JP2019156804A - Cataract inhibitor - Google Patents

Cataract inhibitor Download PDF

Info

Publication number
JP2019156804A
JP2019156804A JP2018049174A JP2018049174A JP2019156804A JP 2019156804 A JP2019156804 A JP 2019156804A JP 2018049174 A JP2018049174 A JP 2018049174A JP 2018049174 A JP2018049174 A JP 2018049174A JP 2019156804 A JP2019156804 A JP 2019156804A
Authority
JP
Japan
Prior art keywords
culture
mesenchymal stem
hollow fiber
stem cells
culture supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018049174A
Other languages
Japanese (ja)
Other versions
JP7077690B2 (en
Inventor
達哉 山口
Tatsuya Yamaguchi
達哉 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2018049174A priority Critical patent/JP7077690B2/en
Publication of JP2019156804A publication Critical patent/JP2019156804A/en
Application granted granted Critical
Publication of JP7077690B2 publication Critical patent/JP7077690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide novel effective agents for cataract treatment.SOLUTION: Provided is a cataract inhibitor or therapeutic agent that contains a culture supernatant component obtained by culturing mesenchymal stem cells. Preferably, provided is an inhibitor or therapeutic agent that comprises the culture supernatant component of bone marrow mesenchymal stem cells or adipose tissue-derived mesenchymal stem cells. Preferably, provided is an inhibitor or therapeutic agent that comprises an exosome. Preferably, provided is an inhibitor or therapeutic agent that is an eye drop or an ophthalmic ointment.SELECTED DRAWING: None

Description

本発明は、水晶体の白濁を抑制する物質に関する。より詳しくは、間葉系幹細胞の培養上清の少なくとも一部を含む点眼剤または眼軟膏剤の形態の剤に関する。   The present invention relates to a substance that suppresses white turbidity of a lens. More specifically, the present invention relates to an agent in the form of eye drops or eye ointment containing at least a part of the culture supernatant of mesenchymal stem cells.

白内障は、眼の水晶体が濁ってくる疾患である。直接の原因は、水晶体を構成するタンパク質であるクリスタリンが凝集し、水晶体の透明性が失われることにより発症する。白内障の原因として、加齢、糖尿病、紫外線等々が報告されているが、何れにしても根本的な原因は解明されておらず、一旦透明性が失われた水晶体は元のように戻すことは出来ない。このため治療方法は、少しでも白内障の進行を遅らせるための薬物治療か、濁った水晶体を超音波で砕いて取り出し(超音波水晶体乳化吸引術)、眼内レンズを入れるという治療が行われている。ところで近年、再生医療の研究が盛んとなり、幹細胞を移植する細胞移植治療により様々な疾患の治療が可能であることが明らかとなってきた。   Cataract is a disease in which the eye lens becomes cloudy. The direct cause occurs when crystallin, which is a protein constituting the lens, aggregates and the transparency of the lens is lost. As a cause of cataract, aging, diabetes, ultraviolet rays, etc. have been reported, but in any case, the root cause has not been elucidated, and once the transparency is lost, it is not possible to restore the original lens I can't. For this reason, drug treatment is used to delay the progression of cataracts as much as possible, or treatment is carried out by crushing the turbid lens with ultrasonic waves (ultrasonic lens emulsification) and inserting an intraocular lens . In recent years, research on regenerative medicine has become active, and it has become clear that various diseases can be treated by cell transplantation treatment in which stem cells are transplanted.

間葉系幹細胞は、体性幹細胞の一種であり、間葉系の細胞、即ち、骨細胞、心筋細胞、軟骨細胞、脂肪細胞などへの分化能を有することから、骨や血管、心筋の再構築などの再生医療への応用が期待されている。こればかりでなく、間葉系幹細胞は抗炎症作用、免疫調節作用なども有することから、種々の自己免疫疾患や移植片対宿主病の治療などに、既に利用されている。更に、慢性的な肝疾患である肝硬変に対しても、肝組織の線維化を抑制し改善効果があることが報告されている。   Mesenchymal stem cells are a type of somatic stem cell and have the ability to differentiate into mesenchymal cells, i.e., bone cells, cardiomyocytes, chondrocytes, fat cells, etc. Application to regenerative medicine such as construction is expected. In addition to this, mesenchymal stem cells have anti-inflammatory action, immunomodulation action, and the like, and thus have already been used for the treatment of various autoimmune diseases and graft-versus-host disease. Furthermore, it has been reported that liver cirrhosis, which is a chronic liver disease, is also effective in suppressing fibrosis of liver tissue.

こうした中、細胞移植治療において生体内に移植された間葉系幹細胞は、細胞自身の増殖や分化により組織を再生するだけではないことが分かってきた。即ち、細胞から分泌される種々のサイトカイン等の生理活性物質が持つ多様な性質が、組織の再生や疾患部位の治癒に少なからず寄与していることが明らかになってきた。   Under such circumstances, it has been found that mesenchymal stem cells transplanted in vivo in cell transplantation treatment not only regenerate the tissue by the proliferation and differentiation of the cells themselves. That is, it has become clear that various properties possessed by physiologically active substances such as various cytokines secreted from cells contribute to tissue regeneration and disease site healing.

間葉系幹細胞をインビトロで培養した際にも、培養液中に生理活性物質が放出される。そこで、間葉系幹細胞の培養に使用した培養液を回収し、細胞から放出される物質を多く含むこの培養液を利用して、組織を再生することに成功した例が報告されている。上田らは、ラットを用いた実験で、骨髄間葉系幹細胞の培養上清が骨の再生能力を持つことを示した(非特許文献1)。この中で、骨髄間葉系幹細胞の培養上清中には、インスリン様成長因子(IGF)や血管内皮細胞増殖因子(VEGF)などが多く含まれており、これらの因子が組織の再生などに関わっていることが示唆されている。   When mesenchymal stem cells are cultured in vitro, physiologically active substances are released into the culture medium. Thus, an example has been reported in which a culture solution used for culturing mesenchymal stem cells is recovered and tissue is regenerated using this culture solution containing a large amount of substances released from the cells. Ueda et al. Showed in an experiment using rats that the culture supernatant of bone marrow mesenchymal stem cells had bone regeneration ability (Non-patent Document 1). Among these, the culture supernatant of bone marrow mesenchymal stem cells contains a lot of insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), etc., and these factors are used for tissue regeneration. It is suggested to be involved.

また、有村らは、骨髄間葉系幹細胞の培養上清が抗炎症作用を有し、腸炎の予防・治療効果を示すことを報告している(特許文献1)。   In addition, Arimura et al. Have reported that the culture supernatant of bone marrow mesenchymal stem cells has an anti-inflammatory action and exhibits preventive and therapeutic effects on enteritis (Patent Document 1).

最近では、間葉系幹細胞から分泌される、エキソソームと呼ばれる小胞が、様々なタンパク質やRNAを含み、これが間葉系幹細胞と同様の治療効果を持つことが報告されている(非特許文献2)。   Recently, vesicles called exosomes secreted from mesenchymal stem cells contain various proteins and RNAs, and this has been reported to have the same therapeutic effect as mesenchymal stem cells (Non-patent Document 2). ).

特許第6132459号Japanese Patent No. 6132459

Tissue EngineeringPart A.2012;18:1479−1489Tissue EngineeringPart A. 2012; 18: 1479-1489 Drug DeliverySystem.2014;29−2:141−151Drug Delivery System. 2014; 29-2: 141-151

白内障は眼の水晶体が濁ってくる疾患で、直接の原因は水晶体を構成するタンパク質であるクリスタリンが凝集し、水晶体の透明性が失われることにより発症する。白内障の根本的な原因は解明されておらず、治療方法の一つは少しでも白内障の進行を遅らせるための薬物治療であるが、これは必ずしも効果的では無いのが実情であり、新たに効果的な薬剤開発が求められている。   Cataract is a disease in which the lens of the eye becomes cloudy, and the direct cause is caused by aggregation of crystallin, which is a protein constituting the lens, and loss of transparency of the lens. The root cause of cataracts has not been elucidated, and one of the treatment methods is pharmacotherapy to delay the progression of cataracts as much as possible, but this is not always effective and is a new effect. Drug development is required.

本発明者は、上記課題に対し鋭意検討を行った結果、上記課題を解決できることを見出し、本発明を完成するに至った。
即ち、本願発明の概要は以下の通りである。
1.間葉系幹細胞を培養して得られる培養上清成分を含む、白内障の抑制剤または治療剤。
2.前記間葉系幹細胞は、骨髄間葉系幹細胞または脂肪組織由来間葉系幹細胞である、1に記載の白内障の抑制剤または治療剤。
3.前記培養上清成分は、エキソソームを含む、1または2に記載の白内障の抑制剤または治療剤。
4.点眼剤または眼軟膏剤である、1〜3のいずれかに記載の白内障の抑制剤または治療剤。
As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved, and have completed the present invention.
That is, the outline of the present invention is as follows.
1. An inhibitor or therapeutic agent for cataract comprising a culture supernatant component obtained by culturing mesenchymal stem cells.
2. 2. The inhibitor or therapeutic agent for cataracts according to 1, wherein the mesenchymal stem cells are bone marrow mesenchymal stem cells or adipose tissue-derived mesenchymal stem cells.
3. 3. The inhibitor or therapeutic agent for cataract according to 1 or 2, wherein the culture supernatant component contains exosomes.
4). The inhibitor or therapeutic agent for cataract according to any one of 1 to 3, which is an eye drop or an eye ointment.

本発明により、水晶体の混濁を防止することができるため、効果的に白内障を予防または治療することが可能となる。   According to the present invention, the opacity of the lens can be prevented, so that cataract can be effectively prevented or treated.

間葉系幹細胞の培養上清の作製に用いる細胞培養容器の一例を示す模式図である。It is a schematic diagram which shows an example of the cell culture container used for preparation of the culture supernatant of a mesenchymal stem cell. 間葉系幹細胞の培養上清の作製に用いる細胞培養装置の一例を示す模式図である。It is a schematic diagram which shows an example of the cell culture apparatus used for preparation of the culture supernatant of a mesenchymal stem cell. 実施例における培養上清作製のスケジュールである。It is the schedule of culture supernatant preparation in an Example. 実施例で得られた培養上清を用いたラット白内障のスコア推移を示すグラフである。It is a graph which shows the score transition of the rat cataract using the culture supernatant obtained in the Example. 実施例で得られた培養上清から調製したエキソソーム溶液を用いたラット白内障のスコア推移を示すグラフである。It is a graph which shows the score transition of the rat cataract using the exosome solution prepared from the culture supernatant obtained in the Example.

(間葉系幹細胞)
本発明において、間葉系幹細胞は、特に限定されるものではないが、骨髄間葉系幹細胞、脂肪組織由来間葉系幹細胞などが好適である。また、プライマリー細胞に限らず、遺伝子改変等によって株化/不死化された間葉系幹細胞も用いることが出来る。動物種も特に限定されず、ヒト、マウス、ラット等のいずれの動物由来のものも使用できる。
(Mesenchymal stem cells)
In the present invention, the mesenchymal stem cells are not particularly limited, but bone marrow mesenchymal stem cells, adipose tissue-derived mesenchymal stem cells, and the like are preferable. Further, not only primary cells but also mesenchymal stem cells established / immortalized by genetic modification or the like can be used. The animal species is not particularly limited, and any animal species such as human, mouse and rat can be used.

(間葉系幹細胞の培養上清液)
本発明において、間葉系幹細胞の培養上清とは、細胞を一定期間(数時間から数日)培養した際に、細胞に直接または半透膜などを介して間接に接触していた培養液を細胞と分離して得られるものを言う。培養液馴化培地、コンディションドメディウム(Conditionedmedium)などと同意である。
(Culture supernatant of mesenchymal stem cells)
In the present invention, the culture supernatant of mesenchymal stem cells refers to a culture solution that has been in direct contact with cells or indirectly through a semipermeable membrane when cells are cultured for a certain period (several hours to several days). Is obtained by separating cells from cells. Consent with culture medium conditioned medium, Conditioned medium, etc.

(培養液)
本発明において、培養上清の製造に用いる培養液の組成等は、特に限定されない。例えば、Dulbecco’s Modified Eagle Medium(DMEM)、Minimum Essential Medium Eagle, Alpha Modification(αMEM)、Roswell Park Memorial Institute media(RPMI)1640などを基礎培地とし、これに適宜、細胞増殖因子、ホルモン、動物血清などを添加することにより調製されたものが使用できる。
(Culture medium)
In the present invention, the composition of the culture solution used for production of the culture supernatant is not particularly limited. For example, Dulbecco's Modified Eagle Medium (DMEM), Minimum Essential Medium Eagle, Alpha Modulation (αMEM), Rowell Park Memorial Institute medium, RPMI What was prepared by adding etc. can be used.

本発明において、用いる培養液は、場合によっては動物血清を含まないことが好ましいことがある。これは、動物血清には細胞増殖因子等の生理活性物質が豊富に含まれるため、時にはこれらの生理活性物質の存在が、培養上清を使用する際に目的の妨げとなったり、マイナスに作用する可能性があるためである。   In the present invention, it may be preferable that the culture medium to be used does not contain animal serum in some cases. This is because animal serum contains abundant physiologically active substances such as cell growth factors, and the presence of these physiologically active substances sometimes interferes with the purpose of using the culture supernatant or acts negatively. This is because there is a possibility.

本発明において、間葉系幹細胞を培養して培養上清を得るためには、半透膜を培養基材として収納した細胞培養容器を用いるのが好ましい。このような細胞培養容器は、容積効率を高くすることができるため省スペース化を図ることができるだけでなく、特定の構成を有する半透膜を用いることにより効率よく培養上清を回収することができる。   In the present invention, in order to culture a mesenchymal stem cell and obtain a culture supernatant, it is preferable to use a cell culture container in which a semipermeable membrane is housed as a culture substrate. Such a cell culture container not only can save space because it can increase volumetric efficiency, but also can efficiently recover the culture supernatant by using a semipermeable membrane having a specific configuration. it can.

(半透膜)
本発明において、培養基材として用いる半透膜は、細胞を半透膜表面に保持でき、溶液や低分子の物質を透過させるような構造を有するものが好ましい。より詳しくは、培養上清成分は半透膜を透過しないが、培養液成分は半透膜を透過する構造(細孔径)を有するものが好ましい。具体的には、培養上清中の特にエキソソーム(およそ30nm〜150nm)は膜透過せず、培養液成分であるγ−グロブリン(およそ8.4nm)は膜透過する特性を有する半透膜が好ましい。そうすると、半透膜は、5nm〜20nm程度の細孔半径を有する限外ろ過膜を用いるのが好ましい。
(Semipermeable membrane)
In the present invention, the semipermeable membrane used as a culture substrate is preferably one having a structure that can hold cells on the surface of the semipermeable membrane and permeate a solution or a low-molecular substance. More specifically, the culture supernatant component does not permeate the semipermeable membrane, but the culture fluid component preferably has a structure (pore diameter) that permeates the semipermeable membrane. Specifically, a semipermeable membrane having a characteristic that exosomes (about 30 nm to 150 nm) in the culture supernatant do not permeate the membrane and γ-globulin (about 8.4 nm) as a culture solution component permeates is preferable. . Then, it is preferable to use an ultrafiltration membrane having a pore radius of about 5 nm to 20 nm as the semipermeable membrane.

本発明において、半透膜の素材は、特に限定されないが、例えば、2−ヒドロキシエチルメタクリレートやポリメチルメタクリレート等のアクリル系樹脂、セルロースアセテートや再生セルロースなどのセルロース系樹脂、ポリスルホンやポリエーテルスルホンなどのポリスルホン系樹脂、ポリ乳酸やポリヒドロキシアルカノエート等のポリエステル系樹脂、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリビニルアルコール、エポキシ樹脂、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリスチレン、ポリアミドなどが好適に利用できる。また、これらの誘導体が主成分であっても良い。   In the present invention, the material of the semipermeable membrane is not particularly limited, and examples thereof include acrylic resins such as 2-hydroxyethyl methacrylate and polymethyl methacrylate, cellulose resins such as cellulose acetate and regenerated cellulose, polysulfone and polyethersulfone, and the like. Polysulfone resin, polyester resin such as polylactic acid and polyhydroxyalkanoate, polyolefin resin such as polyethylene and polypropylene, polyvinyl alcohol, epoxy resin, polyacrylonitrile, polyvinylidene fluoride, polystyrene, polyamide and the like can be suitably used. These derivatives may be the main component.

本発明において、半透膜は、前記の素材に化学的に修飾を加えたものであっても良い。例えば、親水化処理されていてもよい。親水化処理された半透膜を用いることにより、培養細胞への培養液等の液体成分の供給が容易になる。半透膜を親水化処理する方法としては、例えば、半透膜をエチレン−ビニルアルコール共重合体等の親水性高分子や、グリセリン、エタノールで処理する方法が挙げられる。また、使用する細胞に応じて、半透膜への接着向上のため、コラーゲンやフィブロネクチン等のコーティングを行っても良い。   In the present invention, the semipermeable membrane may be a material obtained by chemically modifying the material. For example, it may be hydrophilized. By using a semipermeable membrane subjected to a hydrophilic treatment, it becomes easy to supply a liquid component such as a culture solution to cultured cells. Examples of the method for hydrophilizing the semipermeable membrane include a method of treating the semipermeable membrane with a hydrophilic polymer such as ethylene-vinyl alcohol copolymer, glycerin, and ethanol. Depending on the cells to be used, a coating such as collagen or fibronectin may be applied to improve adhesion to the semipermeable membrane.

本発明において、半透膜は、平膜であってもよいし中空糸膜であってもよいが、容積効率の面から中空糸膜を用いるのが好ましい。中空糸膜の場合、内径が小さすぎると培養容積が確保できないとか、培養細胞にストレスを与えることになるので10μm以上が好ましい。一方、内径が大きすぎると容積効率が低下し中空糸膜培養容器のメリットを損なうことになるので2000μm以下が好ましい。また、半透膜の膜厚は、培養液成分の透過性や膜強度を考慮すると、10μm〜200μm程度が好ましい。   In the present invention, the semipermeable membrane may be a flat membrane or a hollow fiber membrane, but it is preferable to use a hollow fiber membrane from the viewpoint of volume efficiency. In the case of the hollow fiber membrane, if the inner diameter is too small, the culture volume cannot be secured, or stress is applied to the cultured cells. On the other hand, if the inner diameter is too large, the volumetric efficiency is lowered and the merit of the hollow fiber membrane culture vessel is impaired. Further, the thickness of the semipermeable membrane is preferably about 10 μm to 200 μm in consideration of the permeability of the culture solution components and the membrane strength.

本発明において、間葉系幹細胞の培養上清を製造する方法は、特に制限なく、例えば、中空糸膜を細胞培養基材として用い、中空糸膜の内腔側または外腔側で間葉系幹細胞を培養すればよい。例えば、間葉系幹細胞を培養液等に縣濁した細胞懸濁液を中空糸膜の内腔に充填し、培養液を中空糸膜の内腔側および外腔側に連続的または間欠的に灌流させる等して間葉系幹細胞の培養を行う。なお、間欠的な灌流とは、培養液の流れを一時的に止めたり進めたりする工程を繰り返すことを指す。ここで、流れを止めたり進めたりする間隔は特に制限されず、等間隔でも不規則でもよい。培養液は、細胞に必要な養分や酸素などを供給したり、逆に老廃物を排出する役割を有する。このようにして、一定期間培養を行った後の中空糸膜内腔側の培養液を回収すれば、間葉系幹細胞の培養上清液を得ることができる。   In the present invention, the method for producing a culture supernatant of mesenchymal stem cells is not particularly limited. For example, the hollow fiber membrane is used as a cell culture substrate, and the mesenchymal system is used on the lumen side or the outer lumen side of the hollow fiber membrane. What is necessary is just to culture a stem cell. For example, a cell suspension in which mesenchymal stem cells are suspended in a culture solution or the like is filled in the lumen of the hollow fiber membrane, and the culture solution is continuously or intermittently provided on the lumen side and the outer lumen side of the hollow fiber membrane. Mesenchymal stem cells are cultured by perfusion or the like. In addition, intermittent perfusion refers to repeating the process of temporarily stopping or advancing the flow of the culture solution. Here, the interval at which the flow is stopped or advanced is not particularly limited, and may be equal or irregular. The culture solution has a role of supplying nutrients and oxygen necessary for the cells, and conversely discharging waste products. In this way, a culture supernatant of mesenchymal stem cells can be obtained by collecting the culture medium on the hollow fiber membrane lumen side after culturing for a certain period.

(細胞培養容器)
本発明において、間葉系幹細胞の培養上清の製造に用いる細胞培養容器は、4つの開口部を有する筒状容器に数本〜数万本の中空糸膜を収納し、中空糸膜の両端を筒状容器に液密に接着固定することにより作製することができる。このような細胞培養容器は、単位容積あたりの培養面積を非常に大きくすることができ、また培養操作を簡便化することができるため、効率よく細胞培養を実施することが出来る。
(Cell culture vessel)
In the present invention, a cell culture container used for producing a culture supernatant of mesenchymal stem cells contains several to tens of thousands of hollow fiber membranes in a cylindrical container having four openings, and both ends of the hollow fiber membranes. Can be prepared by liquid-tightly adhering and fixing to a cylindrical container. Such a cell culture vessel can greatly increase the culture area per unit volume, and can simplify the culture operation, so that cell culture can be carried out efficiently.

このような細胞培養容器の構成は特に限定されないが、例えば図1に示すように、4つの開口部(エンドポートおよびサイドポート)を有する筒状容器に中空糸膜が適宜必要な本数束ねられて収納されている形態が挙げられる。具体的には、細胞培養容器1において、複数の中空糸膜3は、両端において各中空糸膜の内腔と外腔を分離した状態で、かつ中空糸膜の中空部を閉塞しないようにシール材(例えば、ポリウレタン系ポッティング剤)8により筒状容器2端部に接着固定されている。すなわち、前記4つの開口部のうち、2つのエンドポート6aおよび6bは、中空糸膜3の内腔(中空部)5と連通している。一方、前記開口部のうち、2つのサイドポート7aおよび7bは、前記筒状容器2の内側であって、かつ前記中空糸膜の外側である空間(外腔側)4と連通しており、前記サイドポート7aまたは7bの一方から導入された培養液などが外腔側4を通ってもう一方のサイドポート7bまたは7aから導出されるように構成されている。   The configuration of such a cell culture container is not particularly limited. For example, as shown in FIG. 1, a necessary number of hollow fiber membranes are bundled in a cylindrical container having four openings (end ports and side ports) as needed. The form accommodated is mentioned. Specifically, in the cell culture container 1, the plurality of hollow fiber membranes 3 are sealed in a state where the inner and outer cavities of each hollow fiber membrane are separated at both ends, and so as not to block the hollow portion of the hollow fiber membrane. A material (for example, polyurethane potting agent) 8 is bonded and fixed to the end of the cylindrical container 2. That is, of the four openings, the two end ports 6 a and 6 b communicate with the lumen (hollow part) 5 of the hollow fiber membrane 3. On the other hand, of the opening, the two side ports 7a and 7b communicate with a space (external side) 4 that is inside the cylindrical container 2 and outside the hollow fiber membrane, The culture medium or the like introduced from one of the side ports 7a or 7b is led out from the other side port 7b or 7a that passes through the outer cavity side 4.

(細胞培養装置)
図2は、中空糸膜型細胞培養容器を用いる細胞培養装置の一例を示している。細胞培養容器1の中空糸膜内腔5に連通するエンドポート6aには、導入口40から間葉系幹細胞を含む細胞懸濁液を導入、送液するための流路および培養液貯留容器9から細胞培養液を送液するための流路が接続されている。また、細胞懸濁液と細胞培養液の流路を切替えられるように流路の途中にバルブ20が設けられている。また、前記細胞培養容器1の中空糸膜内腔5に連通するエンドポート6bには、培養後の培養上清を排出するための流路が接続されており、流路の途中には流量調整用のバルブ21および送液ポンプ31、培養上清回収容器11または排出口50への流路を切替えるためのバルブ22が設けられている。一方、細胞培養容器1の中空糸膜外腔4に連通するサイドポート7aには、培養液貯留容器8から中空糸膜外腔4に培養液を送液するための流路が接続されている。また、中空糸膜外腔4に連通するサイドポート7bには、培養液を排出するための流路が接続されており、流路の途中には送液ポンプ30が設けられており、排出された培養液を回収するための回収容器10に接続されている。なお、本発明において、少なくとも培養液貯留容器8、9および流路、細胞培養容器1はCOインキュベーター内に設置されていることが好ましい。
(Cell culture device)
FIG. 2 shows an example of a cell culture apparatus using a hollow fiber membrane cell culture vessel. The end port 6a communicating with the hollow fiber membrane lumen 5 of the cell culture vessel 1 introduces and sends a cell suspension containing mesenchymal stem cells from the introduction port 40 and the culture solution storage vessel 9 A flow path for feeding the cell culture solution from is connected. A valve 20 is provided in the middle of the flow path so that the flow paths of the cell suspension and the cell culture solution can be switched. The end port 6b communicating with the hollow fiber membrane lumen 5 of the cell culture vessel 1 is connected to a flow path for discharging the culture supernatant after culturing, and the flow rate is adjusted in the middle of the flow path. The valve 21 for switching the flow path to the valve 21 and the liquid feeding pump 31, the culture supernatant collection container 11 or the discharge port 50 are provided. On the other hand, to the side port 7 a communicating with the hollow fiber membrane outer space 4 of the cell culture container 1, a flow path for sending the culture solution from the culture solution storage container 8 to the hollow fiber membrane outer space 4 is connected. . The side port 7b communicating with the hollow fiber membrane outer space 4 is connected to a flow path for discharging the culture solution, and a liquid feed pump 30 is provided in the middle of the flow path. It is connected to the collection container 10 for collecting the culture medium. In the present invention, it is preferable that at least the culture solution storage containers 8 and 9, the flow path, and the cell culture container 1 are installed in a CO 2 incubator.

(培養上清の製造)
間葉系幹細胞を培養する場合、細胞培養容器の中空糸膜内腔に細胞懸濁液を導入して間葉系幹細胞を中空糸膜表面に播種した後、中空糸膜内腔と外腔の両方に細胞培養液を流すことにより培養環境を整えながら間葉系幹細胞を培養する。すると、間葉系幹細胞は、培養液中に種々の分泌物(タンパク質、サイトカイン、エキソソーム)を放出するので、細胞培養液とともにこれらの分泌物を回収する。
(Manufacture of culture supernatant)
When culturing mesenchymal stem cells, a cell suspension is introduced into the hollow fiber membrane lumen of the cell culture container, and the mesenchymal stem cells are seeded on the surface of the hollow fiber membrane. Mesenchymal stem cells are cultured while adjusting the culture environment by flowing a cell culture medium through both. Then, since the mesenchymal stem cells release various secretions (proteins, cytokines, exosomes) into the culture solution, these secretions are collected together with the cell culture solution.

図2を参照して、培養上清の製造について説明する。導入口40より細胞懸濁液を送液し、中空糸膜内腔5に細胞懸濁液を充填する。細胞懸濁液が充填された後、バルブ20を閉の状態とする。中空糸膜内腔5に細胞懸濁液を充填した後、一定時間静置して中空糸膜表面に細胞を接着させる。一定時間静置後、培養液貯留容器9、中空糸膜内腔5、排出口50が連通するようにバルブ20、21、22を切替え、ポンプ30および31を起動して細胞培養容器の中空糸膜内腔5と中空糸膜外腔4の両方に細胞培養液を流す。このとき、培養液の流量は、細胞増殖度合いや環境に応じて調整することが好ましい。また、少なくとも細胞培養容器、培養液貯留容器およびそれらを繋ぐ流路は、温度およびCO濃度の制御機構を備えたインキュベータ内に設置する。数日間、培養を行った後、培養液貯留容器9の培養液を培養上清回収用の培養液に交換する。培養上清回収用の培養液に交換した後、バルブ22を切替え、培養上清回収容器11に培養上清を回収する。 The production of the culture supernatant will be described with reference to FIG. The cell suspension is fed from the introduction port 40, and the hollow fiber membrane lumen 5 is filled with the cell suspension. After the cell suspension is filled, the valve 20 is closed. After filling the hollow fiber membrane lumen 5 with the cell suspension, the cells are allowed to adhere to the surface of the hollow fiber membrane by standing for a certain time. After standing for a certain period of time, the valves 20, 21, and 22 are switched so that the culture medium storage container 9, the hollow fiber membrane lumen 5, and the discharge port 50 communicate with each other, and the pumps 30 and 31 are activated to hollow the cell culture container. A cell culture fluid is passed through both the membrane lumen 5 and the hollow fiber membrane outer lumen 4. At this time, the flow rate of the culture solution is preferably adjusted according to the degree of cell growth and the environment. At least the cell culture container, the culture solution storage container, and the flow path connecting them are installed in an incubator equipped with a temperature and CO 2 concentration control mechanism. After culturing for several days, the culture solution in the culture solution storage container 9 is replaced with a culture solution for collecting the culture supernatant. After exchanging the culture solution for collecting the culture supernatant, the valve 22 is switched and the culture supernatant is recovered in the culture supernatant recovery container 11.

培養液、特に中空糸膜内腔5を流れる培養液の流速は、細胞増殖度合いや環境に応じて、調整することが好ましい。細胞増殖度合いを調べる方法は、特に限定されないが、培養液中のグルコースや乳酸塩の濃度等の測定結果をもとに行うことが出来る。   The flow rate of the culture solution, particularly the culture solution flowing through the hollow fiber membrane lumen 5, is preferably adjusted according to the degree of cell growth and the environment. The method for examining the degree of cell proliferation is not particularly limited, but can be performed based on the measurement results such as the concentration of glucose and lactate in the culture solution.

本発明において、培養上清は、前記回収した培養液から間葉系幹細胞を除去したものを意味するが、かかる培養上清から例えば、残存培地成分(培養前の培養液の成分のうち、培養後の培養液中に残存している成分)、培養液の水分などの本発明における水晶体組織の硬化防止または治療に寄与しない成分の少なくとも一部をさらに除去したものも、本発明における間葉系幹細胞の培養上清に含まれる。また、回収した培養液(培養上清)より抽出したエキソソームを含む懸濁液も本発明の範疇である。   In the present invention, the culture supernatant means a product obtained by removing mesenchymal stem cells from the collected culture solution. For example, a residual medium component (of the culture solution component before culture, The mesenchymal system in which at least a part of components that do not contribute to prevention or treatment of lens tissue hardening in the present invention, such as components remaining in the subsequent culture solution) and moisture in the culture solution, is further removed. It is contained in the culture supernatant of stem cells. A suspension containing exosomes extracted from the collected culture fluid (culture supernatant) is also within the scope of the present invention.

また、培養上清には、配合により好ましくない相互作用を生じない限り、他の活性成分、例えば、抗アレルギー又は抗ヒスタミン成分、充血除去成分、局所麻酔薬成分、ビタミン成分(ビタミンA、B群、C)、アミノ酸成分(例:バリン、ロイシン、イソロイシン、セリン、スレオニン、メチオニン、プロリン、フェニルアラニン、チロシン、トリプトファン、アスパラギン酸、グルタミン酸、リジン、ヒスチジン、シトルリン、オルニチン、シスチン、タウリン、グリシン)などをさらに含有していてもよい。そのような他の活性成分としては、公知の各種薬剤を適宜使用することができる。また、他の活性成分は、本発明の剤とは別個に製剤化し、同一対象に対して、同時又は時間差をおいて、また、同一経路又は別経路で投与してもよい。   In addition, in the culture supernatant, other active ingredients such as antiallergic or antihistamine ingredients, decongestant ingredients, local anesthetic ingredients, vitamin ingredients (vitamins A and B groups) unless an undesirable interaction is caused by the formulation. C), amino acid components (eg, valine, leucine, isoleucine, serine, threonine, methionine, proline, phenylalanine, tyrosine, tryptophan, aspartic acid, glutamic acid, lysine, histidine, citrulline, ornithine, cystine, taurine, glycine) Furthermore, you may contain. As such other active ingredients, various known drugs can be appropriately used. In addition, other active ingredients may be formulated separately from the agent of the present invention and administered to the same subject at the same time or at a time difference, or by the same route or different routes.

(半透膜の平均細孔半径の測定)
純水で充分に湿潤状態にした中空糸膜数十本を約5mmにカットし、ろ紙で余分な水分を取り除き、密閉パンにつめ、DSC(示差走査熱量計 Perkin−Elmer社製DSC−7)で融解曲線を測定する。測定は、−45℃〜15℃の範囲を昇温速度2.5℃/minで実施する。細孔に存在する水は基材の影響を受けて凝固点降下し、自由水(0℃付近で融解)とは異なるところ(自由水よりも低い温度領域)でピークを示す。凝固点降下している部分のピークとベースラインとで囲まれる領域の融解熱量(ΔHp)を求め、水の単位重量あたりの融解熱量(ΔHm)から細孔水量(Wp)を算出する。DSC測定したサンプルを絶乾し、蒸発した水分の重量(全水分量 Wt)を求める。これらの値からVp(細孔体積空孔率)を次式によって算出する。
Wp=ΔHp/ΔHm
Vp(%)=Wp/(Wt+Mp/ρp)×100
Mp:ポリマー重量
ρp:ポリマー比重
上記のようにして得られた融解曲線から、凝固点降下した方のピークのピークトップを読み取り、細孔中の水の毛管凝縮による凝固点(氷点)降下度から次式を用いて簡易的に細孔半径(r)を算出することができる。
r(nm)=氷点降下度(℃)/164×10
(Measurement of average pore radius of semipermeable membrane)
Cut dozens of hollow fiber membranes that have been sufficiently wetted with pure water to about 5 mm, remove excess water with filter paper, pack them in a sealed pan, DSC (DSC-7, manufactured by Perkin-Elmer, differential scanning calorimeter) Measure the melting curve at. The measurement is performed in the range of −45 ° C. to 15 ° C. at a temperature increase rate of 2.5 ° C./min. The water present in the pores is affected by the base material, lowers its freezing point, and exhibits a peak at a place different from free water (melted at around 0 ° C.) (temperature range lower than that of free water). The amount of heat of fusion (ΔHp) of the region surrounded by the peak of the portion where the freezing point is lowered and the baseline is obtained, and the amount of pore water (Wp) is calculated from the amount of heat of fusion (ΔHm) per unit weight of water. The sample measured by DSC is completely dried, and the weight of evaporated water (total water content Wt) is determined. From these values, Vp (pore volume porosity) is calculated by the following equation.
Wp = ΔHp / ΔHm
Vp (%) = Wp / (Wt + Mp / ρp) × 100
Mp: Polymer weight ρp: Polymer specific gravity From the melting curve obtained as described above, the peak top of the peak where the freezing point is lowered is read, and the freezing point (freezing point) lowering degree due to capillary condensation of water in the pore is expressed by the following equation. The pore radius (r) can be simply calculated using
r (nm) = Degree of freezing point (° C.) / 164 × 10

(内径、外径、膜厚の測定)
3mmφの孔を空けた2mm厚のSUS小板を用い、孔に適量の湿潤中空糸膜を詰めてカットすることで、中空糸膜の断面を露出させたサンプルホルダーを作成した。これをNikon製顕微鏡(ECLIPSE LV100)のステージに設置した後、Nikon製 画像処理装置(DIGITAL SIGHT DS−U2)およびCCDカメラ(DS−Ri1)を起動させた。画像解析ソフトとしてNIS Element D3.00 SP6を用い、画面に映る中空糸膜断面の外径および内径を、該解析ソフトの計測機能を用いて測定することで中空糸膜の外径および内径を算出した。
(Measurement of inner diameter, outer diameter, film thickness)
A sample holder in which a cross section of the hollow fiber membrane was exposed was prepared by using a 2 mm-thick SUS platelet having a 3 mmφ hole and filling the hole with an appropriate amount of wet hollow fiber membrane and cutting it. This was placed on the stage of a Nikon microscope (ECLIPSE LV100), and then a Nikon image processing apparatus (DIGITAL SIGN DS-U2) and a CCD camera (DS-Ri1) were activated. Using NIS Element D3.00 SP6 as image analysis software, calculate the outer diameter and inner diameter of the hollow fiber membrane by measuring the outer diameter and inner diameter of the cross section of the hollow fiber membrane displayed on the screen using the measurement function of the analysis software. did.

(中空糸膜1の作製)
ポリエーテルスルホン(BASF社製Ultrason(登録商標)6020P)26.5wt%、ビニルピロリドン/酢酸ビニル共重合体(BASF社製Luvitec(登録商標)VA64)1wt%、N−メチル−2−ピロリドン(NMP、三菱化学社製)39.9wt%、トリエチレングリコール(TEG、三井化学社製)32.6wt%を55℃で混合、溶解し均一な溶液を得た。得られた製膜溶液を二重管ノズルの環状部から、中心部から芯液としてNMP42.75wt%、TEG52.25wt%、RO水5wt%の混合液を吐出し、エアギャップを経て、NMP27wt%、TEG33wt%、RO水40wt%の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は50℃、外部凝固液の温度は30℃に設定した。凝固浴から引き出した後に55℃の水洗槽を走行させて洗浄を実施し、巻取り機で巻き取った。巻き取った中空糸膜は、本数100本、長さ30cmの中空糸膜束とし、85℃のRO水に直立状態で浸漬して洗浄処理を行った。その後、40℃の温水を入れた高圧蒸気滅菌機に水没させ、140℃×20minの条件で高圧熱水処理を行った。その後、庫内温度35℃でマイクロ波乾燥を行った。前記高圧熱水処理及びマイクロ波乾燥を3回繰り返し、中空糸膜1を作製した。得られた中空糸膜1の内径は230μm、外径は310μm、膜厚は40μmであった。また、平均細孔半径は5nmであった。
(Preparation of hollow fiber membrane 1)
26.5 wt% of polyethersulfone (Ultrason (registered trademark) 6020P manufactured by BASF), 1 wt% of vinylpyrrolidone / vinyl acetate copolymer (Luvitec (registered trademark) VA64 manufactured by BASF), N-methyl-2-pyrrolidone (NMP) 39.9 wt% of Mitsubishi Chemical Co., Ltd.) and 32.6 wt% of triethylene glycol (TEG, Mitsui Chemical Co., Ltd.) were mixed and dissolved at 55 ° C. to obtain a uniform solution. From the annular part of the double-tube nozzle, the obtained film-forming solution was discharged from the center part as a core liquid with a mixture of NMP 42.75 wt%, TEG 52.25 wt%, and RO water 5 wt%, and through the air gap, NMP 27 wt% , TEG was introduced into a coagulation bath filled with an external coagulation liquid consisting of 33 wt% and RO water 40 wt%. At this time, the nozzle temperature was set to 50 ° C., and the temperature of the external coagulation liquid was set to 30 ° C. After drawing out from the coagulation bath, washing was carried out by running a water washing tank at 55 ° C., and wound up by a winder. The wound hollow fiber membrane was made into a hollow fiber membrane bundle having a number of 100 and a length of 30 cm, and was washed by dipping in 85 ° C. RO water in an upright state. Then, it was immersed in a high-pressure steam sterilizer containing hot water of 40 ° C., and high-pressure hot water treatment was performed under conditions of 140 ° C. × 20 min. Thereafter, microwave drying was performed at an internal temperature of 35 ° C. The high-pressure hot water treatment and microwave drying were repeated three times to produce a hollow fiber membrane 1. The resulting hollow fiber membrane 1 had an inner diameter of 230 μm, an outer diameter of 310 μm, and a film thickness of 40 μm. The average pore radius was 5 nm.

(中空糸膜2の作製)
セルローストリアセテート(ダイセル化学社製)18wt%、NMP57.4wt%、TEG24.6wt%を混合、溶解し製膜溶液を得た。得られた製膜溶液を二重管ノズルの環状部から、芯液として流動パラフィンを中心部から吐出し、エアギャップを経て、NMP14wt%、TEG6wt%、RO水80wt%の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は105℃、外部凝固液の温度は40℃に設定した。凝固浴から引き出した後に30℃の水洗槽を走行させて洗浄を実施し、50℃、60wt%のグリセリン浴を通過させ、乾燥して巻取り機に巻き取った。得られた中空糸膜2の内径は240μm、外径は276μm、膜厚は18μmであった。また、平均細孔径は18nmであった。
(Preparation of hollow fiber membrane 2)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 18 wt%, NMP 57.4 wt%, and TEG 24.6 wt% were mixed and dissolved to obtain a film forming solution. The obtained film-forming solution is discharged from the annular part of the double-tube nozzle from the central part of liquid paraffin as the core liquid, and through the air gap, external coagulation consisting of a mixed liquid of NMP 14 wt%, TEG 6 wt%, RO water 80 wt% It was led to a coagulation bath filled with liquid. At this time, the nozzle temperature was set to 105 ° C., and the temperature of the external coagulating liquid was set to 40 ° C. After drawing out from the coagulation bath, washing was carried out by running a 30 ° C. water-washing tank, passing through a glycerin bath at 50 ° C. and 60 wt%, dried and wound up on a winder. The obtained hollow fiber membrane 2 had an inner diameter of 240 μm, an outer diameter of 276 μm, and a film thickness of 18 μm. Moreover, the average pore diameter was 18 nm.

(中空糸膜3の作製)
セルローストリアセテート(ダイセル化学社製)19.5wt%、NMP57.75wt%、TEG24.75wt%を混合、溶解し製膜溶液を得た。得られた製膜溶液を二重管ノズルの環状部から、芯液として流動パラフィンを中心部から吐出し、エアギャップを経て、NMP14wt%、TEG6wt%、RO水80wt%の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は105℃、外部凝固液の温度は40℃に設定した。凝固浴から引き出した後に30℃の水洗槽を走行させて洗浄を実施し、50℃、60wt%のグリセリン浴を通過させ、乾燥して巻取り機に巻き取った。得られた中空糸膜3の内径は250μm、外径は300μm、膜厚は25μmであった。また、平均細孔径は11nmであった。
(Preparation of hollow fiber membrane 3)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 19.5 wt%, NMP 57.75 wt%, and TEG 24.75 wt% were mixed and dissolved to obtain a film forming solution. The obtained film-forming solution is discharged from the annular part of the double-tube nozzle from the central part of liquid paraffin as the core liquid, and through the air gap, external coagulation consisting of a mixed liquid of NMP 14 wt%, TEG 6 wt%, RO water 80 wt% It was led to a coagulation bath filled with liquid. At this time, the nozzle temperature was set to 105 ° C., and the temperature of the external coagulating liquid was set to 40 ° C. After drawing out from the coagulation bath, washing was carried out by running a 30 ° C. water-washing tank, passing through a glycerin bath at 50 ° C. and 60 wt%, dried and wound up on a winder. The resulting hollow fiber membrane 3 had an inner diameter of 250 μm, an outer diameter of 300 μm, and a film thickness of 25 μm. Moreover, the average pore diameter was 11 nm.

[実施例1]
内表面に予めコラーゲン(新田ゼラチン)をコートした中空糸膜1を用いて図1に示す細胞培養容器を作製した。また、得られた細胞培養容器を用いて図2に示す細胞培養装置を構成し、COインキュベーター内に設置し、本実験を行った。ヒト骨髄間葉系幹細胞(CELL APPLICATIONS Inc.)を培養液に懸濁した溶液を中空糸膜内腔に注入(播種細胞数は、5.0×10^5cells/モジュール)した。このとき、細胞培養容器内の総培養面積(中空糸膜の内径基準の膜面積)は108cmであることから細胞播種密度は、約4630cells/cmと計算された。培養液は、培養開始(細胞播種)から96時間後までは、10%ウシ胎児血清(ライフテクノロジーズ)を添加したDMEMGlutaMAX(ライフテクノロジーズ)を用い、培養上清を採取する96時間以降は、MF−medium(間葉系幹細胞増殖培地、東洋紡)を用いた。
[Example 1]
A cell culture container shown in FIG. 1 was prepared using a hollow fiber membrane 1 whose inner surface was previously coated with collagen (Nitta gelatin). Furthermore, using the resulting cell culture vessel constitutes a cell culture apparatus shown in FIG. 2, was placed in a CO 2 incubator were conducted this experiment. A solution of human bone marrow mesenchymal stem cells (CELL APPLICATIONS Inc.) suspended in a culture solution was injected into the hollow fiber membrane lumen (the number of seeded cells was 5.0 × 10 5 cells / module). At this time, since the total culture area in the cell culture vessel (membrane area based on the inner diameter of the hollow fiber membrane) was 108 cm 2 , the cell seeding density was calculated to be about 4630 cells / cm 2 . The culture solution is DMEMGlutaMAX (Life Technologies) supplemented with 10% fetal bovine serum (Life Technologies) from the start of culture (cell seeding) to 96 hours later, and after 96 hours of collecting the culture supernatant, MF- medium (mesenchymal stem cell growth medium, Toyobo) was used.

図3に、培養上清作製のスケジュールを示す。細胞播種(培養開始)から7日間(168時間後)の培養を実施した。この間、中空糸内腔を流れる培養液の流速(線速度)は、細胞播種を行ってから96時間後までは、平均0.066mm/min、96時間後から144時間後までは、平均0.20mm/min、144時間後から168時間後までは、平均0.33mm/minとした。一方、中空糸外腔を流れる培養液の速度は、培養開始から終了まで、3.4mm/minとした。細胞培養上清は、培養開始96時間後から168時間後までの72時間分を回収した。これと同様の中空糸モジュール培養を更に一系統実施し、培養上清を得た。得られた培養上清の量は、合計で約18mlであった。培養上清は回収後ただちに分注し、使用まで−80℃に凍結保存した。尚、流速については、中空糸膜内腔、外腔それぞれから流出する流量を流量計を設置して測定し、中空糸膜内腔容積および中空糸膜外腔容積をもとに算出した。培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、1.3×10^7個/モジュールの細胞が回収され、増殖率は26倍であった。   FIG. 3 shows a schedule for preparing the culture supernatant. Cultivation was carried out for 7 days (after 168 hours) after cell seeding (culture start). During this time, the flow rate (linear velocity) of the culture fluid flowing through the hollow fiber lumen averaged 0.066 mm / min from 96 hours after cell seeding, and averaged from 0.6 hours to 144 hours. From 20 mm / min, 144 hours to 168 hours, the average was 0.33 mm / min. On the other hand, the speed of the culture solution flowing through the hollow fiber outer space was set to 3.4 mm / min from the start to the end of the culture. The cell culture supernatant was collected for 72 hours from 96 hours to 168 hours after the start of culture. A hollow fiber module culture similar to this was further carried out for one system to obtain a culture supernatant. The total amount of the obtained culture supernatant was about 18 ml. The culture supernatant was dispensed immediately after collection and stored frozen at −80 ° C. until use. The flow rate was calculated based on the hollow fiber membrane lumen volume and the hollow fiber membrane lumen volume by measuring the flow rates flowing out from the hollow fiber membrane lumen and the outer lumen with a flow meter installed. After 168 hours from the culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 1.3 × 10 7 cells / module of cells were recovered, and the proliferation rate was 26 times.

[実施例2]
中空糸膜2を用いた以外は、実施例1と同様にして細胞培養実験を行った。なお、細胞培養容器内の総培養面積(中空糸膜の内径基準の膜面積)は113cmであることから、細胞播種密度は約4425cells/cmと計算された。
培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、1.1×10^7個の細胞が回収され、増殖率は22倍であった。
[Example 2]
A cell culture experiment was conducted in the same manner as in Example 1 except that the hollow fiber membrane 2 was used. Since the total culture area in the cell culture vessel (membrane area based on the inner diameter of the hollow fiber membrane) was 113 cm 2 , the cell seeding density was calculated to be about 4425 cells / cm 2 .
After 168 hours of culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 1.1 × 10 7 cells were recovered, and the proliferation rate was 22 times.

[実施例3]
中空糸膜3を用いた以外は、実施例1と同様にして細胞培養実験を行った。なお、細胞培養容器内の総培養面積(中空糸膜の内径基準の膜面積)は118cmであることから、細胞播種密度は約4237cells/cmと計算された。
培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、1.5×10^7個の細胞が回収され、増殖率は30倍であった。
[Example 3]
A cell culture experiment was conducted in the same manner as in Example 1 except that the hollow fiber membrane 3 was used. Since the total culture area in the cell culture vessel (membrane area based on the inner diameter of the hollow fiber membrane) was 118 cm 2 , the cell seeding density was calculated to be about 4237 cells / cm 2 .
After 168 hours of culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 1.5 × 10 ^ 7 cells were recovered, and the proliferation rate was 30 times.

[実施例4]
4枚のコラーゲンコートシャーレ(培養面積55cm、旭テクノガラス)にヒト骨髄間葉系幹細胞(CELLAPPLICATIONS Inc.)を細胞播種密度が約5100cells/cmとなるよう播種した。培養液は、実施例1と同様に、細胞を播種してから96時間までは、10%ウシ胎児血清(ライフテクノロジーズ)を添加したDMEMGlutaMAX(ライフテクノロジーズ)を用い、96時間以降はMF−medium(間葉系幹細胞増殖培地、東洋紡)に培地を交換して培養した。
[Example 4]
Four collagen-coated petri dishes (culture area 55 cm 2 , Asahi Techno Glass) were seeded with human bone marrow mesenchymal stem cells (CELLAPPLICATIONS Inc.) at a cell seeding density of about 5100 cells / cm 2 . As in Example 1, DMEMGlutaMAX (Life Technologies) supplemented with 10% fetal bovine serum (Life Technologies) was used up to 96 hours after seeding the cells, as in Example 1, and MF-medium (Life Technologies) was used after 96 hours. The medium was changed to a mesenchymal stem cell growth medium, Toyobo), and cultured.

図3に、培養上清作製のスケジュールを示す。培養開始48時間後、および96時間後に、培養液交換を実施した。その後、培養液交換をせず、培養開始から168時間で100%コンフルエントに達したところで培養を終了した。この最後の培地交換から培養終了までの72時間の培養を行った培養液を培養上清として回収した。培養上清の量は、計20.0mLであった。培養上清は回収後ただちに分注し、使用まで−80℃に凍結保存した。培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、2.8×10^6個/シャーレの細胞が回収され、増殖率は約10倍であった。   FIG. 3 shows a schedule for preparing the culture supernatant. Culture medium exchange was performed 48 hours after the start of culture and 96 hours after. Thereafter, the culture medium was not changed, and the culture was terminated when it reached 100% confluence in 168 hours from the start of the culture. The culture solution which was cultured for 72 hours from the last medium exchange to the end of the culture was collected as a culture supernatant. The amount of the culture supernatant was 20.0 mL in total. The culture supernatant was dispensed immediately after collection and stored frozen at −80 ° C. until use. After 168 hours from the culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 2.8 × 10 6 cells / dish cells were recovered, and the growth rate was about 10 times.

[実験1]
(白内障モデルラットの準備)
2型糖尿病で白内障を発症するモデルラット、SDJ/Jclラット(日本クレア)のオスを15週齢で入手し、馴化の後、20週齢より実験に供した。実験は、各群5匹とし、計3群で実施した。
[Experiment 1]
(Preparation of cataract model rat)
A male model rat, SDJ / Jcl rat (CLEA Japan), who develops cataract due to type 2 diabetes, was obtained at 15 weeks of age, and after habituation, it was subjected to the experiment from 20 weeks of age. The experiment was performed in 3 groups, with 5 animals in each group.

(培養上清のラットへの投与)
各実施例にて回収した培養上清および細胞に接触していない新しい培養液(MF−medium、東洋紡)を、それぞれSDJ/Jclラットの両眼へ点眼投与した(各群5匹)。即ち、各培養上清および培養液を、マイクロピペットを使用してラットの片目あたり10μLずつ点眼(投与)した。点眼は1日1回実施し、ラットが20週齢から40週齢になるまでの20週間、毎日実施した。
(Administration of culture supernatant to rats)
The culture supernatant collected in each Example and a new culture solution not in contact with the cells (MF-medium, Toyobo) were instilled into both eyes of SDJ / Jcl rats (5 mice in each group). That is, each culture supernatant and culture solution was instilled (administered) by 10 μL per rat eye using a micropipette. Instillation was performed once a day, and was performed every day for 20 weeks from the age of 20 to 40 weeks.

[実験2]
(培養上清からのエキソソーム抽出)
実施例で得られた各培養上清からエキソソームを抽出した。エキソソームの抽出には、MagCapture TMExosome IsolationKit PS(和光純薬工業、型番:293−77601)を用いた。それぞれ、得られたエキソソームは、元の培養上清と等量のリン酸緩衝生理食塩水(PBS)に懸濁して用いた。また、細胞と接触させていない新しい培養液(MF−medium、東洋紡)からも同様にエキソソームの抽出操作を行ったものを対照群への投与用として準備した。
[Experiment 2]
(Exosome extraction from culture supernatant)
Exosomes were extracted from each culture supernatant obtained in the examples. MagCapture TM Exosome Isolation Kit PS (Wako Pure Chemical Industries, model number: 293-77601) was used for extraction of exosomes. In each case, the obtained exosomes were suspended in the same amount of phosphate buffered saline (PBS) as the original culture supernatant. Moreover, what performed extraction operation of the exosome similarly from the new culture solution (MF-medium, Toyobo) which is not made to contact with the cell was prepared for the administration to a control group.

(抽出したエキソソーム成分のラットへの投与)
前記調製したエキソソームを含むPBS(対照群を含む3種類)溶液を、マイクロピペットを使用してラットの片目あたり10μLずつ点眼(投与)した。点眼は1日1回、ラットが20週齢から40週齢になるまでの20週間、毎日実施した。
(Administration of extracted exosome components to rats)
The prepared exosome-containing PBS (three types including the control group) solution was instilled (administered) in an amount of 10 μL per rat eye using a micropipette. Instillation was performed once a day, every day for 20 weeks from the age of 20 to 40 weeks.

[実験3]
(水晶体濁度の観察およびスコア化)
前記実験1および2において、培養上清またはエキソソームの投与中、週に1回、ラットの両眼に1%硫酸アトロピンを点眼して散瞳させた状態で水晶体の観察を行った。観察時には、ジエチルエーテルで吸入麻酔をかけ、検眼鏡(ウェルチ・アレン製)等で濁度や濁りの発生部位等を詳細に観察し、表1に示す分類の通りスコア化した。
[Experiment 3]
(Observation and scoring of lens turbidity)
In Experiments 1 and 2, during the administration of the culture supernatant or exosome, the lens was observed once a week with 1% atropine sulfate instilled into both eyes of the rat in the mydriatic state. At the time of observation, inhalation anesthesia was performed with diethyl ether, and the turbidity and the turbidity generation site were observed in detail with an ophthalmoscope (manufactured by Welch Allen) and scored according to the classification shown in Table 1.

観察により得られたスコアの推移を図4および図5に示す。図4は、実験1で得られた培養上清をラットに点眼(投与)した結果を示している。一方、図5は、実験2で得られたエキソソーム抽出液をラットに点眼(投与)した結果を示している。本発明の間葉系幹細胞の培養上清または培養上清から抽出されたエキソソームを含む溶液は、白内障モデルラットを用いた実験において水晶体の濁りを抑制する効果があることが示された。   The transition of the score obtained by observation is shown in FIG. 4 and FIG. FIG. 4 shows the results of instilling (administering) the culture supernatant obtained in Experiment 1 to rats. On the other hand, FIG. 5 shows the result of instilling (administering) the exosome extract obtained in Experiment 2 to rats. It has been shown that the mesenchymal stem cell culture supernatant of the present invention or a solution containing exosomes extracted from the culture supernatant has an effect of suppressing turbidity of the lens in an experiment using a cataract model rat.

水晶体の濁りが発生することにより白内障が発症するが、本発明の間葉系幹細胞培養上清またはエキソソームを含む溶液からなる点眼剤を点眼することにより、水晶体の濁りを抑制し、効果的に白内障を予防または治療することが可能となる。   Although cataract develops due to the turbidity of the lens, the turbidity of the lens is effectively suppressed by instilling an eye drop comprising a mesenchymal stem cell culture supernatant or a solution containing exosomes of the present invention. Can be prevented or treated.

1 細胞培養容器
2 容器
3 半透膜(中空糸膜)
4 中空糸膜外腔
5 中空糸膜内腔
6a、6b エンドポート
7a、7b サイドポート
8、9 培養液貯留容器
10 回収容器
11 培養上清回収容器
20、21、22 バルブ
30、31 送液ポンプ
40 導入口
50 排出口
1 Cell culture container 2 Container 3 Semipermeable membrane (hollow fiber membrane)
4 Hollow fiber membrane outer space 5 Hollow fiber membrane lumens 6a, 6b End ports 7a, 7b Side ports 8, 9 Culture solution storage container 10 Recovery container 11 Culture supernatant recovery container 20, 21, 22 Valve 30, 31 Feed pump 40 Inlet 50 Outlet

Claims (4)

間葉系幹細胞を培養して得られる培養上清成分を含む、白内障の抑制剤または治療剤。   An inhibitor or therapeutic agent for cataract comprising a culture supernatant component obtained by culturing mesenchymal stem cells. 前記間葉系幹細胞は、骨髄間葉系幹細胞または脂肪組織由来間葉系幹細胞である、請求項1に記載の白内障の抑制剤または治療剤。   The cataract suppressor or therapeutic agent according to claim 1, wherein the mesenchymal stem cells are bone marrow mesenchymal stem cells or adipose tissue-derived mesenchymal stem cells. 前記培養上清成分は、エキソソームを含む、請求項1または2に記載の白内障の抑制剤または治療剤。   The cataract suppressant or therapeutic agent according to claim 1 or 2, wherein the culture supernatant component comprises exosomes. 点眼剤または眼軟膏剤である、請求項1〜3のいずれかに記載の白内障の抑制剤または治療剤。   The inhibitor or therapeutic agent for cataract according to any one of claims 1 to 3, which is an eye drop or an eye ointment.
JP2018049174A 2018-03-16 2018-03-16 Cataract suppressant Active JP7077690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018049174A JP7077690B2 (en) 2018-03-16 2018-03-16 Cataract suppressant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018049174A JP7077690B2 (en) 2018-03-16 2018-03-16 Cataract suppressant

Publications (2)

Publication Number Publication Date
JP2019156804A true JP2019156804A (en) 2019-09-19
JP7077690B2 JP7077690B2 (en) 2022-05-31

Family

ID=67993105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018049174A Active JP7077690B2 (en) 2018-03-16 2018-03-16 Cataract suppressant

Country Status (1)

Country Link
JP (1) JP7077690B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7007770B1 (en) 2021-06-21 2022-02-10 パナジー株式会社 Eye symptom improver and eye symptom improvement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110225661A1 (en) * 2008-06-26 2011-09-15 Spectrum Health Innovations, LLC Method for treating and preventing radiation damage using genetically modified mesenchymal stem cells
JP2017143775A (en) * 2016-02-17 2017-08-24 東洋紡株式会社 Cell culture apparatus using gas-impermeable tube and cell culture method
JP2017158488A (en) * 2016-03-10 2017-09-14 東洋紡株式会社 Cell recovery method
JP2017176043A (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Cell cultivation using hollow fiber module
JP2018033419A (en) * 2016-09-02 2018-03-08 東洋紡株式会社 Cell culture device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110225661A1 (en) * 2008-06-26 2011-09-15 Spectrum Health Innovations, LLC Method for treating and preventing radiation damage using genetically modified mesenchymal stem cells
JP2017143775A (en) * 2016-02-17 2017-08-24 東洋紡株式会社 Cell culture apparatus using gas-impermeable tube and cell culture method
JP2017158488A (en) * 2016-03-10 2017-09-14 東洋紡株式会社 Cell recovery method
JP2017176043A (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Cell cultivation using hollow fiber module
JP2018033419A (en) * 2016-09-02 2018-03-08 東洋紡株式会社 Cell culture device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7007770B1 (en) 2021-06-21 2022-02-10 パナジー株式会社 Eye symptom improver and eye symptom improvement method
WO2022269973A1 (en) * 2021-06-21 2022-12-29 パナジー株式会社 Agent for improving eye symptoms and method for improving eye symptoms
JP2023001664A (en) * 2021-06-21 2023-01-06 パナジー株式会社 Ocular symptom improvers and method of improving ocular symptoms

Also Published As

Publication number Publication date
JP7077690B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
US8435751B2 (en) Membrane for cell expansion
CA2736533C (en) Polymer membrane irradiated in oxygen for cell culture
JP7052480B6 (en) Manufacturing method of anti-curing agent or therapeutic agent for crystalline lens
CA2736534C (en) Hybrid bioartificial kidney
KR101197909B1 (en) Methods of using regenerative cells to promote wound healing
EP2891710B1 (en) Method for producing cell concentrate
JPWO2013061859A1 (en) Method for producing cell concentrate
JP7052439B6 (en) Anti-curing or therapeutic agent for the crystalline lens
JP6323702B2 (en) Hollow fiber membrane and hollow fiber module for cell culture
JP7077690B2 (en) Cataract suppressant
WO2017104558A1 (en) Hollow-fiber membrane and hollow-fiber module for cell culture
JP6930068B2 (en) Cell culture method using a hollow fiber module
JP2020079217A (en) Method for producing cataract prevention agent
CN109153963B (en) Method for changing cell culture in adhesion state
JP2018078862A (en) Adipose tissue preservation method and method of isolating and culturing stem cells from frozen adipose tissue
WO2023190448A1 (en) Method for cultivating mesenchymal stem cell
JP2018014947A (en) Cell culture method using hollow fiber membrane module
US20210290683A1 (en) Platelet lysate compositions and uses thereof
JP2018064486A (en) Method of culturing dental pulp stem cells
JP2020022410A (en) Production method and production apparatus of blood platelets
JP2020018235A (en) Method and apparatus for culturing megakaryocyte
JP2003026580A (en) Substitute for plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R151 Written notification of patent or utility model registration

Ref document number: 7077690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151