before the pulverized coal adheres after the purge can be recovered.

一方で、1回のパージ時間を長くすると、微粉炭吹込みラインの全数をパージする時間が長くなり、前回パージの終了から今回のパージ開始までの時間に相当するパージ間隔が長くなった。パージ間隔が24時間以内であれば、パージ後に微粉炭が付着する前の圧損まで回復できたが、パージ時間が長くなると微粉炭吹込みラインへの微粉炭の付着が強固となり、付着前の圧損まで戻りきらない場合があることがわかった。   On the other hand, if the purge time for one time is lengthened, the time for purging all the pulverized coal blowing lines becomes longer, and the purge interval corresponding to the time from the end of the previous purge to the start of the current purge becomes longer. If the purge interval was within 24 hours, the pressure loss before the pulverized coal adhered after the purge could be recovered, but if the purge time became longer, the adhesion of the pulverized coal to the pulverized coal blowing line became stronger and the pressure loss before the adhesion It turned out that it may not be able to return to the end.

また、同時にパージする微粉炭吹込みラインの本数を2本以上とすれば、パージ間隔を減らすことができたが、その分、微粉炭の実効吹込み量が減少した。そのため、同時にパージする微粉炭吹込みラインの本数は、1〜4本とすることが好ましく、2、3本にすることがより好ましいことがわかった。なお、同時にパージする微粉炭吹込みラインが2本以上とする場合、必ずしも同時にパージを開始し終了する必要は無く、例えば1本目のパージ予定時間の半分が経過したところで、2本目のパージを開始し、1本目のパージが終了した時点では2本目のパージ予定時間の半分が経過し、3本目のパージを始めるといった手順を取ることもできる。   Further, if the number of pulverized coal injection lines to be purged simultaneously is set to 2 or more, the purge interval can be reduced, but the effective amount of pulverized coal injection is reduced accordingly. Therefore, it was found that the number of pulverized coal blowing lines to be purged simultaneously is preferably 1 to 4, more preferably 2 or 3. If there are two or more pulverized coal injection lines to be purged at the same time, it is not always necessary to start and end the purge at the same time. For example, the second purge starts when half of the scheduled purge time has elapsed. At the time when the first purge is completed, it is possible to take a procedure in which half of the scheduled time for the second purge has elapsed and the third purge is started.

以上のことから、本発明の高炉への微粉炭吹込み方法では、各々の微粉炭吹込みライン全てに対し、前回のパージ終了から24時間以内にパージガスを15分間以上流す操作を繰返して、微粉炭吹込みラインの閉塞を防止する必要があることがわかった。   From the above, in the method of injecting pulverized coal into the blast furnace according to the present invention, the operation of flowing purge gas for 15 minutes or more within 24 hours from the end of the previous purge is repeated for each pulverized coal injection line. It has been found that it is necessary to prevent clogging of the charcoal blowing line.

<実験例2>
ライン一本当たりの微粉炭吹込み量が、1.1t/hr、出銑比2.3(174kg/t−溶銑)を標準条件として、図1の吹込み設備を適用して10日間の微粉炭の吹込みを行った場合の配管の詰り本数を調査した。なお、実施例の微粉炭の種類と粒度および炭種性状は、炭種:ジェリンバ炭、粒度:74μm以下の質量比率80mass%、炭種性状(VM:14.9、Ash:10.3、FC:74.8、TS:0.56、HGI:92.7)のものを使用した。その結果を表2に示す。
<Experimental example 2>
The pulverized coal injection amount per line is 1.1 t / hr and the feed ratio 2.3 (174 kg / t-molten iron) as standard conditions. The number of clogged pipes when charcoal was injected was investigated. In addition, the kind of pulverized coal of an Example, a particle size, and charcoal type property are charcoal type: Jerimbah charcoal, particle size: mass ratio of 74 micrometers or less, 80 mass%, charcoal type property (VM: 14.9, Ash: 10.3, FC) : 74.8, TS: 0.56, HGI: 92.7). The results are shown in Table 2.

微粉炭吹込み量(実効)=(設定吹込み量)×(各ラインの吹込み時間の積算)
/((操業時間)×(全微粉炭吹込みライン数))
Pulverized coal injection amount (effective) = (Set injection amount) x (Integration of injection time for each line)
/ ((Operating hours) x (Total number of pulverized coal injection lines))

表2の結果から、以下のことがわかった。まず、比較例1は、繰返しパージをしない通常の吹込み条件である。配管詰りが1日当たり7.2本発生し、通気性や、円周方向の温度バランス等の炉況が悪化したことから、当初2.3t/日・mであった出銑比が2.1t/日・mに低下した。比較例2は、1回のパージ時間を10分で1本ずつパージした場合で、配管詰りが1日当たり3.4本と減少したが、当初2.3t/日・mであった出銑比が2.2t/日・mに低下した。 From the results in Table 2, the following were found. First, Comparative Example 1 is a normal blowing condition in which repeated purge is not performed. Due to 7.2 pipe clogging per day and deterioration of furnace conditions such as air permeability and circumferential temperature balance, the output ratio was 2.3 t / day · m 3 at the beginning. It decreased to 1 t / day · m 3 . In Comparative Example 2, when one purge time was purged one by 10 minutes, the clogging of piping decreased to 3.4 pipes per day, but it was 2.3 t / day · m 3 at the beginning. The ratio dropped to 2.2 t / day · m 3 .

一方、実施例1は、1回のパージ時間を15分で1本ずつパージとした場合で、配管詰りが1日当たり1.5本と減少し、出銑比を2.3t/日・mのまま維持する操業ができた。実施例2は、1回のパージ時間を30分で2本ずつパージとした場合で、前の2本のパージの終了と次の2本のパージの開始の間に、ライン全数から微粉炭を吹き込む時間を挟んで操業し、パージが1周するまでの時間を23.5時間に設定した。 On the other hand, in Example 1, the purge time for one purge was 15 minutes, and the pipe clogging decreased to 1.5 pipes per day, and the output ratio was 2.3 t / day · m 3. The operation to keep it as it was. In Example 2, the purge time for one purge is 30 minutes, and two purges are performed. Between the end of the previous two purges and the start of the next two purges, pulverized coal is removed from the total number of lines. The operation was carried out with the blowing time in between, and the time until one round of purge was set to 23.5 hours.

以上のことから、本発明では、必ずしもパージを連続して行う必要は無く、前回のパージ終了から24時間以内に再びパージガスを15分以上連続して流すことで、配管詰りが1日当たり0.2本と減少し、出銑比を2.3t/日・mのまま維持する操業ができることがわかった。よって、本発明の高炉への微粉炭の吹込み方法を用いると、長期間の微粉炭安定吹き込みが可能となることが明らかとなった。 From the above, in the present invention, it is not always necessary to continuously perform the purge, and by clogging the purge gas continuously for 15 minutes or more again within 24 hours from the end of the previous purge, the pipe clogging is 0.2 per day. It was found that the operation of maintaining the output ratio at 2.3 t / day · m 3 could be achieved. Therefore, it became clear that long-term stable pulverized coal injection becomes possible by using the pulverized coal injection method of the present invention.

本発明の高炉への微粉炭の吹込み方法は、単に高炉への微粉炭の吹込みに限られるものではなく、その他の炉において粉体の吹込みにより配管が詰まるような場合においても、適用が可能である。   The method of injecting pulverized coal into the blast furnace of the present invention is not limited to simply injecting pulverized coal into the blast furnace, and is also applicable to cases where piping is clogged by injecting powder in other furnaces. Is possible.

1、2 吹込みタンク
3、4 分配器
5、6 送給配管
7、8 混合器
8a 第1混合器
8b 第2混合器
9、10 微粉炭吹込みライン
11 高炉羽口
12、13 吹込みランス
14、15 圧力調整器
16a、17a 微粉炭遮断弁
16b、17b 羽口遮断弁
18、19 吹込みコック
20、21 窒素パージ弁
22、23 圧抜きコック配管
1, 2 Blow tank 3, 4 Distributor 5, 6 Feed pipe 7, 8 Mixer 8a First mixer 8b Second mixer 9, 10 Pulverized coal blow line 11 Blast furnace tuyere 12, 13 Blow lance 14, 15 Pressure regulators 16a, 17a Pulverized coal shutoff valve 16b, 17b Tuyere shutoff valve 18, 19 Blowing cock 20, 21 Nitrogen purge valve 22, 23 Pressure relief cock piping

Claims (4)

高炉内に吹込む微粉炭を、複数の微粉炭吹込みラインを使って気送し、それぞれの微粉炭吹込みラインの末端部の羽口に配置された微粉炭吹込みランスを通じて炉内へ吹き込む高炉への微粉炭吹込み方法において、前記各微粉炭吹込みラインのパージガスの供給に当たっては、そのパージガスを前回パージの終了から24時間以内に15分間以上流す操作を微粉炭吹込みライン全数に対して繰返し行うことを特徴とする高炉への微粉炭吹込み方法。   Pulverized coal to be blown into the blast furnace is aired using a plurality of pulverized coal blowing lines, and blown into the furnace through pulverized coal blowing lances arranged at the tuyere at the end of each pulverized coal blowing line. In the method of injecting pulverized coal into the blast furnace, when supplying the purge gas to each pulverized coal injection line, the operation of flowing the purge gas for at least 15 minutes within 24 hours from the end of the previous purge is performed on the total number of pulverized coal injection lines. A method of injecting pulverized coal into a blast furnace, which is performed repeatedly. 前記微粉炭の吹込みは、150kg/t−溶銑以上の量を、羽口を30本以上有する大型高炉に対して行うことを特徴とする請求項1に記載の高炉への微粉炭吹込み方法。   The method for injecting pulverized coal into a blast furnace according to claim 1, wherein the pulverized coal is injected into a large blast furnace having 30 or more tuyere at an amount of 150 kg / t-molten or more. . 前記微粉炭は、粒径74μm以下が70mass%以上90mass%以下の粒度分布を有することを特徴とする請求項1または2に記載の高炉への微粉炭吹込み方法。   The method of injecting pulverized coal into a blast furnace according to claim 1 or 2, wherein the pulverized coal has a particle size distribution in which a particle size of 74 µm or less is 70 mass% or more and 90 mass% or less. 前記パージガスは、窒素ガスまたは、窒素ガスを乾燥空気にて酸素濃度を8vol%以下に調整したガスであることを特徴とする請求項1〜3のいずれか1項に記載の高炉への微粉炭吹込み方法。   The pulverized coal for a blast furnace according to any one of claims 1 to 3, wherein the purge gas is nitrogen gas or a gas in which nitrogen gas is adjusted to 8 vol% or less with dry air. Blowing method.
JP2018040826A 2018-03-07 2018-03-07 How to blow pulverized coal into a blast furnace Active JP6870633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018040826A JP6870633B2 (en) 2018-03-07 2018-03-07 How to blow pulverized coal into a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018040826A JP6870633B2 (en) 2018-03-07 2018-03-07 How to blow pulverized coal into a blast furnace

Publications (2)

Publication Number Publication Date
JP2019157148A true JP2019157148A (en) 2019-09-19
JP6870633B2 JP6870633B2 (en) 2021-05-12

Family

ID=67995671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018040826A Active JP6870633B2 (en) 2018-03-07 2018-03-07 How to blow pulverized coal into a blast furnace

Country Status (1)

Country Link
JP (1) JP6870633B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791602A (en) * 2019-10-25 2020-02-14 邯郸钢铁集团有限责任公司 Improved blast furnace coal injection system
CN113713792A (en) * 2021-08-19 2021-11-30 北京首钢股份有限公司 Method for treating waste activated carbon after desulfurization and denitrification by blowing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320726A (en) * 1992-05-26 1993-12-03 Sumitomo Metal Ind Ltd Device for preventing clogging with fine coal injection pipe into blast furnace
JP2006077267A (en) * 2004-09-07 2006-03-23 Nippon Steel Corp Facility for injecting powdery material
CN102220444A (en) * 2011-07-08 2011-10-19 中冶南方工程技术有限公司 Anti-blocking control system for coal spray branch pipes of distributor of coal spray system of blast furnace
CN102230042A (en) * 2011-07-08 2011-11-02 中冶南方工程技术有限公司 Control method for preventing blockage of coal injection branch pipes of distributor in blast furnace coal injection system
CN202208732U (en) * 2011-07-08 2012-05-02 中冶南方工程技术有限公司 Distributor adopted anti-blocking control system for coal injection branch pipes in blast furnace coal injection system
JP2017048427A (en) * 2015-09-02 2017-03-09 新日鐵住金株式会社 Blast furnace tuyere obstruction removing apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320726A (en) * 1992-05-26 1993-12-03 Sumitomo Metal Ind Ltd Device for preventing clogging with fine coal injection pipe into blast furnace
JP2006077267A (en) * 2004-09-07 2006-03-23 Nippon Steel Corp Facility for injecting powdery material
CN102220444A (en) * 2011-07-08 2011-10-19 中冶南方工程技术有限公司 Anti-blocking control system for coal spray branch pipes of distributor of coal spray system of blast furnace
CN102230042A (en) * 2011-07-08 2011-11-02 中冶南方工程技术有限公司 Control method for preventing blockage of coal injection branch pipes of distributor in blast furnace coal injection system
CN202208732U (en) * 2011-07-08 2012-05-02 中冶南方工程技术有限公司 Distributor adopted anti-blocking control system for coal injection branch pipes in blast furnace coal injection system
JP2017048427A (en) * 2015-09-02 2017-03-09 新日鐵住金株式会社 Blast furnace tuyere obstruction removing apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791602A (en) * 2019-10-25 2020-02-14 邯郸钢铁集团有限责任公司 Improved blast furnace coal injection system
CN113713792A (en) * 2021-08-19 2021-11-30 北京首钢股份有限公司 Method for treating waste activated carbon after desulfurization and denitrification by blowing

Also Published As

Publication number Publication date
JP6870633B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP2019157148A (en) Pulverized coal injection method to blast furnace
JP5818550B2 (en) Gasification burner
JP5194504B2 (en) Apparatus for injecting gas reducing material into blast furnace and operating method of blast furnace using the same
US20150021358A1 (en) Powder supply device and powder supply method
CN208932524U (en) The a plurality of parallel dense-phase transporting system of pipeline
CN104854249B (en) It is blown into equipment and the method for operating blast furnace of oxygen from blast-furnace tuyere
US10988817B2 (en) Oxygen injection system for a direct reduction process
US20090272096A1 (en) Single Manifold Dual Gas Turbine Fuel System
JP5724654B2 (en) Apparatus and method for injecting reducing material into blast furnace
US10487370B2 (en) Method for operating blast furnace
JP7087534B2 (en) How to perform PCI stably
JP2013001934A (en) Device and method for blowing reducing material into blast furnace
JP2007263435A (en) Water sealing device and water sealing method for gas transport piping
JP2007169748A (en) Method for operating blast furnace
JP5782808B2 (en) Method and equipment for injecting pulverized coal into blast furnace
JP5724659B2 (en) Apparatus and method for injecting reducing material into blast furnace
US20080277843A1 (en) Method for Supersonically Injecting Oxygen into a Furnace
CN219689754U (en) Coal injection device of blast furnace
KR101191969B1 (en) Control device and control method for reduction gas of pig iron manufacturing equipment
CN219689753U (en) Stokehold even jetting system
CN219861407U (en) Forced fluidizing device by gas stirring
EP2586877B1 (en) Furnace having even distribution of gas
KR20110046442A (en) Slag Emissions from Reactors for Syngas Production
JPH1150113A (en) Injection of pulverized fine coal into blast furnace
JP2017014563A (en) Blowing in method of particulate matter to blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250