JP2019151761A - Property improvement method of light oil - Google Patents

Property improvement method of light oil Download PDF

Info

Publication number
JP2019151761A
JP2019151761A JP2018038723A JP2018038723A JP2019151761A JP 2019151761 A JP2019151761 A JP 2019151761A JP 2018038723 A JP2018038723 A JP 2018038723A JP 2018038723 A JP2018038723 A JP 2018038723A JP 2019151761 A JP2019151761 A JP 2019151761A
Authority
JP
Japan
Prior art keywords
light oil
heat
clay
treated
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018038723A
Other languages
Japanese (ja)
Other versions
JP7083991B2 (en
Inventor
秀和 小松
Hidekazu Komatsu
秀和 小松
智史 和田
Tomohito Wada
智史 和田
萩原 貴子
Takako Hagiwara
貴子 萩原
鈴木 崇
Takashi Suzuki
崇 鈴木
藤田 健一
Kenichi Fujita
健一 藤田
慎 皆瀬
Shin Minase
慎 皆瀬
崇之 早川
Takayuki Hayakawa
崇之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hojo Co Ltd
Gunma Prefecture
Hojun Co Ltd
Original Assignee
Hojo Co Ltd
Gunma Prefecture
Hojun Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hojo Co Ltd, Gunma Prefecture, Hojun Co Ltd filed Critical Hojo Co Ltd
Priority to JP2018038723A priority Critical patent/JP7083991B2/en
Publication of JP2019151761A publication Critical patent/JP2019151761A/en
Application granted granted Critical
Publication of JP7083991B2 publication Critical patent/JP7083991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Abstract

To provide a property improvement method of light oil that can improve properties of the light oil by removing polycyclic aromatic compounds to reduce coloration.SOLUTION: Provided is a property improvement method of light oil comprising contact-treating heat-treated clay obtained by heat-treating acid clay and light oil in a gaseous atmosphere such as carbon dioxide, argon, in a light oil tank with light shielding or incomplete light shielding, and removing the polycyclic aromatic compounds to reduce the coloration.SELECTED DRAWING: None

Description

本発明は軽油の性状改善方法に関する。 The present invention relates to a method for improving the properties of light oil.

軽油は沸点範囲がおよそ170〜370℃の炭化水素成分で構成されており、着火性向上(セタン化向上)に有効なパラフィンのほか、ナフテン、単環芳香族化合物、2環芳香族及び3環以上の芳香族化合物が含まれている。軽油中の芳香族化合物が増加するとパティキュレート(微小粒子状物質)の排出量が増加する可能性があるとも言われており、特に2環以上の多環芳香族化合物がパティキュレート生成に関与する傾向がみられるといわれている(非特許文献1)。 Light oil is composed of hydrocarbon components with a boiling range of approximately 170-370 ° C. In addition to paraffin, which is effective in improving ignitability (improving cetaneation), naphthene, monocyclic aromatic compounds, bicyclic aromatic compounds and tricyclic rings The above aromatic compounds are contained. It is said that the emission of particulates (microparticulate matter) may increase when the aromatic compounds in light oil increase, and in particular, polycyclic aromatic compounds with two or more rings are involved in the generation of particulates. It is said that there is a tendency (Non-Patent Document 1).

排出ガスのクリーン化の観点から、軽油中の多環芳香族化合物の削減が求められており、これに対応する技術として、メタンを主成分とする天然ガスを改質反応で一酸化炭素と水素を含む合成ガス(syngas)に変換し、これをフィッシャー・トロプシュ(FT)反応で増炭することによって、芳香族や硫黄分をほとんど含まない軽油等の中間留分を合成するジーティーエル(GTL(gas to liquid))プラント技術の開発も行われてきている(非特許文献2)。しかし、GTLプラントは天然ガス田の近傍で比較的大規模なプラントを設置する必要があるほか、従来の原油由来の中間留分の処理には適用できない難しさがある。 From the viewpoint of cleaner exhaust gas, there is a need to reduce polycyclic aromatic compounds in light oil, and as a corresponding technology, natural gas mainly composed of methane is reformed with carbon monoxide and hydrogen. GTL (GTL) that synthesizes middle distillates such as light oils that contain almost no aromatics and sulfur by converting to syngas containing gas and augmenting it with the Fischer-Tropsch (FT) reaction (gas to liquid)) Plant technology has also been developed (Non-Patent Document 2). However, the GTL plant needs to have a relatively large plant in the vicinity of the natural gas field, and it is difficult to apply it to the conventional middle distillate derived from crude oil.

市販軽油の中には比較的無色透明のものから、淡黄色や淡黄緑色など呈するものもある。このように呈色する軽油は主に波長380以上780nm以下の範囲での紫外・可視光線の吸収と関係がある。一般的に、ベンゼン環を複数持っている多環芳香族化合物は共役二重結合を有することで紫外・可視領域の光を吸収し、さらに電子の共役系が大きくなるとその吸収波長は長波長側にシフトする。たとえば、ナフタレン(2環)の主な吸収波長は245〜285nmなのに対し、アントラセン(3環)の主な吸収波長は300〜380nm、フェナントレン(3環)は260〜380nm、ピレン(4環)は250nm〜380nm、ナフタセン(4環)は300nm〜500nmとなっている。このように、芳香族が紫外可視光吸収を示すことを応用して、高速液体クロマトグラフィー(HPLC)における芳香族の検出に紫外吸収検出器が用いられている(非特許文献3)。このような知見から、市販軽油の中で淡黄色や淡黄緑色を呈するものにあっては、多環芳香族を含む可能性があるものと思われる。 Some commercially available light oils are relatively colorless and transparent, and light yellow or light yellowish green. The light oil thus colored is mainly related to the absorption of ultraviolet and visible light in the wavelength range of 380 to 780 nm. In general, polycyclic aromatic compounds having multiple benzene rings have a conjugated double bond that absorbs light in the ultraviolet and visible regions, and when the conjugated system of electrons becomes larger, the absorption wavelength is longer. Shift to. For example, the main absorption wavelength of naphthalene (2 rings) is 245 to 285 nm, whereas the main absorption wavelength of anthracene (3 rings) is 300 to 380 nm, phenanthrene (3 rings) is 260 to 380 nm, and pyrene (4 rings) is 250 nm to 380 nm and naphthacene (4 rings) are 300 nm to 500 nm. Thus, an ultraviolet absorption detector is used for the detection of aromatics in high performance liquid chromatography (HPLC) by applying the fact that aromatics exhibit ultraviolet visible light absorption (Non-patent Document 3). From such knowledge, it is considered that a commercially available light oil that exhibits light yellow or light yellow green may contain a polycyclic aromatic.

軽油中の多環芳香族化合物を除去する方法としては、軽油を水素化精製処理して芳香族化合物を低減させる軽油留分の製造方法(特許文献1)が開示されている。また、軽油を脱色する方法としては、着色した軽油留分を活性炭と接触させて着色原因物質を吸着除去する方法(特許文献2)、蛍光色などの着色がない軽油基材を製造する方法(特許文献3)が開示されている。 As a method for removing polycyclic aromatic compounds in light oil, a method for producing a light oil fraction (Patent Document 1) in which light oil is hydrorefined to reduce aromatic compounds is disclosed. In addition, as a method for decolorizing light oil, a method in which a colored light oil fraction is brought into contact with activated carbon to remove the color-causing substances by adsorption (Patent Document 2), and a method for producing a light oil base material without coloring such as fluorescent color ( Patent Document 3) is disclosed.

特開2012−251091号公報JP 2012-251091 A 特開平6−136370号公報JP-A-6-136370 特開2009−57404号公報JP 2009-57404 A

石油学会誌,42(6),365−375(1999)Journal of Petroleum Society, 42 (6), 365-375 (1999) Petrotech、25(8)、590−595(2002)Petrotech, 25 (8), 590-595 (2002) J.Jpn.Petrol.Inst.,Vol.59(6),311−316(2016)J. et al. Jpn. Petrol. Inst. , Vol. 59 (6), 311-316 (2016)

しかし上記の先行技術は、多環芳香族化合物または着色成分どちらか一方を除去対象とする処理技術であり、両者を同時に除去することは考慮されていない。 However, the above-described prior art is a treatment technique for removing either the polycyclic aromatic compound or the coloring component, and it is not considered to remove both at the same time.

本発明はかかる事情に鑑みてなされたものであり、原油由来の軽油に関し芳香族化合物及び呈色物質を同時に低減する軽油の性状改善技術を提供する。特に波長360nm以上780nm以下の紫外可視光を吸収するような多環芳香族化合物及び呈色物質の低減に関し好ましい方法を提供できる。 This invention is made | formed in view of this situation, and provides the property improvement technique of the light oil which reduces simultaneously an aromatic compound and a colored substance regarding the light oil derived from crude oil. In particular, it is possible to provide a preferable method for reducing polycyclic aromatic compounds and colored substances that absorb ultraviolet visible light having a wavelength of 360 nm or more and 780 nm or less.

本発明者らは鋭意研究を重ねた結果、(1)軽油槽において、軽油1000mlに対し、酸性白土を温度80℃以上250℃以下、空気流通下で3時間以上10時間以下処理して得た熱処理白土を30g以上150g以下添加することを特徴とする軽油の性状改善方法であり、(2)軽油槽の温度が15℃以上50℃以下であることを特徴とする(1)記載の軽油の性状改善方法であり、(3)軽油槽における熱処理白土と軽油との接触時間が2時間以上72時間以下であることを特徴とする(1)、または(2)記載の軽油の性状改善方法であり、(4)軽油槽が遮光されていることを特徴とする(1)、(2)、または(3)記載の軽油の性状改善方法であり、(5)遮光が不完全な軽油槽において、軽油の液面と当該槽との空間部分を二酸化炭素、アルゴン、窒素、ブタンおよびハイドロフルオロカーボン類から選ばれる少なくとも一種で置換することを特徴とする(1)、(2)、または(3)記載の軽油の性状改善方法を見出し、本発明を完成するに至った。 As a result of intensive research, the present inventors have obtained (1) in a light oil tank, acid clay was treated at a temperature of 80 ° C. or more and 250 ° C. or less for 3 hours or more and 10 hours or less with respect to 1000 ml of light oil. A method for improving the properties of light oil characterized by adding 30 g or more and 150 g or less of heat-treated clay. (2) The temperature of the light oil tank is 15 ° C. or more and 50 ° C. or less. (3) The method for improving the properties of light oil according to (1) or (2), wherein the contact time between the heat-treated clay and the light oil in the light oil tank is 2 hours or more and 72 hours or less. (4) The method for improving the properties of light oil according to (1), (2) or (3), characterized in that the light oil tank is shielded from light, and (5) in a light oil tank where light shielding is incomplete. The space between the oil level and the tank The method for improving the properties of gas oil according to (1), (2), or (3), characterized by substituting with at least one selected from carbon oxide, argon, nitrogen, butane and hydrofluorocarbons, It came to be completed.

以上、本発明によれば軽油中の多環芳香族化合物を除去することができ、さらに呈色を低減できる。 As described above, according to the present invention, the polycyclic aromatic compound in the light oil can be removed, and coloration can be further reduced.

以下に本発明の実施形態について具体的に説明するが、本発明の技術内容をより具体的に説明するためのものであり、本発明の範囲を限定するものではない。 Embodiments of the present invention will be specifically described below, but are intended to more specifically describe the technical contents of the present invention and do not limit the scope of the present invention.

(処理対象軽油)
処理対象の軽油に特に制限はない。すなわち、軽油のJIS規格(JIS K 2204)による特1号、1号、2号、3号及び特3号軽油に対し、好ましく用いることができる。特に高沸点成分が多く、呈色する傾向が強いと思われる1号軽油に対し好ましく用いることができる。
(Light oil to be treated)
There is no particular limitation on the light oil to be treated. That is, it can be preferably used for Special No. 1, No. 2, No. 2, No. 3 and Special No. 3 diesel oil according to JIS standard (JIS K 2204). In particular, it can be preferably used for No. 1 diesel oil, which has many high-boiling components and seems to have a strong tendency to color.

(酸性白土)
酸性白土のSi/Alモル比(ケイバン比)は3以上7以下、比表面積は特に限定されないが、20以上200m2/g以下のものを好ましく用いることができる。
(Acid clay)
The Si / Al molar ratio (Kayban ratio) of the acid clay is 3 or more and 7 or less, and the specific surface area is not particularly limited, but 20 or more and 200 m2 / g or less can be preferably used.

(酸性白土の熱処理条件)
酸性白土は、空気流通下で熱処理して水分等吸着物質を除去することで活性化することができる。酸性白土を空気流通下で熱処理して熱処理白土を得るときの温度は80℃以上250℃以下が好ましく、120℃以上230℃以下がより好ましく、130℃以上200℃以下が最も好ましい。この範囲未満では酸性白土中に水分が残留する傾向があり活性不十分な面がある。またこの範囲を超過すると酸性白土の構造が変化して軽油に対する性状改善効果が低下する傾向がある。また、前記熱処理の時間は3時間以上10時間以下が好ましく、4時間以上8時間以下がより好ましく、5時間以上6時間以下が最も好ましい。この範囲未満では熱処理白土と軽油との接触が十分に行われない傾向がある。熱処理時間は生産性の観点から6時間以下に抑えることが実用的である。
(Heat treatment conditions for acid clay)
Acidic clay can be activated by heat treatment under air flow to remove adsorbed substances such as moisture. The temperature at which the acid clay is heat-treated under air flow to obtain the heat-treated clay is preferably 80 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 230 ° C. or lower, and most preferably 130 ° C. or higher and 200 ° C. or lower. Below this range, there is a tendency for moisture to remain in the acid clay and there is a surface with insufficient activity. Moreover, when this range is exceeded, the structure of acid clay will change and the property improvement effect with respect to light oil tends to fall. The heat treatment time is preferably 3 hours or more and 10 hours or less, more preferably 4 hours or more and 8 hours or less, and most preferably 5 hours or more and 6 hours or less. If it is less than this range, there is a tendency that the contact between the heat-treated clay and the light oil is not sufficiently performed. It is practical to suppress the heat treatment time to 6 hours or less from the viewpoint of productivity.

(軽油槽への熱処理白土の添加量)
軽油槽への熱処理白土の添加量は軽油1000mlに対して30g以上150g以下が好ましく、60g以上130g以下がより好ましく、80g以上110g以下が最も好ましい。この範囲未満では十分な性状改善効果が得られない傾向がある。この範囲を超過すると、性状改善効果が頭打ちとなり不経済な面がある。
(Amount of heat-treated white clay added to the light oil tank)
The amount of heat-treated clay added to the light oil tank is preferably 30 g or more and 150 g or less, more preferably 60 g or more and 130 g or less, and most preferably 80 g or more and 110 g or less with respect to 1000 ml of light oil. If it is less than this range, there is a tendency that sufficient property improving effect cannot be obtained. If this range is exceeded, the effect of improving the properties will reach its peak, which is uneconomical.

(軽油槽)
軽油と酸性白土を接触処理するときに用いる軽油槽は内部に光が透過しないように遮光されていることが好ましいが、軽油槽の遮光が不完全な場合、軽油槽空間部分は不活性ガスまたは非酸化性ガスで置換することが好ましい。不活性ガスまたは非酸化性ガスには二酸化炭素、アルゴン、窒素、ブタン及びハイドロフルオロカーボン類を好ましく、二酸化炭素、アルゴン、窒素及びハイドロフルオロカーボン類をより好ましく、二酸化炭素、アルゴン及びハイドロフルオロカーボン類を最も好ましく用いることができる。これらの非酸化性ガスは一種単独で用いることができるほか、二種以上を任意の割合で混合することができる。
(Light oil tank)
The light oil tank used when the light oil and acid clay are contact-treated is preferably shielded from light so that light does not pass through the inside. However, if the light oil tank is not fully shielded, the light oil tank space portion is inert gas or Replacement with a non-oxidizing gas is preferred. Carbon dioxide, argon, nitrogen, butane and hydrofluorocarbons are preferred for the inert gas or non-oxidizing gas, carbon dioxide, argon, nitrogen and hydrofluorocarbons are more preferred, and carbon dioxide, argon and hydrofluorocarbons are most preferred. Can be used. These non-oxidizing gases can be used alone or in a combination of two or more.

(軽油槽の温度及び接触処理時間)
軽油槽の温度は15℃以上50℃以下が好ましく、17℃以上40℃以下がより好ましく、20℃以上30℃以下が最も好ましい。接触処理時間は2時間以上72時間以下が好ましく、6時間以上60時間以下がより好ましく、12時間以上48時間以下が最も好ましい。また、図1のように軽油槽内を攪拌することは、熱処理白土と軽油との接触が促進されるので好ましい。
(Light oil tank temperature and contact treatment time)
The temperature of the light oil tank is preferably 15 ° C or higher and 50 ° C or lower, more preferably 17 ° C or higher and 40 ° C or lower, and most preferably 20 ° C or higher and 30 ° C or lower. The contact treatment time is preferably from 2 hours to 72 hours, more preferably from 6 hours to 60 hours, and most preferably from 12 hours to 48 hours. Further, stirring in the light oil tank as shown in FIG. 1 is preferable because the contact between the heat treated clay and the light oil is promoted.

以下に実施例を示し、本発明をより詳細に開示する。また、これらの実施例及び比較例は表1及び表2に概要をまとめた。しかしながら、実施例等は本発明の本質を説明するためのものであり、これらによって本発明の範囲を限定的に解釈してはならない。 The following examples illustrate the present invention in more detail. These examples and comparative examples are summarized in Tables 1 and 2. However, the examples and the like are for explaining the essence of the present invention, and the scope of the present invention should not be construed as being limited thereto.

<軽油の性状改善評価方法>
軽油の性状改善評価は紫外可視吸収スペクトルにより行う。紫外可視吸収スペクトルは、光の波長(nm)と吸光度の関係で表され、吸光度が減少するほど無色に近づくことを意味する。本発明では、波長360nm以上780nm以下の吸光度の積分値を単に吸光度積分値と呼び、前記吸光度積分値を性状改善の指標とする。なお、吸光度は無次元量なので吸光度積分値の単位はnmとなる。軽油の吸光度積分値が30nm未満であれば、見た目ではほぼ無色である。従って、以下の実施例および比較例における軽油の性状改善評価は、吸光度積分値が30未満を適、30以上を否とする。
<Light oil property improvement evaluation method>
The property improvement evaluation of light oil is performed by UV-visible absorption spectrum. The UV-visible absorption spectrum is represented by the relationship between the wavelength of light (nm) and the absorbance, and it means that it becomes more colorless as the absorbance decreases. In the present invention, the integrated value of absorbance at wavelengths of 360 nm or more and 780 nm or less is simply referred to as absorbance integrated value, and the absorbance integrated value is used as an index for improving properties. Since the absorbance is a dimensionless quantity, the unit of the absorbance integrated value is nm. If the integrated value of absorbance of light oil is less than 30 nm, it is almost colorless in appearance. Accordingly, the light oil property improvement evaluation in the following examples and comparative examples is appropriate when the absorbance integral value is less than 30 and not more than 30.

<実施例1>
処理対象の軽油には市販のJIS1号軽油の中から黄色に呈色していたものを用いた。前記軽油について紫外可視吸収スペクトルを測定したところ、吸光度積分値は52.9nmであった。処理剤の酸性白土は空気中80℃で10時間熱処理することで熱処理白土1を得た。次に図1の装置を用い遮光された軽油槽内に前記軽油1000mlとともに熱処理白土1を150g加え、前記軽油槽の空間部分を窒素で置換した。次に前記軽油槽を40℃に保ち槽内を2時間攪拌して軽油と熱処理白土1を接触処理したところ、軽油はほぼ無色に性状改善された。処理前及び処理後の軽油の紫外可視吸収スペクトルを図2に示す。吸光度積分値は52.9nmから27.8nmに減少した。このように可視領域の吸光度が減少して無色に近くなり、本実施例による軽油の性状改善評価は適であった。なお、実施例2以降は、実施例1と同様に吸光度積分値を算出し性状改善評価を行った。
<Example 1>
As the light oil to be treated, a commercially available JIS No. 1 light oil that was colored yellow was used. When the ultraviolet visible absorption spectrum was measured about the said light oil, the absorbance integrated value was 52.9 nm. The acid clay of the treating agent was heat-treated at 80 ° C. for 10 hours in air to obtain heat-treated clay 1. Next, 150 g of heat-treated clay 1 was added together with 1000 ml of the light oil into the light oil tank that was shielded from light using the apparatus of FIG. 1, and the space portion of the light oil tank was replaced with nitrogen. Next, when the light oil tank was kept at 40 ° C. and the inside of the tank was stirred for 2 hours and the light oil and the heat-treated clay 1 were subjected to contact treatment, the light oil was improved to be almost colorless. The ultraviolet-visible absorption spectrum of the light oil before and after the treatment is shown in FIG. The absorbance integrated value decreased from 52.9 nm to 27.8 nm. Thus, the absorbance in the visible region decreased and became almost colorless, and the property improvement evaluation of light oil by this example was appropriate. In Example 2 and subsequent examples, the absorbance integrated value was calculated in the same manner as in Example 1, and property improvement evaluation was performed.

<実施例2>
酸性白土を空気中120℃で8時間熱処理することで熱処理白土2を得た。次に遮光された軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土2を130g加え、前記軽油槽の空間部分をブタンで置換した。次に前記軽油槽を30℃に保ち槽内を12時間攪拌して軽油と熱処理白土2を接触処理したところ、軽油の呈色は減少し、吸光度積分値は25.6nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 2>
The heat-treated clay 2 was obtained by heat-treating the acid clay at 120 ° C. in air for 8 hours. Next, 130 g of heat-treated white clay 2 was added together with 1000 ml of the same commercially available light oil as in Example 1 in the light oil tank protected from light, and the space portion of the light oil tank was replaced with butane. Next, when the light oil tank was kept at 30 ° C. and the inside of the tank was stirred for 12 hours and the light oil and the heat-treated clay 2 were contact-treated, the coloration of the light oil decreased and the integrated absorbance value decreased to 25.6 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例3>
酸性白土を空気中200℃で5時間熱処理することで熱処理白土3を得た。次に遮光された軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土3を80g加え、前記軽油槽の空間部分を置換せず空気のままとした。次に室温(20℃)において前記軽油槽内を6時間攪拌して軽油と熱処理白土3を接触処理したところ、軽油の呈色は減少し、吸光度積分値は27.0nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 3>
The heat-treated clay 3 was obtained by heat-treating the acid clay at 200 ° C. for 5 hours in the air. Next, 80 g of heat-treated clay 3 was added into the light oil tank protected from light and 1000 ml of the same commercially available light oil as in Example 1, and the space portion of the light oil tank was not replaced but left as air. Next, when the inside of the light oil tank was stirred for 6 hours at room temperature (20 ° C.) and the light oil and the heat-treated clay 3 were subjected to contact treatment, the coloration of the light oil decreased, and the absorbance integrated value decreased to 27.0 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例4>
酸性白土を空気中130℃で6時間熱処理することで熱処理白土4を得た。次に遮光された軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土4を110g加え、前記軽油槽の空間部分を二酸化炭素で置換した。次に室温(17℃)において前記軽油槽内を48時間攪拌して軽油と熱処理白土4を接触処理したところ、軽油の呈色は減少し、吸光度積分値は25.8nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 4>
The heat-treated clay 4 was obtained by heat-treating the acid clay at 130 ° C. in air for 6 hours. Next, 110 g of heat treated clay 4 was added to the light oil tank protected from light and 1000 ml of the same commercially available light oil as in Example 1, and the space portion of the light oil tank was replaced with carbon dioxide. Next, when the inside of the light oil tank was stirred for 48 hours at room temperature (17 ° C.) and the light oil and the heat-treated clay 4 were contact-treated, the coloration of the light oil decreased and the integrated value of absorbance decreased to 25.8 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例5>
酸性白土を空気中230℃で4時間熱処理することで熱処理白土5を得た。次に遮光された軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土5を60g加え、前記軽油槽の空間部分をアルゴンで置換した。次に前記軽油槽を15℃に保ち槽内を60時間攪拌して軽油と熱処理白土5を接触処理したところ、軽油の呈色は減少し、吸光度積分値は27.5nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 5>
The heat-treated clay 5 was obtained by heat-treating the acid clay at 230 ° C. for 4 hours in the air. Next, 60 g of heat-treated clay 5 was added together with 1000 ml of the same commercially available light oil as in Example 1 in the light oil tank protected from light, and the space portion of the light oil tank was replaced with argon. Next, when the light oil tank was kept at 15 ° C. and the inside of the tank was stirred for 60 hours and the light oil and the heat-treated white clay 5 were contact-treated, the coloration of the light oil decreased and the absorbance integrated value decreased to 27.5 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例6>
酸性白土を空気中250℃で3時間熱処理することで熱処理白土6を得た。次に遮光された軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土3を30g加え、前記軽油槽の空間部分をジフルオロメタンで置換した。次に前記軽油槽を50℃に保ち槽内を72時間攪拌して軽油と熱処理白土6を接触処理したところ、軽油の呈色は減少し、吸光度積分値は29.1nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 6>
The heat-treated clay 6 was obtained by heat-treating the acid clay at 250 ° C. in air for 3 hours. Next, 30 g of heat-treated clay 3 was added to the light oil tank protected from light and 1000 ml of the same commercial light oil as in Example 1, and the space portion of the light oil tank was replaced with difluoromethane. Next, when the light oil tank was kept at 50 ° C. and the inside of the tank was stirred for 72 hours and the light oil and the heat-treated clay 6 were contact-treated, the coloration of the light oil decreased, and the absorbance integrated value decreased to 29.1 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例7>
酸性白土を空気中180℃で5時間熱処理することで熱処理白土7を得た。次に透明な軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土7を140g加え、前記軽油槽の空間部分を二酸化炭素で置換した。次に前記軽油槽を16℃に保ち槽内を72時間攪拌して軽油と熱処理白土7を接触処理したところ、軽油の呈色は減少し、吸光度積分値は27.1nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 7>
The heat-treated clay 7 was obtained by heat-treating the acid clay at 180 ° C. for 5 hours in the air. Next, 140 g of heat-treated white clay 7 was added together with 1000 ml of the same commercially available light oil as in Example 1 in a transparent light oil tank, and the space portion of the light oil tank was replaced with carbon dioxide. Next, when the light oil tank was kept at 16 ° C. and the inside of the tank was stirred for 72 hours to contact the light oil and the heat-treated white clay 7, the coloration of the light oil decreased and the integrated value of absorbance decreased to 27.1 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例8>
酸性白土を空気中160℃で5時間熱処理することで熱処理白土8を得た。次に透明な軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土8を120g加え、前記軽油槽の空間部分をジフルオロメタンで置換した。次に室温(22℃)において前記軽油槽内を36時間攪拌して軽油と熱処理白土8を接触処理したところ、軽油の呈色は減少し、吸光度積分値は27.4nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 8>
The acid clay was heat-treated in air at 160 ° C. for 5 hours to obtain heat-treated clay 8. Next, 120 g of heat-treated clay 8 together with 1000 ml of the same commercially available light oil as in Example 1 was added into a transparent light oil tank, and the space portion of the light oil tank was replaced with difluoromethane. Next, when the inside of the light oil tank was stirred for 36 hours at room temperature (22 ° C.), the light oil and the heat-treated clay 8 were subjected to contact treatment. As a result, the coloration of the light oil decreased and the absorbance integrated value decreased to 27.4 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例9>
酸性白土を空気中140℃で6時間熱処理することで熱処理白土9を得た。次に透明な軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土9を100g加え、前記軽油槽の空間部分をアルゴンで置換した。次に前記軽油槽を25℃に保ち槽内を24時間攪拌して軽油と熱処理白土9を接触処理したところ、軽油の呈色は減少し、吸光度積分値は27.8nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 9>
The heat-treated clay 9 was obtained by heat-treating the acid clay at 140 ° C. for 6 hours in the air. Next, 100 g of heat-treated clay 9 was added together with 1000 ml of the same commercially available light oil as in Example 1 in a transparent light oil tank, and the space portion of the light oil tank was replaced with argon. Next, when the light oil tank was kept at 25 ° C. and the inside of the tank was stirred for 24 hours and the light oil and the heat-treated clay 9 were contact-treated, the coloration of the light oil decreased, and the absorbance integrated value decreased to 27.8 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例10>
酸性白土を空気中220℃で4時間熱処理することで熱処理白土10を得た。次に透明な軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土10を90g加え、前記軽油槽の空間部分をブタンで置換した。次に室温(18℃)において前記軽油槽内を60時間攪拌して軽油と熱処理白土10を接触処理したところ、軽油の呈色は減少し、吸光度積分値は27.2nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 10>
The heat-treated clay 10 was obtained by heat-treating the acid clay at 220 ° C. for 4 hours in the air. Next, 90 g of heat-treated white clay 10 was added into a transparent light oil tank together with 1000 ml of the same commercially available light oil as in Example 1, and the space portion of the light oil tank was replaced with butane. Next, when the inside of the light oil tank was stirred at room temperature (18 ° C.) for 60 hours and the light oil and the heat-treated clay 10 were contact-treated, the coloration of the light oil decreased and the integrated value of absorbance decreased to 27.2 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<実施例11>
酸性白土を空気中110℃で8時間熱処理することで熱処理白土11を得た。次に透明な軽油槽内に実施例1と同じ市販軽油1000mlとともに熱処理白土11を50g加え、前記軽油槽の空間部分を窒素で置換した。次に30℃において前記軽油槽内を8時間攪拌して軽油と熱処理白土11を接触処理したところ、軽油の呈色は減少し、吸光度積分値は29.4nmに減少した。よって、本実施例による軽油の性状改善評価は適であった。
<Example 11>
The heat-treated white clay 11 was obtained by heat-treating the acid white clay in air at 110 ° C. for 8 hours. Next, 50 g of the heat-treated clay 11 was added to a transparent light oil tank together with 1000 ml of the same commercially available light oil as in Example 1, and the space portion of the light oil tank was replaced with nitrogen. Next, when the inside of the light oil tank was stirred for 8 hours at 30 ° C. and the light oil and the heat-treated clay 11 were contact-treated, the coloration of the light oil decreased and the integrated value of absorbance decreased to 29.4 nm. Therefore, the property improvement evaluation of the light oil by a present Example was suitable.

<比較例1>
実施例3において、透明な軽油槽を用いた以外は同条件で熱処理白土3と軽油との接触処理を行った。処理後の軽油は黄色味を帯びており、吸光度積分値は42.7nmであった。よって、軽油の性状改善評価は否であった。本比較例は、軽油槽空間部分が空気である場合、軽油槽を遮光しないと十分な性状改善効果が得られないことを示す例である。
<Comparative Example 1>
In Example 3, the heat treatment clay 3 and light oil were contacted under the same conditions except that a transparent light oil tank was used. The light oil after the treatment was yellowish and the integrated value of absorbance was 42.7 nm. Therefore, the property improvement evaluation of light oil was no. This comparative example is an example showing that when the light oil tank space is air, a sufficient property improving effect cannot be obtained unless the light oil tank is shielded from light.

<比較例2>
実施例2において、熱処理白土と軽油との接触時間を1時間とした以外は同条件で熱処理白土2と軽油との接触処理を行った。処理後の軽油の呈色は黄色味を帯びており、吸光度積分値は35.5nmであった。よって、性状改善評価は否であった。本比較例は、熱処理白土と軽油との接触時間が好適な範囲を満たさない場合には、所望の性状改善効果が得られないことを示す例である。
<Comparative example 2>
In Example 2, the contact treatment between the heat-treated clay 2 and light oil was performed under the same conditions except that the contact time between the heat-treated clay and light oil was 1 hour. The color of the light oil after the treatment was yellowish, and the absorbance integrated value was 35.5 nm. Therefore, the property improvement evaluation was no. This comparative example is an example showing that the desired property improving effect cannot be obtained when the contact time between the heat-treated clay and the light oil does not satisfy a suitable range.

<比較例3>
実施例3において、熱処理白土と軽油との接触時間を1時間とした以外は同条件で熱処理白土3と軽油との接触処理を行った。処理後の軽油の呈色は黄色味を帯びており、吸光度積分値は36.2nmであった。よって性状改善評価は否であった。本比較例は、軽油槽空間部分のガスが空気であって遮光された軽油槽を用いた場合でも熱処理白土と軽油との接触時間が好適な範囲を満たさない場合には、所望の性状改善効果が得られないことを示す例である。
<Comparative Example 3>
In Example 3, the contact treatment between the heat treated white clay 3 and the light oil was performed under the same conditions except that the contact time between the heat treated white clay and the light oil was set to 1 hour. The color of the light oil after the treatment was yellowish, and the absorbance integrated value was 36.2 nm. Therefore, the property improvement evaluation was no. In this comparative example, even when a gas oil tank in which the gas in the light oil tank space is air and is shielded from light is used, if the contact time between the heat-treated white clay and the light oil does not satisfy the preferred range, the desired property improvement effect This is an example showing that cannot be obtained.

<比較例4>
実施例4において、熱処理白土の添加量を10gとした以外は同条件で熱処理白土4と軽油との接触処理を行った。処理後の軽油の呈色は黄色味を帯びており、吸光度積分値は37.5nmであった。よって性状改善評価は否であった。本比較例は、熱処理白土の添加量が好適な範囲を満たさない場合には、所望の性状改善効果が得られないことを示す例である。
<Comparative example 4>
In Example 4, the contact treatment of the heat treated clay 4 and light oil was performed under the same conditions except that the amount of the heat treated clay added was 10 g. The color of the light oil after the treatment was yellowish, and the integrated absorbance was 37.5 nm. Therefore, the property improvement evaluation was no. This comparative example is an example showing that a desired property improving effect cannot be obtained when the amount of heat-treated clay added does not satisfy the preferred range.

<比較例5>
実施例5において、軽油槽の温度を5℃に保持した以外は同条件で熱処理白土5と軽油との接触処理を行った。処理後の軽油の呈色は黄色味を帯びており、吸光度積分値は33.1nmであった。よって性状改善評価は否であった。本比較例は、軽油槽の温度が好適な範囲を満たさない場合には、所望の性状改善効果が得られないことを示す例である。
<Comparative Example 5>
In Example 5, the heat treatment clay 5 and the light oil were subjected to contact treatment under the same conditions except that the temperature of the light oil tank was maintained at 5 ° C. The color of the light oil after the treatment was yellowish, and the absorbance integrated value was 33.1 nm. Therefore, the property improvement evaluation was no. This comparative example is an example showing that the desired property improving effect cannot be obtained when the temperature of the light oil tank does not satisfy the preferred range.

<比較例6>
酸性白土を空気中50℃で5時間熱処理することで熱処理白土106を得た。実施例3において、熱処理白土3の代わりに熱処理白土106を用いて軽油との接触処理を行った。処理後の軽油の呈色は黄色味を帯びており、吸光度積分値は37.4nmであった。よって性状改善評価は否であった。本比較例は、酸性白土の熱処理温度が好適な範囲を満たさない場合には、所望の性状改善効果が得られないことを示す例である。
<Comparative Example 6>
The acid clay was heat-treated in air at 50 ° C. for 5 hours to obtain a heat-treated clay 106. In Example 3, the heat treatment white clay 106 was used in place of the heat treated white clay 3 to perform contact treatment with light oil. The color of the light oil after the treatment was yellowish, and the absorbance integrated value was 37.4 nm. Therefore, the property improvement evaluation was no. This comparative example is an example showing that the desired property improving effect cannot be obtained when the heat treatment temperature of the acid clay does not satisfy a suitable range.

<比較例7>
酸性白土を空気中130℃で1時間熱処理することで熱処理白土107を得た。実施例4において、熱処理白土4の代わりに熱処理白土107を用いて軽油との接触処理を行った。処理後の軽油の呈色は黄色味を帯びており、吸光度積分値は34.9nmであった。よって性状改善評価は否であった。本比較例は、酸性白土の熱処理時間が好適な範囲を満たさない場合には、所望の性状改善効果が得られないことを示す例である。
<Comparative Example 7>
The heat-treated white clay 107 was obtained by heat-treating the acid white clay in air at 130 ° C. for 1 hour. In Example 4, the heat treatment white clay 107 was used in place of the heat treated white clay 4, and contact treatment with light oil was performed. The color of the light oil after the treatment was yellowish, and the absorbance integrated value was 34.9 nm. Therefore, the property improvement evaluation was no. This comparative example is an example showing that the desired property improving effect cannot be obtained when the heat treatment time of the acid clay does not satisfy a suitable range.

<比較例8>
酸性白土を空気中380℃で5時間熱処理することで熱処理白土108を得た。実施例8において、熱処理白土8の代わりに熱処理白土108を用いて軽油との接触処理を行った。処理後の軽油の呈色は黄色味を帯びており、吸光度積分値は39.0nmであった。よって性状改善評価は否であった。本比較例は、酸性白土の熱処理温度が好適な範囲を超過した場合には、所望の性状改善効果が得られないことを示す例である。
<Comparative Example 8>
The heat-treated white clay 108 was obtained by heat-treating the acid white clay at 380 ° C. for 5 hours in the air. In Example 8, the heat treatment white clay 108 was used in place of the heat treated white clay 8 to perform contact treatment with light oil. The color of the light oil after the treatment was yellowish, and the absorbance integrated value was 39.0 nm. Therefore, the property improvement evaluation was no. This comparative example is an example showing that the desired property improving effect cannot be obtained when the heat treatment temperature of the acid clay exceeds a suitable range.

酸性白土を熱処理して得られる熱処理白土と軽油を接触処理することにより、多環芳香族化合物及び呈色が少ない性状に優れた軽油を得ることができるようになる。 By heat-treating heat-treated clay obtained by heat-treating acid clay and light oil, it becomes possible to obtain light oil excellent in properties with less polycyclic aromatic compounds and coloration.

軽油と酸性白土を接触処理する形態Form of contact treatment of light oil and acid clay 未処理軽油と性状改善された処理済み軽油の紫外可視吸収スペクトルUV-visible absorption spectra of untreated gas oil and treated gas oil with improved properties

1 軽油槽
2 処理対象軽油
3 酸性白土
4 攪拌手段
1 Light oil tank 2 Light oil to be treated 3 Acid clay 4 Stirring means

Figure 2019151761
Figure 2019151761

Figure 2019151761
Figure 2019151761

Claims (5)

軽油槽において、軽油1000mlに対し、酸性白土を温度80℃以上250℃以下、空気流通下で3時間以上10時間以下処理して得た熱処理白土を30g以上150g以下添加することを特徴とする軽油の性状改善方法。 In a light oil tank, light oil is characterized by adding 30 g or more and 150 g or less of heat-treated clay obtained by treating acid clay to a temperature of 80 ° C. or more and 250 ° C. or less and 3 hours or more and 10 hours or less under air flow to 1000 ml of light oil. How to improve the properties. 軽油槽の温度が15℃以上50℃以下であることを特徴とする請求項1記載の軽油の性状改善方法。 The method for improving the properties of light oil according to claim 1, wherein the temperature of the light oil tank is 15 ° C or higher and 50 ° C or lower. 軽油槽における熱処理白土と軽油との接触時間が2時間以上72時間以下であることを特徴とする請求項1、または請求項2に記載の軽油の性状改善方法。 The method for improving the properties of light oil according to claim 1 or 2, wherein the contact time between the heat-treated clay and light oil in the light oil tank is 2 hours or more and 72 hours or less. 軽油槽が遮光されていることを特徴とする請求項1から3のいずれかに記載の軽油の性状改善方法。 The method for improving the properties of light oil according to any one of claims 1 to 3, wherein the light oil tank is shielded from light. 遮光が不完全な軽油槽において、軽油の液面と当該槽との空間部分を二酸化炭素、アルゴン、窒素、ブタンおよびハイドロフルオロカーボン類から選ばれる少なくとも一種で置換することを特徴とする請求項1から3のいずれかに記載の軽油の性状改善方法。
In the light oil tank where light shielding is incomplete, the space between the liquid surface of the light oil and the tank is replaced with at least one selected from carbon dioxide, argon, nitrogen, butane and hydrofluorocarbons. 4. The method for improving the properties of light oil according to any one of 3
JP2018038723A 2018-03-05 2018-03-05 How to improve the properties of light oil Active JP7083991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018038723A JP7083991B2 (en) 2018-03-05 2018-03-05 How to improve the properties of light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038723A JP7083991B2 (en) 2018-03-05 2018-03-05 How to improve the properties of light oil

Publications (2)

Publication Number Publication Date
JP2019151761A true JP2019151761A (en) 2019-09-12
JP7083991B2 JP7083991B2 (en) 2022-06-14

Family

ID=67948300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038723A Active JP7083991B2 (en) 2018-03-05 2018-03-05 How to improve the properties of light oil

Country Status (1)

Country Link
JP (1) JP7083991B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233654A (en) * 1975-09-05 1977-03-14 Nissin Electric Co Ltd Purification process of phosphoric ester oil for electric insulating materials
JPS62109820A (en) * 1985-11-08 1987-05-21 Mitsui Toatsu Chem Inc Production of heterocyclic five-membered ring compound polymer composition
JPH04183794A (en) * 1990-11-19 1992-06-30 Fuji Oil Co Ltd Production of purified palm oil
JPH11179202A (en) * 1997-12-25 1999-07-06 Mizusawa Ind Chem Ltd Activated clay for treatment of aromatic hydrocarbon
US20030150780A1 (en) * 2001-12-10 2003-08-14 India Oil Corporation Limited Process and an apparatus for preparation of petroleum hydrocarbon solvent with improved color stability from nitrogen rich crude oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233654A (en) * 1975-09-05 1977-03-14 Nissin Electric Co Ltd Purification process of phosphoric ester oil for electric insulating materials
JPS62109820A (en) * 1985-11-08 1987-05-21 Mitsui Toatsu Chem Inc Production of heterocyclic five-membered ring compound polymer composition
JPH04183794A (en) * 1990-11-19 1992-06-30 Fuji Oil Co Ltd Production of purified palm oil
JPH11179202A (en) * 1997-12-25 1999-07-06 Mizusawa Ind Chem Ltd Activated clay for treatment of aromatic hydrocarbon
US20030150780A1 (en) * 2001-12-10 2003-08-14 India Oil Corporation Limited Process and an apparatus for preparation of petroleum hydrocarbon solvent with improved color stability from nitrogen rich crude oil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石田文彦 他: "明治期における石油製油技術の発展", 技術と文明, vol. 13巻、2号, JPN6021045776, 2003, JP, pages 1 - 28, ISSN: 0004649076 *

Also Published As

Publication number Publication date
JP7083991B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
Chen et al. Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization
Coronado et al. EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts
Mikhail et al. Desulfurization by an economically adsorption technique
Cheng et al. Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer–Tropsch synthesis
Vasiliadou et al. Synthesis and performance of highly dispersed Cu/SiO2 catalysts for the hydrogenolysis of glycerol
Garbarino et al. Spectroscopic characterization of Ni/Al2O3 catalytic materials for the steam reforming of renewables
Zhang et al. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation
Arellano et al. Oxidative removal of dibenzothiophene in a biphasic system using sol–gel FeTiO2 catalysts and H2O2 promoted with acetic acid
Shi et al. Effects of toluene on thiophene adsorption over NaY and Ce (IV) Y zeolites
Abdrafikova et al. Conversion of extra-heavy Ashal’chinskoe oil in hydrothermal catalytic system
Ahmadi et al. Selective denitrogenation of model fuel through iron and chromium modified microporous materials (MSU-S)
Wang et al. Preparation of WO3/CNT catalysts in presence of ionic liquid [C16mim] Cl and catalytic efficiency in oxidative desulfurization
Seifikar Gomi et al. Porous MoO3@ SiC hallow nanosphere composite as an efficient oxidative desulfurization catalyst
Li et al. Enhancement of oxidative desulfurization performance over amorphous titania by doping MIL-101 (Cr)
Fard et al. Morphology‐Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene
US8877153B2 (en) Adsorbent for ultradeep removal of sulfur compounds from distillate fuels
Morshedy et al. The production of clean diesel fuel by facile sun light photocatalytic desulfurization process using Cd-based diacetate as a novel liquid photocatalyst
JP4845494B2 (en) Gasoline composition
Xu et al. Interaction of ester‐functionalized ionic liquids with atomically‐defined cobalt oxides surfaces: adsorption, reaction and thermal stability
Dierks et al. Impact of Hydrophobic Organohybrid Silicas on the Stability of Ni2P Catalyst Phase in the Hydrodeoxygenation of Biophenols
JP2009167257A (en) Gas oil composition
JP2019151761A (en) Property improvement method of light oil
Reti et al. Photocatalytic measurements of TiO2/MWCNT catalysts having different surface coverage
Florea et al. Microstructural Analysis and Energy‐Filtered TEM Imaging to Investigate the Structure–Activity Relationship in Fischer–Tropsch Catalysts
Barot et al. Catalytic conversion of Jatropha Oil to biofuel over titania, zirconia, and ceria loaded amorphous alumino‐silicate catalysts

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7083991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150