JP2019156742A - Lens hardening inhibitor or therapeutic agent - Google Patents

Lens hardening inhibitor or therapeutic agent Download PDF

Info

Publication number
JP2019156742A
JP2019156742A JP2018044003A JP2018044003A JP2019156742A JP 2019156742 A JP2019156742 A JP 2019156742A JP 2018044003 A JP2018044003 A JP 2018044003A JP 2018044003 A JP2018044003 A JP 2018044003A JP 2019156742 A JP2019156742 A JP 2019156742A
Authority
JP
Japan
Prior art keywords
culture
hollow fiber
fiber membrane
mesenchymal stem
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018044003A
Other languages
Japanese (ja)
Other versions
JP7052439B6 (en
JP7052439B2 (en
Inventor
達哉 山口
Tatsuya Yamaguchi
達哉 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2018044003A priority Critical patent/JP7052439B6/en
Publication of JP2019156742A publication Critical patent/JP2019156742A/en
Application granted granted Critical
Publication of JP7052439B2 publication Critical patent/JP7052439B2/en
Publication of JP7052439B6 publication Critical patent/JP7052439B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To solve the problem that presbyopia occurs because the lens becomes hardened, loses elasticity, and makes it difficult to adjust nearby focus, and that there is no effective treatment or prevention for presbyopia.SOLUTION: The present invention is a hardening-preventing agent or therapeutic agent for lens tissue comprising a culture supernatant component obtained by culturing mesenchymal stem cells.SELECTED DRAWING: None

Description

本発明は、水晶体の硬化を抑制する物質に関する。   The present invention relates to a substance that suppresses hardening of a crystalline lens.

老視は、眼のピントを調節する力が衰えることにより起こり、近くのものを見る際に困難をきたした状況を指していうもので、俗に「老眼」とも呼ばれている。眼の水晶体は光を屈折させる組織であり、遠くを見る際には、水晶体の周りの筋肉が水晶体を引張ることによりその厚みを減少させ、逆に近くのものを見ようとするときは、周りの筋肉が緩み、水晶体の弾性により厚みが元に戻ることにより焦点を結ぶ。しかし、加齢とともに水晶体が硬化し弾性が失われていくことで、特に近くのピント調節が困難になり、老視をきたすこととなる。   Presbyopia refers to a situation that occurs when the ability to adjust the focus of the eye declines and causes difficulties when looking at nearby objects, and is commonly called "presbyopia". The lens of the eye is a tissue that refracts light.When looking into the distance, the muscles around the lens reduce its thickness by pulling the lens, and conversely, The muscles loosen and focus is brought about by the thickness returning to the original due to the elasticity of the crystalline lens. However, as the lens hardens and loses its elasticity with aging, it becomes difficult to adjust the focus, especially for presbyopia.

ところで近年、再生医療の研究が盛んとなり、幹細胞を移植する細胞移植治療により様々な疾患の治療が可能であることが明らかとなってきた。間葉系幹細胞は、体性幹細胞の一種であり、間葉系の細胞、即ち、骨細胞、心筋細胞、軟骨細胞、脂肪細胞などへの分化能を有することから、骨や血管、心筋の再構築などの再生医療への応用が期待されている。こればかりでなく、間葉系幹細胞は抗炎症作用、免疫調節作用なども有することから、種々の自己免疫疾患や移植片対宿主病の治療などに既に利用されている。更に、慢性的な肝疾患である肝硬変に対しても、肝組織の線維化を抑制し改善効果があることが報告されている。   In recent years, research on regenerative medicine has become active, and it has become clear that various diseases can be treated by cell transplantation treatment in which stem cells are transplanted. Mesenchymal stem cells are a type of somatic stem cell and have the ability to differentiate into mesenchymal cells, i.e., bone cells, cardiomyocytes, chondrocytes, fat cells, etc. Application to regenerative medicine such as construction is expected. In addition to this, mesenchymal stem cells have anti-inflammatory action, immunoregulatory action and the like, and thus have already been used for the treatment of various autoimmune diseases and graft-versus-host diseases. Furthermore, it has been reported that liver cirrhosis, which is a chronic liver disease, is also effective in suppressing fibrosis of liver tissue.

こうした中、細胞移植治療において生体内に移植された間葉系幹細胞は、細胞自身の増殖や分化により組織を再生するだけではないことが分かってきた。即ち、細胞から分泌される種々のサイトカイン等の生理活性物質が持つ多様な性質が、組織の再生や疾患部位の治癒に少なからず寄与していることが明らかにされてきた。   Under such circumstances, it has been found that mesenchymal stem cells transplanted in vivo in cell transplantation treatment not only regenerate the tissue by the proliferation and differentiation of the cells themselves. That is, it has been clarified that various properties possessed by physiologically active substances such as various cytokines secreted from cells contribute to tissue regeneration and disease site healing.

間葉系幹細胞をインビトロで培養した際には、培養液中にこうした生理活性物質が放出されることになる。そこで、間葉系幹細胞の培養に使用した培養液を回収し、細胞から放出される物質を多く含むこの培養液を利用して、組織を再生することに成功した例が報告されている。上田らは、ラットを用いた実験で、骨髄間葉系幹細胞の培養上清が骨の再生能力を持つことを示した(例えば、非特許文献1)。この中で、骨髄間葉系幹細胞の培養上清中には、インスリン様成長因子(IGF)や血管内皮細胞増殖因子(VEGF)などが多く含まれており、これらの因子が組織の再生などに関わっていることが示唆されている。また、有村らは、骨髄間葉系幹細胞の培養上清が抗炎症作用を有し、腸炎の予防・治療効果を示すことを報告している(例えば、特許文献1)。   When mesenchymal stem cells are cultured in vitro, such physiologically active substances are released into the culture medium. Thus, an example has been reported in which a culture solution used for culturing mesenchymal stem cells is recovered and tissue is regenerated using this culture solution containing a large amount of substances released from the cells. Ueda et al. Showed in an experiment using rats that the culture supernatant of bone marrow mesenchymal stem cells had bone regeneration ability (for example, Non-Patent Document 1). Among these, the culture supernatant of bone marrow mesenchymal stem cells contains a lot of insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), etc., and these factors are used for tissue regeneration. It is suggested to be involved. Moreover, Arimura et al. Have reported that the culture supernatant of bone marrow mesenchymal stem cells has an anti-inflammatory action and exhibits preventive and therapeutic effects on enteritis (for example, Patent Document 1).

更に最近では、間葉系幹細胞から分泌される、エクソソームと呼ばれる小胞が、様々なタンパク質やRNAを含み、これが間葉系幹細胞と同様の治療効果を持つことが報告されている(例えば、非特許文献2)。   More recently, vesicles called exosomes secreted from mesenchymal stem cells have been reported to contain various proteins and RNA, which have the same therapeutic effects as mesenchymal stem cells (for example, non- Patent Document 2).

特開2013−18756号公報JP 2013-18756 A

Tissue Engineering PartA.2012;18:1479−1489Tissue Engineering PartA. 2012; 18: 1479-1489 Drug Delivery System.2014;29−2:141−151Drug Delivery System. 2014; 29-2: 141-151

上述のように、老視は水晶体が硬化し弾性が失われていくことで、近くのピント調節が困難になることが原因で発生する。しかし、現在までに老視に対する効果的な治療法や予防法は存在せず、新たに開発することが求められている。   As described above, presbyopia occurs because the lens is cured and loses its elasticity, making it difficult to adjust the focus nearby. However, there is no effective treatment or prevention method for presbyopia until now, and a new development is required.

本発明者は、上記課題に対し鋭意検討を行った結果、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved, and have completed the present invention.

即ち、本願発明の概要は以下の通りである。
1.間葉系幹細胞を培養して得られる培養上清成分を含む、水晶体の硬化防止剤または治療剤。
2.前記間葉系幹細胞は、骨髄間葉系幹細胞または脂肪組織由来間葉系幹細胞である、1に記載の水晶体の硬化防止剤または治療剤。
3.前記培養上清成分は、エクソソームを含む、1または2に記載の水晶体の硬化防止剤または治療剤。
That is, the outline of the present invention is as follows.
1. A lens anti-sclerosing agent or therapeutic agent comprising a culture supernatant component obtained by culturing mesenchymal stem cells.
2. 2. The lens hardening inhibitor or therapeutic agent according to 1, wherein the mesenchymal stem cells are bone marrow mesenchymal stem cells or adipose tissue-derived mesenchymal stem cells.
3. 3. The lens hardening inhibitor or therapeutic agent according to 1 or 2, wherein the culture supernatant component comprises exosomes.

本発明により、水晶体の弾力性の低下および低下の進行を抑制することができるため、老視の発症を予防または治療することができる。   According to the present invention, it is possible to prevent the onset of presbyopia because it is possible to suppress the decrease in elasticity of the lens and the progression of the decrease.

間葉系幹細胞の培養上清の作製に用いる細胞培養容器の一例を示す模式図である。It is a schematic diagram which shows an example of the cell culture container used for preparation of the culture supernatant of a mesenchymal stem cell. 間葉系幹細胞の培養上清の作製に用いる細胞培養装置の一例を示す模式図である。It is a schematic diagram which shows an example of the cell culture apparatus used for preparation of the culture supernatant of a mesenchymal stem cell. 実施例1における培養上清作製のスケジュールである。2 is a schedule for preparing a culture supernatant in Example 1. FIG. ラット水晶体の圧縮試験の結果を示す荷重曲線の一例である。It is an example of the load curve which shows the result of the compression test of a rat crystalline lens. 培養上清を点眼したラット水晶体の圧縮回復性を示すグラフである。It is a graph which shows the compression recovery property of the rat lens which instilled the culture supernatant. エクソソーム懸濁液を点眼したラット水晶体の圧縮回復性を示すグラフである。It is a graph which shows the compression recovery property of the rat lens which instilled the exosome suspension.

(間葉系幹細胞)
本発明において、間葉系幹細胞は、特に限定されるものではないが、骨髄由来間葉系幹細胞あるいは脂肪組織由来間葉系幹細胞が好適である。また、プライマリー細胞に限らず、遺伝子改変等によって株化/不死化された間葉系幹細胞も用いることが出来る。動物種も特に限定されず、ヒト、マウス、ラット等のいずれの動物由来のものも使用できる。
(Mesenchymal stem cells)
In the present invention, the mesenchymal stem cells are not particularly limited, but bone marrow-derived mesenchymal stem cells or adipose tissue-derived mesenchymal stem cells are preferable. Further, not only primary cells but also mesenchymal stem cells established / immortalized by genetic modification or the like can be used. The animal species is not particularly limited, and any animal species such as human, mouse and rat can be used.

(間葉系幹細胞の培養上清)
本発明において、間葉系幹細胞の培養上清とは、細胞を一定期間(数時間から数日)培養した際に、細胞に直接または半透膜などを介して間接に接触していた培養液を細胞と分離して得られるものを言う。培養液馴化培地、コンディションドメディウム(Conditioned medium)などと同意である。
(Culture supernatant of mesenchymal stem cells)
In the present invention, the culture supernatant of mesenchymal stem cells refers to a culture solution that has been in direct contact with cells or indirectly through a semipermeable membrane when cells are cultured for a certain period (several hours to several days). Is obtained by separating cells from cells. Consent with culture medium conditioned medium, conditioned medium, etc.

(細胞培養液)
本発明において、培養上清の製造に用いる培養液の組成等は、特に限定されない。例えば、Dulbecco’s Modified Eagle Medium(DMEM)、Minimum Essential MediumEagle, AlphaModification(αMEM)、Roswell Park MemorialInstitute media(RPMI)1640などを基礎培地とし、これに適宜、細胞増殖因子、ホルモン、動物血清などを添加することにより調製されたものが使用できる。
(Cell culture medium)
In the present invention, the composition of the culture solution used for production of the culture supernatant is not particularly limited. For example, Dulbecco's Modified Eagle Medium (DMEM), Minimum Essential Medium Eagle, Alpha Modification (αMEM), Rosell Park Memorial Institute medium (RPMI), etc. Can be used.

本発明において、用いる細胞培養液は、場合によっては動物血清を含まないことが好ましいことがある。これは、動物血清には細胞増殖因子等の生理活性物質が豊富に含まれるため、時にはこれらの生理活性物質の存在が、培養上清を使用する際に目的の妨げとなったり、マイナスに作用する可能性があるためである。   In the present invention, it may be preferable that the cell culture medium used does not contain animal serum in some cases. This is because animal serum contains abundant physiologically active substances such as cell growth factors, and the presence of these physiologically active substances sometimes interferes with the purpose of using the culture supernatant or acts negatively. This is because there is a possibility.

本発明において、間葉系幹細胞を培養して培養上清を得るためには、半透膜を培養基材として収納した細胞培養容器を用いるのが好ましい。このような細胞培養容器は、容積効率を高くすることができるため省スペース化を図ることができるだけでなく、特定の構成を有する半透膜を用いることにより効率よく培養上清を回収することができる。   In the present invention, in order to culture a mesenchymal stem cell and obtain a culture supernatant, it is preferable to use a cell culture container in which a semipermeable membrane is housed as a culture substrate. Such a cell culture container not only can save space because it can increase volumetric efficiency, but also can efficiently recover the culture supernatant by using a semipermeable membrane having a specific configuration. it can.

(半透膜)
本発明において、培養基材として用いる半透膜は、細胞を半透膜表面に保持でき、溶液や低分子の物質を透過させるような構造を有するものが好ましい。より詳しくは、培養上清成分は半透膜を透過しないが、培養液成分は半透膜を透過する構造(細孔径)を有するものが好ましい。具体的には、培養上清中の特にエクソソーム(およそ30nm〜150nm)は膜透過せず、培養液成分であるγ−グロブリン(およそ8.4nm)は膜透過する特性を有する半透膜が好ましい。そうすると、半透膜は、10nm〜30nm程度の細孔径を有する限外ろ過膜を用いるのが好ましい。
(Semipermeable membrane)
In the present invention, the semipermeable membrane used as a culture substrate is preferably one having a structure that can hold cells on the surface of the semipermeable membrane and permeate a solution or a low-molecular substance. More specifically, the culture supernatant component does not permeate the semipermeable membrane, but the culture fluid component preferably has a structure (pore diameter) that permeates the semipermeable membrane. Specifically, exosomes (approximately 30 nm to 150 nm) in the culture supernatant do not permeate the membrane, and γ-globulin (approximately 8.4 nm), which is a culture solution component, is preferably a semipermeable membrane having a property of permeating the membrane. . Then, it is preferable to use an ultrafiltration membrane having a pore diameter of about 10 nm to 30 nm as the semipermeable membrane.

前記有機高分子材料は、2−ヒドロキシエチルメタクリレートやポリメチルメタクリレート等のアクリル系樹脂、セルロースアセテートや再生セルロースなどのセルロース系樹脂、ポリスルホンやポリエーテルスルホンなどのポリスルホン系樹脂、ポリ乳酸やポリヒドロキシアルカノエート等のポリエステル系樹脂、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリビニルアルコール、エポキシ樹脂、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリスチレン、ポリアミドなどが好適に利用できる。また、これらの誘導体が主成分であっても良い。   The organic polymer material includes acrylic resins such as 2-hydroxyethyl methacrylate and polymethyl methacrylate, cellulose resins such as cellulose acetate and regenerated cellulose, polysulfone resins such as polysulfone and polyethersulfone, polylactic acid and polyhydroxyalkanoic acid. Polyester resins such as acrylate, polyolefin resins such as polyethylene and polypropylene, polyvinyl alcohol, epoxy resins, polyacrylonitrile, polyvinylidene fluoride, polystyrene, polyamide and the like can be suitably used. These derivatives may be the main component.

本発明において、半透膜は、前記の素材に化学的に修飾を加えたものであっても良い。例えば、親水化処理されていてもよい。親水化処理された半透膜を用いることにより、培養細胞への培養液等の液体成分の供給が容易になる。半透膜を親水化処理する方法としては、例えば、半透膜をエチレン−ビニルアルコール共重合体等の親水性高分子や、グリセリン、エタノールで処理する方法が挙げられる。また、使用する細胞に応じて、半透膜への接着向上のため、コラーゲンやフィブロネクチン等のコーティングを行っても良い。   In the present invention, the semipermeable membrane may be a material obtained by chemically modifying the material. For example, it may be hydrophilized. By using a semipermeable membrane subjected to a hydrophilic treatment, it becomes easy to supply a liquid component such as a culture solution to cultured cells. Examples of the method for hydrophilizing the semipermeable membrane include a method of treating the semipermeable membrane with a hydrophilic polymer such as ethylene-vinyl alcohol copolymer, glycerin, and ethanol. Depending on the cells to be used, a coating such as collagen or fibronectin may be applied to improve adhesion to the semipermeable membrane.

本発明において、半透膜は、平膜であってもよいし中空糸膜であってもよいが、容積効率の面から中空糸膜を用いるのが好ましい。中空糸膜の場合、内径が小さすぎると培養容積が確保できないとか、培養細胞にストレスを与えることになるので10μm以上が好ましい。一方、内径が大きすぎると容積効率が低下し中空糸膜培養容器のメリットを損なうことになるので2000μm以下が好ましい。また、半透膜の膜厚は、培養液成分の透過性や膜強度を考慮すると、10〜200μm程度が好ましい。   In the present invention, the semipermeable membrane may be a flat membrane or a hollow fiber membrane, but it is preferable to use a hollow fiber membrane from the viewpoint of volume efficiency. In the case of the hollow fiber membrane, if the inner diameter is too small, the culture volume cannot be secured, or stress is applied to the cultured cells. On the other hand, if the inner diameter is too large, the volumetric efficiency is lowered and the merit of the hollow fiber membrane culture vessel is impaired. The thickness of the semipermeable membrane is preferably about 10 to 200 μm in consideration of the permeability of the culture medium components and the membrane strength.

本発明において、間葉系幹細胞の培養上清を製造する方法は、特に制限なく、例えば、中空糸膜を細胞培養基材として用い、中空糸膜の内腔側または外腔側で間葉系幹細胞を培養すればよい。例えば、間葉系幹細胞を培養液等に縣濁した細胞懸濁液を中空糸膜の内腔に充填し、培養液を中空糸膜の内腔側および外腔側に連続的または間欠的に灌流させる等して間葉系幹細胞の培養を行う。なお、間欠的な灌流とは、培養液の流れを一時的に止めたり進めたりする工程を繰り返すことを指す。ここで、流れを止めたり進めたりする間隔は特に制限されず、等間隔でも不規則でもよい。培養液は、細胞に必要な養分や酸素などを供給したり、逆に老廃物を排出する役割を有する。このようにして、一定期間培養を行った後の中空糸膜内腔側の培養液を回収すれば、間葉系幹細胞の培養上清液を得ることができる。   In the present invention, the method for producing a culture supernatant of mesenchymal stem cells is not particularly limited. For example, the hollow fiber membrane is used as a cell culture substrate, and the mesenchymal system is used on the lumen side or the outer lumen side of the hollow fiber membrane. What is necessary is just to culture a stem cell. For example, a cell suspension in which mesenchymal stem cells are suspended in a culture solution or the like is filled in the lumen of the hollow fiber membrane, and the culture solution is continuously or intermittently provided on the lumen side and the outer lumen side of the hollow fiber membrane. Mesenchymal stem cells are cultured by perfusion or the like. In addition, intermittent perfusion refers to repeating the process of temporarily stopping or advancing the flow of the culture solution. Here, the interval at which the flow is stopped or advanced is not particularly limited, and may be equal or irregular. The culture solution has a role of supplying nutrients and oxygen necessary for the cells, and conversely discharging waste products. In this way, a culture supernatant of mesenchymal stem cells can be obtained by collecting the culture medium on the hollow fiber membrane lumen side after culturing for a certain period.

(細胞培養容器)
本発明において、間葉系幹細胞の培養上清の製造に用いる細胞培養容器は、4つの開口部を有する筒状容器に数本〜数万本の中空糸膜を収納し、中空糸膜の両端を筒状容器に液密に接着固定することにより作製することができる。このような細胞培養容器は、単位容積あたりの培養面積を非常に大きくすることができ、また培養操作を簡便化することができるため、効率よく細胞培養を実施することが出来る。
(Cell culture vessel)
In the present invention, a cell culture container used for producing a culture supernatant of mesenchymal stem cells contains several to tens of thousands of hollow fiber membranes in a cylindrical container having four openings, and both ends of the hollow fiber membranes. Can be prepared by liquid-tightly adhering and fixing to a cylindrical container. Such a cell culture vessel can greatly increase the culture area per unit volume, and can simplify the culture operation, so that cell culture can be carried out efficiently.

このような細胞培養容器の構成は特に限定されないが、例えば図1に示すように、4つの開口部(エンドポートおよびサイドポート)を有する筒状容器に中空糸膜が適宜必要な本数束ねられて収納されている形態が挙げられる。具体的には、細胞培養容器1において、複数の中空糸膜3は、両端において各中空糸膜の内腔と外腔を分離した状態で、かつ中空糸膜の中空部を閉塞しないようにシール材(例えば、ポリウレタン系ポッティング剤)8により筒状容器2端部に接着固定されている。すなわち、前記4つの開口部のうち、2つのエンドポート6aおよび6bは、中空糸膜3の内腔(中空部)5と連通している。一方、前記開口部のうち、2つのサイドポート7aおよび7bは、前記筒状容器2の内側であって、かつ前記中空糸膜の外側である空間(外腔側)4と連通しており、前記サイドポート7aまたは7bの一方から導入された培養液などが外腔側4を通ってもう一方のサイドポート7bまたは7aから導出されるように構成されている。   The configuration of such a cell culture container is not particularly limited. For example, as shown in FIG. 1, a necessary number of hollow fiber membranes are bundled in a cylindrical container having four openings (end ports and side ports) as needed. The form accommodated is mentioned. Specifically, in the cell culture container 1, the plurality of hollow fiber membranes 3 are sealed in a state where the inner and outer cavities of each hollow fiber membrane are separated at both ends, and so as not to block the hollow portion of the hollow fiber membrane. A material (for example, polyurethane potting agent) 8 is bonded and fixed to the end of the cylindrical container 2. That is, of the four openings, the two end ports 6 a and 6 b communicate with the lumen (hollow part) 5 of the hollow fiber membrane 3. On the other hand, of the opening, the two side ports 7a and 7b communicate with a space (external side) 4 that is inside the cylindrical container 2 and outside the hollow fiber membrane, The culture medium or the like introduced from one of the side ports 7a or 7b is led out from the other side port 7b or 7a that passes through the outer cavity side 4.

(細胞培養装置)
図2は、中空糸膜型細胞培養容器を用いる細胞培養装置の一例を示している。細胞培養容器1の中空糸膜内腔5に連通するエンドポート6aには、導入口40から間葉系幹細胞を含む細胞懸濁液を導入、送液するための流路および培養液貯留容器9から細胞培養液を送液するための流路が接続されている。また、細胞懸濁液と細胞培養液の流路を切替えられるように流路の途中にバルブ20が設けられている。また、前記細胞培養容器1の中空糸膜内腔5に連通するエンドポート6bには、培養後の培養上清を排出するための流路が接続されており、流路の途中には流量調整用のバルブ21および送液ポンプ31、培養上清回収容器11または排出口50への流路を切替えるためのバルブ22が設けられている。一方、細胞培養容器1の中空糸膜外腔4に連通するサイドポート7aには、培養液貯留容器8から中空糸膜外腔4に培養液を送液するための流路が接続されている。また、中空糸膜外腔4に連通するサイドポート7bには、培養液を排出するための流路が接続されており、流路の途中には送液ポンプ30が設けられており、排出された培養液を回収するための回収容器10に接続されている。なお、本発明において、少なくとも培養液貯留容器8、9および流路、細胞培養容器1はCOインキュベーター内に設置されていることが好ましい。
(Cell culture device)
FIG. 2 shows an example of a cell culture apparatus using a hollow fiber membrane cell culture vessel. The end port 6a communicating with the hollow fiber membrane lumen 5 of the cell culture vessel 1 introduces and sends a cell suspension containing mesenchymal stem cells from the introduction port 40 and the culture solution storage vessel 9 A flow path for feeding the cell culture solution from is connected. A valve 20 is provided in the middle of the flow path so that the flow paths of the cell suspension and the cell culture solution can be switched. The end port 6b communicating with the hollow fiber membrane lumen 5 of the cell culture vessel 1 is connected to a flow path for discharging the culture supernatant after culturing, and the flow rate is adjusted in the middle of the flow path. The valve 21 for switching the flow path to the valve 21 and the liquid feeding pump 31, the culture supernatant collection container 11 or the discharge port 50 are provided. On the other hand, to the side port 7 a communicating with the hollow fiber membrane outer space 4 of the cell culture container 1, a flow path for sending the culture solution from the culture solution storage container 8 to the hollow fiber membrane outer space 4 is connected. . The side port 7b communicating with the hollow fiber membrane outer space 4 is connected to a flow path for discharging the culture solution, and a liquid feed pump 30 is provided in the middle of the flow path. It is connected to the collection container 10 for collecting the culture medium. In the present invention, it is preferable that at least the culture solution storage containers 8 and 9, the flow path, and the cell culture container 1 are installed in a CO 2 incubator.

(培養上清の製造)
間葉系幹細胞を培養する場合、細胞培養容器の中空糸膜内腔に細胞懸濁液を導入して間葉系幹細胞を中空糸膜表面に播種した後、中空糸膜内腔と外腔の両方に細胞培養液を流すことにより培養環境を整えながら間葉系幹細胞を培養する。すると、間葉系幹細胞は、培養液中に種々の分泌物(タンパク質、サイトカイン、エクソソーム)を放出するので、細胞培養液とともにこれらの分泌物を回収する。
(Manufacture of culture supernatant)
When culturing mesenchymal stem cells, a cell suspension is introduced into the hollow fiber membrane lumen of the cell culture container, and the mesenchymal stem cells are seeded on the surface of the hollow fiber membrane. Mesenchymal stem cells are cultured while adjusting the culture environment by flowing a cell culture medium through both. Then, mesenchymal stem cells release various secretions (proteins, cytokines, exosomes) into the culture solution, and these secretions are collected together with the cell culture solution.

図2を参照して、培養上清の製造について説明する。導入口40より細胞懸濁液を送液し、中空糸膜内腔5に細胞懸濁液を充填する。細胞懸濁液が充填された後、バルブ20を閉の状態とする。中空糸膜内腔5に細胞懸濁液を充填した後、一定時間静置して中空糸膜表面に細胞を接着させる。一定時間静置後、培養液貯留容器9、中空糸膜内腔5、排出口50が連通するようにバルブ20、21、22を切替え、ポンプ30および31を起動して細胞培養容器の中空糸膜内腔5と中空糸膜外腔4の両方に細胞培養液を流す。このとき、培養液の流量は、細胞増殖度合いや環境に応じて調整することが好ましい。また、少なくとも細胞培養容器、培養液貯留容器およびそれらを繋ぐ流路は、温度およびCO濃度の制御機構を備えたインキュベータ内に設置する。数日間、培養を行った後、培養液貯留容器9の培養液を培養上清回収用の培養液に交換する。培養上清回収用の培養液に交換した後、バルブ22を切替え、培養上清回収容器11に培養上清を回収する。 The production of the culture supernatant will be described with reference to FIG. The cell suspension is fed from the introduction port 40, and the hollow fiber membrane lumen 5 is filled with the cell suspension. After the cell suspension is filled, the valve 20 is closed. After filling the hollow fiber membrane lumen 5 with the cell suspension, the cells are allowed to adhere to the surface of the hollow fiber membrane by standing for a certain time. After standing for a certain period of time, the valves 20, 21, and 22 are switched so that the culture medium storage container 9, the hollow fiber membrane lumen 5, and the discharge port 50 communicate with each other, and the pumps 30 and 31 are activated to hollow the cell culture container. A cell culture fluid is passed through both the membrane lumen 5 and the hollow fiber membrane outer lumen 4. At this time, the flow rate of the culture solution is preferably adjusted according to the degree of cell growth and the environment. At least the cell culture container, the culture solution storage container, and the flow path connecting them are installed in an incubator equipped with a temperature and CO 2 concentration control mechanism. After culturing for several days, the culture solution in the culture solution storage container 9 is replaced with a culture solution for collecting the culture supernatant. After exchanging the culture solution for collecting the culture supernatant, the valve 22 is switched and the culture supernatant is recovered in the culture supernatant recovery container 11.

培養液、特に中空糸膜内腔5を流れる培養液の流速は、細胞増殖度合いや環境に応じて、調整することが好ましい。細胞増殖度合いを調べる方法は、特に限定されないが、培養液中のグルコースや乳酸塩の濃度等の測定結果をもとに行うことが出来る。   The flow rate of the culture solution, particularly the culture solution flowing through the hollow fiber membrane lumen 5, is preferably adjusted according to the degree of cell growth and the environment. The method for examining the degree of cell proliferation is not particularly limited, but can be performed based on the measurement results such as the concentration of glucose and lactate in the culture solution.

本発明において、培養上清は、前記回収した培養液から間葉系幹細胞を除去したものを意味するが、かかる培養上清から例えば、残存培地成分(培養前の培養液の成分のうち、培養後の培養液中に残存している成分)、培養液の水分などの本発明における水晶体組織の硬化防止または治療に寄与しない成分の少なくとも一部をさらに除去したものも、本発明における間葉系幹細胞の培養上清に含まれる。また、回収した培養液(培養上清)より抽出したエクソソームを含む懸濁液も本発明の範疇である。   In the present invention, the culture supernatant means a product obtained by removing mesenchymal stem cells from the collected culture solution. For example, a residual medium component (of the culture solution component before culture, The mesenchymal system in which at least a part of components that do not contribute to prevention or treatment of lens tissue hardening in the present invention, such as components remaining in the subsequent culture solution) and moisture in the culture solution, is further removed. It is contained in the culture supernatant of stem cells. A suspension containing exosomes extracted from the collected culture fluid (culture supernatant) is also within the scope of the present invention.

また、培養上清には、配合により好ましくない相互作用を生じない限り、他の活性成分、例えば、抗アレルギー又は抗ヒスタミン成分、充血除去成分、局所麻酔薬成分、ビタミン成分(ビタミンA、B群、C)、アミノ酸成分(例:バリン、ロイシン、イソロイシン、セリン、スレオニン、メチオニン、プロリン、フェニルアラニン、チロシン、トリプトファン、アスパラギン酸、グルタミン酸、リジン、ヒスチジン、シトルリン、オルニチン、シスチン、タウリン、グリシン)などをさらに含有していてもよい。そのような他の活性成分としては、自体公知の各種薬剤を適宜使用することができる。また、他の活性成分は、本発明の剤とは別個に製剤化し、同一対象に対して、同時又は時間差をおいて、また、同一経路又は別経路で投与してもよい。   In addition, in the culture supernatant, other active ingredients such as antiallergic or antihistamine ingredients, decongestant ingredients, local anesthetic ingredients, vitamin ingredients (vitamins A and B groups) unless an undesirable interaction is caused by the formulation. C), amino acid components (eg, valine, leucine, isoleucine, serine, threonine, methionine, proline, phenylalanine, tyrosine, tryptophan, aspartic acid, glutamic acid, lysine, histidine, citrulline, ornithine, cystine, taurine, glycine) Furthermore, you may contain. As such other active ingredients, various drugs known per se can be appropriately used. In addition, other active ingredients may be formulated separately from the agent of the present invention and administered to the same subject at the same time or at a time difference, or by the same route or different routes.

(膜の平均細孔径)
作製した膜の平均細孔径の測定は、Porous Materials社製 パームポロメーター(PPM,CFP−1200AEX)装置を用いて行った。試験タイプはCapillary Flow PorometryのWet Up/DryUpとし、試液としてGalWick(表面張力15.7dyne/cm)を使用した。測定に用いる中空糸膜を、前記PPMで測定が可能となるように、専用の小エレメントへ加工した。装置付属の中空糸膜測定用サンプルホルダー(サンプル挿入口 開口部直径8.5mm)に合うように、外径8.5mm、厚み1mm、長さ4cmの中空状のアクリルスリーブを準備した。スリーブ内に中空糸膜を通した後、該スリーブ内部を硬化性樹脂で埋めて硬化させた。該スリーブのホルダー挿入側については、該スリーブ端面から飛び出た分の中空糸膜を該スリーブ端面で硬化樹脂と共に裁断して中空糸膜の断面を出し、挿入側と逆側(膜サンプル測定側)については、該スリーブ端面(正確には硬化樹脂と中空糸膜との界面)から3cmをわずかに超える長さを残し、余りの中空糸膜を切り落とした。中空糸膜の有効長さが3cmとなるように、中空糸膜の先端に硬化性樹脂を塗布して封止し、測定用の小エレメントを完成させた。下記の測定パラメーター(自動試験パラメーター値)をPPM付属の測定用ソフトに入力後、よく乾燥している小エレメントを前述のサンプルホルダーに挿入・固定し、さらに該ホルダーをPPMにセットした。測定は、まずDry下で実施し、その後、膜サンプルをGalWickに10分間浸漬させてから、Wet下での測定を実施した。
<細孔直径分布測定試験の自動試験パラメーター値>
(0)最小圧力 0(KPA)、最大圧力 300(KPA)、200000 maxflow(cc/m)
(1)バブルポイント試験/インテグリティ試験;15.0 bublflow(cc/m)、100 F/PT(old bubltime)、0.00 minbppres(KPA)、1.0 zerotime(sec)
(2)モータバルブ制御;3 v2incr(cts*3)
(3)レギュレータ制御;1 preginc、2pulse delay
(4)Lohmの校正;1330.68346 maxpres(KPA)、0.070 pulsewidth(sec)
(5)データ確定ルーチン;30 mineqtime(sec)、50 presslew(cts*3)、50 flowslew(cts*3)、50 eqiter(0.1sec)、5 aveiter(0.1sec)、0.69 maxpdif(KPA)、30.0 maxfdif(cc/m)
なお、ctsは機械定数で「カウント数」を表し、cts*3はctsを3倍することを意味する。
(Mean pore diameter of membrane)
Measurement of the average pore diameter of the produced membrane was performed using a Palm Materials (PPM, CFP-1200AEX) apparatus manufactured by Porous Materials. The test type was Capillary Flow Porometry Wet Up / DryUp, and GalWick (surface tension 15.7 dyne / cm) was used as a test solution. The hollow fiber membrane used for the measurement was processed into a dedicated small element so that the measurement by the PPM was possible. A hollow acrylic sleeve having an outer diameter of 8.5 mm, a thickness of 1 mm, and a length of 4 cm was prepared so as to fit the hollow fiber membrane measurement sample holder (sample insertion port opening diameter 8.5 mm) attached to the apparatus. After passing the hollow fiber membrane through the sleeve, the inside of the sleeve was filled with a curable resin and cured. As for the holder insertion side of the sleeve, the hollow fiber membrane that protrudes from the sleeve end surface is cut with the cured resin at the sleeve end surface so that the cross section of the hollow fiber membrane is taken out, and the side opposite to the insertion side (membrane sample measurement side) For the above, the remaining hollow fiber membrane was cut off, leaving a length slightly exceeding 3 cm from the sleeve end surface (exactly, the interface between the cured resin and the hollow fiber membrane). A small element for measurement was completed by applying and sealing a curable resin to the tip of the hollow fiber membrane so that the effective length of the hollow fiber membrane was 3 cm. After inputting the following measurement parameters (automatic test parameter values) into the measurement software attached to the PPM, the well-dried small element was inserted and fixed in the sample holder, and the holder was set in the PPM. The measurement was first performed under Dry, and then the membrane sample was immersed in GalWick for 10 minutes, and then measurement was performed under Wet.
<Automatic test parameter values for pore diameter distribution measurement test>
(0) Minimum pressure 0 (KPA), Maximum pressure 300 (KPA), 200000 maxflow (cc / m)
(1) Bubble point test / integrity test: 15.0 bubbleflow (cc / m), 100 F / PT (old bubbletime), 0.00 minbppres (KPA), 1.0 zerotime (sec)
(2) Motor valve control; 3 v2incr (cts * 3)
(3) Regulator control; 1 preginc, 2 pulse delay
(4) Lohm calibration; 1330.683346 maxpress (KPA), 0.070 pulsewidth (sec)
(5) Data determination routine; 30 mineqtime (sec), 50 presslew (cts * 3), 50 flowslew (cts * 3), 50 equiter (0.1 sec), 5 aveiter (0.1 sec), 0.69 maxpdif ( KPA), 30.0 maxfdif (cc / m)
Note that cts is a machine constant and represents “count number”, and cts * 3 means that cts is tripled.

(中空糸膜1の作製)
ポリエーテルスルホン(BASF社製Ultrason(登録商標)6020P)26wt%、ビニルピロリドン/酢酸ビニル共重合体(BASF社製Luvitec(登録商標)VA64)1wt%、N−メチル−2−ピロリドン(NMP、三菱化学社製)32.85wt%、トリエチレングリコール(TEG、三井化学社製)40.15wt%を55℃で混合、溶解し均一な溶液を得た。得られた製膜溶液を二重管ノズルの環状部から、中心部から芯液としてNMP42.75wt%、TEG52.25wt%、RO水5wt%の混合液を吐出し、エアギャップを経て、NMP27wt%、TEG33wt%、RO水40wt%の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は50℃、外部凝固液の温度は30℃に設定した。凝固浴から引き出した後に55℃の水洗槽を走行させて洗浄を実施し、巻取り機で巻き取った。巻き取った中空糸膜は、本数100本、長さ30cmの中空糸膜束とし、85℃のRO水に直立状態で浸漬して洗浄処理を行った。その後、40℃の温水を入れた高圧蒸気滅菌機に水没させ、140℃×20minの条件で高圧熱水処理を行った。その後、庫内温度35℃でマイクロ波乾燥を行った。前記高圧熱水処理及びマイクロ波乾燥を3回繰り返し、中空糸膜1を作製した。得られた中空糸膜1の内径は200μm、外径は260μm、膜厚は30μmであった。また、平均細孔径は12nmであった。
(Preparation of hollow fiber membrane 1)
26 wt% of polyethersulfone (Ultrason (registered trademark) 6020P manufactured by BASF), 1 wt% of vinylpyrrolidone / vinyl acetate copolymer (Luvitec (registered trademark) VA64 manufactured by BASF), N-methyl-2-pyrrolidone (NMP, Mitsubishi (Chemical Co., Ltd.) 32.85 wt% and triethylene glycol (TEG, Mitsui Chemical Co., Ltd.) 40.15 wt% were mixed and dissolved at 55 ° C. to obtain a uniform solution. From the annular part of the double-tube nozzle, the obtained film-forming solution was discharged from the center part as a core liquid with a mixture of NMP 42.75 wt%, TEG 52.25 wt%, and RO water 5 wt%, and through the air gap, NMP 27 wt% , TEG was introduced into a coagulation bath filled with an external coagulation liquid consisting of 33 wt% and RO water 40 wt%. At this time, the nozzle temperature was set to 50 ° C., and the temperature of the external coagulation liquid was set to 30 ° C. After drawing out from the coagulation bath, washing was carried out by running a water washing tank at 55 ° C., and wound up by a winder. The wound hollow fiber membrane was made into a hollow fiber membrane bundle having a number of 100 and a length of 30 cm, and was washed by dipping in 85 ° C. RO water in an upright state. Then, it was immersed in a high-pressure steam sterilizer containing hot water of 40 ° C., and high-pressure hot water treatment was performed under conditions of 140 ° C. × 20 min. Thereafter, microwave drying was performed at an internal temperature of 35 ° C. The high-pressure hot water treatment and microwave drying were repeated three times to produce a hollow fiber membrane 1. The obtained hollow fiber membrane 1 had an inner diameter of 200 μm, an outer diameter of 260 μm, and a film thickness of 30 μm. Moreover, the average pore diameter was 12 nm.

(中空糸膜2の作製)
セルローストリアセテート(ダイセル化学社製)19wt%、NMP56.7wt%、TEG24.3wt%を混合、溶解し製膜溶液を得た。得られた製膜溶液を二重管ノズルの環状部から、芯液として流動パラフィンを中心部から吐出し、エアギャップを経て、NMP14wt%、TEG6wt%、RO水80wt%の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は105℃、外部凝固液の温度は40℃に設定した。凝固浴から引き出した後に30℃の水洗槽を走行させて洗浄を実施し、50℃、60wt%のグリセリン浴を通過させ、乾燥して巻取り機に巻き取った。得られた中空糸膜2の内径は200μm、外径は230μm、膜厚は15μmであった。また、平均細孔径は30nmであった。
(Preparation of hollow fiber membrane 2)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 19 wt%, NMP 56.7 wt%, and TEG 24.3 wt% were mixed and dissolved to obtain a film forming solution. The obtained film-forming solution is discharged from the annular part of the double-tube nozzle from the central part of liquid paraffin as the core liquid, and through the air gap, external coagulation consisting of a mixed liquid of NMP 14 wt%, TEG 6 wt%, RO water 80 wt% It was led to a coagulation bath filled with liquid. At this time, the nozzle temperature was set to 105 ° C., and the temperature of the external coagulating liquid was set to 40 ° C. After drawing out from the coagulation bath, washing was carried out by running a 30 ° C. water-washing tank, passing through a glycerin bath at 50 ° C. and 60 wt%, dried and wound up on a winder. The obtained hollow fiber membrane 2 had an inner diameter of 200 μm, an outer diameter of 230 μm, and a film thickness of 15 μm. Moreover, the average pore diameter was 30 nm.

(中空糸膜3の作製)
セルローストリアセテート(ダイセル化学社製)17.5wt%、NMP57.75wt%、TEG24.75wt%を混合、溶解し製膜溶液を得た。得られた製膜溶液を二重管ノズルの環状部から、芯液として流動パラフィンを中心部から吐出し、エアギャップを経て、NMP14wt%、TEG6wt%、RO水80wt%の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は105℃、外部凝固液の温度は40℃に設定した。凝固浴から引き出した後に30℃の水洗槽を走行させて洗浄を実施し、50℃、60wt%のグリセリン浴を通過させ、乾燥して巻取り機に巻き取った。得られた中空糸膜3の内径は200μm、外径は250μm、膜厚は25μmであった。また、平均細孔径は92nmであった。
(Preparation of hollow fiber membrane 3)
Cellulose triacetate (manufactured by Daicel Chemical Industries) 17.5 wt%, NMP 57.75 wt%, and TEG 24.75 wt% were mixed and dissolved to obtain a film forming solution. The obtained film-forming solution is discharged from the annular part of the double-tube nozzle from the central part of liquid paraffin as the core liquid, and through the air gap, external coagulation consisting of a mixed liquid of NMP 14 wt%, TEG 6 wt%, RO water 80 wt% It was led to a coagulation bath filled with liquid. At this time, the nozzle temperature was set to 105 ° C., and the temperature of the external coagulating liquid was set to 40 ° C. After drawing out from the coagulation bath, washing was carried out by running a 30 ° C. water-washing tank, passing through a glycerin bath at 50 ° C. and 60 wt%, dried and wound up on a winder. The obtained hollow fiber membrane 3 had an inner diameter of 200 μm, an outer diameter of 250 μm, and a film thickness of 25 μm. The average pore diameter was 92 nm.

[実施例1]
内表面に予めコラーゲン(新田ゼラチン)をコートした中空糸膜1を用いて図1に示す細胞培養容器を作製した。また、得られた細胞培養容器を用いて図2に示す細胞培養装置を構成し、COインキュベーター内に設置し、本実験を行った。ヒト骨髄間葉系幹細胞(CELL APPLICATIONS Inc.)を培養液に懸濁した溶液を中空糸膜内腔に注入(播種細胞数は、5.0×10^5cells/モジュール)した。このとき、細胞培養容器内の総培養面積(中空糸膜の内径基準の膜面積)は98cmであることから細胞播種密度は、約5100cells/cmと計算された。培養液は、培養開始(細胞播種)から96時間後までは、10%ウシ胎児血清(ライフテクノロジーズ)を添加したDMEMGlutaMAX(ライフテクノロジーズ)を用い、培養上清を採取する96時間以降は、MF−medium(間葉系幹細胞増殖培地、東洋紡)を用いた。
[Example 1]
A cell culture container shown in FIG. 1 was prepared using a hollow fiber membrane 1 whose inner surface was previously coated with collagen (Nitta gelatin). Furthermore, using the resulting cell culture vessel constitutes a cell culture apparatus shown in FIG. 2, was placed in a CO 2 incubator were conducted this experiment. A solution of human bone marrow mesenchymal stem cells (CELL APPLICATIONS Inc.) suspended in a culture solution was injected into the hollow fiber membrane lumen (the number of seeded cells was 5.0 × 10 5 cells / module). At this time, since the total culture area in the cell culture vessel (membrane area based on the inner diameter of the hollow fiber membrane) was 98 cm 2 , the cell seeding density was calculated to be about 5100 cells / cm 2 . The culture solution is DMEMGlutaMAX (Life Technologies) supplemented with 10% fetal bovine serum (Life Technologies) from the start of culture (cell seeding) to 96 hours later, and after 96 hours of collecting the culture supernatant, MF- medium (mesenchymal stem cell growth medium, Toyobo) was used.

図3に、培養上清作製のスケジュールを示す。
細胞播種(培養開始)から7日間(168時間後)培養を実施した。この間、中空糸膜内腔を流れる培養液の流速(線速度)は、細胞播種を行ってから96時間までは、平均0.066mm/min、96時間後から144時間までは、平均0.20mm/min、144時間後から168時間までは、平均0.33mm/minとした。一方、中空糸膜外腔を流れる培養液の速度は、培養開始から終了(168時間)まで、3.4mm/minとした。細胞培養上清は、培養開始96時間後から168時間までの72時間分を回収した。培養上清の量は、計7.9mlであった。培養上清は回収後ただちに分注し、使用まで−80℃に凍結保存した。尚、流速については、中空糸膜内腔、外腔それぞれから流出する流量を流量計を設置して測定し、中空糸膜内腔容積および中空糸膜外腔容積をもとに算出した。培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、1.2×10^7個の細胞が回収され、増殖率は24倍であった。
FIG. 3 shows a schedule for preparing the culture supernatant.
Cultivation was carried out for 7 days (after 168 hours) from cell seeding (culture start). During this time, the flow rate (linear velocity) of the culture fluid flowing through the hollow fiber membrane lumen was 0.066 mm / min on average for 96 hours after cell seeding, and 0.20 mm on average for 96 hours to 144 hours after cell seeding. / Min From 144 hours to 168 hours, the average was 0.33 mm / min. On the other hand, the speed of the culture solution flowing through the outer space of the hollow fiber membrane was 3.4 mm / min from the start to the end of the culture (168 hours). The cell culture supernatant was collected for 72 hours from 96 hours after the start of the culture to 168 hours. The total amount of the culture supernatant was 7.9 ml. The culture supernatant was dispensed immediately after collection and stored frozen at −80 ° C. until use. The flow rate was calculated based on the hollow fiber membrane lumen volume and the hollow fiber membrane lumen volume by measuring the flow rates flowing out from the hollow fiber membrane lumen and the outer lumen with a flow meter installed. After 168 hours of culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 1.2 × 10 ^ 7 cells were recovered, and the proliferation rate was 24 times.

[実施例2]
中空糸膜2を用いた以外は、実施例1と同様にして細胞培養実験を行った。なお、細胞培養容器内の総培養面積(中空糸膜の内径基準の膜面積)は99cmであることから、細胞播種密度は約5050cells/cmと計算された。
培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、1.4×10^7個の細胞が回収され、増殖率は28倍であった。
[Example 2]
A cell culture experiment was conducted in the same manner as in Example 1 except that the hollow fiber membrane 2 was used. In addition, since the total culture area in the cell culture vessel (membrane area based on the inner diameter of the hollow fiber membrane) was 99 cm 2 , the cell seeding density was calculated to be about 5050 cells / cm 2 .
After 168 hours of culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 1.4 × 10 7 cells were recovered, and the proliferation rate was 28 times.

[実施例3]
中空糸膜3を用いた以外は、実施例1と同様にして細胞培養実験を行った。なお、細胞培養容器内の総培養面積(中空糸膜の内径基準の膜面積)は98cmであることから、細胞播種密度は約5100cells/cmと計算された。
培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、0.9×10^7個の細胞が回収され、増殖率は18倍であった。
[Example 3]
A cell culture experiment was conducted in the same manner as in Example 1 except that the hollow fiber membrane 3 was used. Since the total culture area in the cell culture container (membrane area based on the inner diameter of the hollow fiber membrane) was 98 cm 2 , the cell seeding density was calculated to be about 5100 cells / cm 2 .
After 168 hours of culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 0.9 × 10 ^ 7 cells were recovered, and the proliferation rate was 18 times.

[実施例4]
2枚のコラーゲンコートシャーレ(培養面積55cm、旭テクノガラス)にヒト骨髄間葉系幹細胞(CELL APPLICATIONS Inc.)を細胞播種密度が約5100cells/cmとなるよう播種した。培養液は、実施例1と同様に、細胞を播種してから96時間までは、10%ウシ胎児血清(ライフテクノロジーズ)を添加したDMEM GlutaMAX(ライフテクノロジーズ)を用い、96時間以降はMF−medium(間葉系幹細胞増殖培地、東洋紡)に培地を交換して培養した。
[Example 4]
Human bone marrow mesenchymal stem cells (CELL APPLICATIONS Inc.) were seeded on two collagen-coated petri dishes (culture area 55 cm 2 , Asahi Techno Glass) so that the cell seeding density was about 5100 cells / cm 2 . As in Example 1, the culture solution was DMEM GlutaMAX (Life Technologies) supplemented with 10% fetal calf serum (Life Technologies) until 96 hours after seeding the cells, and MF-medium after 96 hours. The medium was changed to (mesenchymal stem cell growth medium, Toyobo) and cultured.

図3に、培養上清作製のスケジュールを示す。
培養開始48時間後、および96時間後に、培養液交換を実施した。その後、培養液交換をせず、培養開始から168時間で100%コンフルエントに達したところで培養を終了した。この最後の培地交換から培養終了までの72時間の培養を行った培養液を培養上清として回収した。培養上清の量は、計10.0mlであった。培養上清は回収後ただちに分注し、使用まで−80℃に凍結保存した。培養から168時間後に細胞をトリプシンで消化、剥離回収し、細胞数をカウントした結果、2.6×10^6個の細胞が回収され、増殖率は9.3倍であった。
FIG. 3 shows a schedule for preparing the culture supernatant.
Culture medium exchange was performed 48 hours after the start of culture and 96 hours after. Thereafter, the culture medium was not changed, and the culture was terminated when it reached 100% confluence in 168 hours from the start of the culture. The culture solution which was cultured for 72 hours from the last medium exchange to the end of the culture was collected as a culture supernatant. The total amount of the culture supernatant was 10.0 ml. The culture supernatant was dispensed immediately after collection and stored frozen at −80 ° C. until use. After 168 hours from the culture, the cells were digested with trypsin, detached and recovered, and the number of cells was counted. As a result, 2.6 × 10 ^ 6 cells were recovered, and the proliferation rate was 9.3 times.

[実験1]
(ラット水晶体硬化の誘発)
ラットをタバコの煙に暴露させ、水晶体の硬化を誘導した。即ち、9週齢・オスのSDラット10匹を密閉可能なケース(幅40cm×奥行き40cm×高さ20cm)内に入れた。タバコ(セブンスター(登録商標))を50mLシリンジに取り付け、主流煙をシリンジ内に吸引して採取し、これをラットの入ったケース内に吹き入れた。主流煙の吸引とケースへの吹き入れを12回繰り返し、主流煙を計600mLチャンバー内に吹き入れた後、30分静置した。同様の操作を1時間おきに4回繰り返し、ラットを主流煙に曝露させた。この主流煙曝露を3週間毎日実施した。
[Experiment 1]
(Induction of rat lens hardening)
Rats were exposed to cigarette smoke to induce lens hardening. That is, ten 9-week-old male SD rats were placed in a sealable case (width 40 cm × depth 40 cm × height 20 cm). Tobacco (Seven Star (registered trademark)) was attached to a 50 mL syringe, mainstream smoke was sucked into the syringe and collected, and this was blown into a case containing a rat. Suction of mainstream smoke and blowing into the case were repeated 12 times, and the mainstream smoke was blown into a total 600 mL chamber, and then allowed to stand for 30 minutes. The same procedure was repeated 4 times every hour to expose the rats to mainstream smoke. This mainstream smoke exposure was carried out daily for 3 weeks.

(培養上清のラットへの投与)
実施例にて回収したそれぞれの培養上清および細胞に接触させていない新しい培養液(MF−medium、東洋紡)を、それぞれタバコの煙を暴露させたラットへ点眼投与した。即ち、各培養上清または培養液を、ラットの片目あたり10μL、マイクロピペットを使用して点眼した。点眼は1日1回、タバコの煙を暴露する前に実施し、これを3週間毎日実施した。
(Administration of culture supernatant to rats)
Each culture supernatant collected in the Examples and a new culture solution (MF-medium, Toyobo) not in contact with the cells were administered by eye drops to rats exposed to tobacco smoke. That is, each culture supernatant or culture solution was instilled using a micropipette at 10 μL per rat eye. Instillation was performed once a day prior to exposure to tobacco smoke, which was performed daily for 3 weeks.

[実験2]
(培養上清からのエクソソーム抽出)
実施例で得られた各培養上清からエクソソームを抽出した。エクソソームの抽出には、MagCaptureTMExosome Isolation Kit PS(和光純薬工業、型番:293−77601)を用いた。それぞれ、得られたエクソソームは、元の培養上清の1/10量のリン酸緩衝生理食塩水(PBS)に懸濁して用いた。また、細胞と接触させていない新しい培養液(MF−medium、東洋紡)からも同様にエクソソームの抽出操作を行ったものを対照群への投与用として準備した。
[Experiment 2]
(Exosome extraction from culture supernatant)
Exosomes were extracted from each culture supernatant obtained in the examples. For the extraction of exosomes, MagCapture Exosome Isolation Kit PS (Wako Pure Chemical Industries, model number: 293-77601) was used. Each of the obtained exosomes was used by suspending in 1/10 amount of phosphate buffered saline (PBS) of the original culture supernatant. Moreover, what performed extraction operation of the exosome similarly from the new culture solution (MF-medium, Toyobo) which is not made to contact with the cell was prepared for the administration to a control group.

(抽出したエクソソーム成分のラットへの投与)
前記調製したエクソソームを含むPBS(対照群を含む3種類)溶液を、ラットの片目あたり10μL、マイクロピペットを使用して投与(点眼)した。点眼は1日1回、タバコの煙を暴露する前に実施し、これを3週間毎日実施した。
(Administration of extracted exosome components to rats)
The prepared exosome-containing PBS (3 types including the control group) solution was administered (instilled) using a micropipette at 10 μL per eye of each rat. Instillation was performed once a day prior to exposure to tobacco smoke, which was performed daily for 3 weeks.

[実験3]
(水晶体硬度の測定)
前記実験1および2の終了後、ラットを安楽死させ両眼球より水晶体を摘出した。次に、圧縮試験機(カトーテック、型番:KES−G5)を用いて水晶体の硬度測定を実施した。測定には2cmの圧縮子を用い50gの荷重をかけ、すべて同じ押し込み距離の負荷および、そこからの反発を測定した。なお、測定は20℃、65%Rhの条件にて実施した。測定により得られた圧縮荷重曲線より、圧縮回復性を評価した。即ち、図4に示す圧縮荷重曲線よりBa/(Aa+Ba)×100を求めた。この値が100に近いほど、圧縮からの回復性、即ち弾力が大きいといえる。
[Experiment 3]
(Measurement of lens hardness)
After completion of Experiments 1 and 2, the rats were euthanized and the lens was removed from both eyes. Next, the hardness of the crystalline lens was measured using a compression tester (Kato Tech, model number: KES-G5). For the measurement, a load of 50 g was applied using a 2 cm 2 compressor, and the load at the same indentation distance and the repulsion therefrom were measured. The measurement was performed under the conditions of 20 ° C. and 65% Rh. The compression recovery property was evaluated from the compression load curve obtained by the measurement. That is, Ba / (Aa + Ba) × 100 was obtained from the compression load curve shown in FIG. It can be said that the closer this value is to 100, the greater the recovery from compression, that is, the elasticity.

圧縮回復性の測定結果を図5、図6に示す。図5は、実験1で得られた培養上清を点眼したラットの水晶体の圧縮回復性を測定した結果を示す。また、図6は、培養上清から抽出したエクソソームを含む懸濁液を点眼したラットの水晶体の圧縮回復性を測定した結果を示す。本発明の間葉系幹細胞の培養上清を含む溶液は、誘発された水晶体の弾力低下を防ぐ効果があることが示された。   The measurement results of the compression recovery property are shown in FIGS. FIG. 5 shows the results of measuring the compression recovery of the rat lens instilled with the culture supernatant obtained in Experiment 1. Moreover, FIG. 6 shows the result of measuring the compression recovery property of the rat lens instilled with a suspension containing exosomes extracted from the culture supernatant. It was shown that the solution containing the culture supernatant of the mesenchymal stem cells of the present invention has an effect of preventing the induced elasticity reduction of the lens.

従来、水晶体の硬化が進行することにより老視が発症していたが、本発明の間葉系幹細胞の培養上清を含む溶液を点眼することにより、眼水晶体組織の硬化を防ぎ、効果的に老視を予防または治療することが可能となる。   Conventionally, presbyopia has developed due to the hardening of the lens, but by applying a solution containing the culture supernatant of the mesenchymal stem cells of the present invention, hardening of the eye lens tissue is effectively prevented. It becomes possible to prevent or treat presbyopia.

1 細胞培養容器
2 容器
3 半透膜(中空糸膜)
4 中空糸膜外腔
5 中空糸膜内腔
6a、6b エンドポート
7a、7b サイドポート
8、9 培養液貯留容器
10 回収容器
11 培養上清回収容器
20、21、22 バルブ
30、31 送液ポンプ
40 導入口
50 排出口
1 Cell culture container 2 Container 3 Semipermeable membrane (hollow fiber membrane)
4 Hollow fiber membrane outer space 5 Hollow fiber membrane lumens 6a, 6b End ports 7a, 7b Side ports 8, 9 Culture solution storage container 10 Recovery container 11 Culture supernatant recovery container 20, 21, 22 Valve 30, 31 Feed pump 40 Inlet 50 Outlet

Claims (3)

間葉系幹細胞を培養して得られる培養上清成分を含む、水晶体組織の硬化防止剤または治療剤。   An anti-sclerosing agent or therapeutic agent for lens tissue, comprising a culture supernatant component obtained by culturing mesenchymal stem cells. 前記間葉系幹細胞は、骨髄間葉系幹細胞または脂肪組織由来間葉系幹細胞である、請求項1に記載の水晶体組織の硬化防止剤または治療剤。   The lens tissue sclerosis preventive agent or therapeutic agent according to claim 1, wherein the mesenchymal stem cells are bone marrow mesenchymal stem cells or adipose tissue-derived mesenchymal stem cells. 前記培養上清成分は、エクソソームを含む、請求項1または2に記載の水晶体組織の硬化防止剤または治療剤。   The lens tissue hardening inhibitor or therapeutic agent according to claim 1 or 2, wherein the culture supernatant component comprises exosomes.
JP2018044003A 2018-03-12 2018-03-12 Anti-curing or therapeutic agent for the crystalline lens Active JP7052439B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018044003A JP7052439B6 (en) 2018-03-12 2018-03-12 Anti-curing or therapeutic agent for the crystalline lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044003A JP7052439B6 (en) 2018-03-12 2018-03-12 Anti-curing or therapeutic agent for the crystalline lens

Publications (3)

Publication Number Publication Date
JP2019156742A true JP2019156742A (en) 2019-09-19
JP7052439B2 JP7052439B2 (en) 2022-04-12
JP7052439B6 JP7052439B6 (en) 2022-06-24

Family

ID=67995763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044003A Active JP7052439B6 (en) 2018-03-12 2018-03-12 Anti-curing or therapeutic agent for the crystalline lens

Country Status (1)

Country Link
JP (1) JP7052439B6 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7007770B1 (en) 2021-06-21 2022-02-10 パナジー株式会社 Eye symptom improver and eye symptom improvement method
WO2022107735A1 (en) 2020-11-17 2022-05-27 株式会社林原 Crystalline lens hardness adjustment agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110225661A1 (en) * 2008-06-26 2011-09-15 Spectrum Health Innovations, LLC Method for treating and preventing radiation damage using genetically modified mesenchymal stem cells
JP2017143775A (en) * 2016-02-17 2017-08-24 東洋紡株式会社 Cell culture apparatus using gas-impermeable tube and cell culture method
JP2017158488A (en) * 2016-03-10 2017-09-14 東洋紡株式会社 Cell recovery method
JP2017176043A (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Cell cultivation using hollow fiber module
JP2018033419A (en) * 2016-09-02 2018-03-08 東洋紡株式会社 Cell culture device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110225661A1 (en) * 2008-06-26 2011-09-15 Spectrum Health Innovations, LLC Method for treating and preventing radiation damage using genetically modified mesenchymal stem cells
JP2017143775A (en) * 2016-02-17 2017-08-24 東洋紡株式会社 Cell culture apparatus using gas-impermeable tube and cell culture method
JP2017158488A (en) * 2016-03-10 2017-09-14 東洋紡株式会社 Cell recovery method
JP2017176043A (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Cell cultivation using hollow fiber module
JP2018033419A (en) * 2016-09-02 2018-03-08 東洋紡株式会社 Cell culture device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107735A1 (en) 2020-11-17 2022-05-27 株式会社林原 Crystalline lens hardness adjustment agent
JP7007770B1 (en) 2021-06-21 2022-02-10 パナジー株式会社 Eye symptom improver and eye symptom improvement method
WO2022269973A1 (en) * 2021-06-21 2022-12-29 パナジー株式会社 Agent for improving eye symptoms and method for improving eye symptoms
JP2023001664A (en) * 2021-06-21 2023-01-06 パナジー株式会社 Ocular symptom improvers and method of improving ocular symptoms

Also Published As

Publication number Publication date
JP7052439B6 (en) 2022-06-24
JP7052439B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US11596902B2 (en) Irradiated membrane for cell expansion
EP2340106B1 (en) Membrane for cell expansion
JP7052480B2 (en) Manufacturing method of anti-curing agent or therapeutic agent for crystalline lens
CA2736534C (en) Hybrid bioartificial kidney
JP7052439B6 (en) Anti-curing or therapeutic agent for the crystalline lens
JP6323702B2 (en) Hollow fiber membrane and hollow fiber module for cell culture
JP2014060991A (en) Method of culturing stem cells using inner lumen of porous hollow fiber
JP7077690B2 (en) Cataract suppressant
JP6930068B2 (en) Cell culture method using a hollow fiber module
WO2017104558A1 (en) Hollow-fiber membrane and hollow-fiber module for cell culture
JP2020079217A (en) Method for producing cataract prevention agent
JP7306647B2 (en) Grafts and their uses
WO2023190448A1 (en) Method for cultivating mesenchymal stem cell
JP2018014947A (en) Cell culture method using hollow fiber membrane module
JP2020022410A (en) Production method and production apparatus of blood platelets
JP2019135967A (en) Manufacturing method of cultured cells
JP2020018235A (en) Method and apparatus for culturing megakaryocyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7052439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350