JP2019151602A - Metal imide complex and substrate conversion method using the same - Google Patents

Metal imide complex and substrate conversion method using the same Download PDF

Info

Publication number
JP2019151602A
JP2019151602A JP2018039105A JP2018039105A JP2019151602A JP 2019151602 A JP2019151602 A JP 2019151602A JP 2018039105 A JP2018039105 A JP 2018039105A JP 2018039105 A JP2018039105 A JP 2018039105A JP 2019151602 A JP2019151602 A JP 2019151602A
Authority
JP
Japan
Prior art keywords
group
metal
imide
complex
conversion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018039105A
Other languages
Japanese (ja)
Inventor
中村 正治
Masaharu Nakamura
正治 中村
光 高谷
Hikari Takatani
光 高谷
貴文 社納
Takafumi Shano
貴文 社納
伊藤 正人
Masato Ito
正人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Kyushu University NUC
Kyoto University
Original Assignee
Daicel Corp
Kyushu University NUC
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Kyushu University NUC, Kyoto University filed Critical Daicel Corp
Priority to JP2018039105A priority Critical patent/JP2019151602A/en
Priority to PCT/JP2019/008392 priority patent/WO2019172184A1/en
Publication of JP2019151602A publication Critical patent/JP2019151602A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B33/00Oxidation in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/29Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/67Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having two rings, e.g. tetralones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/675Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • C07C49/786Benzophenone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/80Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/80Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
    • C07C49/807Ketones containing a keto group bound to a six-membered aromatic ring containing halogen all halogen atoms bound to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/285Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with peroxy-compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/04Monocyclic monocarboxylic acids
    • C07C63/06Benzoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/68Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings containing halogen
    • C07C63/70Monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/21Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/54Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/02Iron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/08Fractionation of cellulose, e.g. separation of cellulose crystallites

Abstract

To provide a metal imide complexe that can efficiently oxidize a variety of substrates, can be synthesized easily, and have a stable structure.SOLUTION: Provided is a metal imide complexe containing a metal and an imide as ligand, and in which, characterized, the metal is at least one selected from the group consisting of an iron group metal and a platinum group metal, and the imide contains at least one selected from the group consisting of a sulfonyl group having an electron-attracting group and a sulfonyl group having an aromatic group as a substituent group.SELECTED DRAWING: None

Description

本発明は、金属イミド錯体及びこれを用いた基質変換方法に関する。   The present invention relates to a metal imide complex and a substrate conversion method using the same.

木質バイオマスの成分のひとつであるリグニンは、天然に最も豊富に存在する芳香族系高分子のひとつであり、再生可能な芳香族化合物資源として注目を集めている。リグニンはフェニルプロパノイミドモノマーが様々な結合様式で不規則に重合した構造であり、その構造の複雑さからリグニンの有効活用を図るべく、種々のモデル系による可溶化や低分子化の検討が進められている。可溶化や低分子化を達成するための方法のひとつとして酸化的分解が知られているが、所望する低分子芳香族化合物を高収率で得ることは困難であった。   Lignin, one of the components of woody biomass, is one of the most abundant aromatic polymers in nature and is attracting attention as a renewable aromatic compound resource. Lignin is a structure in which phenylpropanoimide monomer is randomly polymerized in various bond modes, so that various models can be used for solubilization and low molecular weight studies to make effective use of lignin due to the complexity of the structure. It is being advanced. Oxidative decomposition is known as one of the methods for achieving solubilization and low molecular weight, but it has been difficult to obtain a desired low molecular weight aromatic compound in high yield.

Collinsらの鉄−TAML錯体は、過酸化水素を酸化剤としてペンタクロロフェノールを短時間で酸化分解する強い触媒活性を示す(非特許文献1)。また、HitomiらのFe−dpaq錯体は、過酸化水素によって3級アルカンをヒドロキシル化する触媒活性を有する(非特許文献2)。これらの触媒は、アミドアニオン配位子の電子供与性効果により、鉄5価オキソ種を酸化活性種とすることで高い活性を実現していると考えられる。   Collins et al.'S iron-TAML complex exhibits a strong catalytic activity for oxidative decomposition of pentachlorophenol in a short time using hydrogen peroxide as an oxidizing agent (Non-patent Document 1). Moreover, the Fe-dpaq complex of Hitomi et al. Has a catalytic activity for hydroxylating a tertiary alkane with hydrogen peroxide (Non-patent Document 2). These catalysts are considered to have realized high activity by using iron pentavalent oxo species as oxidation active species due to the electron donating effect of the amide anion ligand.

Collins et al, T. J. Science. 2002, 296, 326Collins et al, T. J. Science. 2002, 296, 326 Hitomi et al, M. Angew. Chemie Int. Ed. 2012, 51, 3448Hitomi et al, M. Angew. Chemie Int. Ed. 2012, 51, 3448

しかし、これらの錯体の合成は困難であることや、酸化により自己分解することが問題であった。従って、本発明の目的は、リグニンをはじめとする様々な木質バイオマス由来の基質、及び芳香族分子をはじめとするリグニンのモデル分子を効率的に酸化することが可能であって、容易に合成することができ、安定な構造を有する金属イミド錯体を提供することにある。また、前記金属イミド錯体を用いた基質変換方法を提供することにある。   However, it was difficult to synthesize these complexes and self-decomposition by oxidation. Therefore, the object of the present invention is to oxidize various woody biomass-derived substrates such as lignin and lignin model molecules including aromatic molecules efficiently and to synthesize them easily. The object is to provide a metal imide complex having a stable structure. Moreover, it is providing the substrate conversion method using the said metal imide complex.

本発明者らは、上記目的を達成するため鋭意検討した結果、特定の構造を有する金属イミド錯体を用いることにより、穏和な条件下で効率的に、様々な基質を変換(例えば、酸化)することが可能なことを見出した。また、前記金属イミド錯体は容易に合成可能であり、且つ安定な構造を有することを見出した。本発明はこれらの知見に基づいて完成させたものである。   As a result of intensive studies to achieve the above object, the present inventors efficiently convert various substrates (for example, oxidation) under mild conditions by using a metal imide complex having a specific structure. I found it possible. The present inventors have also found that the metal imide complex can be easily synthesized and has a stable structure. The present invention has been completed based on these findings.

すなわち、本発明は、金属と、配位子としてのイミドとを含む金属イミド錯体であって、
前記金属が、鉄族金属及び白金族金属からなる群より選択された少なくとも1つであり、
前記イミドが、電子求引性基を有するスルホニル基及び芳香族基を有するスルホニル基からなる群より選択された少なくとも1つを置換基として含むことを特徴とする金属イミド錯体を提供する。
That is, the present invention is a metal imide complex containing a metal and an imide as a ligand,
The metal is at least one selected from the group consisting of an iron group metal and a platinum group metal;
Provided is a metal imide complex, wherein the imide contains at least one selected from the group consisting of a sulfonyl group having an electron withdrawing group and a sulfonyl group having an aromatic group as a substituent.

また、本発明は前記金属イミド錯体と酸化剤とを用いた基質変換方法を提供する。   The present invention also provides a substrate conversion method using the metal imide complex and an oxidizing agent.

前記酸化剤は、過酸化水素、過酢酸、オゾン、オキソン、及びt−ブチルハイドロパーオキシドからなる群より選択される少なくとも1つであることが好ましい。   The oxidizing agent is preferably at least one selected from the group consisting of hydrogen peroxide, peracetic acid, ozone, oxone, and t-butyl hydroperoxide.

本発明の基質変換方法において使用される溶媒は、水、トルエン、酢酸エチル、アセトニトリル、ジクロロメタン、及びトリクロロメタンからなる群より選択される少なくとも1つであることが好ましい。   The solvent used in the substrate conversion method of the present invention is preferably at least one selected from the group consisting of water, toluene, ethyl acetate, acetonitrile, dichloromethane, and trichloromethane.

前記基質は、アルコール類、多糖類、及び木質材料から選択される少なくとも1つであることが好ましい。   The substrate is preferably at least one selected from alcohols, polysaccharides, and wood materials.

本発明の金属イミド錯体は容易に合成することができ、且つ安定な構造を有する。また、様々な基質を効率的に変換(例えば、酸化)することが可能である。   The metal imide complex of the present invention can be easily synthesized and has a stable structure. In addition, various substrates can be efficiently converted (for example, oxidized).

[金属イミド錯体]
本発明の金属イミド錯体は、金属と配位子としてのイミドとを含む金属イミド錯体であって、前記金属が、鉄族金属及び白金族金属からなる群より選択された少なくとも1つであり、前記イミドが、電子求引性基を有するスルホニル基及び芳香族基を有するスルホニル基からなる群より選択された少なくとも1つを置換基として含むことを特徴とする。
[Metal imide complex]
The metal imide complex of the present invention is a metal imide complex containing a metal and an imide as a ligand, and the metal is at least one selected from the group consisting of an iron group metal and a platinum group metal, The imide includes at least one selected from the group consisting of a sulfonyl group having an electron withdrawing group and a sulfonyl group having an aromatic group as a substituent.

本発明の金属イミド錯体において、金属は、鉄族金属及び白金族金属からなる群より選択された少なくとも1つであれば特に限定されない。鉄族金属は鉄族元素に該当する金属を意味し、鉄、コバルト、ニッケルが挙げられる。白金族金属は白金族元素に該当する金属を意味し、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金が挙げられる。この中でも、酸化活性の観点から、鉄、ルテニウムがより好ましく、鉄が特に好ましい。   In the metal imide complex of the present invention, the metal is not particularly limited as long as it is at least one selected from the group consisting of iron group metals and platinum group metals. An iron group metal means a metal corresponding to an iron group element, and includes iron, cobalt, and nickel. A platinum group metal means a metal corresponding to a platinum group element, and includes ruthenium, rhodium, palladium, osmium, iridium, and platinum. Among these, from the viewpoint of oxidation activity, iron and ruthenium are more preferable, and iron is particularly preferable.

本発明の金属イミド錯体において、イミドは、電子求引性基を有するスルホニル基及び芳香族基を有するスルホニル基からなる群より選択された少なくとも1つを置換基として含むものであれば特に限定されないが、例えば、下記式(1)で示されるイミド(スルホニルイミド)が挙げられる。
1−SO2−N−SO2−R2 (1)
In the metal imide complex of the present invention, the imide is not particularly limited as long as it contains as a substituent at least one selected from the group consisting of a sulfonyl group having an electron withdrawing group and a sulfonyl group having an aromatic group. Is, for example, an imide (sulfonylimide) represented by the following formula (1).
R 1 —SO 2 —N—SO 2 —R 2 (1)

式(1)中、R1及びR2は、同一又は異なって、電子求引性基又は芳香族基を示す。
N(窒素原子)は金属(鉄族金属及び白金族金属からなる群より選択された少なくとも1つの金属)に配位する。
In formula (1), R 1 and R 2 are the same or different and represent an electron-withdrawing group or an aromatic group.
N (nitrogen atom) coordinates to a metal (at least one metal selected from the group consisting of iron group metals and platinum group metals).

電子求引性基としては特に限定されないが、酸化活性の観点からは、ハロゲン又はハロアルキル基であることが好ましく、より好ましくはフッ素原子又はフルオロアルキル基である。   Although it does not specifically limit as an electron withdrawing group, From a viewpoint of oxidation activity, it is preferable that it is a halogen or a haloalkyl group, More preferably, it is a fluorine atom or a fluoroalkyl group.

フルオロアルキル基(フッ素原子を置換基として有するアルキル基)における、フッ素原子の数は特に限定されないが、例えば、1〜25であることが好ましく、1〜15であることがより好ましく、1〜6であることがさらに好ましく、1〜3であることが特に好ましく、3であることが最も好ましい。また、アルキル基は直鎖又は分岐鎖状のいずれのアルキル基であってもよく、その炭素数は特に限定されないが、例えば、1〜12であることが好ましく、1〜8であることがより好ましく、1〜6であることがより好ましく、1〜3であることが特に好ましい。   The number of fluorine atoms in the fluoroalkyl group (an alkyl group having a fluorine atom as a substituent) is not particularly limited, but is preferably, for example, 1-25, more preferably 1-15, and more preferably 1-6. Is more preferable, 1 to 3 is particularly preferable, and 3 is most preferable. Further, the alkyl group may be either a linear or branched alkyl group, and the carbon number thereof is not particularly limited, but is preferably 1 to 12, for example, and more preferably 1 to 8. Preferably, it is 1-6, and it is especially preferable that it is 1-3.

フルオロアルキル基としては、例えば、トリフルオロメチル基、トリフルオロエチル基、テトラフルロロエチル基、パーフルオロプロピル基、パーフルオロイソプロピル基、ヘキサフルオロイソプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロデシル基、2−(パーフルオロオクチル)エチル基、1H,1H,3H−テトラフルオロプロピル基、1H,1H,5H−オクタフルオロペンチル基、パーフルオロ−7−メチルオクチル基、4H−オクタフルオロブチル基等が挙げられる。   Examples of the fluoroalkyl group include a trifluoromethyl group, a trifluoroethyl group, a tetrafluoroethyl group, a perfluoropropyl group, a perfluoroisopropyl group, a hexafluoroisopropyl group, a perfluorobutyl group, a perfluorohexyl group, a perfluorohexyl group, and a perfluorohexyl group. Fluorooctyl group, perfluorodecyl group, 2- (perfluorooctyl) ethyl group, 1H, 1H, 3H-tetrafluoropropyl group, 1H, 1H, 5H-octafluoropentyl group, perfluoro-7-methyloctyl group, Examples include 4H-octafluorobutyl group.

芳香族基としては特に限定されず、例えば、フェニル基、トリル基、キシリル基、ナフチル基、アラルキル基等の置換又は無置換の芳香族基が挙げられるが、酸化活性の観点からは、フェニル基、トリル基が好ましく、トリル基がより好ましい。   The aromatic group is not particularly limited, and examples thereof include substituted or unsubstituted aromatic groups such as a phenyl group, tolyl group, xylyl group, naphthyl group, and aralkyl group. From the viewpoint of oxidation activity, a phenyl group , A tolyl group is preferable, and a tolyl group is more preferable.

本発明の金属イミド錯体は、イミド以外の配位子を含んでいてもよく、前記配位子としては、例えば、カルボキシル基、イソプロポキシ基などのアルコキシ基、ジアルキルアミノ基等のアミノ基、シアノ基、アルキル基、塩素原子などのハロゲン原子が挙げられる。   The metal imide complex of the present invention may contain a ligand other than imide. Examples of the ligand include an alkoxy group such as a carboxyl group and an isopropoxy group, an amino group such as a dialkylamino group, and a cyano group. And halogen atoms such as a group, an alkyl group, and a chlorine atom.

本発明の金属イミド錯体は、例えば、金属(例えば、金属粉)や金属化合物とイミド化合物とを溶媒中で混合し、必要に応じて加熱することにより得ることができる。溶媒としては特に限定されず、後述の溶媒等が例示される。   The metal imide complex of the present invention can be obtained, for example, by mixing a metal (for example, metal powder) or a metal compound and an imide compound in a solvent and heating as necessary. It does not specifically limit as a solvent, The below-mentioned solvent etc. are illustrated.

前記の金属、及び前記の金属化合物における金属は、本発明の金属イミド錯体における金属にて説明したものと同じものが挙げられる。金属化合物としては、例えば、金属を含む無機塩、有機酸塩、錯体(錯塩)等が挙げられる。無機塩としては、例えば、硝酸塩、硫酸塩、亜硫酸塩、リン酸塩、ホスホン酸塩、過塩素酸塩等の過ハロゲン酸塩、クロム酸塩等の無機酸塩;塩化物、臭化物、ヨウ化物等のハロゲン化物;酸化物;硫化物;窒化物;水酸化物等が挙げられる。有機酸塩としては、例えば、C1-12アルカン酸塩(例えば、酢酸塩、プロピオン酸塩)、ハロC1-4アルカン酸塩(例えば、ジクロロ酢酸、トリフルオロ酢酸塩、トリフルオロ酢酸塩、トリブロモ酢酸塩)等のカルボン酸塩;オキシカルボン酸塩;チオシアン酸塩;スルホン酸塩等が挙げられる。 Examples of the metal and the metal in the metal compound are the same as those described for the metal in the metal imide complex of the present invention. Examples of the metal compound include inorganic salts containing metals, organic acid salts, complexes (complex salts), and the like. Examples of inorganic salts include nitrates, sulfates, sulfites, phosphates, phosphonates, perchlorates such as perchlorates, inorganic salts such as chromates; chlorides, bromides, and iodides. And the like; oxides; sulfides; nitrides; hydroxides and the like. Examples of the organic acid salt include C 1-12 alkanoate (eg, acetate, propionate), halo C 1-4 alkanoate (eg, dichloroacetate, trifluoroacetate, trifluoroacetate, Carboxylate such as tribromoacetate); oxycarboxylate; thiocyanate; sulfonate, and the like.

イミド化合物としては、例えば、下記式(2)で表されるイミド化合物が挙げられる。
1−SO2−NRa−SO2−R2 (2)
As an imide compound, the imide compound represented by following formula (2) is mentioned, for example.
R 1 —SO 2 —NR a —SO 2 —R 2 (2)

式(2)中、R1及びR2は式(1)にて説明したものと同じである。 In formula (2), R 1 and R 2 are the same as those described in formula (1).

aは、水素、アンモニウムイオン、アルカリ金属原子、及びアルカリ土類金属から選択される少なくとも1つである。アルカリ金属原子としては、例えば、リチウム、ナトリウム、カリウムが挙げられる。アルカリ土類金属としては、例えば、マグネシウム、カルシウム等が挙げられる。アルカリ金属原子及びアルカリ土類金属は、前記窒素原子とイオン結合を形成していてもよい。 R a is at least one selected from hydrogen, ammonium ions, alkali metal atoms, and alkaline earth metals. Examples of the alkali metal atom include lithium, sodium, and potassium. Examples of the alkaline earth metal include magnesium and calcium. The alkali metal atom and the alkaline earth metal may form an ionic bond with the nitrogen atom.

式(2)で表されるイミド化合物としては、例えば、ビス(フルオロスルホニル)イミド、ナトリウムビス(フルオロスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、アンモニウムビス(フルオロスルホニル)イミド等のR1及びR2がフッ素原子であるもの;ビス(トリフルオロメタンスルホニル)イミド、ナトリウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、アンモニウムビス(トリフルオロメタンスルホニル)イミド等のR1及びR2がトリフルオロメチル基であるもの;ビス(ノナフルオロブタンスルホニル)イミド、ナトリウムビス(ノナフルオロブタンスルホニル)イミド、リチウムビス(ノナフルオロブタンスルホニル)イミド、アンモニウムビス(ノナフルオロブタンスルホニル)イミド等のR1及びR2がノナフルオロブチル基であるもの;ノナフルオロ−N−[(トリフルオロメタン)スルホニル]ブタンスルホニルアミド、カリウムノナフルオロ−N−[(トリフルオロメタン)スルホニル]ブタンスルホニルアミド、ナトリウムノナフルオロ−N−[(トリフルオロメタン)スルホニル]ブタンスルホニルアミド、リチウムノナフルオロ−N−[(トリフルオロメタン)スルホニル]ブタンスルホニルアミドアンモニウムノナフルオロ−N−[(トリフルオロメタン)スルホニル]ブタンスルホニルアミド等のR1がトリフルオロメチル基であり、R2がノナフルオロブチル基であるものが挙げられる。 Examples of the imide compound represented by the formula (2) include R 1 such as bis (fluorosulfonyl) imide, sodium bis (fluorosulfonyl) imide, lithium bis (fluorosulfonyl) imide, ammonium bis (fluorosulfonyl) imide, and the like. R 2 is a fluorine atom; R 1 and R 2 such as bis (trifluoromethanesulfonyl) imide, sodium bis (trifluoromethanesulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, ammonium bis (trifluoromethanesulfonyl) imide Is a trifluoromethyl group; bis (nonafluorobutanesulfonyl) imide, sodium bis (nonafluorobutanesulfonyl) imide, lithium bis (nonafluorobutanesulfonyl) imide, ammonium Scan those R 1 and R 2, such as (nonafluorobutanesulfonyl) imide is nonafluorobutyl group; nonafluoro -N - [(trifluoromethane) sulfonyl] butane sulfonyl amide, potassium nonafluoro--N - [(trifluoromethane) Sulfonyl] butanesulfonylamide, sodium nonafluoro-N-[(trifluoromethane) sulfonyl] butanesulfonylamide, lithium nonafluoro-N-[(trifluoromethane) sulfonyl] butanesulfonylamidoammonium nonafluoro-N-[(trifluoromethane) Sulfonyl] butanesulfonylamide and the like, wherein R 1 is a trifluoromethyl group and R 2 is a nonafluorobutyl group.

[基質変換方法]
本発明の金属イミド錯体は、基質変換方法に用いることができる。つまり、前記金属イミド錯体は、酸化触媒として用いることができる。特に、前記金属イミド錯体は酸化剤と同時に用いることで酸化活性が向上する傾向がある。なお、前記金属イミド錯体を用いた基質変換方法を、単に「本発明の方法」と称することがある。
[Substrate conversion method]
The metal imide complex of the present invention can be used in a substrate conversion method. That is, the metal imide complex can be used as an oxidation catalyst. In particular, when the metal imide complex is used simultaneously with an oxidizing agent, the oxidation activity tends to be improved. The substrate conversion method using the metal imide complex may be simply referred to as “method of the present invention”.

酸化剤としては、反応に悪影響を及ぼさない限り特に限定されるものではなく、例えば、ベンゾキノン、アントラキノン、2−(シクロヘキシルスルフィニル)−ベンゾキノン、2−(フェニルスルフィニル)−ベンゾキノン等のキノン類;過酸化水素、過酸化水素水、過酢酸、酸素存在下で過酸化物を発生し得るイソブチルアルデヒド等のアルデヒド類、クメンハイドロパーオキシド、エチルベンゼンハイドロパーオキシド、t−ブチルハイドロパーオキシド、ヨードシルベンゼン、過ヨウ素酸ナトリウム、過塩素酸ナトリウム、オキソン等の過酸化物;分子状酸素(O2)、原子状酸素、オゾン等の酸素;酸化ルテニウム、酸化アンチモン、酸化ビスマス、酸化セレン、酸化テルル、ポリオキソメタレート、酸化バナジウム、バナジルアセチルアセトナート等のバナジウム含有化合物、二酸化マンガン等の酸化物;亜硝酸メチル、亜硝酸エチル、亜硝酸ブチル、亜硝酸t−ブチル等の亜硝酸エステル類;塩酸、硝酸(濃硝酸、発煙硝酸を含む)、硫酸(濃硫酸、発煙硫酸を含む)、一酸化窒素、一酸化二窒素等が挙げられる。この中でも、触媒としての金属イミド錯体の酸化活性の向上の観点から、過酸化水素、過酢酸、オゾン、オキソン、t−ブチルハイドロパーオキシドが好ましい。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The oxidizing agent is not particularly limited as long as it does not adversely affect the reaction. For example, quinones such as benzoquinone, anthraquinone, 2- (cyclohexylsulfinyl) -benzoquinone, 2- (phenylsulfinyl) -benzoquinone; Hydrogen, hydrogen peroxide solution, peracetic acid, aldehydes such as isobutyraldehyde that can generate peroxides in the presence of oxygen, cumene hydroperoxide, ethylbenzene hydroperoxide, t-butyl hydroperoxide, iodosylbenzene, hydrogen peroxide Peroxides such as sodium iodate, sodium perchlorate, and oxone; oxygen such as molecular oxygen (O 2 ), atomic oxygen, and ozone; ruthenium oxide, antimony oxide, bismuth oxide, selenium oxide, tellurium oxide, polyoxo Metalates, vanadium oxide, vanadylua Vanadium-containing compounds such as tylacetonate, oxides such as manganese dioxide; nitrites such as methyl nitrite, ethyl nitrite, butyl nitrite, t-butyl nitrite; hydrochloric acid, nitric acid (concentrated nitric acid, fuming nitric acid ), Sulfuric acid (including concentrated sulfuric acid and fuming sulfuric acid), nitric oxide, dinitrogen monoxide and the like. Among these, hydrogen peroxide, peracetic acid, ozone, oxone, and t-butyl hydroperoxide are preferable from the viewpoint of improving the oxidation activity of the metal imide complex as a catalyst. These can be used alone or in combination of two or more.

本発明の方法で使用される溶媒は特に限定されないが、例えば、水;トリフルオロトルエン、フルオロベンゼン、フルオロヘキサン等のフッ素系溶媒;芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン、クロロベンゼン、ニトロベンゼン等)や脂肪族炭化水素(例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン等)等の炭化水素系溶媒;1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジメチルエーテル、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶媒;エタノール、n−プロパノール、2−プロパノール、n−ブタノール等のアルコール系溶媒;アセトアミド、ジメチルアセトアミド、ジメチルホルムアミド、ジエチルホルムアミド、N−メチルピロリドン等のアミド系溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;塩化メチル、ジクロロメタン、トリクロロメタン(クロロホルム)、1,2−ジクロロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1,2−トリクロロエチレン、1−クロロブタン等のハロゲン化炭化水素が挙げられる。この中でも、酸化活性の向上の観点から、水、芳香族炭化水素、エステル系溶媒、ニトリル系溶媒、ハロゲン化炭化水素が好ましく、水、トルエン、酢酸エチル、アセトニトリル、ジクロロメタン、トリクロロメタンが特に好ましい。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。   The solvent used in the method of the present invention is not particularly limited. For example, water; fluorine-based solvent such as trifluorotoluene, fluorobenzene, fluorohexane, etc .; aromatic hydrocarbon (for example, benzene, toluene, xylene, chlorobenzene, nitrobenzene) Etc.) and aliphatic hydrocarbons (eg pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, etc.); 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, tetrahydrofuran Ether solvents such as tetrahydropyran, dimethyl ether, diethyl ether, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; alcohol solvents such as ethanol, n-propanol, 2-propanol and n-butanol; Amide solvents such as amide, dimethylacetamide, dimethylformamide, diethylformamide, N-methylpyrrolidone; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; nitrile solvents such as acetonitrile and benzonitrile; methyl chloride, dichloromethane, Halogenated hydrocarbons such as trichloromethane (chloroform), 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2-trichloroethylene, 1-chlorobutane and the like can be mentioned. Among these, water, aromatic hydrocarbons, ester solvents, nitrile solvents, and halogenated hydrocarbons are preferable from the viewpoint of improving oxidation activity, and water, toluene, ethyl acetate, acetonitrile, dichloromethane, and trichloromethane are particularly preferable. These can be used alone or in combination of two or more.

本発明の方法において変換される基質としては、アルコール類、多糖類、及び木質材料が挙げられる。   Substrates to be converted in the method of the present invention include alcohols, polysaccharides, and wood materials.

前記アルコール類としては置換基として水酸基を有する化合物であれば特に限定されないが、例えば、下記式(A)で表されるアルコール類が挙げられる。

Figure 2019151602
Although it will not specifically limit if it is a compound which has a hydroxyl group as a substituent as said alcohol, For example, alcohol represented by a following formula (A) is mentioned.
Figure 2019151602

式中、R10及びR11は、同一又は異なって、水素、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、及びこれらの2以上が結合した基が例示される。また、R10及びR11は、前記基を介して環を形成していてもよい。また、前記基は、アルコキシ基、ホルミル基、カルボニル基、カルボキシル基、アルコキシカルボニル基、水酸基、メルカプト基、ハロゲン、スルホニル基、及びアミノ基から選ばれた1種又は2種以上の置換基を有していてもよい。 In the formula, R 10 and R 11 are the same or different, and examples thereof include hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and a group in which two or more of these are bonded. R 10 and R 11 may form a ring via the group. In addition, the group has one or more substituents selected from an alkoxy group, a formyl group, a carbonyl group, a carboxyl group, an alkoxycarbonyl group, a hydroxyl group, a mercapto group, a halogen, a sulfonyl group, and an amino group. You may do it.

前記アルコール類としては芳香族アルコールが好ましく用いられる。つまり、前記式(A)で表されるアルコール類のうち、R10及びR11の少なくとも一つが置換基を有していてもよいアリール基を含む基であることが好ましく、少なくとも一つが置換基を有していてもよいベンジル基又はフェニル基であることがより好ましい。 As the alcohols, aromatic alcohols are preferably used. That is, among the alcohols represented by the formula (A), at least one of R 10 and R 11 is preferably a group containing an aryl group which may have a substituent, and at least one is a substituent. It is more preferably a benzyl group or a phenyl group which may have

前記多糖類としては、例えば、デンプン(アミロース、アミロペクチン)、グリコーゲン、セルロース、ヘミセルロース、キチン、キトサン、コンドロイチン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、ペクチン、キシログルカン又はアルギン酸等が例示される。   Examples of the polysaccharide include starch (amylose, amylopectin), glycogen, cellulose, hemicellulose, chitin, chitosan, chondroitin, agarose, carrageenan, heparin, hyaluronic acid, pectin, xyloglucan, and alginic acid.

前記木質材料としては、例えば、稲わら、麦わら、バガス等の草類、竹、笹、木やこれらの間伐材、おがくず、チップ、端材などの木材加工木屑、街路樹剪定材、木質建築廃材、樹皮、流木等の木質系バイオマス、その他木片、木粉、並びに、以上に含まれるリグニン、セルロース、ヘミセルロースなどの木質成分、古紙等のセルロース製品からのバイオマス等が挙げられる。   Examples of the woody material include grasses such as rice straw, wheat straw, bagasse, bamboo, firewood, trees and thinned timber, sawdust, chips, milled wood such as sawdust, roadside tree pruning material, woody building waste And woody biomass such as bark and driftwood, other wood fragments, wood flour, woody components such as lignin, cellulose and hemicellulose, biomass from cellulose products such as waste paper, and the like.

本発明の方法における反応温度は特に限定されないが、例えば1〜80℃、好ましくは10〜50℃、特に好ましくは15〜35℃、最も好ましくは室温(25℃程度)である。また、反応時間は、反応温度及び圧力に応じて適宜調整することができ、例えば1〜120時間程度、好ましくは3〜80時間、より好ましくは5〜40時間である。   Although the reaction temperature in the method of this invention is not specifically limited, For example, 1-80 degreeC, Preferably it is 10-50 degreeC, Especially preferably, it is 15-35 degreeC, Most preferably, it is room temperature (about 25 degreeC). Moreover, reaction time can be suitably adjusted according to reaction temperature and pressure, for example, is about 1 to 120 hours, Preferably it is 3 to 80 hours, More preferably, it is 5 to 40 hours.

本発明の方法は、常圧又は加圧下で行うことができ、加圧下で反応させる場合には、通常0.1〜10MPa程度(好ましくは0.15〜8MPa、特に好ましくは0.5〜8MPa)である。   The method of the present invention can be carried out at normal pressure or under pressure. When the reaction is carried out under pressure, it is usually about 0.1 to 10 MPa (preferably 0.15 to 8 MPa, particularly preferably 0.5 to 8 MPa. ).

本発明の方法における酸化剤の使用量は、基質に対し、例えば0.1〜100等量、好ましくは0.5〜50等量、より好ましくは1〜10等量である。   The usage-amount of the oxidizing agent in the method of this invention is 0.1-100 equivalent with respect to a substrate, Preferably it is 0.5-50 equivalent, More preferably, it is 1-10 equivalent.

本発明の方法における金属イミド錯体の使用量は、基質1モルに対し、例えば0.01〜200モル%、好ましくは0.1〜100モル%、より好ましくは0.5〜40モル%である。   The usage-amount of the metal imide complex in the method of this invention is 0.01-200 mol% with respect to 1 mol of substrates, Preferably it is 0.1-100 mol%, More preferably, it is 0.5-40 mol%. .

変換された基質は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。   The converted substrate can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.

なお、本発明の方法により得られた木質材料(例えば、リグニン)や多糖類(例えば、セルロースやヘミセルロース)の水可溶化物(分解物)は、水によって抽出することによって得ることができる。こうして得られた水可溶性物には糖類等が含まれている。また、水に溶けない不溶性物質も含まれていることもあるが、固液分離装置により不溶性物質を除去することも可能である。固液分離装置としては、例えば、重力沈降方式、遠心分離方式、膜分離方式、凝集分離方式、浮上分離方式等を用いた装置が挙げられる。   In addition, the water-solubilized product (decomposition product) of the woody material (for example, lignin) and polysaccharide (for example, cellulose and hemicellulose) obtained by the method of the present invention can be obtained by extraction with water. The water-soluble material thus obtained contains saccharides and the like. Further, insoluble substances that do not dissolve in water may be included, but it is also possible to remove the insoluble substances using a solid-liquid separator. Examples of the solid-liquid separation device include devices using a gravity sedimentation method, a centrifugal separation method, a membrane separation method, a coagulation separation method, a flotation separation method, and the like.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

(実施例1〜13)
ビス(トリフルオロメタンスルホニル)イミド(5.0g、18mmol)、鉄粉(2.5g、45mmol)、および蒸留水(50mL)を、アルゴン置換した反応容器にて混合した後、加熱還流を3日間行った。得られた反応液から不溶物を濾別し、溶媒を留去した後、真空条件下、60℃にて終夜乾燥することにより、鉄−ビス(トリフルオロメタンスルホニル)イミド(5.0g、8.1mmol、白色固体)を得た。
基質として1−フェニルエタノール、金属イミド錯体として前記の鉄−ビス(トリフルオロメタンスルホニル)イミド錯体を使用し、金属イミド錯体の濃度、酸化剤の種類、及び溶媒を表1に示したものとして、下記式で示される酸化反応を実施し、その収率と転化率を表1に示した。なお、反応時間は2時間、反応温度は室温とした。
(Examples 1 to 13)
Bis (trifluoromethanesulfonyl) imide (5.0 g, 18 mmol), iron powder (2.5 g, 45 mmol), and distilled water (50 mL) were mixed in a reaction vessel purged with argon, and then heated to reflux for 3 days. It was. Insoluble matters were filtered off from the obtained reaction liquid, the solvent was distilled off, and then dried overnight at 60 ° C. under vacuum conditions to thereby give iron-bis (trifluoromethanesulfonyl) imide (5.0 g, 8. 1 mmol, white solid).
Using 1-phenylethanol as a substrate and the iron-bis (trifluoromethanesulfonyl) imide complex as a metal imide complex, the concentration of the metal imide complex, the type of oxidant, and the solvent are shown in Table 1. The oxidation reaction represented by the formula was carried out, and the yield and conversion rate are shown in Table 1. The reaction time was 2 hours and the reaction temperature was room temperature.

Figure 2019151602
Figure 2019151602

Figure 2019151602
Figure 2019151602

(実施例14〜16)
基質として下記のフェニルエタノール、金属イミド錯体として10mol%の鉄−ビス(トリフルオロメタンスルホニル)イミド錯体を使用し、酸化剤として35重量%過酸化水素水、溶媒として酢酸エチル、下記式で示される酸化反応を実施し、その収率と転化率を表2に示した。なお、反応時間は2時間、反応温度は室温とした。

Figure 2019151602
(Examples 14 to 16)
The following phenylethanol was used as a substrate, 10 mol% iron-bis (trifluoromethanesulfonyl) imide complex was used as a metal imide complex, 35 wt% aqueous hydrogen peroxide as an oxidizing agent, ethyl acetate as a solvent, and an oxidation represented by the following formula The reaction was carried out, and the yield and conversion rate are shown in Table 2. The reaction time was 2 hours and the reaction temperature was room temperature.
Figure 2019151602

Figure 2019151602
Figure 2019151602

(実施例17〜23)
基質として下記のベンジルアルコール、金属イミド錯体として10mol%の鉄−ビス(トリフルオロメタンスルホニル)イミド錯体を使用し、酸化剤として35重量%過酸化水素水、溶媒として酢酸エチル、下記式で示される酸化反応を実施し、その収率と転化率を表3に示した。なお、反応時間は2時間、反応温度は室温とした。
(Examples 17 to 23)
The following benzyl alcohol is used as a substrate, 10 mol% iron-bis (trifluoromethanesulfonyl) imide complex is used as a metal imide complex, 35 wt% aqueous hydrogen peroxide as an oxidizing agent, ethyl acetate as a solvent, and an oxidation represented by the following formula The reaction was carried out and the yield and conversion rate are shown in Table 3. The reaction time was 2 hours and the reaction temperature was room temperature.

Figure 2019151602
Figure 2019151602

Figure 2019151602
Figure 2019151602

(実施例24〜27)
基質として下記の芳香族二級アルコール、金属イミド錯体として、10mol%の鉄−ビス(トリフルオロメタンスルホニル)イミド錯体を使用し、酸化剤として35重量%過酸化水素水、溶媒として酢酸エチル、下記式で示される酸化反応をし、その収率と転化率を表4〜7に示した。なお、反応時間は2時間、反応温度は室温とした。
(Examples 24-27)
The following aromatic secondary alcohol is used as a substrate, 10 mol% of iron-bis (trifluoromethanesulfonyl) imide complex is used as a metal imide complex, 35% by weight of hydrogen peroxide as an oxidizing agent, ethyl acetate as a solvent, the following formula The yields and conversions are shown in Tables 4-7. The reaction time was 2 hours and the reaction temperature was room temperature.

Figure 2019151602
Figure 2019151602

Figure 2019151602
Figure 2019151602

Figure 2019151602
Figure 2019151602

Figure 2019151602
Figure 2019151602

Figure 2019151602
Figure 2019151602

Claims (5)

金属と配位子としてのイミドとを含む金属イミド錯体であって、
前記金属が、鉄族金属及び白金族金属からなる群より選択された少なくとも1つであり、
前記イミドが、電子求引性基を有するスルホニル基及び芳香族基を有するスルホニル基からなる群より選択された少なくとも1つを置換基として含むことを特徴とする金属イミド錯体。
A metal imide complex containing a metal and an imide as a ligand,
The metal is at least one selected from the group consisting of an iron group metal and a platinum group metal;
The metal imide complex, wherein the imide contains at least one selected from the group consisting of a sulfonyl group having an electron withdrawing group and a sulfonyl group having an aromatic group as a substituent.
請求項1に記載の金属イミド錯体と酸化剤とを用いた基質変換方法。   A substrate conversion method using the metal imide complex according to claim 1 and an oxidizing agent. 酸化剤が、過酸化水素、過酢酸、オゾン、オキソン、及びt−ブチルハイドロパーオキシドからなる群より選択される少なくとも1つである請求項1又は2に記載の基質変換方法。   The substrate conversion method according to claim 1 or 2, wherein the oxidizing agent is at least one selected from the group consisting of hydrogen peroxide, peracetic acid, ozone, oxone, and t-butyl hydroperoxide. 水、トルエン、酢酸エチル、アセトニトリル、ジクロロメタン、及びトリクロロメタンからなる群より選択される少なくとも1つの溶媒を使用することを特徴とする請求項1〜3の何れか1つに記載の基質変換方法。   The substrate conversion method according to claim 1, wherein at least one solvent selected from the group consisting of water, toluene, ethyl acetate, acetonitrile, dichloromethane, and trichloromethane is used. 基質がアルコール類、多糖類、及び木質材料から選択される少なくとも1つである請求項1〜4の何れか1つに記載の基質変換方法。   The substrate conversion method according to any one of claims 1 to 4, wherein the substrate is at least one selected from alcohols, polysaccharides, and wood materials.
JP2018039105A 2018-03-05 2018-03-05 Metal imide complex and substrate conversion method using the same Pending JP2019151602A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018039105A JP2019151602A (en) 2018-03-05 2018-03-05 Metal imide complex and substrate conversion method using the same
PCT/JP2019/008392 WO2019172184A1 (en) 2018-03-05 2019-03-04 Metal imide complex and substrate conversion method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039105A JP2019151602A (en) 2018-03-05 2018-03-05 Metal imide complex and substrate conversion method using the same

Publications (1)

Publication Number Publication Date
JP2019151602A true JP2019151602A (en) 2019-09-12

Family

ID=67847178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039105A Pending JP2019151602A (en) 2018-03-05 2018-03-05 Metal imide complex and substrate conversion method using the same

Country Status (2)

Country Link
JP (1) JP2019151602A (en)
WO (1) WO2019172184A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063349A (en) * 2018-10-16 2020-04-23 国立大学法人京都大学 Production method for cellulose and/or hemicellulose

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3208852B2 (en) * 1991-08-08 2001-09-17 住友化学工業株式会社 Alkane oxidation method
JP3345943B2 (en) * 1993-03-12 2002-11-18 住友化学工業株式会社 Method for producing ketone
AU2002238707A1 (en) * 2001-03-12 2002-09-24 The Queen's University Of Belfast Process catalysed by fluoroalkylsulfonated compounds, preferably bis-triflimide compounds
CN104549507B (en) * 2014-12-15 2017-05-17 浙江大学 Preparation method of iron-based catalyst for alkylation reaction

Also Published As

Publication number Publication date
WO2019172184A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
Román et al. Elucidating acidic electro-oxidation pathways of furfural on platinum
Magallanes et al. Selective C–O bond cleavage of lignin systems and polymers enabled by sequential palladium-catalyzed aerobic oxidation and visible-light photoredox catalysis
Chen et al. Chemical Fixation of Carbon Dioxide Using a Green and Efficient Catalytic System Based on Sugarcane Bagasse An Agricultural Waste
Ma et al. An electrocatalytic strategy for C–C bond cleavage in lignin model compounds and lignin under ambient conditions
Kopylovich et al. Catalytic oxidation of alcohols: Recent advances
Li et al. Silver‐Catalyzed Oxidative C (sp3)− P Bond Formation through C− C and P− H Bond Cleavage
Gharehkhani et al. Lignin-derived platform molecules through TEMPO catalytic oxidation strategies
JP5550303B2 (en) Process for producing 2,5-furandicarboxylic acid
JP6069199B2 (en) Method for synthesizing 2,5-furandicarboxylic acid
Abdel-Mohsen et al. Laccase-catalyzed oxidation of Hantzsch 1, 4-dihydropyridines to pyridines and a new one pot synthesis of pyridines
RU2703511C2 (en) Method for selective oxidation of 5-hydroxymethylfurfural
Han et al. Application of the electrochemical oxygen reduction reaction (ORR) in organic synthesis
Zhou et al. En route to metal-mediated and metal-catalysed reactions in water
Crucianelli et al. Methyltrioxorhenium catalysis in nonconventional solvents: A great catalyst in a safe reaction medium
Berkessel et al. Dendritic fluoroalcohols as catalysts for alkene epoxidation with hydrogen peroxide.
JP2009001519A (en) Method for producing 2,5-furandicarboxylic acid
Cervantes-Reyes et al. Copper-catalysed synthesis of α-alkylidene cyclic carbonates from propargylic alcohols and CO 2
Aldea et al. Selective aerobic oxidation of sulfides using a novel palladium complex as the catalyst precursor
WO2012156479A1 (en) Method for producing 5-hydroxymethylfurfural
CN108947776B (en) Method for catalyzing oxidative cracking of lignin model aryl ether
García-Marín et al. Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis [3, 5-bis (trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents
AU2003233860A1 (en) Process for the production of acetic acid
WO2019172184A1 (en) Metal imide complex and substrate conversion method using same
TW201509925A (en) Synthesis of alkylfurans
Tiwari et al. Green solvents: Application in organic synthesis