JP2019152441A - Vital sensor - Google Patents

Vital sensor Download PDF

Info

Publication number
JP2019152441A
JP2019152441A JP2018035485A JP2018035485A JP2019152441A JP 2019152441 A JP2019152441 A JP 2019152441A JP 2018035485 A JP2018035485 A JP 2018035485A JP 2018035485 A JP2018035485 A JP 2018035485A JP 2019152441 A JP2019152441 A JP 2019152441A
Authority
JP
Japan
Prior art keywords
sweep
wave
frequency
difference
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018035485A
Other languages
Japanese (ja)
Other versions
JP7072403B2 (en
Inventor
俊彦 笹原
Toshihiko Sasahara
俊彦 笹原
雅明 後藤
Masaaki Goto
雅明 後藤
渡邉 優
Masaru Watanabe
優 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2018035485A priority Critical patent/JP7072403B2/en
Publication of JP2019152441A publication Critical patent/JP2019152441A/en
Application granted granted Critical
Publication of JP7072403B2 publication Critical patent/JP7072403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To detect biological information with high sensitivity and efficiency in a short processing time without requiring a high-speed CPU or large memory.SOLUTION: There is provided a vital sensor that transmits a modulated wave based on frequency sweep and receives the reflected wave, mixes the transmitted wave and the received wave, and outputs a beat signal having a frequency difference between the two waves. The vital sensor extracts the difference signal by subtraction (difference circuit 27) between the beat signals in the sweep before and after the sweep repeated continuously, calculates an integrated power value obtained by integrating the power of this difference signal for each sweep (power integrating circuit 28), and determines information on minute fluctuations, respiratory rate, heart rate, etc. in the living body by detecting changes in the integrated power value for each sweep (measurement circuit 29).SELECTED DRAWING: Figure 1

Description

本発明はバイタルセンサ、特にマイクロ波帯・ミリ波帯の変調波を送信し、この送信波と物体から反射された受信波を比較して、生体の呼吸、心拍等の微小な変動を検知するバイタルセンサに関する。   The present invention transmits a vital wave sensor, in particular, a modulated wave in the microwave band / millimeter wave band, and compares this transmitted wave with a received wave reflected from an object to detect minute fluctuations such as respiration and heartbeat of a living body. It relates to vital sensors.

従来から電波式非接触のバイタルセンサには、主にドップラー方式とFMCW(周波数変調連続波)で微小位相角を計測する方式のものが用いられており、ドップラー方式は、CW信号をターゲット(例えば人体)に放射し、人体で反射した反射波を受信し、この受信波と送信波との位相検波を行うことで、移動により生じるドップラー信号から呼吸や心拍の動く情報を得る方法である。
呼吸とは、人体の肺の収縮や同時に変動する腹部の動作を示し、心拍とは心臓の鼓動や血流の動き(脈拍)を示す。これらは動きの速度と移動する距離(量)が異なるがいずれの場合も人の動く動作に比べて遥かに小さい。
Conventionally, radio wave type non-contact vital sensors have mainly used a Doppler method and a method of measuring a minute phase angle by FMCW (frequency modulation continuous wave). The Doppler method uses a CW signal as a target (for example, In this method, the reflected wave reflected by the human body is received and the phase detection of the received wave and the transmitted wave is performed to obtain information on movement of breathing and heartbeat from the Doppler signal generated by movement.
Breathing refers to the contraction of the lungs of the human body and the movement of the abdomen that fluctuates at the same time, and the heartbeat refers to the heartbeat and blood flow (pulse). These differ in the speed of movement and the distance (amount) of movement, but in either case are much smaller than the movement of a person.

ドップラー方式は、主に極近距離でシングルターゲットに用いられ、ドップラー信号は動いているものの全てに反応し、不必要な信号の分別が難しい反面、システム的にSN比を向上させ易い利点がある。即ち、ターゲットまでの距離を長くしようとすると、目的外の雑音の影響を受けて誤報等を生じさせる場合があり、ターゲットの正確な挙動の抽出が難しい。   The Doppler method is mainly used for a single target at a very short distance, and the Doppler signal reacts to all moving objects, and it is difficult to separate unnecessary signals, but there is an advantage that the S / N ratio is easily improved systematically. . That is, if an attempt is made to increase the distance to the target, there may be a case where an erroneous report or the like is generated due to the influence of undesired noise, and it is difficult to extract an accurate behavior of the target.

一方、FMCW方式は、所定の変調幅及び掃引期間の掃引で形成された電波をアンテナより放射し、ターゲットである人体等により反射した信号を位相検波し、距離によって生じるビート信号の周波数から距離を算出する方法である(微小位相角方式ともいわれる)。このビート信号には、ターゲットが極少量だけ移動した場合、その移動に合わせた位相変動が生じ、この位相変動の時間(周期)を取り出すことで呼吸や心拍数などの動きを抽出することができる。   On the other hand, in the FMCW system, a radio wave formed by sweeping with a predetermined modulation width and sweep period is radiated from an antenna, a signal reflected by a human body or the like as a target is phase-detected, and the distance is determined from the frequency of the beat signal generated by the distance. This is a calculation method (also called a minute phase angle method). In this beat signal, when the target moves by a very small amount, a phase fluctuation corresponding to the movement occurs, and by extracting the time (cycle) of this phase fluctuation, movements such as respiration and heart rate can be extracted. .

このFMCW方式の場合は、距離計測が可能で比較的遠距離に対応できるが、掃引帯域幅による距離分離分解能が、c/Δf(c:光速、Δf:掃引帯域幅又は占有帯域幅)であり、国内の場合1.5mとなり、海外などの場合は3mとなる。
従って、例えば室内で人体を検知する場合、室内の壁や家具等、色々な物があり、それらの反射物と人体とが距離分離分解能以上に離れていることが必要とされる。また、距離分離分解能以内の反射物の場合、FFT後のスペクトラムの融合等により微小変動の挙動は現れるが、その距離が定まらなかったり、大きな反射信号に埋もれて微小な信号の抽出が困難となったり、大きな反射物がある等の環境(周囲)の影響を受け易く、測定結果の不安定さとして表れる。
In the case of this FMCW method, distance measurement is possible and it can cope with a relatively long distance, but the distance separation resolution by the sweep bandwidth is c / Δf (c: speed of light, Δf: sweep bandwidth or occupied bandwidth). In Japan, it is 1.5m, and in other countries it is 3m.
Therefore, for example, when detecting a human body in a room, there are various objects such as a wall and furniture in the room, and it is necessary that the reflector and the human body be separated by more than the distance separation resolution. In the case of a reflector within the distance separation resolution, the behavior of minute fluctuations appears due to the fusion of the spectrum after FFT, etc., but the distance is not fixed or it is difficult to extract minute signals because they are buried in a large reflected signal. Or is easily affected by the environment (surroundings) such as large reflectors, and appears as an unstable measurement result.

特許第5848469号公報Japanese Patent No. 5848469 米国特許第9423496号公報U.S. Pat. No. 9423496

上述した従来のFMCW方式のセンサでは、アンテナからの放射が広がらない比較的近距離のシングルターゲットの場合には、良好な検出ができ、特定の条件下において実用可能であるが、非接触で呼吸数、心拍数等を計測するセンサとして用いる殆どの場合において、感度が十分ではなく、誤報や失報が生じるという問題があった。   In the conventional FMCW sensor described above, in the case of a single target at a relatively short distance where radiation from the antenna does not spread, good detection can be performed and practical use under specific conditions. In most cases used as a sensor for measuring the number, heart rate, etc., there is a problem that the sensitivity is not sufficient and false or misreporting occurs.

また、上記特許文献1の生体状態検出装置では、FMCWレーダの検出結果(FFT処理)に基づき、距離毎に距離スペクトラム強度データ(ピーク値)を求め、生体が存在しない状態の基準値と、生体が存在するときの状態の値との差を差分データ(周波数スペクトラムの差分)として算出し、その結果のスペクトラムにおけるピーク値の時間変動から姿勢や呼吸等を検出する。
上記特許文献2のワイヤレス検出装置でも、壁や窓の静止物と人等の生体が異なる距離にあるときに、距離に対するピークスペクトラムを時間的に比較し、生体のピークスペクトラムの時間変化を計測することにより生体検知を行っている。
Moreover, in the living body state detection apparatus of Patent Document 1, distance spectrum intensity data (peak value) is obtained for each distance based on the detection result (FFT processing) of the FMCW radar, and a reference value in a state where no living body exists, The difference from the value of the state at the time of presence is calculated as difference data (frequency spectrum difference), and the posture, respiration, etc. are detected from the time fluctuation of the peak value in the resulting spectrum.
Even in the wireless detection device of Patent Document 2 described above, when a stationary object such as a wall or window and a living body such as a person are at different distances, the peak spectrum with respect to the distance is temporally compared to measure the temporal change of the peak spectrum of the living body. Therefore, living body detection is performed.

しかしながら、上記の特許文献1及び2では、FFT処理後のスペクトラムを比較し、スペクトラムの差分に基づいて生体検知を行っており、この手法では、基準(背景)情報を計測結果から引く処理のため、検出対象の距離の感度が著しく悪くなるという不都合がある。   However, in Patent Documents 1 and 2 described above, the spectrum after the FFT processing is compared, and living body detection is performed based on the difference between the spectra. In this method, the reference (background) information is subtracted from the measurement result. There is an inconvenience that the sensitivity of the distance to be detected is remarkably deteriorated.

また、従来では、FFT処理で得られたスペクトラムの差分に基づいて生体検知を行うため、大きなメモリが必要となり、検知までの演算・処理も複雑になり、処理時間も長くなるという問題がある。   Conventionally, since living body detection is performed based on the difference in spectrum obtained by FFT processing, a large memory is required, and calculation and processing until detection are complicated, and there is a problem that processing time is increased.

本発明は上記問題点に鑑みてなされたものであり、その目的は、高速のCPUや大きなメモリも必要とすることなく、短い処理時間で効率よく、かつ高い感度にて、生体の情報を検知することができるバイタルセンサを提供することにある。   The present invention has been made in view of the above problems, and its purpose is to detect living body information efficiently and with high sensitivity in a short processing time without requiring a high-speed CPU or a large memory. It is to provide a vital sensor that can be used.

上記目的を達成するために、請求項1の発明は、周波数掃引に基づき、発振周波数が連続的に上昇又は下降を繰り返す変調波を送信すると共に、この送信波が前方に存在する物体で反射した反射波を受信し、送信波と受信波をミキシングすることにより両波の差の周波数を持つビート信号を出力する送受信回路を備えるバイタルセンサにおいて、連続して繰り返される掃引の前後の掃引における上記ビート信号間の減算により差分信号を抽出し、この差分信号のパワーを積算した積算パワー値を掃引毎に演算し、この掃引毎の積算パワー値の変化により生体の微小変動の情報を検知することを特徴とする。   In order to achieve the above object, the invention according to claim 1 transmits a modulated wave whose oscillation frequency continuously increases or decreases based on the frequency sweep, and the transmitted wave is reflected by an object existing ahead. In a vital sensor having a transmission / reception circuit that receives a reflected wave and outputs a beat signal having a frequency of a difference between both waves by mixing the transmitted wave and the received wave, the beat in the sweep before and after the continuous repeated sweep The difference signal is extracted by subtraction between the signals, the integrated power value obtained by integrating the power of the difference signal is calculated for each sweep, and information on minute changes in the living body is detected by the change in the integrated power value for each sweep. Features.

請求項2の発明は、送信波と受信波とのミキシング後に得られたビート信号の周波数を帯域制限することにより、複数の生体の各々の微小変動の情報を検知することを特徴とする。
請求項3の発明は、上記生体の微小変動の情報は、心拍若しくは呼吸の有無又は心拍数若しくは呼吸数であることを特徴とする。
請求項4の発明は、上記差分信号から生体までの距離を求め、生体の有無の情報も検知することを特徴とする。
The invention of claim 2 is characterized in that information on minute fluctuations of each of a plurality of living bodies is detected by band-limiting the frequency of the beat signal obtained after mixing the transmission wave and the reception wave.
The invention of claim 3 is characterized in that the information on the minute fluctuations of the living body is the presence or absence of a heartbeat or respiration, a heart rate or a respiration rate.
The invention according to claim 4 is characterized in that a distance to the living body is obtained from the difference signal, and information on presence / absence of the living body is also detected.

以上の構成によれば、周波数掃引により上昇又は下降する変調波が順次送信され、この送信波による反射波が受信され、この受信波を送信波とミキシングすることにより両波の差の周波数を持つビート信号(IQ信号)が得られる。このビート信号において、連続して繰り返される掃引毎に前回掃引のビート信号との間で減算処理をすることにより差分信号が抽出され、この差分信号の積算パワー値が演算される。この掃引毎の積算パワー値の変化をFFT(高速フーリエ変換)処理等で把握することにより、生体の微小変動である呼吸、心拍(脈拍)、微小の動きの有無、そして心拍数若しくは呼吸数等が検知される。   According to the above configuration, the modulated wave that rises or falls due to the frequency sweep is sequentially transmitted, the reflected wave from the transmitted wave is received, and the received wave is mixed with the transmitted wave to have a frequency that is the difference between the two waves. A beat signal (IQ signal) is obtained. In this beat signal, a difference signal is extracted by performing subtraction processing with the beat signal of the previous sweep for each successive repeated sweep, and an integrated power value of the difference signal is calculated. By grasping the change of the integrated power value for each sweep by FFT (Fast Fourier Transform) processing, etc., breathing, heartbeat (pulse), presence / absence of minute movement of the living body, heart rate or respiration rate, etc. Is detected.

また、送信波と受信波とをミキシングした後のビート信号の周波数をフィルタ等で帯域制限し、不必要な信号を除外することにより、複数の生体の各々の微小変動の情報が良好に検知される。
更に、上記差分信号を例えばFFT処理すれば、生体までの距離を求めることができ、これにより、生体自体の有無(存否)も把握することが可能となる。
In addition, the frequency of the beat signal after mixing the transmission wave and the reception wave is band-limited with a filter or the like, and unnecessary signals are excluded, so that information on minute fluctuations in each of a plurality of living bodies can be detected well. The
Furthermore, if the difference signal is subjected to, for example, FFT processing, the distance to the living body can be obtained, and thereby the presence / absence (presence / absence) of the living body itself can be grasped.

本発明によれば、FFT処理後の周波数スペクトラムについての差分を演算しないので、FFT演算の回数が少なくてよく、高速のCPUや大きなメモリも必要とすることなく、短い処理時間で効率よく、生体の情報を検知できるという利点がある。
また、掃引毎にビート信号の差をリアルタイムで求めるので、計測条件によって感度が変わったりせず、高い感度を得ることが可能となる。
According to the present invention, since the difference regarding the frequency spectrum after the FFT processing is not calculated, the number of FFT calculations may be small, and a high-speed CPU and a large memory are not required, and the living body can be efficiently processed in a short processing time. There is an advantage that the information can be detected.
In addition, since the difference between the beat signals is obtained in real time for each sweep, the sensitivity does not change depending on the measurement conditions, and high sensitivity can be obtained.

本発明に係る実施例のバイタルセンサの回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the vital sensor of the Example which concerns on this invention. 実施例において周波数掃引から積算パワー値の変化を得るまでの信号処理を示す波形図である。It is a wave form diagram which shows the signal processing until it obtains the change of an integrated power value from a frequency sweep in an Example. 実施例において掃引毎に得られるビート信号の波形[図(a)]と積算パワー値の変化の信号[図(b)]を示す図である。It is a figure which shows the waveform [figure (a)] of the beat signal obtained for every sweep in an Example, and the signal [figure (b)] of an integrated power value change. 実施例で得られる呼吸の周波数[図(a)]と心拍の周波数[図(b)]を示す波形図である。It is a wave form diagram which shows the frequency of respiration [a figure (a)] and the frequency of a heartbeat [a figure (b)] obtained in an Example. 実施例のバイタルセンサにて生体の情報を得るときの状態を示す説明図である。It is explanatory drawing which shows a state when obtaining the information of a biological body with the vital sensor of an Example.

図1に、実施例のバイタルセンサの回路構成が示されており、このバイタルセンサはマイクロ波を用いたFMCWセンサである。
図1に示されるように、送信部10は、発振器11、分配器12、送信アンプ13、送信波フィルタ14、LOアンプ15等を有し、周波数掃引(所定の変調幅及び期間の掃引)により発振周波数が連続的に上昇又は下降を繰り返す変調波を送信し、受信部18は、LNA(低雑音増幅器)19等を有し、対象物からの反射波を受信しており、これら送信部10及び受信部18は図示しない制御部によって制御される。
FIG. 1 shows a circuit configuration of a vital sensor according to an embodiment, and this vital sensor is an FMCW sensor using a microwave.
As shown in FIG. 1, the transmission unit 10 includes an oscillator 11, a distributor 12, a transmission amplifier 13, a transmission wave filter 14, an LO amplifier 15, and the like, and performs frequency sweep (sweep of a predetermined modulation width and period). A modulation wave whose oscillation frequency continuously increases or decreases is transmitted, and the reception unit 18 includes an LNA (low noise amplifier) 19 and the like, and receives a reflected wave from an object. The receiving unit 18 is controlled by a control unit (not shown).

また、送信部10及び受信部18からの信号を入力し、送信波と受信波をミキシングしてビート信号(I,Q信号)を出力するミキサ20が設けられ、このミキサ20の後段に、IFフィルタ21、IFアンプ22、ADC(アナログデジタルコンバータ)23が配置され、このADC23にMCU(マイクロコントロールユニット)等からなる演算部25が接続される。   In addition, a mixer 20 is provided for inputting signals from the transmission unit 10 and the reception unit 18, mixing the transmission wave and the reception wave, and outputting a beat signal (I, Q signal). A filter 21, an IF amplifier 22, and an ADC (analog / digital converter) 23 are disposed, and an arithmetic unit 25 including an MCU (micro control unit) is connected to the ADC 23.

上記演算部25には、掃引毎に今回の掃引で得られたビート信号と前回の掃引で得られたビート信号との間でビート信号の差分(差分信号)を算出する差分(減算)回路27、この差分回路27から出力された差分信号のパワー(振幅値)を積算するパワー積算回路28、このパワー積算回路28から出力された積算パワー値から生体の微小変動、例えば呼吸、心拍、微小の動き等を測定する計測回路29が含まれている。この計測回路29は、パワー積算回路28から出力された積算パワー信号に対しFFT(高速フーリエ変換)処理を施し、得られた周波数スペクトラムから呼吸の有無、呼吸数、心拍の有無、心拍数等を検知することができる。この呼吸、心拍等の生体情報は、FFT処理によらずパルスカウントを実施することによっても検知することが可能である。   The calculation unit 25 includes a difference (subtraction) circuit 27 that calculates a difference (difference signal) between beat signals obtained in the current sweep and beat signals obtained in the previous sweep for each sweep. A power integration circuit 28 that integrates the power (amplitude value) of the difference signal output from the difference circuit 27, and minute fluctuations of the living body such as breathing, heartbeat, and minute values from the integrated power value output from the power integration circuit 28. A measurement circuit 29 for measuring movement and the like is included. The measurement circuit 29 performs FFT (Fast Fourier Transform) processing on the integrated power signal output from the power integration circuit 28, and determines the presence / absence of respiration, respiration rate, presence / absence of heartbeat, heart rate, etc. from the obtained frequency spectrum. Can be detected. The biological information such as respiration and heartbeat can also be detected by performing pulse counting regardless of the FFT processing.

実施例は以上の構成からなり、その作用を図2、図3により説明する。まず、上記送信部10では、図2(a)に示されるように、繰り返し時間T(数ミリ秒)の周波数掃引(アップ掃引又はダウン掃引)に基づき変調されたマイクロ波[図2(b)のRF]が連続して送信され、このマイクロ波の送信に基づき、受信部18では物体からの反射波が受信され、ミキサ20にて両波をミキシングすることで、差の周波数であるビート信号[図2(c)]が順次出力される。即ち、送信波に比べて受信波が遅れるため、両波の差の周波数を持つビート信号(I,Q信号)が得られる。このビート信号の周波数は、掃引時間、掃引周波数帯域(占有帯域幅)、そして対象物までの距離により変わるため、この周波数を分析することで、対象物の距離を求めることができる。   The embodiment has the above configuration, and its operation will be described with reference to FIGS. First, in the transmission unit 10, as shown in FIG. 2A, a microwave modulated based on a frequency sweep (up sweep or down sweep) with a repetition time T (several milliseconds) [FIG. 2B]. RF] is continuously transmitted. Based on the transmission of the microwave, the reception unit 18 receives the reflected wave from the object, and the mixer 20 mixes both the waves to obtain a beat signal that is the difference frequency. [FIG. 2 (c)] is sequentially output. That is, since the received wave is delayed compared to the transmitted wave, a beat signal (I, Q signal) having a frequency that is the difference between the two waves is obtained. Since the frequency of the beat signal varies depending on the sweep time, the sweep frequency band (occupied bandwidth), and the distance to the object, the distance of the object can be obtained by analyzing this frequency.

次に、演算部25の差分回路27では、図2(d)に示されるように、掃引毎にビート信号間の差分信号(差分ビート信号)が算出される。即ち、図2(c)のように、連続する掃引毎にビート信号SW1,SW2,SW3,…SW(n)が得られるが、このビート信号間の差、SW1−SW2,SW2−SW3,SW3−SW4…が順次求められ、その後、パワー積算回路28では、図2(e)に示されるように、差分信号のパワー(振幅値)の積算処理として、S12=Σ(SW1−SW2)、S23=Σ(SW2−SW3)、S34=Σ(SW3−SW4)…が行われ、積算パワー値(電圧値)S12,S23,S34…が演算される。   Next, in the difference circuit 27 of the calculation unit 25, as shown in FIG. 2D, a difference signal (difference beat signal) between beat signals is calculated for each sweep. That is, as shown in FIG. 2 (c), beat signals SW1, SW2, SW3,... SW (n) are obtained for each successive sweep, and the difference between the beat signals, SW1-SW2, SW2-SW3, SW3. -SW4... Are sequentially obtained, and thereafter, in the power integration circuit 28, as shown in FIG. 2 (e), S12 = Σ (SW1-SW2), S23 as the integration processing of the power (amplitude value) of the differential signal. = Σ (SW2-SW3), S34 = Σ (SW3-SW4)... Is calculated, and integrated power values (voltage values) S12, S23, S34.

次いで、計測回路29では、上記積算パワー値S12,S23,S34…を、例えばFFT処理することにより、図2(f)に示されるように、測定対象物である生体の微小変動(変化)、例えば呼吸、心拍、微小な動き等が検知される。そして、この波形を周波数解析(例えばFFT処理)することで、呼吸数、心拍数を得ることができる。   Next, the measurement circuit 29 performs, for example, FFT processing on the integrated power values S12, S23, S34..., As shown in FIG. For example, respiration, heartbeat, and minute movement are detected. Then, the respiratory rate and the heart rate can be obtained by performing frequency analysis (for example, FFT processing) on this waveform.

即ち、図3(a)にも示されるように、掃引毎に得られるビート信号SW1,SW2,SW3,…SW(n)において、ビート信号間の差Δ1,Δ2,Δ3,…Δ(n)が算出され、その積算パワー値PΔ1,PΔ2,PΔ3,…PΔ(n)が求められる。この積算パワー値PΔ(n)は、図3(b)のように、差分信号で得られる距離情報の変化の大小に応じた大きさの値となり、この積算パワー値をプロットすれば、呼吸、心拍、微少な動きの情報を含んだ信号が得られ、この信号の周波数を周波数解析することによって、所定の周波数が現れることになり、この周波数によって呼吸数、心拍数等が判定される。生体における動作(変動)の距離幅が大きいとき、積算パワー値(電圧値)は大きく、逆に距離幅が小さいときは、積算パワー値は小さくなり、この積算パワー値の変動により、心拍や呼吸等の動きを検知することができる。   That is, as shown in FIG. 3A, in beat signals SW1, SW2, SW3,... SW (n) obtained for each sweep, differences Δ1, Δ2, Δ3,. And the integrated power values PΔ1, PΔ2, PΔ3,... PΔ (n) are obtained. As shown in FIG. 3B, the integrated power value PΔ (n) is a value corresponding to the magnitude of the change in the distance information obtained from the difference signal. If this integrated power value is plotted, breathing, A signal including heartbeat and minute movement information is obtained, and by analyzing the frequency of this signal, a predetermined frequency appears, and the respiratory rate, heart rate, and the like are determined based on this frequency. When the distance width of movement (variation) in a living body is large, the integrated power value (voltage value) is large. Conversely, when the distance width is small, the integrated power value is small. Etc. can be detected.

図4に、上記計測回路29で得られた呼吸及び心拍の周波数が示されており、図4(a)のピークの周波数で呼吸の存在及び呼吸数、図4(b)のピークの周波数で心拍の存在及び心拍数が判定されることになる。一般に呼吸数は、12〜20回/分、心拍数は50〜75回/分であり、周波数では、呼吸数が0.2Hz〜0.33Hz、心拍数が0.83Hz〜1.25Hzとなるから、それぞれの周波数をフィルタ等で分解することで、呼吸数、心拍数及びその他の動きを判別する。   FIG. 4 shows the breathing and heartbeat frequencies obtained by the measurement circuit 29. The presence of breathing and the number of breaths at the peak frequency in FIG. 4 (a), and the peak frequency in FIG. 4 (b). The presence of the heartbeat and the heart rate will be determined. In general, the respiration rate is 12 to 20 times / min, the heart rate is 50 to 75 times / min, and the frequency is 0.2 Hz to 0.33 Hz and the heart rate is 0.83 Hz to 1.25 Hz. Thus, the respiration rate, the heart rate and other movements are discriminated by decomposing each frequency with a filter or the like.

また、実施例では、差分回路27で得られた差分信号に対しFFT処理等を施すことにより、移動する対象物の有無(存否)を検知することができる。
例えば、図1に示されるように、差分回路27の差分信号をパワー積算部28を介さずに計測回路29に出力してFFT処理すれば、この計測回路29にて、FFT処理後の周波数スペクトラムにおいて、各周波数の信号強度がほぼ0となるとき、移動する対象物がなく、特定の周波数において信号強度のピークがあるとき、移動する対象物が存在することが判定される。
In the embodiment, the presence / absence (presence / absence) of the moving object can be detected by performing an FFT process or the like on the difference signal obtained by the difference circuit 27.
For example, as shown in FIG. 1, if the difference signal of the difference circuit 27 is output to the measurement circuit 29 without going through the power integrating unit 28 and subjected to FFT processing, the frequency spectrum after the FFT processing is performed in the measurement circuit 29. , It is determined that there is no moving object when the signal intensity at each frequency is substantially 0, and there is a moving object when there is a signal intensity peak at a specific frequency.

図5には、上方に配置したバイタルセンサで人の状態を検出する場合が示されており、左側のように、バイタルセンサの下を単に移動している場合は、上述のように、差分信号により人の通過が検知され、右側のように、ベッド等に寝ている人は、差分信号の積算パワー値に基づいてその呼吸、心拍、微小な動き等が検知される。   FIG. 5 shows a case where a human sensor is detected by a vital sensor disposed above. When the person is simply moving under the vital sensor as shown on the left side, as described above, the difference signal Thus, the passage of a person is detected, and a person sleeping on a bed or the like, as shown on the right side, is detected based on the integrated power value of the difference signal, such as breathing, heartbeat, and minute movement.

上述した積算パワー値(電圧値)は、微小に変化する距離情報に対応して振幅値に変化が生じるデータであり、この変化の周期(周波数)が微小に変化する生体の周期を表すデータとなる。繰り返しの測定時間が生体の変化する時間に対して遥かに短いため、このような挙動を示すことになる。
例えば、5m先の人が歩行又は移動したときは、比較し得られた周波数(差分信号)は、その人までの距離を表し、この場合の人の動きは大きいため、移動距離そのものを示す。
一方、人が静止しその場所に留まるような行動をしたとき、距離が変わる訳ではないので、移動しているとはいえず、その場合、差分信号で検出された距離情報の変化は見られないが、人は通常(寝ているときでも)、呼吸や微妙な動きをするし、少なくとも心臓は常時動いている。
本発明は、これらの動きを掃引毎に比較し、結果の積算パワーを繋ぎ合わせることにより、呼吸、心拍、微小な動き等を検知するものである。
The integrated power value (voltage value) described above is data in which the amplitude value changes in response to minutely changing distance information, and data representing the cycle of the living body in which the cycle (frequency) of this change changes slightly. Become. Such a behavior is exhibited because the repeated measurement time is much shorter than the change time of the living body.
For example, when a person 5 m ahead walks or moves, the frequency (difference signal) obtained by comparison indicates the distance to the person, and the movement of the person in this case is large, and thus indicates the movement distance itself.
On the other hand, the distance does not change when the person is stationary and stays in the place, so it cannot be said that the person is moving, in which case the change in the distance information detected by the difference signal is seen. No, but people usually do breathing and subtle movements (even when sleeping), and at least the heart is constantly moving.
In the present invention, these movements are compared for each sweep, and the resultant integrated power is connected to detect respiration, heartbeat, minute movement, and the like.

また、実施例では、差分信号を算出する前に、1掃引で得られるビート信号に対し、対象物(生体)までの距離に相当する周波数成分を抽出するような帯域制限を行うことにより、複数の生体が存在する場合でも、これら生体のそれぞれの心拍や呼吸等を同時に検出することが可能である。
具体的な手法としては、例えばビート信号に対してFFT処理を行い、ピークが立った周波数から対象となる人物までの距離を測定し、それ以外の周波数成分を除去するようなバンドパスフィルタにビート信号を通過させることにより実現できる。例えば、扇風機やエアコンといった環境雑音と考えられる物体が測定範囲にある場合も、対象物に起因しない周波数成分を除去することにより、それらの影響を排除することができる。
Further, in the embodiment, before calculating the difference signal, a band restriction is performed such that a frequency component corresponding to the distance to the target object (living body) is extracted from the beat signal obtained by one sweep, thereby performing a plurality of band limitations. Even when there are living bodies, it is possible to simultaneously detect the heartbeat and respiration of these living bodies.
As a specific method, for example, FFT processing is performed on a beat signal, a distance from a peaked frequency to a target person is measured, and a beat is applied to a bandpass filter that removes other frequency components. This can be realized by passing a signal. For example, even when an object considered to be environmental noise such as a fan or an air conditioner is in the measurement range, the influence can be eliminated by removing the frequency component not caused by the object.

更に、実施例では、今回と前回の掃引に基づく差分信号から得られる周波数スペクトラムの移動する物体の距離情報と、1回の掃引のみで得られたビート信号の周波数スペクトラムの物体の距離情報を比較し、静止体のみの距離を検出することもでき、これによって、移動する生体と静止体を明確に区別して検出することが可能である。
即ち、本発明のバイタルセンサは、FMCW方式の持つ弱点である掃引幅による距離分離分解能の影響を受けず、静止物、移動する生体、生体が静止した時の微小な動きを検出できる電波センサである。
Further, in the embodiment, the distance information of the moving object of the frequency spectrum obtained from the difference signal based on the current sweep and the previous sweep is compared with the distance information of the object of the frequency spectrum of the beat signal obtained by only one sweep. In addition, it is possible to detect the distance of only the stationary body, and thereby, it is possible to clearly distinguish and detect the moving living body and the stationary body.
That is, the vital sensor of the present invention is a radio wave sensor that can detect a minute object when a living object is stationary, a moving object, and a moving object without being affected by the distance separation resolution due to the sweep width, which is a weak point of the FMCW method. is there.

また、上記パワー積算回路28では、差分信号の値が絶対値で比較されるため、元の周波数の倍の値のデータが得られる。これは、差分処理において、等間隔の比較により変化の少ない箇所と大きな箇所を繰り返し、少ない箇所が1サイクル(周期)に2回存在するためであり、差分信号の電圧値は、本来の呼吸や心拍の2倍の速さを示す。従って、呼吸と心拍の各々の周波数分解が行い易く、確実に呼吸の情報と心拍の情報を分離して抽出できるという利点がある。   Further, in the power integrating circuit 28, the value of the difference signal is compared with an absolute value, so that data having a value twice the original frequency is obtained. This is because, in the difference processing, a portion with a small change and a large portion are repeated by comparison at equal intervals, and a small portion exists twice in one cycle (period). It is twice as fast as the heart rate. Therefore, it is easy to perform frequency decomposition of each of breathing and heartbeat, and there is an advantage that the breathing information and the heartbeat information can be reliably separated and extracted.

以上の構成のバイタルセンサによれば、掃引毎にビート信号のスペクトラムを演算して比較する必要がなく、ビート信号の差分信号に基づいた簡単な処理で検知ができるため、MCU等で構成される演算部25に搭載されるメモリが少なくて済み、演算処理も高速になる。
また、従来に比較して、リアルタイムに比較を行うため、計測条件において感度が変わらず、感度の高い検知が可能で、誤報や失報を軽減できるという利点がある。
According to the vital sensor having the above configuration, it is not necessary to calculate and compare the beat signal spectrum for each sweep, and can be detected by simple processing based on the difference signal of the beat signal. Less memory is required for the computing unit 25, and computation processing is also faster.
In addition, since the comparison is performed in real time as compared with the conventional case, there is an advantage that the sensitivity does not change under the measurement condition, detection with high sensitivity is possible, and false or misreporting can be reduced.

10…送信部、 11…発振器、
15…LOアンプ、 18…受信部、
19…LNA(低雑音増幅器)、 20…ミキサ、
21…IFフィルタ、 22…IFアンプ、
23…アナログデジタルコンバータ、
25…演算部、 27…差分回路、
28…パワー積算回路、 29…計測回路。
10 ... Transmitter, 11 ... Oscillator,
15 ... LO amplifier, 18 ... receiver,
19 ... LNA (low noise amplifier), 20 ... mixer,
21 ... IF filter, 22 ... IF amplifier,
23. Analog to digital converter,
25 ... arithmetic unit, 27 ... difference circuit,
28 ... Power integrating circuit, 29 ... Measuring circuit.

次いで、計測回路29では、上記積算パワー値S12,S23,S34…から、図2(f)に示されるように、測定対象物である生体の微小変動(変化)、例えば呼吸、心拍、微小な動き等が検知される。そして、この波形を周波数解析(例えばFFT処理)することで、呼吸数、心拍数を得ることができる。
Then, the measuring circuit 29, from the integrated power values S12, S23, S34 ..., as shown in FIG. 2 (f), slight change (change) of a living body that is the measuring object, for example breathing, heartbeat, minute Motion or the like is detected. Then, the respiratory rate and the heart rate can be obtained by performing frequency analysis (for example, FFT processing) on this waveform.

Claims (4)

周波数掃引に基づき、発振周波数が連続的に上昇又は下降を繰り返す変調波を送信すると共に、この送信波が前方に存在する物体で反射した反射波を受信し、送信波と受信波をミキシングすることにより両波の差の周波数を持つビート信号を出力する送受信回路を備えるバイタルセンサにおいて、
連続して繰り返される掃引の前後の掃引における上記ビート信号間の減算により差分信号を抽出し、
この差分信号のパワーを積算した積算パワー値を掃引毎に演算し、この掃引毎の積算パワー値の変化により生体の微小変動の情報を検知することを特徴とするバイタルセンサ。
Based on the frequency sweep, transmit a modulated wave whose oscillation frequency continuously rises and falls, receives a reflected wave reflected by an object present ahead, and mixes the transmitted wave and the received wave In a vital sensor equipped with a transmission / reception circuit that outputs a beat signal having a frequency difference between both waves,
Extract the difference signal by subtraction between the beat signals in the sweep before and after the sweep repeated continuously,
A vital sensor characterized in that an integrated power value obtained by integrating the power of the difference signal is calculated for each sweep, and information on minute fluctuations of a living body is detected by a change in the integrated power value for each sweep.
送信波と受信波とのミキシング後に得られたビート信号の周波数を帯域制限することにより、複数の生体の各々の微小変動の情報を検知することを特徴とする請求項1記載のバイタルセンサ。   2. The vital sensor according to claim 1, wherein information on minute fluctuations of each of a plurality of living bodies is detected by band-limiting a frequency of a beat signal obtained after mixing a transmission wave and a reception wave. 上記生体の微小変動の情報は、心拍若しくは呼吸の有無又は心拍数若しくは呼吸数であることを特徴とする請求項1又は2のいずれかに記載のバイタルセンサ。   The vital sensor according to claim 1, wherein the information on minute fluctuations of the living body is presence or absence of a heartbeat or respiration, a heart rate or a respiration rate. 上記差分信号から生体までの距離を求め、生体の有無の情報も検知することを特徴とする請求項1乃至3のいずれかに記載のバイタルセンサ。   The vital sensor according to any one of claims 1 to 3, wherein a distance to the living body is obtained from the difference signal, and information on the presence or absence of the living body is also detected.
JP2018035485A 2018-02-28 2018-02-28 Vital sensor Active JP7072403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018035485A JP7072403B2 (en) 2018-02-28 2018-02-28 Vital sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018035485A JP7072403B2 (en) 2018-02-28 2018-02-28 Vital sensor

Publications (2)

Publication Number Publication Date
JP2019152441A true JP2019152441A (en) 2019-09-12
JP7072403B2 JP7072403B2 (en) 2022-05-20

Family

ID=67948770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035485A Active JP7072403B2 (en) 2018-02-28 2018-02-28 Vital sensor

Country Status (1)

Country Link
JP (1) JP7072403B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085754A (en) * 2019-11-27 2021-06-03 新日本無線株式会社 Target detector, system, program, and method
CN113075631A (en) * 2020-01-03 2021-07-06 昇雷科技股份有限公司 Method for sensing posture of living body
CN115721294A (en) * 2022-11-24 2023-03-03 北京金茂绿建科技有限公司 Respiration monitoring method and device based on millimeter wave sensing, electronic equipment and medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230671A (en) * 2013-05-29 2014-12-11 学校法人 関西大学 Blood pressure estimation device, blood pressure estimation system, and control program
US20150070205A1 (en) * 2013-09-06 2015-03-12 U & U Engineering Inc Lighting Device with Microwave Detection Function
JP2016135194A (en) * 2015-01-23 2016-07-28 株式会社光波 Organism status detector
JP2016148515A (en) * 2015-02-10 2016-08-18 株式会社豊田中央研究所 Radar device
JP2016217992A (en) * 2015-05-25 2016-12-22 日本無線株式会社 Positioning device, speed detection device, and state event discrimination device
WO2017115459A1 (en) * 2015-12-28 2017-07-06 パナソニックIpマネジメント株式会社 Sensor, and faucet device using sensor
JP2017203751A (en) * 2016-05-13 2017-11-16 パナソニックIpマネジメント株式会社 Radio wave sensor and facility apparatus equipped with radio wave sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230671A (en) * 2013-05-29 2014-12-11 学校法人 関西大学 Blood pressure estimation device, blood pressure estimation system, and control program
US20150070205A1 (en) * 2013-09-06 2015-03-12 U & U Engineering Inc Lighting Device with Microwave Detection Function
JP2016135194A (en) * 2015-01-23 2016-07-28 株式会社光波 Organism status detector
JP2016148515A (en) * 2015-02-10 2016-08-18 株式会社豊田中央研究所 Radar device
JP2016217992A (en) * 2015-05-25 2016-12-22 日本無線株式会社 Positioning device, speed detection device, and state event discrimination device
WO2017115459A1 (en) * 2015-12-28 2017-07-06 パナソニックIpマネジメント株式会社 Sensor, and faucet device using sensor
JP2017203751A (en) * 2016-05-13 2017-11-16 パナソニックIpマネジメント株式会社 Radio wave sensor and facility apparatus equipped with radio wave sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085754A (en) * 2019-11-27 2021-06-03 新日本無線株式会社 Target detector, system, program, and method
JP7464380B2 (en) 2019-11-27 2024-04-09 日清紡マイクロデバイス株式会社 Target detection device, system, program and method
CN113075631A (en) * 2020-01-03 2021-07-06 昇雷科技股份有限公司 Method for sensing posture of living body
CN115721294A (en) * 2022-11-24 2023-03-03 北京金茂绿建科技有限公司 Respiration monitoring method and device based on millimeter wave sensing, electronic equipment and medium
CN115721294B (en) * 2022-11-24 2023-09-12 北京金茂绿建科技有限公司 Millimeter wave perception-based respiration monitoring method and device, electronic equipment and medium

Also Published As

Publication number Publication date
JP7072403B2 (en) 2022-05-20

Similar Documents

Publication Publication Date Title
JP5848469B1 (en) Biological condition detection device
KR101836761B1 (en) Apparatus for non-contact respiration detection using radar and method thereof
US7679545B2 (en) Suppressing motion interference in a radar detection system
Yavari et al. Doppler radar sensor for occupancy monitoring
US11614516B2 (en) Radar vital signal tracking using a Kalman filter
US20150018676A1 (en) Microwave contactless heart rate sensor
JP7072403B2 (en) Vital sensor
US7973699B2 (en) Dismount harmonic acceleration matched filtering for enhanced detection and discrimination
Sacco et al. A radar system for indoor human localization and breath monitoring
CN111142102A (en) Respiratory data calculation method and related equipment
KR101903401B1 (en) Apparatus and method for measuring biometric information in vehicle using UWB radar
KR101902760B1 (en) Method and Device for Measuring Biometric Data using Radar
RU2384860C2 (en) Method of detecting people and moving objects behind barrier and device for realising said method
KR102103260B1 (en) A accupancy sensing apparatus and method using Ultra-Wideband Radar
JP2016135233A (en) Organism status detector
JP7377494B2 (en) Attribute identification device and identification method
Abdulatif et al. Power-based real-time respiration monitoring using FMCW radar
Moadi et al. Low cost IR-UWB radar for multisubject non-contact vital sign detection
Radzicki et al. Standoff CW radar for through-the-wall detection of human heartbeat signatures
KR20230077607A (en) Apparatus and method for determining a distance for measuring heartbeat based on temporal phase coherency
Kocur et al. UWB radar based localization of a person changing the nature of their motion state
KR20230080737A (en) Apparatus for recognizing pedestrian based on doppler radar and method thereof
CN114190913A (en) Millimeter wave radar-based driver driving state monitoring system and method
Chen et al. Noncontact heart rate detection method based on Kalman filter
Gharamohammadi et al. Multi-Bin Breathing Pattern Estimation by Radar Fusion for Enhanced Driver Monitoring

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7072403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150