JP2019151881A - Heat dissipation member for electronic apparatus, method for manufacturing the same, and electronic apparatus - Google Patents

Heat dissipation member for electronic apparatus, method for manufacturing the same, and electronic apparatus Download PDF

Info

Publication number
JP2019151881A
JP2019151881A JP2018037017A JP2018037017A JP2019151881A JP 2019151881 A JP2019151881 A JP 2019151881A JP 2018037017 A JP2018037017 A JP 2018037017A JP 2018037017 A JP2018037017 A JP 2018037017A JP 2019151881 A JP2019151881 A JP 2019151881A
Authority
JP
Japan
Prior art keywords
heat
metal oxide
oxide film
heat dissipation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018037017A
Other languages
Japanese (ja)
Inventor
ジュシン トウ
Shuxin Dong
ジュシン トウ
理一郎 太田
Riichiro Ota
理一郎 太田
雅和 村瀬
Masakazu Murase
雅和 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018037017A priority Critical patent/JP2019151881A/en
Publication of JP2019151881A publication Critical patent/JP2019151881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a heat dissipation member for electronic apparatuses, capable of efficiently dissipating the heat of an electronic apparatus.SOLUTION: The heat dissipation member for electronic apparatuses, capable of absorbing the heat of an electronic device to dissipate it to the outside includes a base material and a coating for covering at least a part of the surface of the base material. The coating consists of a metal oxide film having a porous structure having a plurality of acicular or tabular crystals arranged in a mesh shape or a frog shape; the metal oxide includes MLOand/or ZnO, where M and L are metal elements, for example, M:Zn and L:Fe; the metal oxide film shows an emissivity of 80% or more to infrared having a wavelength of 2-15 μm; and, for example, the electronic apparatus is a power module, and the heat dissipation member is a heat sink or a heat spreader used therefor.SELECTED DRAWING: Figure 4

Description

本発明は、電子機器の発熱を効率的に放熱できる放熱部材等に関する。   The present invention relates to a heat radiating member and the like that can efficiently dissipate heat generated by an electronic device.

電子デバイス(半導体素子等)を搭載した電子機器は、高集積化や大電流化等により、発熱量が増加している。電子機器は、放熱が不十分になると、誤作動を生じたり、接合部やデバイスの損傷等を生じ得る。このため電子機器には、その信頼性や耐久性を確保するために、放熱を促進する放熱部材が設けられることが多い。放熱部材は、例えば、パワーデバイス(パワー半導体)を実装したパワーモジュール(半導体装置)の片面側や両面側に設けられるヒートシンクやヒートスプレッダ等である。   An electronic device equipped with an electronic device (semiconductor element or the like) has increased in heat generation due to high integration, large current, and the like. When heat dissipation of electronic devices becomes insufficient, malfunctions may occur, and joints and devices may be damaged. For this reason, in order to ensure the reliability and durability, an electronic device is often provided with a heat dissipation member that promotes heat dissipation. The heat radiating member is, for example, a heat sink or a heat spreader provided on one side or both sides of a power module (semiconductor device) on which a power device (power semiconductor) is mounted.

ところで、放熱(熱移動)は、熱伝導や対流の他、熱放射(熱輻射)によっても生じる。そこで、熱放射性を高められる材料に関する提案も種々されており、関連した記載が例えば、下記の特許文献にある。   By the way, heat dissipation (heat transfer) is generated not only by heat conduction and convection but also by heat radiation (heat radiation). Therefore, various proposals regarding materials that can improve thermal radiation are made, and related descriptions are given in, for example, the following patent documents.

特開2013−95991号公報JP 2013-95991 A 特開2013−144747号公報JP 2013-144747 A 特開2014−181345号公報JP 2014-181345 A WO2017/145915号公報WO2017 / 145915

Ewa Wackelgard, Solar Energy Materials & Solar Cells 56 (1998) 35-44Ewa Wackelgard, Solar Energy Materials & Solar Cells 56 (1998) 35-44

特許文献1は、ニッケル粗化メッキにより放射率を高めた金属箔を提案している。しかし、その放射率は高々0.68に過ぎない。   Patent document 1 has proposed the metal foil which raised the emissivity by nickel roughening plating. However, its emissivity is no more than 0.68.

特許文献2は、セラミックス粒子と熱硬化性バインダー(樹脂)とからなる熱放射性塗料を提案している。しかし、この塗料には樹脂が多く含まれ、放熱部材の熱伝導性を妨げる。   Patent Document 2 proposes a thermal radiation paint composed of ceramic particles and a thermosetting binder (resin). However, this paint contains a lot of resin, which hinders the thermal conductivity of the heat dissipation member.

特許文献3は、鉄マンガン酸化物、シリカ、炭化ケイ素、酸化鉄、酸化アルミニウム等からなり、700〜1500℃の高温となる鉄板表面に塗装される熱放射材を提案している。この熱放射材は、電子機器の想定温度域を遙かに超えた非常に高い温度域で、高放射率を発現するに過ぎない。   Patent Document 3 proposes a heat radiation material that is made of iron manganese oxide, silica, silicon carbide, iron oxide, aluminum oxide, and the like, and is coated on the surface of an iron plate that has a high temperature of 700 to 1500 ° C. This heat radiation material only exhibits a high emissivity in a very high temperature range far exceeding the assumed temperature range of electronic equipment.

特許文献4は、光吸収性に優れる金属酸化物膜を提案している。しかし、特許文献4には、主に可視光域とごく近い赤外線域(波長:200〜1600nm)における反射率が具体的に示されているだけである。つまり、電子機器の放熱に重要な(中)赤外線域の放射率について、特許文献4に具体的な開示はない。   Patent Document 4 proposes a metal oxide film excellent in light absorption. However, Patent Document 4 only specifically shows the reflectance mainly in the infrared region (wavelength: 200 to 1600 nm) very close to the visible light region. That is, Patent Document 4 does not specifically disclose the emissivity in the (middle) infrared region that is important for heat dissipation of electronic devices.

ちなみに、可視光域で反射率が低い(つまり、吸収率または放射率が高い)物質でも、(中)赤外線域で反射率が大幅に高くなる(つまり、吸収率または放射率が低くなる)ことが非特許文献1に示されている。このように、一般的に、可視光域の反射率や放射率に基づいて、異なる波長域(例えば赤外線域)の反射率や放射率を予測することは困難である。   By the way, even a substance with low reflectivity in the visible light range (that is, high absorption or emissivity) has a significantly high reflectivity in the (medium) infrared range (that is, low absorption or emissivity). Is shown in Non-Patent Document 1. As described above, it is generally difficult to predict the reflectance and emissivity in different wavelength regions (for example, the infrared region) based on the reflectance and emissivity in the visible light region.

なお、理想的な(完全)黒体や鏡面体でない現実の物質は、放射率が0〜1の間にあり、通常、その放射率は波長により変化する。しかし、特許文献1および特許文献2は、放射率を単発的に開示しているに留まり、その放射率を生じる波長域について、全く開示していない。   Note that an actual substance that is not an ideal (perfect) black body or mirror body has an emissivity between 0 and 1, and the emissivity usually varies depending on the wavelength. However, Patent Document 1 and Patent Document 2 only disclose the emissivity on a one-time basis, and do not disclose the wavelength region that generates the emissivity at all.

本発明はこのような事情に鑑みて為されたものであり、電子機器の発熱を効率的に放熱できる電子機器用放熱部材等を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the heat radiating member for electronic devices etc. which can thermally radiate the heat_generation | fever of an electronic device efficiently.

本発明者はこの課題を解決すべく鋭意研究した結果、電子機器の使用温度域またはそれに対応する赤外線の波長域において、特定の金属酸化物膜が高い放射率を発現すること(未知の属性)を発見した。この成果を具体的な放熱部材等へ発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve this problem, the present inventor shows that a specific metal oxide film exhibits high emissivity in an operating temperature range of an electronic device or an infrared wavelength range corresponding thereto (unknown attribute). I found By developing this result into a specific heat radiating member, the present invention described below has been completed.

《電子機器用放熱部材》
(1)本発明は、電子デバイスの発熱を吸収して外部へ放出する電子機器用放熱部材であって、基材と該基材の少なくとも一部の表面を被覆する被膜とを有し、
該被膜は、下記の式(1)で表される金属酸化物および/またはZnOを含み、複数の針状または板状の結晶体が網目状または剣山状に配置された多孔質構造を有する金属酸化物膜からなる電子機器用放熱部材である。
3-x (1)
(上記式において、M≠Lであり、
MはMg、Fe、Zn、Mn、Cu、Co、Cr、Niからなる群から選ばれ、
LはCo、Al、Fe、Crからなる群から選ばれ、xは、0≦x≦1を満たす。)
<< Heat dissipation material for electronic equipment >>
(1) The present invention is a heat radiating member for electronic equipment that absorbs heat generated by an electronic device and releases the heat to the outside, and includes a base material and a coating that covers at least a part of the surface of the base material.
The coating includes a metal oxide represented by the following formula (1) and / or ZnO, and a metal having a porous structure in which a plurality of needle-like or plate-like crystals are arranged in a mesh or sword shape. It is a heat radiating member for electronic equipment which consists of an oxide film.
M x L 3-x O 4 (1)
(In the above equation, M ≠ L,
M is selected from the group consisting of Mg, Fe, Zn, Mn, Cu, Co, Cr, Ni,
L is selected from the group consisting of Co, Al, Fe, and Cr, and x satisfies 0 ≦ x ≦ 1. )

(2)本発明の電子機器用放熱部材(単に「放熱部材」という。)を用いれば、電子機器の発熱を効率的に放熱でき、その信頼性や耐久性等の向上を図れる。このような効果が得られる理由は次のように考えられる。 (2) If the heat radiating member for electronic equipment (simply referred to as “heat radiating member”) of the present invention is used, the heat generated by the electronic equipment can be radiated efficiently, and the reliability and durability can be improved. The reason why such an effect can be obtained is considered as follows.

本発明に係る金属酸化物膜は、電子機器の使用温度域(例えば、25〜350℃、50〜300℃さらには100〜250℃)で高い放射率を発揮する。換言すると、本発明に係る金属酸化物膜は、その使用温度域で放出される電磁波(例えば、波長が2〜15μm、3〜12μmさらには3〜10μmの赤外線)に対して、高い吸収性および放出性を発揮する。   The metal oxide film according to the present invention exhibits a high emissivity in the operating temperature range of electronic equipment (for example, 25 to 350 ° C., 50 to 300 ° C., and further 100 to 250 ° C.). In other words, the metal oxide film according to the present invention has high absorptivity with respect to electromagnetic waves (for example, infrared rays having a wavelength of 2 to 15 μm, 3 to 12 μm, or 3 to 10 μm) emitted in the use temperature range. Exhibits release properties.

本発明の放熱部材は、そのような金属酸化物膜で被覆されているため、電子機器の発熱を熱伝導のみならず熱放射によっても、効率的に吸熱および放熱できる。こうして本発明の放熱部材は高い放熱性を発揮し、電子機器を所望の温度内に維持する。   Since the heat dissipating member of the present invention is coated with such a metal oxide film, the heat generated by the electronic device can be efficiently absorbed and dissipated not only by heat conduction but also by heat radiation. Thus, the heat dissipating member of the present invention exhibits high heat dissipation and maintains the electronic device within a desired temperature.

《放熱部材の製造方法》
本発明は、上述した放熱部材の製造方法としても把握できる。例えば、本発明は、基材の表面にFe、Zn、Cu、Co、Cr、Ni、MgまたはAlの一種以上の元素を含む金属または金属化合物を析出させる析出工程と、該析出工程後の基材を熱処理する熱処理工程とを備え、該基材の少なくとも一部の表面が金属酸化物膜で被覆された電子機器用放熱部材が得られる電子機器用放熱部材の製造方法でもよい。
<< Method of manufacturing heat dissipation member >>
The present invention can be grasped as a manufacturing method of the above-mentioned heat radiating member. For example, the present invention provides a deposition step of depositing a metal or metal compound containing one or more elements of Fe, Zn, Cu, Co, Cr, Ni, Mg, or Al on the surface of a substrate, and a group after the deposition step. And a heat treatment step for heat treating the material, and a method for producing a heat radiating member for electronic equipment in which a heat radiating member for electronic equipment in which at least a part of the surface of the base material is coated with a metal oxide film can be obtained.

《電子機器》
本発明は、上述した放熱部材を有する電子機器としても把握できる。例えば、本発明は、発熱源である電子デバイスと、該電子デバイスの少なくとも一面側に配設される上述した電子機器用放熱部材と、を備える電子機器でもよい。
"Electronics"
The present invention can also be grasped as an electronic device having the heat dissipation member described above. For example, the present invention may be an electronic device including an electronic device that is a heat generation source and the above-described heat dissipating member for an electronic device that is disposed on at least one side of the electronic device.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

金属酸化物膜に赤外線が吸収される様子を示す模式図である。It is a schematic diagram which shows a mode that infrared rays are absorbed by a metal oxide film. 基材に対する結晶体の成す角の説明図である。It is explanatory drawing of the angle | corner which the crystal body makes with respect to a base material. 放射率の測定装置の概要図である。It is a schematic diagram of the emissivity measuring apparatus. 試料に係る放射率の波長分布と、黒体の放射エネルギー密度の波長分布とを並記したグラフである。It is the graph which put together the wavelength distribution of the emissivity which concerns on a sample, and the wavelength distribution of the radiant energy density of a black body. 試料表面(被膜表面)を観察したSEM像である。It is the SEM image which observed the sample surface (coating surface). 試料表面に係るX線回折パターンである。It is an X-ray diffraction pattern concerning a sample surface. パワーモジュールの一形態を示す模式図である。It is a schematic diagram which shows one form of a power module. パワーモジュールの別形態を示す模式図である。It is a schematic diagram which shows another form of a power module.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の放熱部材のみならず、その製造方法や電子機器にも適宜該当する。製造方法に関する構成要素は物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in the present specification appropriately correspond not only to the heat dissipating member of the present invention but also to the manufacturing method and electronic equipment. A component related to the manufacturing method can also be a component related to an object. Which embodiment is the best depends on the target, required performance, and the like.

《放射率》
既述したように、熱移動は熱伝導や対流の他、熱放射(熱輻射)によっても生じる。全ての物体は絶対零度(0K)でない限り、原子の振動に応じた光(電磁波)を放出する。低温な物体は主に長波長域の光を放出し、高温な物体は長波長域から短波長域まで幅広い光を放出する。また、物体の温度が一定でも、その物体が放射する光の放射エネルギー密度は、各波長毎に異なり、波長分布している。物体が放出する光には、放射エネルギー密度(E)、温度(T)および波長(λ)の間に相関があり、(完全)黒体については公式化されている(プランクの放射則/図4参照)。
"Emissivity"
As described above, heat transfer is caused not only by heat conduction and convection but also by heat radiation (heat radiation). All objects emit light (electromagnetic waves) according to atomic vibrations unless they are at absolute zero (0K). A low temperature object mainly emits light in a long wavelength range, and a high temperature object emits a wide range of light from a long wavelength range to a short wavelength range. Even if the temperature of the object is constant, the radiant energy density of the light emitted from the object is different for each wavelength and has a wavelength distribution. The light emitted by an object has a correlation between radiant energy density (E), temperature (T), and wavelength (λ), and is formalized for (perfect) black bodies (Planck's radiation law / FIG. 4). reference).

プランクの放射則から導出される傾向(放射エネルギー密度の波長分布)は、絶対値こそ異なるものの、黒体以外の物体にも該当する。電子機器の使用温度域(25〜350℃程度)にある物体は、実質的に赤外線のみを放出し、その放射エネルギー密度は中赤外線域かその近傍域(λ=2〜15μm)に集中している。従って、放熱部材は、そのような波長域における放射率が高いほど、前述した使用温度域で電子機器から放出される放射エネルギーを多く吸収し、効率的な放熱を行える。   The tendency (wavelength distribution of radiant energy density) derived from Planck's radiation law also applies to objects other than black bodies, although their absolute values differ. An object in the operating temperature range (about 25 to 350 ° C.) of the electronic device emits substantially only infrared rays, and its radiant energy density is concentrated in the mid-infrared region or the vicinity thereof (λ = 2 to 15 μm). Yes. Accordingly, the higher the emissivity in such a wavelength range, the more the heat dissipation member absorbs the radiant energy emitted from the electronic device in the above-described operating temperature range, and the more efficient heat dissipation can be performed.

本発明に係る金属酸化物膜は、波長が2〜15μm、3〜12μmさらには3〜10μmである赤外線に対して、80%以上、85%以上さらには90%以上の放射率を発現し得る。従って、その金属酸化物膜で被覆された本発明の放熱部材は、電子機器の使用温度域において、少なくとも熱放射による高い放熱性を発揮し得る。   The metal oxide film according to the present invention can exhibit an emissivity of 80% or more, 85% or more, or 90% or more for infrared rays having a wavelength of 2 to 15 μm, 3 to 12 μm, or 3 to 10 μm. . Therefore, the heat dissipating member of the present invention coated with the metal oxide film can exhibit at least a high heat dissipating property due to heat radiation in the operating temperature range of the electronic device.

《金属酸化物膜》
(1)金属酸化物
金属酸化物膜を主に構成する金属酸化物は、式(1)に示すM3-x および/またはZnOからなる。なお、本明細書では、それら金属酸化物の一方または両方を併せて単に「金属酸化物」という。M3-xは、スピネル型、特にZnおよびFeを含むスピネル型であるとよい。また、X線回折により分析したときに、M3-xのピークが2θ=10°〜90°内に3つ以上観測されると好ましい。
《Metal oxide film》
(1) the metal oxide in the metal oxide film a metal oxide mainly constituting consists M x L 3-x O 4 and / or ZnO as shown in equation (1). In the present specification, one or both of these metal oxides are simply referred to as “metal oxide”. M x L 3−x O 4 may be a spinel type, particularly a spinel type containing Zn and Fe. In addition, when analyzed by X-ray diffraction, it is preferable that three or more peaks of M x L 3−x O 4 are observed within 2θ = 10 ° to 90 °.

(2)形態
金属酸化物膜は、多数の針状または板状の結晶体が不規則な網目状または剣山状をした多孔質構造を構成してなる。多数の針状の結晶体は、その長手方向が膜表面に略平行に伸びて互いに交差した網目状でもよいし、その長手方向が膜厚方向に伸びて林立した剣山状でもよい。多数の板状の結晶体は、ある程度の幅をもった壁状で膜厚方向へ伸びると共に、膜表面に沿った方向にランダムに伸びた網目状でもよい。なお、金属酸化物膜は基材表面に直接的に成膜されていると、耐久性に優れた放熱部材が低コストで得られて好ましい。
(2) Form The metal oxide film is formed by forming a porous structure in which a large number of needle-like or plate-like crystals have an irregular network shape or sword mountain shape. Many needle-like crystals may have a mesh shape in which the longitudinal direction extends substantially parallel to the film surface and intersects with each other, or may have a sword mountain shape in which the longitudinal direction extends in the film thickness direction. A large number of plate-like crystals may have a wall shape with a certain width, extend in the film thickness direction, and may have a mesh shape randomly extending in the direction along the film surface. In addition, it is preferable that the metal oxide film is directly formed on the surface of the base material because a heat radiating member having excellent durability can be obtained at low cost.

金属酸化物膜は、材質(金属酸化物)のみならず、その形態にも起因して、特定の波長域で高い放射率を発現していると推察される。金属酸化物膜を模式的に示した図1を用いて、その点について具体的に説明する。   The metal oxide film is presumed to exhibit a high emissivity in a specific wavelength range due to not only the material (metal oxide) but also its form. This point will be specifically described with reference to FIG. 1 schematically showing a metal oxide film.

図1に示すように、金属酸化物膜10は、例えば、基材16の表面から延びる結晶体12からなる多孔質構造をしている。金属酸化物膜10に入射した光1(赤外線)は、その一部が金属酸化物を含む結晶体12に吸収され、残部は結晶体12の壁面(表面)で反射される。その反射光は、多孔質構造の孔内(すなわち、隣り合う結晶体12の内部空間)へ侵入して、その一部が結晶体12に吸収され、さらにその残部が結晶体12の壁面(表面)で反射される。この繰り返しにより、反射光は大幅に低減し、結果的に、入射した光1の殆どが結晶体12に吸収される。こうして金属酸化物膜10は、特定波長域の光1を殆ど吸収するようになり、(中)赤外線域で高い吸収率(つまり放射率)を発現するようになったと考えられる。   As shown in FIG. 1, the metal oxide film 10 has a porous structure including, for example, a crystal body 12 extending from the surface of the substrate 16. A part of the light 1 (infrared ray) incident on the metal oxide film 10 is absorbed by the crystal body 12 containing the metal oxide, and the rest is reflected by the wall surface (surface) of the crystal body 12. The reflected light enters the pores of the porous structure (that is, the internal space of the adjacent crystal body 12), a part of which is absorbed by the crystal body 12, and the remaining part is the wall surface (surface) of the crystal body 12. ) Is reflected. By repeating this, the reflected light is greatly reduced, and as a result, most of the incident light 1 is absorbed by the crystal body 12. Thus, it is considered that the metal oxide film 10 almost absorbs the light 1 in a specific wavelength region and exhibits a high absorption rate (that is, emissivity) in the (middle) infrared region.

なお、現状は定かではないが、金属酸化物膜が高放射率を発現する他の要因として、金属酸化物膜の比表面積が大きいことや、金属酸化物膜を構成する材料の特定波長域における格子振動状態等が影響していることも考えられる。   In addition, although the present situation is not certain, other factors that cause the metal oxide film to exhibit high emissivity are that the specific surface area of the metal oxide film is large and that the material constituting the metal oxide film is in a specific wavelength range. It is also conceivable that the lattice vibration state is affected.

このような事情を踏まえて、例えば、多孔質構造の隣接する結晶体(図1に模式的に示す結晶体12)の膜表面に平行な方向の距離は10μm以下、5μm以下さらには2μm以下であると好ましい。また、結晶体の高さ(膜表面に略垂直な方向の長さ)は、0.02μm以上さらには0.1μm以上であると好ましい。さらに、結晶体の厚さ(膜表面に略平行な方向の幅)は、0.2μm以下さらには0.1μm以下であると好ましい。   In view of such circumstances, for example, the distance in the direction parallel to the film surface of the adjacent crystalline body having a porous structure (the crystalline body 12 schematically shown in FIG. 1) is 10 μm or less, 5 μm or less, or 2 μm or less. Preferably there is. The height of the crystal (the length in the direction substantially perpendicular to the film surface) is preferably 0.02 μm or more, more preferably 0.1 μm or more. Furthermore, the thickness of the crystal (width in the direction substantially parallel to the film surface) is preferably 0.2 μm or less, and more preferably 0.1 μm or less.

また、金属酸化物膜を構成する結晶体は、先端と底面の幅方向の中央との結線がθ=45〜90°、60°〜90°さらには65°〜90°を成して金属酸化物膜の表面側へ伸びていると好ましい。成す角(θ)は、例えば、図2に示すように、板状の結晶体12の先端14とその底面(図2では基材16の表面に一致する)の短手方向の中央とを結ぶ線が、その底面に対して成す角として求まる。   Further, in the crystal constituting the metal oxide film, the connection between the tip and the bottom in the width direction is θ = 45 to 90 °, 60 ° to 90 °, or 65 ° to 90 °. It is preferable to extend to the surface side of the material film. For example, as shown in FIG. 2, the formed angle (θ) connects the tip 14 of the plate-like crystal body 12 and the center in the short direction of the bottom surface (corresponding to the surface of the substrate 16 in FIG. 2). The line is determined as the angle formed with respect to the bottom surface.

(3)製造方法
金属酸化物膜は、例えば、電析、蒸着等により、基材上に金属または金属化合物を1層以上形成した後、熱処理することにより得られる。以下では、一例として、電析と熱処理により金属酸化物膜を基材上に成膜する方法を取り上げて説明する。
(3) Manufacturing method A metal oxide film is obtained by heat-processing, after forming a metal or a metal compound one or more layers on a base material by electrodeposition, vapor deposition, etc., for example. In the following, a method for forming a metal oxide film on a substrate by electrodeposition and heat treatment will be described as an example.

先ず、基材の表面にFe、Zn、Cu、Co、Cr、Ni、MgまたはAlの一種以上の金属元素、これらの金属元素の一種以上を含む金属(合金)または金属化合物を析出させる(析出工程)。電析液(電解液)は、少なくとも、それら金属元素の一種以上を含み、さらに有機酸を含むと好ましい。電析液の組成調整により、所望組成の金属酸化物膜を得ることが可能となる。電析液は、例えば、成分金属元素を硫酸塩、アミド硫酸塩、塩化物として調製される。   First, one or more metal elements of Fe, Zn, Cu, Co, Cr, Ni, Mg, or Al, and a metal (alloy) or metal compound containing one or more of these metal elements are deposited on the surface of the base material (deposition) Process). The electrodeposition solution (electrolytic solution) preferably contains at least one of these metal elements and further contains an organic acid. By adjusting the composition of the electrodeposition solution, a metal oxide film having a desired composition can be obtained. The electrodeposition liquid is prepared, for example, as a component metal element as sulfate, amide sulfate, or chloride.

有機酸は金属元素と錯体を形成し、炭素と酸素を取り込んだ電析層の形成に寄与する。こうして得られた電析層を熱処理することにより、金属酸化物膜の形態制御が容易となる。有機酸には、例えば、L−アスコルビン酸、クエン酸またはフマル酸の1以上を用いるとよい。   The organic acid forms a complex with the metal element and contributes to the formation of an electrodeposited layer incorporating carbon and oxygen. By heat-treating the electrodeposited layer thus obtained, the form control of the metal oxide film becomes easy. As the organic acid, for example, one or more of L-ascorbic acid, citric acid, and fumaric acid may be used.

析出工程は、基材を陰極として行うことにより、密着性に優れた金属酸化物膜の形成が可能となる。基材が非金属(非導電材)等であるときは、基材表面に導電処理等を施すとよい。   By performing the deposition step using the base material as a cathode, it is possible to form a metal oxide film having excellent adhesion. When the base material is a non-metal (non-conductive material) or the like, the surface of the base material may be subjected to a conductive treatment or the like.

電析液中の有機酸または有機酸塩の濃度は、合計で0.1g/L以上とするとよい。電流密度は0.1A/dm〜30A/dm、電析液の温度は0℃〜90℃、電析時間は1秒〜60分間とするよい。 The concentration of the organic acid or organic acid salt in the electrodeposition liquid is preferably 0.1 g / L or more in total. The current density may be 0.1 A / dm 2 to 30 A / dm 2 , the temperature of the electrodeposition solution may be 0 ° C. to 90 ° C., and the electrodeposition time may be 1 second to 60 minutes.

次に、熱処理工程は、析出工程後の基材(析出層)を、酸化雰囲気(大気雰囲気等)中で加熱するとよい。加熱時間は、基材に応じて、例えば、200℃〜600℃の範囲で調整されとよい。加熱時間は1分〜10時間、10分〜5時間さらに0.5〜3時間とするとよい。   Next, in the heat treatment step, the base material (deposition layer) after the precipitation step is preferably heated in an oxidizing atmosphere (such as an air atmosphere). The heating time may be adjusted in the range of 200 ° C. to 600 ° C., for example, depending on the substrate. The heating time is preferably 1 minute to 10 hours, 10 minutes to 5 hours, and further 0.5 to 3 hours.

《放熱部材》
放熱部材は、基材とその少なくとも一部の表面を被覆する金属酸化物膜とを有する。金属酸化物膜は上述した通りである。基材は熱伝導性に優れる金属からなると好ましい。例えば、基材は、鉄系金属(純Fe、Fe合金)の他、アルミニウム系金属(純Al、Al合金)または銅系金属(純Cu、Cu合金)等からなるとよい。
《Heat dissipation member》
The heat radiating member has a base material and a metal oxide film covering at least a part of the surface thereof. The metal oxide film is as described above. The substrate is preferably made of a metal having excellent thermal conductivity. For example, the base material may be made of an iron-based metal (pure Fe, Fe alloy), an aluminum-based metal (pure Al, Al alloy), a copper-based metal (pure Cu, Cu alloy), or the like.

放熱部材は、その具体的な形態を問わない。絶縁層(膜)や配線層が配設される基板でもよいし、ヒートシンクやヒートスプレッダ等でもよい。   The specific form of the heat dissipation member is not limited. A substrate on which an insulating layer (film) or a wiring layer is disposed may be used, or a heat sink or a heat spreader may be used.

放熱部材は、さらに、被膜表面(特に金属酸化物膜表面)に、カーボン、カーボンナノチューブまたはグラフェンの一種以上からなる付着層を有すると好ましい。そのような炭素系材料からなる付着層は、黒色をしており高放射率である。なお、付着層は、金属酸化物膜の多孔質構造の結晶体を被覆するだけでなく、その孔部に充填されるものでもよい。また、炭素系材料以外の黒色の顔料や染料等を用いて付着層を形成してもよい。   The heat dissipating member preferably further has an adhesion layer made of one or more of carbon, carbon nanotubes, or graphene on the surface of the coating (particularly the surface of the metal oxide film). The adhesion layer made of such a carbon-based material is black and has a high emissivity. Note that the adhesion layer may not only cover the crystal of the porous structure of the metal oxide film but also fill the pores. Further, the adhesion layer may be formed using a black pigment or dye other than the carbon-based material.

《電子機器》
(1)電子機器は、放熱部材(特に金属酸化物膜)により熱放射(放熱)される限り、その種類、構成、用途等を問わない。電子機器は、通常、主たる発熱源となる電子デバイスを一つ以上有する。電子デバイスの代表例は、半導体素子である。半導体素子は、CPUやメモリー等を構成する集積回路(IC、LSI)でも、いわゆるパワー半導体(パワートランジスタ、サイリスタ等)でもよい。パワートランジスタには、例えば、IGBT(Insulated Gate Bipolar Transistor/絶縁ゲートバイポーラトランジスタ)やFWD( Free Wheeling Diode/還流ダイオード)等がある。電子機器の代表例として、パワーデバイスを実装したパワーモジュールがあり、パワーモジュールはモータ駆動用インバータ等に用いられる。
"Electronics"
(1) As long as electronic equipment is thermally radiated (heat dissipated) by a heat dissipating member (particularly a metal oxide film), its type, configuration, use, etc. are not limited. Electronic devices usually have one or more electronic devices that are the main heat sources. A typical example of an electronic device is a semiconductor element. The semiconductor element may be an integrated circuit (IC, LSI) constituting a CPU, a memory, or the like, or a so-called power semiconductor (power transistor, thyristor, etc.). Examples of the power transistor include an IGBT (Insulated Gate Bipolar Transistor) and an FWD (Free Wheeling Diode). A typical example of an electronic device is a power module on which a power device is mounted, and the power module is used for an inverter for driving a motor or the like.

(2)本発明の放熱部材を用いた電子機器の一例であるパワーモジュール2の概要を図7Aに示した。パワーモジュール2は、パワーデバイス20と、それを搭載する基板21(放熱部材)と、パワーデバイス20と基板21を絶縁する絶縁層22と、絶縁層22を介してパワーデバイス20と基板21を接合する接合層23と、パワーデバイス20を封止する封止体24とを備える。パワーデバイス20はIGBTやFWD等(配線を含む)からなり、絶縁層22と封止体24は樹脂からなり、接合層23は半田や熱伝導性グリース等からなる。 (2) FIG. 7A shows an outline of a power module 2 which is an example of an electronic device using the heat dissipation member of the present invention. The power module 2 joins the power device 20 and the substrate 21 via the insulating layer 22, the power device 20, a substrate 21 (heat dissipation member) on which the power device 20 is mounted, an insulating layer 22 that insulates the power device 20 and the substrate 21. A bonding layer 23 for sealing, and a sealing body 24 for sealing the power device 20. The power device 20 is made of IGBT, FWD or the like (including wiring), the insulating layer 22 and the sealing body 24 are made of resin, and the bonding layer 23 is made of solder, heat conductive grease or the like.

基板21は、金属板211(基材)とその表面を被覆する被膜212とからなる。金属板211は、高熱伝導性のアルミニウム系金属または銅系金属からなる。被膜212は、本発明に係る金属酸化物膜からなる。   The board | substrate 21 consists of the metal plate 211 (base material) and the film 212 which coat | covers the surface. The metal plate 211 is made of a highly heat conductive aluminum metal or copper metal. The coating 212 is made of a metal oxide film according to the present invention.

(3)本発明の放熱部材を用いた電子機器の別例であるパワーモジュール3の概要を図7Bに示した。なお、パワーモジュール2と同様な構成については、同符号または同名称を付して、その説明を省略する。 (3) FIG. 7B shows an outline of a power module 3 which is another example of an electronic device using the heat dissipation member of the present invention. In addition, about the structure similar to the power module 2, the same code | symbol or the same name is attached | subjected, and the description is abbreviate | omitted.

パワーデバイス3は、パワーデバイス20が絶縁層22および接合層331を介して基板32の一面側に搭載されてなる。基板32の他面側には接合層332を介してヒートシンク31(放熱部材)が配設されている。ヒートシンク31は、金属板311(基材)とその表面を被覆する被膜312とからなる。ヒートシンク31も基板21と同様に、金属板311は高熱伝導性金属からなり、被膜312は本発明に係る金属酸化物膜からなる。   In the power device 3, the power device 20 is mounted on one surface side of the substrate 32 through the insulating layer 22 and the bonding layer 331. A heat sink 31 (heat radiating member) is disposed on the other surface side of the substrate 32 via a bonding layer 332. The heat sink 31 includes a metal plate 311 (base material) and a coating 312 covering the surface thereof. Similarly to the substrate 21, the metal plate 311 is made of a highly heat conductive metal, and the coating 312 is made of the metal oxide film according to the present invention.

いずれの形態でも、パワーデバイス20の発熱は、基板21またはヒートシンク31へ熱伝導・熱放射されて吸熱されると共に、基板21またはヒートシンク31から外部へ熱伝導・熱放射により放熱される。   In any form, the heat generated by the power device 20 is thermally conducted and radiated to the substrate 21 or the heat sink 31 and absorbed, and is radiated from the substrate 21 or the heat sink 31 to the outside by the conduction and heat radiation.

基材上に金属酸化物膜(被膜)を成膜した試料を製作した。この試料の放射率を測定すると共に、その被膜を観察した。このような具体例に基づいて、以下に本発明をさらに詳しく説明する。   A sample in which a metal oxide film (film) was formed on a substrate was manufactured. While measuring the emissivity of this sample, the film was observed. Based on such a specific example, the present invention will be described in more detail below.

《試料の製造》
(1)析出工程
基材として、4cm角×1mm厚の純鉄板を用意した。電析液として、1Lあたり、FeSO・7HO:293g、ZnSO・7HO:10g、L−アスコルビン酸:3g、クエン酸:1gを溶解させた水溶液を調製した。
<Production of sample>
(1) Precipitation process The pure iron plate of 4 cm square x 1 mm thickness was prepared as a base material. An aqueous solution in which FeSO 4 .7H 2 O: 293 g, ZnSO 4 .7H 2 O: 10 g, L-ascorbic acid: 3 g, and citric acid: 1 g were prepared per 1 L as an electrodeposition solution.

基材を電析液に浸漬して、陰極:基材、陽極:純鉄として、直流を通電した。この際、電析液の浴温度:50℃、電流密度:5A/dm、通電時間:10分間とした。こうして基材の表面に、厚み:約10μmの合金膜を析出させた。 The substrate was immersed in an electrodeposition solution, and direct current was applied as a cathode: substrate and anode: pure iron. At this time, the bath temperature of the electrodeposition solution was 50 ° C., the current density was 5 A / dm 2 , and the energization time was 10 minutes. Thus, an alloy film having a thickness of about 10 μm was deposited on the surface of the substrate.

(2)熱処理工程
析出工程後の基材を電気炉に入れて、大気雰囲気下で580℃×1時間加熱した。その後、電気炉から取り出した基材を大気中で室温まで放冷した。こうして、基材上に被膜が形成された試料を得た。
(2) Heat treatment step The substrate after the precipitation step was put in an electric furnace and heated at 580 ° C for 1 hour in an air atmosphere. Thereafter, the substrate taken out from the electric furnace was allowed to cool to room temperature in the atmosphere. Thus, a sample in which a film was formed on the substrate was obtained.

《放射率の測定》
(1)図3に概要を示した測定装置を用いて、試料の放射率を間接測定法により求めた。すなわち、試料の全反射率を測定した後、キルヒホフの法則(放射率=100%−全反射率)から放射率を算出した。具体的には、内部が金でコーティングされた積分球付きのフーリエ変換赤外分光光度計(株式会社島津製作所製UV−3600/ISR−3100)を用いて測定した。その測定結果を図4に示した。なお、図4には、プランクの放射則により求めた黒体の放射エネルギー密度の波長分布も並記した。
<Measurement of emissivity>
(1) Using the measuring apparatus outlined in FIG. 3, the emissivity of the sample was determined by an indirect measurement method. That is, after measuring the total reflectivity of the sample, the emissivity was calculated from Kirchhoff's law (emissivity = 100% -total reflectivity). Specifically, the measurement was performed using a Fourier transform infrared spectrophotometer (UV-3600 / ISR-3100, manufactured by Shimadzu Corporation) with an integrating sphere whose inside was coated with gold. The measurement results are shown in FIG. In FIG. 4, the wavelength distribution of the radiant energy density of the black body determined by Planck's radiation law is also shown.

(2)図4から明らかなように、波長2〜15μmの赤外線域において、試料は80%以上の高い放射率を発現した。また、同じ赤外線域でも、波長16〜18μmの赤外線域では、放射率が40%位まで急減することも明らかとなった。これらのことを併せて考慮すると、試料は2〜15μmとなる波長域でのみ、特異的に安定した高い放射率を発現することがわかった。 (2) As apparent from FIG. 4, the sample exhibited a high emissivity of 80% or more in the infrared region having a wavelength of 2 to 15 μm. It was also found that even in the same infrared region, the emissivity rapidly decreases to about 40% in the infrared region having a wavelength of 16 to 18 μm. Considering these matters together, it was found that the sample exhibited a specific and stable high emissivity only in the wavelength range of 2 to 15 μm.

さらに、黒体の放射エネルギー密度の波長分布から、2〜15μmの波長域では、主に50〜300℃の物体から放射エネルギー密度の高い赤外線が放出されることがわかる。従って、その温度域(50〜300℃)にある物体から放出される赤外線は、対応する波長域(2〜15μm)で高い放射率を有する試料により、効率よく吸収・放出されることになる。このことから、その試料と同様な構成からなる放熱部材は、電子機器の使用温度域(25〜350℃)において、高い熱放射性を発揮し、放熱性に優れるものとなる。   Furthermore, it can be seen from the wavelength distribution of the radiant energy density of the black body that infrared rays having a high radiant energy density are emitted mainly from objects of 50 to 300 ° C. in the wavelength region of 2 to 15 μm. Therefore, infrared rays emitted from an object in the temperature range (50 to 300 ° C.) are efficiently absorbed and emitted by the sample having a high emissivity in the corresponding wavelength range (2 to 15 μm). From this, the heat radiating member which consists of the structure similar to the sample exhibits high thermal radiation in the use temperature range (25-350 degreeC) of an electronic device, and becomes excellent in heat dissipation.

《表面観察》
試料の被膜表面を走査型電子顕微鏡(SEM)で観察した。そのSEM像を図5に示した。図5から明らかなように、試料の被膜は、基材表面から伸びる多数の板状の結晶体からなる多孔質構造をしていることがわかる。より具体的にいうと、多数の板状の結晶体がある程度の幅をもって被膜の厚み方向へ壁状に伸びると共に、表面方向(平面視の横方向)にもランダムに伸びている。こうして、全体として複雑な網目状の多孔質構造からなる被膜が基材表面に形成されていることがわかった。
<< Surface observation >>
The coating surface of the sample was observed with a scanning electron microscope (SEM). The SEM image is shown in FIG. As can be seen from FIG. 5, the coating film of the sample has a porous structure composed of a large number of plate-like crystals extending from the substrate surface. More specifically, a large number of plate-like crystals extend in a wall shape in the thickness direction of the film with a certain width, and also randomly in the surface direction (lateral direction in plan view). Thus, it was found that a film having a complicated network-like porous structure as a whole was formed on the substrate surface.

図5に示したSEM像を用いて、切線法(SEM像の上下方向と左右方向にそれぞれ等間隔の直線を引いて、この直線に沿って隣り合う結晶体の間隔を測定する方法)により、隣り合う結晶体の間隔を測定した。図5に示した観察域を含む5つの領域についても、同様にSEM像から隣接する結晶体の間隔を測定した。この結果、その間隔の上限値は0.7μmであった。このことから、隣接する結晶体の間隔(膜表面に平行な方向の距離)は0.7μm以下であることがわかった。   Using the SEM image shown in FIG. 5, the slicing method (a method of measuring the distance between adjacent crystal bodies along the straight line by drawing straight lines at equal intervals in the vertical and horizontal directions of the SEM image), The interval between adjacent crystals was measured. For the five regions including the observation region shown in FIG. 5, the interval between adjacent crystal bodies was also measured from the SEM image. As a result, the upper limit value of the interval was 0.7 μm. From this, it was found that the interval between adjacent crystal bodies (distance in the direction parallel to the film surface) was 0.7 μm or less.

《断面観察》
試料の被膜をその厚み方向に切断した断面の3箇所をSEMで観察した。そのSEM像に基づいて、図2に示す角度(θ)を測定した。その下限値は71°であった。このことから、結晶体が基材に対して成す角は71°以上となることがわかった。
<< Section observation >>
Three places of the cross section which cut | disconnected the film of the sample in the thickness direction were observed by SEM. Based on the SEM image, the angle (θ) shown in FIG. 2 was measured. The lower limit was 71 °. From this, it was found that the angle formed by the crystal with respect to the base material was 71 ° or more.

《XRD》
試料の被膜をX線回折により分析した結果を図6に示した。被膜は、スピネル型金属酸化物(ZnFeまたはFe)から主になり、ZnOも含むことがわかった。また、その被膜を透過型電子顕微鏡(TEM)で分析したところ、スピネル型金属酸化物にはZnFeが含まれていることが確認された。
<< XRD >>
The result of analyzing the film of the sample by X-ray diffraction is shown in FIG. It was found that the coating was mainly made of spinel metal oxide (ZnFe 2 O 4 or Fe 3 O 4 ) and also contained ZnO. Moreover, when the film was analyzed with the transmission electron microscope (TEM), it was confirmed that the spinel type metal oxide contains ZnFe 2 O 4 .

《補足》
上述した実施例では、一例として、ZnFe、FeおよびZnOを含む金属酸化物膜が、鉄板(基材)上に形成された試料(放熱部材)を示した。もっとも、その基材はアルミニウム系金属や銅系金属でもよく、また、金属酸化物膜の組成や形態も所望範囲に調整可能である。このことは、本発明者が先に提案しているWO2017/145915号公報の記載から明らかである。この点で、その公報に記載されている内容は、本発明の趣旨に沿う範囲内で、適宜、本明細書の一部をなす。
《Supplement》
In the embodiment described above, as an example, a sample (heat radiating member) in which a metal oxide film containing ZnFe 2 O 4 , Fe 3 O 4 and ZnO is formed on an iron plate (base material) is shown. However, the base material may be an aluminum-based metal or a copper-based metal, and the composition and form of the metal oxide film can be adjusted to a desired range. This is clear from the description of WO2017 / 145915 previously proposed by the present inventor. In this respect, the contents described in the publication form part of the present specification as appropriate within the scope of the gist of the present invention.

10 金属酸化物膜
12 結晶体
14 結晶体の先端
16 基材
DESCRIPTION OF SYMBOLS 10 Metal oxide film 12 Crystal 14 Tip of crystal 16 Base material

Claims (10)

電子デバイスの発熱を吸収して外部へ放出する電子機器用放熱部材であって、
基材と該基材の少なくとも一部の表面を被覆する被膜とを有し、
該被膜は、下記の式(1)で表される金属酸化物および/またはZnOを含み、複数の針状または板状の結晶体が網目状または剣山状に配置された多孔質構造を有する金属酸化物膜からなる電子機器用放熱部材。
3-x (1)
(上記式において、M≠Lであり、
MはMg、Fe、Zn、Mn、Cu、Co、Cr、Niからなる群から選ばれ、
LはCo、Al、Fe、Crからなる群から選ばれ、xは、0≦x≦1を満たす。)
A heat dissipation member for electronic equipment that absorbs heat generated by an electronic device and releases the heat to the outside.
A substrate and a coating covering at least a part of the surface of the substrate;
The coating includes a metal oxide represented by the following formula (1) and / or ZnO, and a metal having a porous structure in which a plurality of needle-like or plate-like crystals are arranged in a mesh or sword shape. A heat dissipating member for electronic equipment comprising an oxide film.
M x L 3-x O 4 (1)
(In the above equation, M ≠ L,
M is selected from the group consisting of Mg, Fe, Zn, Mn, Cu, Co, Cr, Ni,
L is selected from the group consisting of Co, Al, Fe, and Cr, and x satisfies 0 ≦ x ≦ 1. )
前記金属酸化物膜は、波長が2〜15μmである赤外線に対する放射率が80%以上である請求項1に記載の電子機器用放熱部材。   2. The heat dissipation member for electronic equipment according to claim 1, wherein the metal oxide film has an emissivity of 80% or more for infrared rays having a wavelength of 2 to 15 μm. ヒートシンクまたはヒートスプレッダである請求項1または2に記載の電子機器用放熱部材。   The heat dissipating member for an electronic device according to claim 1, wherein the heat dissipating member is an heat sink or a heat spreader. 前記基材は金属からなる請求項1〜3のいずれかに記載の電子機器用放熱部材。   The said base material consists of metals, The heat radiating member for electronic devices in any one of Claims 1-3. 前記MはZnであり、前記LはFeであり
前記金属酸化物膜は、ZnFeとZnOを少なくとも含む請求項1〜4のいずれかに記載の電子機器用放熱部材。
The M is Zn, the L is Fe, and the metal oxide film contains at least ZnFe 2 O 4 and ZnO.
前記金属酸化物膜の表面に平行な方向に関して前記多孔質構造の隣接する結晶体間の距離は10μm以下である請求項1〜5のいずれかに記載の電子機器用放熱部材。   The heat dissipation member for an electronic device according to any one of claims 1 to 5, wherein a distance between adjacent crystalline bodies of the porous structure in a direction parallel to the surface of the metal oxide film is 10 µm or less. 前記結晶体は、先端と底面の幅方向の中央との結線が該底面と45〜90°を成して前記金属酸化物膜の表面側へ伸びている請求項1〜6のいずれかに記載の電子機器用放熱部材。   7. The crystal body according to claim 1, wherein a connection between the tip and the center in the width direction of the bottom surface extends to the surface side of the metal oxide film at 45 to 90 ° with the bottom surface. Heat dissipation member for electronic equipment. 前記被膜は、さらに、カーボン、カーボンナノチューブまたはグラフェンの一種以上からなる付着層を前記金属酸化物膜の表面に有する請求項1〜7のいずれかに記載の電子機器用放熱部材。   The said coating film is a heat radiating member for electronic devices in any one of Claims 1-7 which further has the adhesion layer which consists of 1 or more types of carbon, a carbon nanotube, or a graphene on the surface of the said metal oxide film. 基材の表面にFe、Zn、Cu、Co、Cr、Ni、MgまたはAlの一種以上の元素を含む金属または金属化合物を析出させる析出工程と、
該析出工程後の基材を熱処理する熱処理工程とを備え、
該基材の少なくとも一部の表面が金属酸化物膜で被覆された請求項1〜8のいずれかに記載の電子機器用放熱部材が得られる電子機器用放熱部材の製造方法。
A deposition step of depositing a metal or metal compound containing one or more elements of Fe, Zn, Cu, Co, Cr, Ni, Mg or Al on the surface of the substrate;
A heat treatment step of heat treating the substrate after the precipitation step,
The manufacturing method of the heat radiating member for electronic devices from which the heat radiating member for electronic devices in any one of Claims 1-8 by which at least one part surface of this base material was coat | covered with the metal oxide film.
発熱源である電子デバイスと、
該電子デバイスの少なくとも一面側に配設される請求項1〜8のいずれかに記載の電子機器用放熱部材と、
を備える電子機器。
An electronic device that is a heat source;
The heat dissipating member for electronic equipment according to any one of claims 1 to 8, disposed on at least one surface side of the electronic device,
Electronic equipment comprising.
JP2018037017A 2018-03-02 2018-03-02 Heat dissipation member for electronic apparatus, method for manufacturing the same, and electronic apparatus Pending JP2019151881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037017A JP2019151881A (en) 2018-03-02 2018-03-02 Heat dissipation member for electronic apparatus, method for manufacturing the same, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037017A JP2019151881A (en) 2018-03-02 2018-03-02 Heat dissipation member for electronic apparatus, method for manufacturing the same, and electronic apparatus

Publications (1)

Publication Number Publication Date
JP2019151881A true JP2019151881A (en) 2019-09-12

Family

ID=67948369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037017A Pending JP2019151881A (en) 2018-03-02 2018-03-02 Heat dissipation member for electronic apparatus, method for manufacturing the same, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2019151881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068838A (en) * 2019-10-25 2021-04-30 株式会社日立製作所 Power module and power semiconductor device using the same
WO2022196497A1 (en) * 2021-03-16 2022-09-22 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner indoor unit, air conditioner outdoor unit, and refrigerator
WO2022224368A1 (en) * 2021-04-21 2022-10-27 三菱電機株式会社 Heat-dissipating member and heat sink

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068838A (en) * 2019-10-25 2021-04-30 株式会社日立製作所 Power module and power semiconductor device using the same
JP7359642B2 (en) 2019-10-25 2023-10-11 株式会社日立製作所 power semiconductor device
WO2022196497A1 (en) * 2021-03-16 2022-09-22 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner indoor unit, air conditioner outdoor unit, and refrigerator
WO2022224368A1 (en) * 2021-04-21 2022-10-27 三菱電機株式会社 Heat-dissipating member and heat sink
DE112021007569T5 (en) 2021-04-21 2024-03-28 Mitsubishi Electric Corporation RADIANT AND HEAT SINK
JP7486666B2 (en) 2021-04-21 2024-05-17 三菱電機株式会社 Heat dissipation member and heat sink

Similar Documents

Publication Publication Date Title
KR101077378B1 (en) Heat-radiating substrate and manufacturing method thereof
JP2019151881A (en) Heat dissipation member for electronic apparatus, method for manufacturing the same, and electronic apparatus
US9551082B2 (en) Insulated metal substrate
BR112019014637A2 (en) METHOD FOR MANUFACTURING AN ELECTRONIC POWER MODULE, SUBSTRATE FOR AN ELECTRONIC POWER MODULE, AND, ELECTRONIC POWER MODULE
US8624123B2 (en) Printed circuit board
JP2011023475A (en) Insulating substrate, insulating circuit board, semiconductor device, method of manufacturing the insulating substrate, and method of manufacturing the insulating circuit board
KR100934476B1 (en) Circuit board and method of manufacturing the same
KR101587004B1 (en) a LED array board
TW201221893A (en) Heat sinking element and method of treating a heat sinking element
JP2009099753A (en) Heat sink
JP5175320B2 (en) Heat dissipation board and manufacturing method thereof
JP3159040U (en) Carbon nanotube heat sink
WO2012081434A1 (en) Semiconductor device
JP2012004527A (en) Heat-radiating substrate and method of manufacturing the same
Lee et al. Heat dissipation performance of metal-core printed circuit board prepared by anodic oxidation and electroless deposition
KR101260179B1 (en) A Laminated Heat Dissipating Plate and An Electronic Assembly Structure Using the Same
JP2010192897A (en) Substrate for holding at least one component, and method for producing substrate
JPH04255254A (en) Metal board
JP5748487B2 (en) Circuit board and electronic device using the same
JP5875102B2 (en) Manufacturing method of semiconductor module
JP2010045184A (en) Thermally conductive plate component and electronic component with the same
US20230103241A1 (en) Thermal coating of power electronics boards for thermal management
Caylan et al. Graphene/copper heterostructures for thermal management
Marconnet et al. Nanoscale conformable coatings for enhanced thermal conduction of carbon nanotube films
US10777484B2 (en) Heat sink plate