JP2019156799A - Antibacterial member - Google Patents

Antibacterial member Download PDF

Info

Publication number
JP2019156799A
JP2019156799A JP2018048924A JP2018048924A JP2019156799A JP 2019156799 A JP2019156799 A JP 2019156799A JP 2018048924 A JP2018048924 A JP 2018048924A JP 2018048924 A JP2018048924 A JP 2018048924A JP 2019156799 A JP2019156799 A JP 2019156799A
Authority
JP
Japan
Prior art keywords
antibacterial
protrusion
base material
antibacterial member
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018048924A
Other languages
Japanese (ja)
Inventor
真理子 宮崎
Mariko Miyazaki
真理子 宮崎
宮内 昭浩
Akihiro Miyauchi
昭浩 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018048924A priority Critical patent/JP2019156799A/en
Publication of JP2019156799A publication Critical patent/JP2019156799A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide an antibacterial member that achieves high antibacterial properties without providing an antibacterial coat.SOLUTION: An antibacterial member (10) has a base material (11), and a plurality of projections (12) provided on the surface of the base material (11), each projection (12) having a diameter of 0.5 μm or more and 20 μm or less, and each projection (12) having a Young's modulus of more than 0.004 GPa and 5 GPa or less.SELECTED DRAWING: Figure 1

Description

本発明は、抗菌部材に関する。   The present invention relates to an antibacterial member.

近年、医療現場における院内感染や、街中での感染症流行が問題となっている。また、生活の質が向上するのに伴い、人々の衛生に対する意識が高まり、食品や家電製品での抗菌ニーズが高まっている。   In recent years, nosocomial infections in the medical field and infectious disease epidemics in the city have become problems. In addition, as the quality of life improves, people's awareness of hygiene has increased, and antibacterial needs for food and home appliances have increased.

これまでに提案されている抗菌部材は、基材の表面に、抗菌性のある金属元素(銅(Cu)および銀(Ag)等)やセラミックス(TiO)等の成分(抗菌活性成分)を含む皮膜を形成することにより抗菌性を与えるものである。例えば、特許文献1には、ステンレス鋼を下地とし、その上にZnめっき層又はZn合金めっき層が形成され、更に抗菌・防カビ剤を含む熱硬化型塗装が施されている耐久性に優れた抗菌・防カビ性塗装鋼板が開示されており(請求項1)、抗菌・防カビ剤はAg,Cu,Zn等の無機系薬剤、リン酸亜鉛,酸化亜鉛等の化合物系薬剤、チアゾール,イミダゾール等の有機系薬剤から選ばれた1種又は2種以上であることが開示されている(請求項3)。 Antibacterial members that have been proposed so far have components (antibacterial active ingredients) such as antibacterial metal elements (such as copper (Cu) and silver (Ag)) and ceramics (TiO 2 ) on the surface of the substrate. Antibacterial properties are imparted by forming a coating film. For example, in Patent Document 1, stainless steel is used as a base, a Zn plating layer or a Zn alloy plating layer is formed thereon, and a thermosetting coating containing an antibacterial / antifungal agent is applied to provide excellent durability. An antibacterial / antifungal coated steel sheet is disclosed (Claim 1). Antibacterial / antifungal agents are inorganic chemicals such as Ag, Cu and Zn, compound chemicals such as zinc phosphate and zinc oxide, thiazole, It is disclosed that it is one or more selected from organic drugs such as imidazole (Claim 3).

特開平8−156175号公報JP-A-8-156175

上述した抗菌皮膜を設ける方法では、抗菌活性成分は母材表面に多くとも数%しか露出しておらず、抗菌性能は十分ではない可能性がある。性能を十分にするために、部材表面における抗菌活性成分の分散量を増加することもできるが、抗菌皮膜の安定性や強度の関係上、分散量には限界がある。Agの場合には値段が高いという問題もあり、分散量を過度に増大させるとコストを増大させることになってしまう。また、抗菌活性成分が1種類の場合には、耐性菌を生じる可能性が高く、新たな菌を生む可能性もある。   In the above-described method for providing an antibacterial film, the antibacterial active ingredient is only exposed to several percent at most on the surface of the base material, and the antibacterial performance may not be sufficient. In order to ensure sufficient performance, the amount of the antibacterial active ingredient dispersed on the surface of the member can be increased, but the amount of dispersion is limited due to the stability and strength of the antibacterial film. In the case of Ag, there is also a problem that the price is high, and if the amount of dispersion is excessively increased, the cost is increased. In addition, when there is one kind of antibacterial active ingredient, there is a high possibility that resistant bacteria will be produced, and there is a possibility that new bacteria will be produced.

本発明の目的は、上記事情に鑑み、抗菌皮膜を設けることなく、高い抗菌性を実現する抗菌部材を提供することにある。   In view of the above circumstances, an object of the present invention is to provide an antibacterial member that realizes high antibacterial properties without providing an antibacterial film.

上記課題を解決すべく、本発明の抗菌部材は、基材と、基材の表面に設けられた複数の突起を有し、突起の直径は0.5μm以上20μm以下であり、突起のヤング率は0.004GPaよりも大きく5GPa以下であることを特徴とする。   In order to solve the above problems, the antibacterial member of the present invention has a base material and a plurality of protrusions provided on the surface of the base material, the diameter of the protrusion is 0.5 μm or more and 20 μm or less, and the Young's modulus of the protrusion Is greater than 0.004 GPa and 5 GPa or less.

本発明のより具体的な構成は、特許請求の範囲に記載される。   More specific configurations of the present invention are described in the claims.

本発明によれば、抗菌皮膜を設けることなく、高い抗菌性を実現する抗菌部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the antibacterial member which implement | achieves high antibacterial property can be provided, without providing an antibacterial film.

上述した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

本発明の抗菌部材を模式的に示す斜視図The perspective view which shows the antibacterial member of this invention typically 基材の表面にバイオフィルムが形成されるメカニズムを説明するフロー図Flow diagram explaining the mechanism of biofilm formation on the surface of the substrate 本発明の抗菌部材の突起の配列の第1の例を示す上面図The top view which shows the 1st example of arrangement | sequence of the processus | protrusion of the antibacterial member of this invention 本発明の抗菌部材の突起の配列の第2の例を示す上面図The top view which shows the 2nd example of arrangement | sequence of the processus | protrusion of the antibacterial member of this invention 本発明の抗菌部材の基材の形状の第1の例を示す断面図Sectional drawing which shows the 1st example of the shape of the base material of the antibacterial member of this invention 本発明の抗菌部材の基材の形状の第2の例を示す斜視図The perspective view which shows the 2nd example of the shape of the base material of the antibacterial member of this invention 実施例1の抗菌部材の表面のSEM観察写真SEM observation photograph of the surface of the antibacterial member of Example 1 比較例1の抗菌部材の表面のSEM観察写真SEM observation photograph of the surface of the antibacterial member of Comparative Example 1 比較例2の抗菌部材の耐水性評価後の表面のSEM観察写真SEM observation photograph of surface after water resistance evaluation of antibacterial member of Comparative Example 2

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を適宜省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In addition, in each figure, about the same component or the same component, the same code | symbol is attached | subjected and those overlapping description is abbreviate | omitted suitably.

図1は本発明の抗菌部材を模式的に示す斜視図である。図1に示すように、抗菌部材10は、基材11と、基材11の表面に設けられた複数の突起12を有している。このような突起12の集合体を「ピラー構造体」とも称する。この突起12によって基材11の表面には微細な凹凸構造が形成されている。なお、本発明において「菌」とは、細菌、酵母およびカビ等のあらゆる種類の微生物の総称とする。   FIG. 1 is a perspective view schematically showing an antibacterial member of the present invention. As shown in FIG. 1, the antibacterial member 10 includes a base material 11 and a plurality of protrusions 12 provided on the surface of the base material 11. Such an assembly of protrusions 12 is also referred to as a “pillar structure”. The projections 12 form a fine concavo-convex structure on the surface of the substrate 11. In the present invention, “fungus” is a general term for all kinds of microorganisms such as bacteria, yeast, and mold.

上述したように、従来は部材の表面に抗菌皮膜を設けて菌を化学的に殺していたが、本発明は基材の表面構造でバイオフィルム(菌や菌が分泌する細胞外多糖類からなる立体的な構造体)の成長を抑制するという画期的なものである。菌自体は単体では人体に悪影響を及ぼすことは少なく、バイオフィルムが人体に悪影響を及ぼすことが多いため、バイオフィルムの成長を抑制できれば抗菌部材としては非常に有用である。   As described above, conventionally, an antibacterial film is provided on the surface of a member to kill bacteria, but the present invention is composed of a biofilm (extracellular polysaccharide secreted by bacteria and fungi) with the surface structure of the substrate. It is an epoch-making thing that suppresses the growth of a three-dimensional structure. Since the fungus itself has little adverse effect on the human body and the biofilm often has an adverse effect on the human body, if the growth of the biofilm can be suppressed, it is very useful as an antibacterial member.

以下、基材にバイオフィルムが形成されるメカニズムと、本発明の抗菌部材がバイオフィルムの成長を抑制するメカニズムについて説明する。図2は基材の表面にバイオフィルムが形成されるメカニズムを説明するフロー図である。図2に示すように、バイオフィルムは以下の順序で発生する:   Hereinafter, the mechanism by which the biofilm is formed on the substrate and the mechanism by which the antibacterial member of the present invention suppresses the growth of the biofilm will be described. FIG. 2 is a flow diagram illustrating the mechanism by which a biofilm is formed on the surface of a substrate. As shown in FIG. 2, the biofilm occurs in the following order:

S1:清浄な基材が水に接触すると、水と基材との界面に菌(パイオニア菌)が付着する
S2:菌の表面に分泌されている細胞外多糖類(Extracellular Polysaccharide:EPS)が基材に付着し、接着が安定化する
S3:パイオニア菌が増殖を始め、多糖類(グリコカリックス)で被覆された一次コロニーが形成される
S4:グリコカリックスが他のタイプの菌細胞を取り込み、一次コロニー(パイオニア菌のコロニー)の排泄物を代謝する二次コロニーが一次コロニーの上層に形成される
S5:二次コロニーの排泄物を代謝する微生物が付着し、逐次的に多層コロニー構造が形成されてバイオフィルムが形成される
図1に示すように、本発明の抗菌部材10は基材11の表面に突起12が設けられ凹凸構造が形成されていることにより、菌が一次コロニーを形成する過程で足場が構造的に不安定となり、一次コロニー自体の内部応力によって破断する効果があると考えられる。そのため、上記S3以降のプロセスが発生せず、バイオフィルムの成長が抑制されると考えられる。
S1: When a clean substrate comes into contact with water, bacteria (pioneer bacteria) adhere to the interface between the water and the substrate. S2: Extrapolysaccharide (EPS) secreted on the surface of the bacteria S3: Pioneer bacteria start to grow and primary colonies covered with polysaccharides (glycocalyx) are formed. S4: Glycocalix takes up other types of fungal cells and becomes primary. Secondary colonies that metabolize the excrement of colonies (pioneer colonies) are formed in the upper layer of the primary colonies. As shown in FIG. 1, the antibacterial member 10 of the present invention is provided with a protrusion 12 on the surface of a base material 11 and an uneven structure. There By being formed, bacteria scaffold become structurally unstable in the process of forming the primary colonies considered to be effective to break the internal stresses of the primary colony itself. Therefore, it is considered that the process after S3 does not occur and the growth of the biofilm is suppressed.

突起12の直径は、0.5μm以上20μm以下とする。この範囲の中で、突起12の直径は増殖を抑制する対象の菌(以下、「対象菌」と称する。)と同程度の直径を有していることが好ましい。突起12の直径が対象菌よりも大きすぎる場合も、逆に突起12の直径が対象菌よりも小さすぎる場合も、一次コロニーを効果的に破断することができない。なお、突起12の直径が対象菌の大きさと「同程度」であることについて、両者は必ずしも同一である必要は無い。突起12の直径は、一次コロニー破断の効果を得ることができる値の範囲にあればよい。突起12の直径は、各対象菌について破断効果を検証する実験を行い、決定することができる。対象菌の直径は、例えば細菌:約0.5μm、酵母:約5μmおよびカビ:約20μmである。   The diameter of the protrusion 12 is 0.5 μm or more and 20 μm or less. Within this range, it is preferable that the diameter of the protrusion 12 has a diameter comparable to that of a target bacterium (hereinafter referred to as “target bacterium”) whose growth is to be suppressed. Even when the diameter of the protrusion 12 is too larger than that of the target bacterium, or when the diameter of the protrusion 12 is too smaller than that of the target bacterium, the primary colony cannot be effectively broken. In addition, about the diameter of the processus | protrusion 12 being "the same level" with the magnitude | size of object microbe, both do not necessarily need to be the same. The diameter of the protrusion 12 should just be in the range of the value which can acquire the effect of a primary colony fracture | rupture. The diameter of the protrusion 12 can be determined by performing an experiment to verify the breaking effect for each target bacterium. The diameters of the target bacteria are, for example, bacteria: about 0.5 μm, yeast: about 5 μm, and mold: about 20 μm.

突起12の形状は、図1では円柱形状であるが、これに限られない。例えば、三角柱、四角柱等の多角柱であってもよい。この場合、「突起12の直径」とは、外接円の直径を意味するものとする。   The shape of the protrusion 12 is a cylindrical shape in FIG. 1, but is not limited thereto. For example, it may be a polygonal prism such as a triangular prism or a quadrangular prism. In this case, the “diameter of the protrusion 12” means the diameter of the circumscribed circle.

また、突起12のヤング率は、0.004GPaよりも大きく5GPa以下であることが好ましい。突起12のヤング率が0.004GPa未満であると突起12の水中での構造安定性(耐水性)が不十分となる。また、突起12のヤング率が5GPaより大きいと、一次コロニーの破断効果が十分ではなくなる。   The Young's modulus of the protrusion 12 is preferably greater than 0.004 GPa and not greater than 5 GPa. When the Young's modulus of the protrusion 12 is less than 0.004 GPa, the structural stability (water resistance) of the protrusion 12 in water becomes insufficient. If the Young's modulus of the protrusion 12 is greater than 5 GPa, the primary colony breaking effect is not sufficient.

図3Aは本発明の抗菌部材の突起の配列の第1の例を示す上面図であり、図3Bは本発明の抗菌部材の突起の配列の第2の例を示す上面図である。本発明の抗菌部材10の基材11における突起12の配列は、特に限定は無いが、例えば図3Aに示すように、正方格子状とすることができる。また、図3Bに示すように、三方格子状であってもよい。   FIG. 3A is a top view showing a first example of the array of protrusions of the antibacterial member of the present invention, and FIG. 3B is a top view showing a second example of the array of protrusions of the antibacterial member of the present invention. The arrangement of the protrusions 12 on the base material 11 of the antibacterial member 10 of the present invention is not particularly limited, but for example, as shown in FIG. Moreover, as shown to FIG. 3B, a three-way lattice shape may be sufficient.

隣り合う突起12の中心間の距離L(ピッチ間隔)は、突起12の直径の1.5倍以上3倍未満であることが好ましい。距離Lが突起12の直径の1.5倍未満であると、十分な量の凹凸構造を確保できず、凹凸構造の効果(一次コロニーを破断してバイオフィルム抑制の効果)を十分に得ることができない。また、距離Lが突起12の直径の3倍以上であると、凹部の割合が大きくなり過ぎて、凹部に菌が入り込み、バイオフィルム成長抑制の効果を十分に得ることができなくなる。   The distance L (pitch interval) between the centers of adjacent protrusions 12 is preferably 1.5 times or more and less than 3 times the diameter of the protrusions 12. When the distance L is less than 1.5 times the diameter of the protrusion 12, a sufficient amount of the uneven structure cannot be secured, and the effect of the uneven structure (the effect of suppressing the biofilm by breaking the primary colony) is sufficiently obtained. I can't. On the other hand, if the distance L is 3 times or more the diameter of the protrusion 12, the ratio of the recesses becomes too large, and bacteria enter the recesses, so that the effect of suppressing biofilm growth cannot be obtained sufficiently.

また、突起12のアスペクト比(高さ/直径)は1以上であることが好ましい。アスペクト比が1未満であると、凹凸構造の効果を十分に得ることができない。   The aspect ratio (height / diameter) of the protrusion 12 is preferably 1 or more. If the aspect ratio is less than 1, the effect of the concavo-convex structure cannot be sufficiently obtained.

基材11の材料は、突起12を形成できるものであれば特に限定は無く、抗菌性を持たせたい部材に合わせて選択することができる。例えば、エポキシ系樹脂、アクリル系樹脂、PDMS(ポリジメチルシロキサン)およびCOP(シクロオレフィンポリマー)等の樹脂を用いることができる。また、ステンレス鋼等の金属であってもよい。   The material of the base material 11 is not particularly limited as long as the protrusion 12 can be formed, and can be selected according to a member to be given antibacterial properties. For example, resins such as epoxy resins, acrylic resins, PDMS (polydimethylsiloxane), and COP (cycloolefin polymer) can be used. Moreover, metals, such as stainless steel, may be sufficient.

図4Aは本発明の抗菌部材の基材の形状の第1の例を示す側面図であり、図4Bは本発明の抗菌部材の基材の形状の第2の例を示す斜視図である。基材11の形状についても、突起12を形成できるものであれば特に限定は無く、抗菌性を持たせたい部材に合わせて選択することができる。例えば、図1および図4Aに示すように、フィルム状であってもよい。基材11がフィルム状である場合、可搬性の向上および抗菌部材を使用する現場で施工しやすくなる等のメリットが得られる。突起12を設けている面と反対側の面に接着剤13を設ければ、抗菌性を持たせたい部材に簡単に貼り付けることができる。   4A is a side view showing a first example of the shape of the substrate of the antibacterial member of the present invention, and FIG. 4B is a perspective view showing a second example of the shape of the substrate of the antibacterial member of the present invention. The shape of the substrate 11 is not particularly limited as long as the protrusion 12 can be formed, and can be selected according to a member to be given antibacterial properties. For example, as shown in FIGS. 1 and 4A, it may be a film. When the substrate 11 is in the form of a film, advantages such as improved portability and ease of construction at the site where the antibacterial member is used can be obtained. If the adhesive 13 is provided on the surface opposite to the surface on which the protrusions 12 are provided, the adhesive 13 can be easily attached to a member to be given antibacterial properties.

また、図4Bに示すように、基材11´が管状であってもよい。この場合、管状の基材11´の内側の面に突起12が設けられていてもよい。このような形状を有する抗菌部材10´は、ドラム式洗濯機の洗濯槽に適用することができる。   Moreover, as shown to FIG. 4B, base material 11 'may be tubular. In this case, the protrusion 12 may be provided on the inner surface of the tubular base material 11 ′. The antibacterial member 10 ′ having such a shape can be applied to a washing tub of a drum type washing machine.

次に、上述した抗菌部材の製造方法について説明する。図4Aに示すように、基材11がフィルム状の樹脂である場合、例えばナノインプリント加工によって突起12を作製することができる。具体的には、凹凸構造を有する金属金型を樹脂フィルムに押し当て、熱を加えることで樹脂フィルム基材の表面に突起12を形成することができる。   Next, the manufacturing method of the antimicrobial member mentioned above is demonstrated. As shown to FIG. 4A, when the base material 11 is film-form resin, the processus | protrusion 12 can be produced by nanoimprint process, for example. Specifically, the protrusion 12 can be formed on the surface of the resin film substrate by pressing a metal mold having an uneven structure against the resin film and applying heat.

また、基材11が金属である場合、例えばメタルプリント加工によって金属基材の表面に突起12を形成することができる。具体的には、凹凸構造を有する金属金型を金属基材に押し当て、熱と圧力を加えることで金属基材の表面に突起12を形成することができる。   Moreover, when the base material 11 is a metal, the processus | protrusion 12 can be formed in the surface of a metal base material, for example by metal printing process. Specifically, the protrusion 12 can be formed on the surface of the metal substrate by pressing a metal mold having an uneven structure against the metal substrate and applying heat and pressure.

図4Bに示すように、基材11が金属の管状部材であり、管状部材の内側に突起12が設けられている場合、例えばロール技術を用いて抗菌部材10´を作製することができる。具体的には、外側表面に凹凸構造が形成された円筒状の原版に基材11´を押し付けながら回転させることで、基材11´の表面に突起12を形成しながら、基材を管状に成形することができる。   As shown in FIG. 4B, when the base material 11 is a metal tubular member and the protrusion 12 is provided inside the tubular member, the antibacterial member 10 'can be produced using, for example, a roll technique. Specifically, by rotating the base material 11 ′ while pressing the base material 11 ′ against a cylindrical original plate having a concavo-convex structure on the outer surface, the base material is formed into a tubular shape while forming protrusions 12 on the surface of the base material 11 ′. Can be molded.

上述したナノインプリント加工、メタルプリント加工およびロール技術ともに、基材11,11´の表面の一部を突起12とすることから、抗菌部材10,10´は基材11,11´と突起12とが一体に成形された物となる。もちろん、基材11,11´と突起12との十分な密着性が得られれば、基材11,11´と突起12とを別に用意して接着した物であってもよい。   Since the nanoimprint process, the metal print process, and the roll technology described above have part of the surface of the base material 11, 11 ′ as the protrusion 12, the antibacterial member 10, 10 ′ has the base material 11, 11 ′ and the protrusion 12. It becomes a molded object. Of course, as long as sufficient adhesion between the base materials 11 and 11 ′ and the protrusions 12 is obtained, the base materials 11 and 11 ′ and the protrusions 12 may be separately prepared and bonded.

以下、実施例に基づいて本発明についてより詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

(1)バイオフィルム抑制効果の確認
基材11として樹脂フィルムを用い、突起12の直径を変えた2つの抗菌部材(実施例1、比較例1)を作製した。樹脂フィルムはCOP(ヤング率:0.22GPa)を材料とした。実施例1の抗菌部材の突起12のサイズを1μmとし、比較例1の突起12のサイズを5μmとした。ピッチ間隔Lは突起12の直径の1.75倍とし、突起12のアスペクト比は1とした。樹脂フィルムへの突起12の形成は、ニッケルモールドをナノインプリント加工することで行った。
(1) Confirmation of biofilm suppression effect Two antibacterial members (Example 1 and Comparative Example 1) in which the diameter of the protrusion 12 was changed using a resin film as the substrate 11 were produced. The resin film was made of COP (Young's modulus: 0.22 GPa). The size of the protrusion 12 of the antibacterial member of Example 1 was 1 μm, and the size of the protrusion 12 of Comparative Example 1 was 5 μm. The pitch interval L was 1.75 times the diameter of the protrusion 12 and the aspect ratio of the protrusion 12 was 1. The protrusions 12 were formed on the resin film by nanoimprinting a nickel mold.

上述した抗菌部材10に、以下の手順で菌を培養した。試験菌には黄色ブドウ球菌(直径:約1μm)を用いた。試験菌数が10〜10/mLになるまでトリプケースソイ(SCD)ブイヨン(Trypcase Soy Broth)培地で浮遊培養して試験菌液を得た。ガラスシャーレ、抗菌部材10を高圧蒸気滅菌(121℃、15分間)し、実施例1および比較例1の抗菌部材10をガラスシャーレに設置した後、試験菌液を添加した。SCDブイヨン培地を1日1回交換し、21日間培養した。 Bacteria were cultured on the antibacterial member 10 described above by the following procedure. As a test bacterium, Staphylococcus aureus (diameter: about 1 μm) was used. Test bacteria count was obtained 10 7 ~10 8 / mL in until triple Case Soy (SCD) broth (Trypcase Soy Broth) test bacteria liquid was cultured in suspension medium. The glass petri dish and antibacterial member 10 were sterilized by high-pressure steam (121 ° C., 15 minutes), and the antibacterial member 10 of Example 1 and Comparative Example 1 was placed in the glass petri dish, and then the test bacterial solution was added. The SCD broth medium was changed once a day and cultured for 21 days.

図5は実施例1の抗菌部材の表面のSEM観察写真であり、図6は比較例1の抗菌部材の表面のSEM観察写真である。実施例1および比較例1の抗菌部材ともに、突起12が設けられた領域(図5および図6中の点線で囲んだ領域)と、突起12が設けられていない領域(図5および図6中の点線で囲んだ領域以外の領域)がある。図5および図6に示すように、実施例1および比較例1の抗菌部材ともに、突起12が設けられていない領域は、菌20が増殖している。   FIG. 5 is a SEM observation photograph of the surface of the antibacterial member of Example 1, and FIG. 6 is a SEM observation photograph of the surface of the antibacterial member of Comparative Example 1. In both the antibacterial members of Example 1 and Comparative Example 1, a region where the protrusions 12 are provided (region surrounded by a dotted line in FIGS. 5 and 6) and a region where the protrusions 12 are not provided (in FIGS. 5 and 6) Area other than the area surrounded by the dotted line). As shown in FIGS. 5 and 6, in both the antibacterial members of Example 1 and Comparative Example 1, the bacteria 20 are proliferating in the region where the protrusions 12 are not provided.

一方、突起12が設けられている領域を見ると、実施例1の抗菌部材はほとんど菌が増殖していないのに対し、比較例1の抗菌部材では菌20が突起12が設けられている領域においても増殖している。このことから、黄色ブドウ球菌と同じ直径を有する突起12が設けられた抗菌部材は、菌の増殖を抑制できることがわかった。   On the other hand, when looking at the area where the protrusions 12 are provided, the antimicrobial member of Example 1 has almost no bacteria growing, whereas in the antimicrobial member of Comparative Example 1, the area where the bacteria 20 are provided with the protrusions 12. It has also proliferated. From this, it was found that the antibacterial member provided with the protrusions 12 having the same diameter as that of Staphylococcus aureus can suppress the growth of the bacteria.

(2)抗菌部材の耐水性評価
次に、基材の樹脂材料を変え、ナノインプリントによって直径1μm、高さ5μmの突起12を有する抗菌部材(実施2〜4および比較例2)を作製した。ピッチ間隔Lは突起12の直径の1.75倍とし、突起12のアスペクト比は1とした。実施例1〜3および比較例2のそれぞれの抗菌部材の材料およびそのヤング率を後述する表1に示す。ヤング率は、ナノインデンテーション法を用いて測定した。
(2) Water resistance evaluation of antibacterial member Next, the resin material of the base material was changed, and antibacterial members (Examples 2 to 4 and Comparative Example 2) having protrusions 12 having a diameter of 1 μm and a height of 5 μm were prepared by nanoimprinting. The pitch interval L was 1.75 times the diameter of the protrusion 12 and the aspect ratio of the protrusion 12 was 1. The materials of the antibacterial members of Examples 1 to 3 and Comparative Example 2 and their Young's moduli are shown in Table 1 described later. Young's modulus was measured using the nanoindentation method.

作製した抗菌部材を水中に浸した後、SEM(Scanning Electron Microscope)によって表面の構造を観察し、耐水性(水中での構造安定性)評価を行った。観察の結果、突起12同士が結合せず、基材表面の凹凸構造が崩壊していないものを「合格」、突起12同士が結合し、基材表面の凹凸構造が崩壊したものを「不合格」と評価した。耐水性評価結果を後述する表1に併記する。   After the produced antibacterial member was immersed in water, the surface structure was observed by SEM (Scanning Electron Microscope), and water resistance (structural stability in water) was evaluated. As a result of the observation, the projections 12 are not bonded to each other and the concavo-convex structure on the base material surface is not collapsed. ". The results of water resistance evaluation are also shown in Table 1 described later.

Figure 2019156799
Figure 2019156799

表1に示すように、抗菌部材の材料のヤング率が本発明の規定を満たす実施例1〜3は、SEM観察の結果、突起12同士が結合しておらず、耐水性評価の結果は全て「合格」となった。一方、抗菌部材の材料のヤング率が本発明の規定を満たさない比較例2は、耐水性評価の結果が「不合格」であった。   As shown in Table 1, in Examples 1 to 3 where the Young's modulus of the material of the antibacterial member satisfies the provisions of the present invention, as a result of SEM observation, the protrusions 12 are not bonded to each other, and the results of the water resistance evaluation are all “Pass”. On the other hand, in Comparative Example 2 in which the Young's modulus of the material of the antibacterial member does not satisfy the definition of the present invention, the result of the water resistance evaluation was “failed”.

図7は比較例2の抗菌部材の耐水性試験後の表面のSEM観察写真である。図7に示すように、突起12同士が結合し、凹凸構造が崩れる現象が見られた。これは、比較例2の抗菌部材の材料の強度が弱く(ヤング率:0.002〜0.004GPa)、表面張力や静電気等の力で突起12同士が結合したものと考えられる。   FIG. 7 is a SEM observation photograph of the surface of the antibacterial member of Comparative Example 2 after the water resistance test. As shown in FIG. 7, a phenomenon was observed in which the protrusions 12 were bonded to each other and the uneven structure was broken. This is considered that the strength of the material of the antibacterial member of Comparative Example 2 is weak (Young's modulus: 0.002 to 0.004 GPa), and the protrusions 12 are bonded to each other by a force such as surface tension or static electricity.

このことから、基材11表面の凹凸構造を安定に保つためには、突起12ヤング率は、0.005GPa以上、5GPa以下とすることが好ましいことが実証された。
From this, it was proved that the protrusion 12 Young's modulus is preferably 0.005 GPa or more and 5 GPa or less in order to keep the uneven structure on the surface of the substrate 11 stable.

以上、発明したように、本発明によれば、抗菌皮膜を設けることなく、抗菌対象の部材表面におけるバイオフィルム成長を抑制することが可能な抗菌部材を提供可能であることが示された。また、水に接触した場合であっても基材11の表面に設けられた凹凸構造を安定に保つことができ、抗菌効果を持続させることが可能であることが示された。本発明の抗菌部材は、医療、食品および電化製品等の様々な分野で使用することができる。   As described above, according to the present invention, it was shown that an antibacterial member capable of suppressing biofilm growth on the surface of a member to be antibacterial can be provided without providing an antibacterial film. Moreover, even when it contacted with water, the uneven structure provided in the surface of the base material 11 can be maintained stably, and it was shown that an antimicrobial effect can be maintained. The antibacterial member of the present invention can be used in various fields such as medical care, food, and electrical appliances.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10,10´…抗菌部材、11,11´…基材、12…突起、13…接着剤、20…菌、L…ピッチ間隔。   10, 10 '... antibacterial member, 11, 11' ... substrate, 12 ... projection, 13 ... adhesive, 20 ... fungus, L ... pitch interval.

Claims (7)

基材と、前記基材の表面に設けられた複数の突起を有し、
前記突起の直径は0.5μm以上20μm以下であり、
前記突起のヤング率は0.004GPaよりも大きく5GPa以下であることを特徴とする抗菌部材。
A substrate and a plurality of protrusions provided on the surface of the substrate;
The diameter of the protrusion is 0.5 μm or more and 20 μm or less,
The antibacterial member, wherein the Young's modulus of the protrusion is greater than 0.004 GPa and 5 GPa or less.
隣り合う前記突起の中心間の距離が、前記突起の直径の1.5倍以上3倍未満であることを特徴とする請求項1に記載の抗菌部材。   The antibacterial member according to claim 1, wherein the distance between the centers of the adjacent protrusions is 1.5 times or more and less than 3 times the diameter of the protrusions. 前記突起の高さと直径の比が1以上であることを特徴とする請求項1に記載の抗菌部材。   The antibacterial member according to claim 1, wherein a ratio of a height and a diameter of the protrusion is 1 or more. 前記基材がフィルム状の部材からなり、前記フィルム状の部材の一方の面に前記突起が設けられ、前記部材の他方の面に接着剤が設けられていることを特徴とする請求項1から3のいずれか1項に記載の抗菌部材。   The said base material consists of a film-like member, The said protrusion is provided in one surface of the said film-like member, The adhesive agent is provided in the other surface of the said member. 4. The antibacterial member according to any one of 3 above. 前記基材が金属であることを特徴とする請求項1から3のいずれか1項に記載の抗菌部材。   The antibacterial member according to any one of claims 1 to 3, wherein the base material is a metal. 前記基材が管状の部材からなり、前記突起が前記管状の部材の内側に設けられていることを特徴とする請求項1から3のいずれか1項に記載の抗菌部材。   The antibacterial member according to any one of claims 1 to 3, wherein the base member is formed of a tubular member, and the protrusion is provided inside the tubular member. 前記基材と前記突起が一体に成形されていることを特徴とする請求項1から3のいずれか1項に記載の抗菌部材。   The antibacterial member according to any one of claims 1 to 3, wherein the base material and the protrusion are integrally formed.
JP2018048924A 2018-03-16 2018-03-16 Antibacterial member Pending JP2019156799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018048924A JP2019156799A (en) 2018-03-16 2018-03-16 Antibacterial member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018048924A JP2019156799A (en) 2018-03-16 2018-03-16 Antibacterial member

Publications (1)

Publication Number Publication Date
JP2019156799A true JP2019156799A (en) 2019-09-19

Family

ID=67995650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048924A Pending JP2019156799A (en) 2018-03-16 2018-03-16 Antibacterial member

Country Status (1)

Country Link
JP (1) JP2019156799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177165B1 (en) * 2020-06-29 2020-11-11 엠.씨.케이 (주) An antimicrobial article and a method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177165B1 (en) * 2020-06-29 2020-11-11 엠.씨.케이 (주) An antimicrobial article and a method thereof

Similar Documents

Publication Publication Date Title
Wu et al. Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy
Wu et al. Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation
Olmo et al. Antibacterial coatings for improving the performance of biomaterials
Zhang et al. Enhanced antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating for urinary catheters
Jang et al. Inhibition of bacterial adhesion on nanotextured stainless steel 316L by electrochemical etching
Hizal et al. Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity
Zhang et al. Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity
Séon et al. Polyelectrolyte multilayers: a versatile tool for preparing antimicrobial coatings
Liu et al. Understanding the role of polymer surface nanoscale topography on inhibiting bacteria adhesion and growth
JP2019073710A (en) Synthetic polymer film, laminate having synthetic polymer film, film having synthetic polymer film, sterilization method using surface of synthetic polymer film, and method of reactivating surface of synthetic polymer film
Schumacher et al. Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores
Ghasemlou et al. Switchable dual-function and bioresponsive materials to control bacterial infections
Watson et al. A simple model for binding and rupture of bacterial cells on nanopillar surfaces
Sun et al. Electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents as an innovative type of polymeric materials with superior antimicrobial efficacy
Li et al. Two-level antibacterial coating with both release-killing and contact-killing capabilities
Qian et al. Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions
Mahanta et al. Antimicrobial surfaces: a review of synthetic approaches, applicability and outlook
TW381029B (en) Contact-killing non-leaching anti-microbial materials
Riau et al. Surface immobilization of nano-silver on polymeric medical devices to prevent bacterial biofilm formation
Baek et al. In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening
Li et al. Rational design of silver gradient for studying size effect of silver nanoparticles on contact killing
US20220355350A1 (en) Micro-/nano-structured anti-biofilm surfaces
JP7085487B2 (en) Antibacterial patterned surface and its manufacturing method
Xu et al. One-step large-scale nanotexturing of nonplanar PTFE surfaces to induce bactericidal and anti-inflammatory properties
Linklater et al. Nanopillar polymer films as antibacterial packaging materials