JP2019151565A - Compound, antibacterial agent, and secondary metabolite - Google Patents

Compound, antibacterial agent, and secondary metabolite Download PDF

Info

Publication number
JP2019151565A
JP2019151565A JP2018036076A JP2018036076A JP2019151565A JP 2019151565 A JP2019151565 A JP 2019151565A JP 2018036076 A JP2018036076 A JP 2018036076A JP 2018036076 A JP2018036076 A JP 2018036076A JP 2019151565 A JP2019151565 A JP 2019151565A
Authority
JP
Japan
Prior art keywords
ptm904
culture
compound
secondary metabolite
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018036076A
Other languages
Japanese (ja)
Other versions
JP6994737B2 (en
Inventor
荒川 宜親
Yoshichika Arakawa
宜親 荒川
宏康 尾仲
Hiroyasu Onaka
宏康 尾仲
盛進 河合
Sung-Jin Kawai
盛進 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Toyota Boshoku Corp
University of Tokyo NUC
Original Assignee
Nagoya University NUC
Toyota Boshoku Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Toyota Boshoku Corp, University of Tokyo NUC filed Critical Nagoya University NUC
Priority to JP2018036076A priority Critical patent/JP6994737B2/en
Publication of JP2019151565A publication Critical patent/JP2019151565A/en
Application granted granted Critical
Publication of JP6994737B2 publication Critical patent/JP6994737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

To provide an antibiotic effective against multidrug-resistant bacteria.SOLUTION: The invention provides a compound represented by formula (1) or a salt thereof.SELECTED DRAWING: None

Description

本発明は、特に、抗生物質として有効な新規化合物などに関する。   The present invention particularly relates to novel compounds effective as antibiotics.

医療現場におけるメチシリン耐性黄色ブドウ球菌(Methicillin-resistant Staphylococcus aureus;以下、「MRSA」と略称する)の蔓延は、感染防御能が低下した患者等に重篤な病態を引き起こす懸念があり、臨床的に重大な問題となっている。また、MRSAに有効なバンコマイシンに対して耐性を獲得したバンコマイシン耐性腸球菌(Vancomycin-resistant Enterococcus ;以下、「VRE」と略称する)も出現し、感染症の治療に用いられる抗菌薬の多くがVREに対して無効という現状がある。   The spread of methicillin-resistant Staphylococcus aureus (hereinafter abbreviated as “MRSA”) in the medical field has the potential to cause serious pathological conditions in patients with reduced infection-protection ability, and clinically. It has become a serious problem. In addition, vancomycin-resistant enterococcus (hereinafter abbreviated as “VRE”), which has acquired resistance to vancomycin effective for MRSA, has appeared, and many of the antibacterial drugs used for the treatment of infectious diseases are VRE. The current situation is invalid.

このため、MRSA、VREのような多剤耐性菌に対して有用な生理活性物質を産生する能力をもった微生物の探索が広く行われている。例えば、リソバクター(Lysobacter)属に属する微生物の培養液中から精製した抗生物質は、MRSAとVREの双方に抗菌活性を示すことが報告されている(特許文献1を参照)。   For this reason, the search of the microorganisms which have the capability to produce a bioactive substance useful with respect to multi-drug resistant bacteria like MRSA and VRE is performed widely. For example, it has been reported that an antibiotic purified from a culture solution of a microorganism belonging to the genus Lysobacter exhibits antibacterial activity on both MRSA and VRE (see Patent Document 1).

特開2012−5480号公報JP 2012-5480 A

多剤耐性菌に対して有効な生理活性物質のスクリーニングには、単離された放線菌等の菌株の純粋培養株を使用するのが一般的である。
一方、本発明者は、放線菌とミコール酸含有菌を共培養(混合培養)することで、放線菌の二次代謝産物生産能力が活性化され、純粋培養では産生されない抗菌性を示す二次代謝産物を得ることができることを見出した。このような混合培養の手法を用いて、放線菌の潜在的な二次代謝を誘導することにより、従来の純粋培養では産生できない新規抗生物質を得ることが期待される。
For screening of physiologically active substances effective against multidrug-resistant bacteria, it is common to use a pure culture of an isolated strain such as actinomycetes.
On the other hand, the present inventor activates the secondary metabolite-producing ability of actinomycetes by co-culturing (mixed culture) actinomycetes and mycolic acid-containing bacteria, and exhibits antibacterial properties not produced in pure culture. It has been found that metabolites can be obtained. By using this mixed culture technique to induce potential secondary metabolism of actinomycetes, it is expected to obtain novel antibiotics that cannot be produced by conventional pure culture.

本発明は、多剤耐性菌に対して有効な化合物を得ることを目的とする。   The object of the present invention is to obtain a compound effective against multidrug-resistant bacteria.

本発明者は、ミコール酸含有菌と被検菌を混合培養することで、純粋培養では得られない新規の生理活性物質が産生されることを見出し、本発明を完成させるに至った。
本発明は、以下の発明を包含する。

Figure 2019151565
The present inventor has found that a novel physiologically active substance that cannot be obtained by pure culture is produced by mixing and culturing mycolic acid-containing bacteria and test bacteria, and has completed the present invention.
The present invention includes the following inventions.
Figure 2019151565

本発明により、既知の抗生物質とは異なる化学構造を有し、MRSA、VRE等の多剤耐性菌に対して抗菌作用を示す新規な化合物が提供される。ここで、「抗菌作用」とは、細菌の生育もしくは増殖を阻害する作用、または細菌を死滅させる作用のことを言う。   The present invention provides a novel compound having a chemical structure different from that of known antibiotics and exhibiting antibacterial action against multidrug-resistant bacteria such as MRSA and VRE. Here, the “antibacterial action” refers to an action that inhibits the growth or proliferation of bacteria, or an action that kills bacteria.

化合物(1)の化学構造である。It is a chemical structure of a compound (1). 化合物(1)のNMRデータである。It is NMR data of a compound (1). 化合物(1)のCOSY相関及びROESY相関を示す図である。It is a figure which shows the COSY correlation and ROESY correlation of a compound (1). 化合物(1)のHMBC相関を示す図である。It is a figure which shows the HMBC correlation of a compound (1). 化合物(1)の部分構造のHMBC相関を示す図である。It is a figure which shows the HMBC correlation of the partial structure of a compound (1).

以下、本発明を詳細に説明する。
本発明の化合物は、

Figure 2019151565
で表される構造を有する。 Hereinafter, the present invention will be described in detail.
The compounds of the present invention
Figure 2019151565
It has the structure represented by these.

化合物(1)は、ミコール酸含有菌と被検菌を複合(混合)して培養し、その培養液中から単離される二次代謝産物として得ることができる。以下、化合物(1)を、PTM904と称する。   The compound (1) can be obtained as a secondary metabolite isolated from the culture solution obtained by combining (mixing) the mycolic acid-containing bacterium with the test bacterium and culturing. Hereinafter, the compound (1) is referred to as PTM904.

ミコール酸含有菌は、細胞壁にミコール酸を含有する微生物であって、被検菌の二次代謝産物生産を誘導する能力を有する。本発明で使用されるミコール酸含有菌は、例えば、ツカムレラ(Tsukamurella)属に属する微生物である。   A mycolic acid-containing bacterium is a microorganism that contains mycolic acid in the cell wall, and has the ability to induce secondary metabolite production of the test bacterium. The mycolic acid-containing bacterium used in the present invention is, for example, a microorganism belonging to the genus Tsukamurella.

被検菌は、例えば、国内(北海道富良野市)の土壌試料から分離され、本発明者がHOK021株と命名した放線菌である。HOK021株の16S rDNA塩基配列は、ストレプトマイセス(Streptomyces)属のそれに対して高い相同性(相合率99.6%)を示した。よって、HOK021株は、ストレプトマイセス(Streptomyces)属に属する微生物である。
実施例1の被検菌として用いたStreptomyces hygroscopicus HOK021株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受託番号NITE P−02560として寄託されている(受託日:2017年10月17日)。
The test bacteria are, for example, actinomycetes isolated from a soil sample in Japan (Furano City, Hokkaido) and named as HOK021 strain by the present inventor. The 16S rDNA base sequence of the HOK021 strain showed high homology (composition rate 99.6%) to that of the genus Streptomyces. Therefore, the HOK021 strain is a microorganism belonging to the genus Streptomyces.
The Streptomyces hygroscopicus HOK021 strain used as the test bacterium of Example 1 has been deposited as an accession number NITE P-02560 with the Patent Microorganism Depositary, National Institute of Technology and Evaluation (Accession date: October 17, 2017). Day).

ミコール酸含有菌と被検菌の混合培養は、被検菌を単独で培養する場合に好適な培養条件下で行うことができ、通常、好気的条件下で行われる。培地の種類や培養条件(培地栄養源、培養時間、温度、pH等)は、一般の微生物による抗生物質の製造において通常使用される場合に準じ、また、ミコール酸含有菌や被検菌の性質を考慮して適宜決定される。ミコール酸含有菌と被検菌は、いずれも生菌の状態で混合培養される。   Mixed culture of mycolic acid-containing bacteria and test bacteria can be performed under culture conditions suitable for culturing the test bacteria alone, and is usually performed under aerobic conditions. The type of medium and culture conditions (medium nutrient source, culture time, temperature, pH, etc.) are the same as those usually used in the production of antibiotics by general microorganisms, and the properties of mycolic acid-containing bacteria and test bacteria Is determined as appropriate. Both the mycolic acid-containing bacterium and the test bacterium are mixed and cultured in the state of a living bacterium.

PTM904は、ミコール酸含有菌と被検菌を混合培養した培養物から回収され、単離精製されて得られる。
単離精製方法としては、微生物からの二次代謝産物を取得するのに通常用いられる方法を採用することができる。例えば、培養物の培養後、濾過、遠心分離等の公知の手法によって菌体と上清とを分離し、上清を有機溶媒等で溶媒抽出した後、種々の分離方法で単離精製して、PTM904を採取することができる。あるいは培養物を遠心操作あるいはフィルター濾過することにより、回収した菌体ペレットを適切な方法で破砕し、適切な溶媒等を用いて抽出し精製することでPTM904を回収することも可能である。分離方法としては、ODSカラム等の逆相カラムクロマトグラフィー、逆相カラムクロマトグラフィーを用いたHPLCによる分取等を行うことができる。さらに、結晶化、減圧濃縮、凍結乾燥等の手段を単独で、または適宜組み合わせて用いることができる。最終的に目的とするPTM904が得られる方法であれば、いかなる単離精製方法であるかを問わない。
PTM904 is obtained from a culture obtained by mixing and culturing a mycolic acid-containing bacterium and a test bacterium, and isolated and purified.
As an isolation and purification method, a method usually used for obtaining secondary metabolites from microorganisms can be employed. For example, after culturing the culture, the cells and the supernatant are separated by a known method such as filtration or centrifugation, and the supernatant is extracted with an organic solvent or the like and then isolated and purified by various separation methods. PTM904 can be collected. Alternatively, PTM904 can be recovered by centrifuging the culture or filtering the culture, crushing the recovered cell pellets by an appropriate method, and extracting and purifying using an appropriate solvent or the like. As a separation method, reverse phase column chromatography such as an ODS column, fractionation by HPLC using reverse phase column chromatography, or the like can be performed. Furthermore, means such as crystallization, concentration under reduced pressure, and lyophilization can be used alone or in appropriate combination. Any isolation / purification method may be used as long as the target PTM904 is finally obtained.

被検菌のStreptomyces hygroscopicus HOK021株とミコール酸含有菌とを混合培養し、その培養物から回収される二次代謝産物としては、抗菌性物質であるのが好ましく、PTM904の他、既知化合物であるプラテンシマイシン(Platensimycin)、エンテロバクチン(Enterobactin)、ENT447(N,N'-bis(2,3-dihydroxybenzoyl)-O-(α-aminoacryloyl)-O-serylserine)などが挙げられ、これらを単独で、または複数を組み合わせて用いることができる。   Streptomyces hygroscopicus strain HOK021 and mycolic acid-containing bacteria are mixed and cultured, and the secondary metabolite recovered from the culture is preferably an antibacterial substance, and is a known compound in addition to PTM904 Platensimycin, Enterobactin, ENT447 (N, N'-bis (2,3-dihydroxybenzoyl) -O- (α-aminoacryloyl) -O-serylserine), etc. Or in combination.

上述した二次代謝産物のうち、プラテンシマイシンは、南アフリカの土壌に存在する放線菌の一種であるストレプトマイセス・プラテンシス(Streptomyces platensis)から純粋培養で単離されたものである。
プラテンシマイシンは、細菌の脂肪酸合成を行う酵素(FabF)を阻害することで抗生作用を示し、耐性菌が出現しにくく、MRSA、VREにも有効である。また、プラテンシマイシンは、MRSA、VREを含むグラム陽性菌に対して広範な抗菌スペクトルを示すことが報告されている。プラテンシマイシンの抗生物質としての重要性に鑑み、後述する抗菌作用の評価試験においては、PTM904とプラテンシマイシンのそれぞれのMIC(最少発育阻止濃度)を測定するものとする。
Of the secondary metabolites described above, platensymycin has been isolated in pure culture from Streptomyces platensis, a kind of actinomycetes present in South African soil.
Platensymycin exhibits an antibiotic action by inhibiting an enzyme (FabF) that synthesizes fatty acids in bacteria, is resistant to the emergence of resistant bacteria, and is effective for MRSA and VRE. Platensymycin has been reported to show a broad antibacterial spectrum against Gram-positive bacteria including MRSA and VRE. In view of the importance of platensymycin as an antibiotic, in the antibacterial action evaluation test described later, the MIC (minimum growth inhibitory concentration) of PTM904 and platensimimycin shall be measured.

PTM904は、公知の化学合成法を利用して合成されるものであってもよい。もっとも、微生物の培養によってPTM904を得る方法は、特別な金属触媒や試薬等を必要とせず、化学合成法に比べて有利な点が多い。PTM904は、構造中に不斉炭素原子を有し、立体異性が生じるが、ここではいずれの立体異性体も含まれ、またラセミ体であってもよい。   PTM904 may be synthesized using a known chemical synthesis method. However, the method for obtaining PTM904 by culturing microorganisms does not require a special metal catalyst or reagent, and has many advantages over chemical synthesis methods. PTM904 has an asymmetric carbon atom in the structure, and stereoisomerism occurs, but here, any stereoisomer is included, and it may be a racemate.

PTM904は、フリー体に限らず、塩として存在するものであってもよい。PTM904の塩としては、薬理学的に許容される塩であれば特に限定されず、PTM904は、無機酸や有機酸から誘導される塩として存在し得る。   PTM904 is not limited to a free form, and may exist as a salt. The salt of PTM904 is not particularly limited as long as it is a pharmacologically acceptable salt, and PTM904 can exist as a salt derived from an inorganic acid or an organic acid.

本発明の抗菌剤は、PTM904をそのまま用いてもよいが、使用し易い製剤に加工されるのが好ましい。例えば、経口投与のための製剤としては、錠剤、カプセル剤、細粒剤、粉末剤、顆粒剤、口腔内崩壊錠、液剤、シロップ剤等が挙げられ、非経口投与のための製剤としては、注射剤、点滴剤、坐薬、吸入剤、経皮吸収剤、経粘膜吸収剤、点鼻剤、点耳剤、軟膏、クリーム等が挙げられる。これらの製剤には、それぞれの製剤の種類に応じて、慣用の補助剤や担体成分を含ませることができる。また、これらの製剤は、その剤形に応じて、混和、混練、造粒、打錠、コーティング、滅菌処理、乳化等の慣用の方法で製造され得る。
また、医療用ガーゼなどに付着させて創部等の感染症を防ぐための被覆材として使用される場合も想定される。
As the antibacterial agent of the present invention, PTM904 may be used as it is, but it is preferably processed into a preparation that is easy to use. For example, preparations for oral administration include tablets, capsules, fine granules, powders, granules, orally disintegrating tablets, solutions, syrups, etc., and preparations for parenteral administration include Injections, drops, suppositories, inhalants, transdermal absorbents, transmucosal absorbents, nasal drops, ear drops, ointments, creams and the like. These preparations can contain conventional adjuvants and carrier components depending on the type of each preparation. In addition, these preparations can be produced by conventional methods such as mixing, kneading, granulation, tableting, coating, sterilization, emulsification, etc., depending on the dosage form.
Moreover, the case where it adheres to medical gauze etc. and is used as a coating | covering material for preventing infectious diseases, such as a wound part, is also assumed.

<実施例1>
1.PTM904の製造
[HOK021の分離]
東京大学大学院農学生命科学研究科付属演習林(北海道演習林、北海道富良野市)において採取した土壌から希釈フェノール法及びISP4培地(培地成分:1% Soluble starch, 0.1% K2HPO4, 0.1% MgSO4, 0.1% NaCl, 0.2% (NH4)2SO4, 0.2% CaCO3, 0.0001% FeSO4, 0.0001% MnCl2, 0.0001% ZnSO4, 2.0% agar.)を用いて放線菌を分離した。分離放線菌HOK021株の部分16S rDNA配列をPCRにより増幅し、サンガー法により塩基配列を決定したところ、基準株であるStreptomyces hygroscopicus subsp. glebosus(遺伝子登録番号AB184479)と99.6%(1463/1469)の相同性を示した。HOK021株をStreptomyces hygroscopicus HOK021株と命名した。
<Example 1>
1. Production of PTM904 [Separation of HOK021]
Diluted phenol method and ISP4 medium (medium components: 1% Soluble starch, 0.1% K 2 HPO 4 , 0.1% MgSO) from the soil collected in the practice forest attached to the Graduate School of Agricultural and Life Sciences, University of Tokyo (Hokkaido Exercise Forest, Furano City, Hokkaido) Actinomycetes were isolated using 4 , 0.1% NaCl, 0.2% (NH 4 ) 2 SO 4 , 0.2% CaCO 3 , 0.0001% FeSO 4 , 0.0001% MnCl 2 , 0.0001% ZnSO 4 , 2.0% agar. When the partial 16S rDNA sequence of the isolated actinomycete HOK021 strain was amplified by PCR and the nucleotide sequence was determined by the Sanger method, Streptomyces hygroscopicus subsp. Glebosus (gene registration number AB184479) and 99.6% (1463-1469) ). The HOK021 strain was named Streptomyces hygroscopicus HOK021 strain.

[HOK021とTP−B0596の培養]
Streptomyces hygroscopicus HOK021株の胞子液グリセロールストック(−80℃保存)をISP2寒天培地(培地成分:0.4% Yeast extract, 1% Malt extract, 0.4% glucose, 2.0% agar.)に植菌し、30℃で5日間静置培養を行った。ミコール酸含有菌であるTsukamurella pulmonis TP−B0596の菌体グリセロールストック(−80℃保存)をISP2寒天培地に植菌し、30℃で3日間静置培養を行った。K−1型フラスコに100mlのV−22培地(培地成分:1% Soluble starch, 0.5% Glucose, 0.3% NZ-case, 0.2% Yeast extract, 0.1% Tryptone, 0.1% K2HPO4, 0.05% MgSO4, 0.3% CaCO3(pH 7))を入れた培地に、寒天培地に生育したHOK021株菌体を植菌し、3日間(30℃、200rpm)前培養を行った。K−1型フラスコに100mlのV−22培地を入れた培地に、寒天培地に生育したTP−B0596株菌体を植菌し、2日間(30℃、200rpm)前培養を行った。HOK021株の前培養液を3ml、TP−B0596株の前培養液1mlを、K−1型フラスコに100mlのA−3M培地(培地成分:2% Soluble starch, 2% Glycerol, 1.5% Pharmamedia, 0.5% Glucose, 0.3% Yeast extract, 1% Diaion(登録商標)HP-20(pH 7))を入れた培地に同時に植菌し、その後8日間(30℃、200rpm)本培養を行った。
[Culture of HOK021 and TP-B0596]
Inoculate Streptomyces hygroscopicus HOK021 strain spore solution glycerol stock (stored at -80 ° C) into ISP2 agar medium (medium components: 0.4% Yeast extract, 1% Malt extract, 0.4% glucose, 2.0% agar.) At 30 ° C Static culture was performed for 5 days. A cell glycerol stock (stored at -80 ° C) of Tsukamurella pulmonis TP-B0596, which is a mycolic acid-containing bacterium, was inoculated into an ISP2 agar medium, and statically cultured at 30 ° C for 3 days. In a K-1 flask, 100 ml of V-22 medium (medium components: 1% Soluble starch, 0.5% Glucose, 0.3% NZ-case, 0.2% Yeast extract, 0.1% Tryptone, 0.1% K 2 HPO 4 , 0.05% MgSO 4 , 0.3% CaCO 3 (pH 7)) was inoculated with HOK021 strain cells grown on an agar medium and precultured for 3 days (30 ° C., 200 rpm). TP-B0596 strain cells grown on an agar medium were inoculated into a medium containing 100 ml of V-22 medium in a K-1 type flask, and precultured for 2 days (30 ° C., 200 rpm). 3 ml of the preculture of the HOK021 strain and 1 ml of the preculture of the TP-B0596 strain were added to a 100 ml A-3M medium (medium components: 2% Soluble starch, 2% Glycerol, 1.5% Pharmamedia, 0.5 % Glucose, 0.3% Yeast extract, 1% Diaion (registered trademark) HP-20 (pH 7)) was inoculated at the same time, followed by main culture for 8 days (30 ° C., 200 rpm).

[PTM904の抽出]
本培養液(合計3.6L)を等量の酢酸エチル(3.6L、Wako 特級試薬)を用いて一回目の撹拌抽出(約1時間)を行い、遠心分離によって酢酸エチル相と水相を分離し、酢酸エチル相を回収した。残った水相に対し、さらに等量の酢酸エチル(3.6L)を用いて二回目の撹拌抽出(約1時間)を行い、遠心分離によって酢酸エチル相と水相を分離し、酢酸エチル相を回収した。回収した一回目と二回目の酢酸エチル相を合わせ、エバポレーターによる減圧下、酢酸エチルを留去し、約2.9gのクルード抽出物を得た。
[Extraction of PTM904]
The main culture solution (3.6 L in total) is subjected to the first stirring extraction (about 1 hour) using an equal amount of ethyl acetate (3.6 L, Wako special grade reagent), and the ethyl acetate phase and the aqueous phase are separated by centrifugation. Separate and collect the ethyl acetate phase. The remaining aqueous phase is further subjected to a second stirring extraction (about 1 hour) with an equal amount of ethyl acetate (3.6 L), and the ethyl acetate phase and the aqueous phase are separated by centrifugation, and the ethyl acetate phase Was recovered. The collected first and second ethyl acetate phases were combined, and the ethyl acetate was distilled off under reduced pressure using an evaporator to obtain about 2.9 g of crude extract.

[PTM904の精製(1)]
最初に、移動相にアセトニトリル(Wako特級試薬)とmilli-Q(登録商標)水を用いた中圧ODSカラムを使用し、クルード抽出物の粗精製を行った。クルード抽出物約0.6gをDMSOにより0.1g/ml濃度に溶解し、20%アセトニトリル溶媒に置換したODSカラム(4i.d.×24cm、約300ml)に添加した。20%アセトニトリル溶媒、40%アセトニトリル溶媒、60%アセトニトリル溶媒、80%アセトニトリル溶媒、100%アセトニトリル溶媒、それぞれ300mlを用いて溶出した。分取した60%アセトニトリル溶媒の後半150mlに目的のPTM904を含む画分を得た。エバポレーターを用いてアセトニトリルを留去し、残った水相を−80℃ディープフリーザー中で凍結させ、凍結乾燥により残った水相を留去し、46.7mgの粗精製物を得た。
[PTM904 purification (1)]
First, the crude extract was roughly purified using an intermediate pressure ODS column using acetonitrile (Wako special grade reagent) and milli-Q (registered trademark) water as the mobile phase. About 0.6 g of the crude extract was dissolved in DMSO to a concentration of 0.1 g / ml and added to an ODS column (4id × 24 cm, about 300 ml) substituted with 20% acetonitrile solvent. Elution was performed using 300 ml each of 20% acetonitrile solvent, 40% acetonitrile solvent, 60% acetonitrile solvent, 80% acetonitrile solvent, and 100% acetonitrile solvent. A fraction containing the target PTM904 in the latter half 150 ml of the collected 60% acetonitrile solvent was obtained. Acetonitrile was distilled off using an evaporator, the remaining aqueous phase was frozen in a −80 ° C. deep freezer, and the remaining aqueous phase was removed by lyophilization to obtain 46.7 mg of a crude product.

[PTM904の精製(2)]
次に、移動相にアセトニトリル(Wako特級試薬)と10mM 酢酸アンモニウム緩衝液を用いたフェニルエチル基カラムを使用し、HPLC精製を行った。粗精製物46.7mgをDMSOにより約25 mg/ml 濃度に溶解し、30%アセトニトリル溶媒に置換したCOSMOSIL(登録商標)5PE−MSカラム(5μm、10i.d.×250mm、ナカライ)に、一回に20μLずつ注入した。流速4.2 ml/min、アイソクラティックで溶出し、保持時間8.5分に溶出したピークを分取し、目的のPTM904を含む画分を得た。エバポレーターを用いてアセトニトリルを留去し、残った緩衝液相を−80℃ディープフリーザー中で凍結させ、凍結乾燥により残った水相を留去し、4.2mgの精製物を得た。
[PTM904 purification (2)]
Next, HPLC purification was performed using a phenylethyl group column using acetonitrile (Wako special grade reagent) and 10 mM ammonium acetate buffer as a mobile phase. A COSMOSIL® 5PE-MS column (5 μm, 10 id × 250 mm, Nacalai) in which 46.7 mg of the crude product was dissolved in DMSO to a concentration of about 25 mg / ml and replaced with 30% acetonitrile solvent was applied to one column. 20 μL was injected at a time. Elution was performed with a flow rate of 4.2 ml / min and isocratic, and the peak eluted at a retention time of 8.5 minutes was collected to obtain a fraction containing the target PTM904. Acetonitrile was distilled off using an evaporator, the remaining buffer phase was frozen in a −80 ° C. deep freezer, and the remaining aqueous phase was lyophilized to obtain 4.2 mg of purified product.

[PTM904の精製(3)]
次に、移動相にアセトニトリル(Wako特級試薬)と0.1%ギ酸緩衝液を用いたC18カラムを使用し、精製物からPTM904のHPLC精製を行った。精製物4.2mgをDMSO約0.5mlに溶解し、55%アセトニトリル溶媒に置換したC18−AR−IIカラム(5μm、10i.d.×250mm、ナカライ)に、一回に20μLずつ注入した。流速3.0ml/min、アイソクラティックで溶出し、保持時間7.6分に溶出したピークを分取し、目的のPTM904を含む画分を得た。エバポレーターを用いてアセトニトリル及び緩衝液相を留去し、3.4mgの精製物を得た。
[PTM904 purification (3)]
Next, HPLC purification of PTM904 was performed from the purified product using a C18 column using acetonitrile (Wako special grade reagent) and 0.1% formic acid buffer as the mobile phase. 4.2 mg of the purified product was dissolved in about 0.5 ml of DMSO, and 20 μL was injected at a time onto a C 18 -AR-II column (5 μm, 10 id × 250 mm, Nacalai) substituted with 55% acetonitrile solvent. . Elution was performed with a flow rate of 3.0 ml / min and isocratic, and a peak eluted at a retention time of 7.6 minutes was collected to obtain a fraction containing the target PTM904. Acetonitrile and the buffer phase were distilled off using an evaporator to obtain 3.4 mg of a purified product.

PTM904を含むピークは、HOK021とTP−B0596のそれぞれの単独純粋培養では確認されなかった。つまり、PTM904は、HOK021とTP−B0596の混合培養によって初めて確認されたものである。また、上記HOK021とTP−B0596の本培養液には、PTM904以外の二次代謝産物として、プラテンシマイシン(Platensimycin)、エンテロバクチン(Enterobactin)、ENT447(N,N'-bis(2,3-dihydroxybenzoyl)-O-(α-aminoacryloyl)-O-serylserine)が含まれていた。   A peak containing PTM904 was not observed in each single pure culture of HOK021 and TP-B0596. That is, PTM904 was confirmed for the first time by mixed culture of HOK021 and TP-B0596. In addition, in the main culture solution of HOK021 and TP-B0596, as the secondary metabolites other than PTM904, platensimycin, enterobactin, ENT447 (N, N′-bis (2,3 -dihydroxybenzoyl) -O- (α-aminoacryloyl) -O-serylserine).

2.PTM904の構造解析
上述により単離されたPTM904の物理化学的特性を、以下に示す。
(A)外観:淡黄色粉末
(B)分子量:903.9
(C)分子式 :C44H45N3O16S
(D)HR QTOF ESI MS(ポジティブ):実測値904.2616 [M+H]+
計算値904.2593 (for C44H46N3O16S+)
(E)HR QTOF ESI MS(ネガティブ):実測値902.2512 [M-H]-
2. Structural analysis of PTM904 The physicochemical properties of PTM904 isolated as described above are shown below.
(A) Appearance: pale yellow powder (B) Molecular weight: 903.9
(C) Molecular formula: C 44 H 45 N 3 O 16 S
(D) HR QTOF ESI MS (positive): measured value 904.2616 [M + H] +
Calculated 904.2593 (for C 44 H 46 N 3 O 16 S + )
(E) HR QTOF ESI MS (negative): Measured value 902.2512 [MH] -

上述により単離されたPTM904のNMRデータを、図2に示す。なお、図2中の「位置」欄の数字は、PTM904を構成する炭素の位置番号を示す(図1を参照、IUPAC命名法に従うものではない)。化学シフト(δ、δ)は、ppmで表現され、H−NMRは500MHz、13C−NMRは125MHzでそれぞれ分析され、重溶媒として、ピリジン−d5を用いた。 The NMR data of PTM904 isolated as described above is shown in FIG. The numbers in the “position” column in FIG. 2 indicate the position numbers of the carbons constituting the PTM 904 (see FIG. 1, not following the IUPAC nomenclature). Chemical shifts (δ H , δ C ) are expressed in ppm, 1 H-NMR was analyzed at 500 MHz, 13 C-NMR was analyzed at 125 MHz, and pyridine-d5 was used as a deuterated solvent.

質量分析データとNMRデータにより、本化合物の分子式を、C444516Sと決定した。13C−NMRスペクトルによって本化合物の44個の炭素シグナルが確認された。13C−NMRスペクトル及びH−NMRスペクトルは、芳香環、カルボキシル基、アミド結合、チオエステル結合等の存在を示唆した。 The molecular formula of this compound was determined to be C 44 H 45 N 3 O 16 S based on mass spectrometry data and NMR data. 44 carbon signals of the present compound were confirmed by 13 C-NMR spectrum. The 13 C-NMR spectrum and 1 H-NMR spectrum suggested the presence of aromatic rings, carboxyl groups, amide bonds, thioester bonds, and the like.

HH−COSY(Proton-Proton Correlation Spectroscopy)により、図3の太線で示すプロトン間のつながりが認められた。HMBC(Heteronuclear Multiple Bond Coherence)により、図4の矢印で示すプロトン−カーボン間の相関が認められた。また、ROESY(Rotating Overhauser Enhancement and exchange Spectroscopy)により、図3の矢印で示す結合的に近いプロトン間の相関が認められた。ここで、N−H水素に近接するC−H水素との相関が認められた。   By HH-COSY (Proton-Proton Correlation Spectroscopy), a connection between protons indicated by a thick line in FIG. 3 was recognized. By HMBC (Heteronuclear Multiple Bond Coherence), the proton-carbon correlation indicated by the arrow in FIG. 4 was recognized. In addition, a correlation between protons close to each other as shown by arrows in FIG. 3 was recognized by ROESY (Rotating Overhauser Enhancement and exchange Spectroscopy). Here, a correlation with C—H hydrogen adjacent to N—H hydrogen was observed.

トリシクロ環の橋かけ環構造とエノン構造を有する図5に示す部分構造は、HH−COSY、HMBC、ROESYの各スペクトル解析により、その結合様式及び立体配置を決定した。
以上の解析結果により、PTM904の構造を式(1)に示すごとく決定した。
The partial structure shown in FIG. 5 having a bridged ring structure and an enone structure of a tricyclo ring was determined for its binding mode and configuration by each spectrum analysis of HH-COSY, HMBC, and ROESY.
Based on the above analysis results, the structure of PTM904 was determined as shown in Formula (1).

3.PTM904の抗菌作用
メチシリン耐性黄色ブドウ球菌(以下、MRSAと称する)、バンコマイシン耐性腸球菌(以下、VREと称する)に対する抗菌作用の測定として、まず、ディスク拡散法による薬剤感受性試験(ハロー試験)を行った。
3. Antibacterial action of PTM904 To measure the antibacterial action against methicillin-resistant Staphylococcus aureus (hereinafter referred to as MRSA) and vancomycin-resistant enterococci (hereinafter referred to as VRE), first, a drug susceptibility test (halo test) by a disk diffusion method was performed. It was.

PTM904をDMSOで溶解し、その検液2mlを直径8mmのペーパーディスクにしみ込ませた。こうしてPTM904をそれぞれ10μg、1μg含ませたペーパーディスクを、菌液を塗布した培地上に置き、30℃で16〜20時間培養した。その後、発育阻止円径(ペーパーディスクの中心を通る直径(mm))を測定した。結果を表1に示す。なお、表中の「−」は、発育阻止円なしを意味する。   PTM904 was dissolved in DMSO, and 2 ml of the test solution was soaked in a paper disk having a diameter of 8 mm. Thus, the paper disk containing 10 μg and 1 μg of PTM904 was placed on the medium coated with the bacterial solution and cultured at 30 ° C. for 16 to 20 hours. Thereafter, the growth inhibition circle diameter (diameter (mm) passing through the center of the paper disk) was measured. The results are shown in Table 1. In the table, “-” means no growth inhibition circle.

Figure 2019151565
Figure 2019151565

PTM904は、MRSA、VREのような多剤耐性グラム陽性菌に対して抗菌作用を示した。特に、PTM904は、VREに対して濃度依存的に顕著な生育阻害を示すことが明らかになった。   PTM904 showed antibacterial activity against multidrug resistant Gram-positive bacteria such as MRSA and VRE. In particular, it was revealed that PTM904 exhibits significant growth inhibition with respect to VRE in a concentration-dependent manner.

また、同様のディスク拡散法によって他の菌株に対するPTM904の抗菌作用を試験したところ、PTM904は、Klebsiella pneumoniae DHA(+)およびAAC(6’)-Ib(+)、K. pneumoniae DHA(+)およびarmA(+)、Acinetobacter faecalis vanB(+). などのグラム陰性菌に対して発育阻止円形成を認めなかった。このため、PTM904は、Staphylococcus属やEnterococcus属などの特定の多剤耐性菌の生育を選択的に抑制または阻止する作用を有していることが示唆された。したがって、PTM904を有効成分として含む抗菌剤を感染症治療に用いることにより、腸内等の正常な細菌叢を乱すことなく治療効果を発揮させることが期待される。   Moreover, when the antibacterial action of PTM904 against other strains was tested by the same disk diffusion method, PTM904 was found to be Klebsiella pneumoniae DHA (+) and AAC (6 ′)-Ib (+), K. pneumoniae DHA (+) and No growth-inhibition circle formation was observed for gram-negative bacteria such as armA (+) and Acinetobacter faecalis vanB (+). For this reason, it was suggested that PTM904 has the effect | action which selectively suppresses or prevents the growth of specific multidrug-resistant bacteria, such as Staphylococcus genus and Enterococcus genus. Therefore, by using an antibacterial agent containing PTM904 as an active ingredient for treatment of infectious diseases, it is expected to exert a therapeutic effect without disturbing normal bacterial flora such as in the intestine.

次に、微量液体希釈法により、各種菌株に対するプラテンシマイシン(PTM)及びPTM904のMIC(最少発育阻止濃度)を測定した。測定条件を以下に示す。
(A)使用株:表2に記載
(B)薬剤:プラテンシマイシン(PTM)及びPTM904
(C)培地:CAMHB(注1)及びID−CAMHB(注2)
(D)培養条件:37℃、20時間、暗所、好気条件下、静置
(E)培養開始時点の菌数:5(2〜8)×10CFU/ml
(F)判定基準:目視で2mm以上の沈殿物の観察(CLSI基準)
Next, the MIC (minimum growth inhibitory concentration) of platensymycin (PTM) and PTM904 for various strains was measured by a micro liquid dilution method. The measurement conditions are shown below.
(A) Strain used: listed in Table 2
(C) Medium: CAMHB (Note 1) and ID-CAMHB (Note 2)
(D) Culture conditions: 37 ° C., 20 hours, dark place, aerobic conditions, standing (E) Number of bacteria at the start of culture: 5 (2-8) × 10 5 CFU / ml
(F) Criteria: Visual observation of precipitates of 2 mm or more (CLSI standard)

(注1)CAMHBは、陽イオン調整ミュラーヒントン培地(Cation-adjusted Muller-Hinton broth)[Mueller II Broth Cation-Adjusted 500g BBL 212322]である。
(注2)ID−CAMHBは、鉄制限下の陽イオン調整ミュラーヒントン培地(Iron-depleted Cation-adjusted Mueller Hinton Broth)である。具体的には、ID−CAMHBは、上記CAMHB100ml当たりに樹脂(キレックス(登録商標)100樹脂♯1422842)を5g入れ、1時間撹拌後、樹脂をフィルタリングで除去し、滅菌した培地である。
MIC測定結果を表2に示す。
(Note 1) CAMHB is Cation-adjusted Muller-Hinton broth [Mueller II Broth Cation-Adjusted 500g BBL 212322].
(Note 2) ID-CAMHB is Iron-depleted Cation-adjusted Mueller Hinton Broth. Specifically, ID-CAMHB is a sterilized medium in which 5 g of resin (Kirex (registered trademark) 100 resin # 14222842) is added per 100 ml of the above-mentioned CAMHB, and after stirring for 1 hour, the resin is removed by filtering.
The MIC measurement results are shown in Table 2.

Figure 2019151565
Figure 2019151565

表2に示すとおり、PTM904は、グラム陽性菌に対するMICがグラム陰性菌に対するMICより小さく、特にMRSA、VREに対して良好な抗菌作用を有することが明らかになった。
また、フリーな鉄が足りない体内に近い環境である鉄制限下の培地(ID−CAMHB)では、PTMは4〜16倍効きにくくなるのに比べ、PTM904は効きにくくなる度合いが少なかった。さらに、MRSAに関しては、PTMより効きが良くなることも確認できた。
例えば、PTM904を含む薬剤をガーゼなどに吸収させ、創部やカテーテル刺入部位を被覆することにより、VREやMRSAの増殖を抑制し、手術部位感染やカテーテル感染を防止することができると考えられる。
As shown in Table 2, it was revealed that PTM904 has a smaller MIC against Gram-positive bacteria than MIC against Gram-negative bacteria, and particularly has a good antibacterial action against MRSA and VRE.
In addition, PTM904 is less effective in PTM904 than in P16, which is 4 to 16 times less effective in an iron-restricted medium (ID-CAMHB), which is an environment close to the body that lacks free iron. Furthermore, it was confirmed that MRSA was more effective than PTM.
For example, it is considered that a gauze or the like absorbs a drug containing PTM904 and covers the wound or catheter insertion site, thereby suppressing the growth of VRE and MRSA and preventing surgical site infection and catheter infection.

本発明の新規化合物は、新たな抗生物質を提供することができるという産業上の利用可能性を有している。   The novel compounds of the present invention have industrial applicability that new antibiotics can be provided.

NITE P−02560 NITE P-02560

Claims (5)

式(1)で示される化合物又はその塩。
Figure 2019151565
A compound represented by formula (1) or a salt thereof.
Figure 2019151565
請求項1に記載の化合物(1)を有効成分として含有する抗菌剤。   An antibacterial agent comprising the compound (1) according to claim 1 as an active ingredient. 受託番号NITE P−02560のストレプトマイセス・ハイグロスコピカス(Streptomyces hygroscopicus)HOK021株と、細胞壁にミコール酸を含有する微生物を混合して培養し、前記培養物から回収される二次代謝産物。   A secondary metabolite recovered by culturing a mixture of Streptomyces hygroscopicus strain HOK021 with accession number NITE P-02560 and a microorganism containing mycolic acid in the cell wall, and recovering the culture. 前記細胞壁にミコール酸を含有する微生物がツカムレラ属に属する請求項3に記載の二次代謝産物。   The secondary metabolite according to claim 3, wherein the microorganism containing a mycolic acid in the cell wall belongs to the genus Tucumrela. メチシリン耐性黄色ブドウ球菌及びバンコマイシン耐性腸球菌に対して抗菌作用を有する請求項3又は請求項4に記載の二次代謝産物。   The secondary metabolite according to claim 3 or 4, which has an antibacterial action against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci.
JP2018036076A 2018-03-01 2018-03-01 Compounds and antibacterial agents Active JP6994737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018036076A JP6994737B2 (en) 2018-03-01 2018-03-01 Compounds and antibacterial agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036076A JP6994737B2 (en) 2018-03-01 2018-03-01 Compounds and antibacterial agents

Publications (2)

Publication Number Publication Date
JP2019151565A true JP2019151565A (en) 2019-09-12
JP6994737B2 JP6994737B2 (en) 2022-01-14

Family

ID=67948163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036076A Active JP6994737B2 (en) 2018-03-01 2018-03-01 Compounds and antibacterial agents

Country Status (1)

Country Link
JP (1) JP6994737B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207385A (en) * 2008-03-03 2009-09-17 Toyama Prefecture Screening method of secondary metabolite by composite culture, method for producing the same and cultured product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207385A (en) * 2008-03-03 2009-09-17 Toyama Prefecture Screening method of secondary metabolite by composite culture, method for producing the same and cultured product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NATURE, vol. 441, JPN6021037638, 2006, pages 358 - 361, ISSN: 0004607364 *

Also Published As

Publication number Publication date
JP6994737B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
Kajimura et al. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity
AU2011259309B2 (en) Novel cyclic peptide compound, method for producing same, anti-infective agent, antibiotic-containing fraction, antibiotic, method for producing antibiotic, antibiotic-producing microorganism, and antibiotic produced by same
JP7032732B2 (en) How to make platensimycin
JP2007291075A (en) New compound sterenin and method for producing the same
Kim et al. Bioactive natural products from the genus Salinospora: a review
Jeong et al. Antimicrobial activity of catechol isolated from Diospyros kaki Thunb. roots and its derivatives toward intestinal bacteria
JP6994737B2 (en) Compounds and antibacterial agents
JP5144167B2 (en) Novel KB-3346-5 substance and production method thereof
CA2649480A1 (en) Antibacterial compounds comprising multiple thiazole rings isolated fromkocuria species
KR101671325B1 (en) Novel cyclic depsipeptide-based compound, separation method thereof, and antibacterial pharmaceutical composition containing the same as an active ingredient
WO2007007399A1 (en) Thiazole compound
CN109762046B (en) Cyclic peptide antibiotics, preparation method thereof and application thereof in preparation of anti-mycobacterium tuberculosis drugs
KR20120079455A (en) Antibacterial composition comprising polycyclic peptide compound and producing method thereof
JP6007374B2 (en) Novel mangromycin compound and method for producing the same
KR102342719B1 (en) Antibacterial composition comprising of Micromonospora sp. as effective component
JP5823733B2 (en) Antibiotic-producing microorganism and antibiotic produced by the same
JP2010504310A (en) Novel class of terpene-derived compounds having antibacterial activity, compositions containing them and uses thereof
JP4896130B2 (en) Novel K04-0144 substances and methods for their production
JP5244947B2 (en) Novel K04-0144D substance and process for producing the same
JP5578649B2 (en) A novel microorganism belonging to the genus Actinomadura, a novel compound produced by the microorganism, and a pharmaceutical comprising the compound as an active ingredient
JP5478915B2 (en) Novel FKI-4905 substance and production method thereof
Cai et al. Identification and tracking activity of fungus from the Antarctic Pole on antagonistic of aquatic pathogenic bacteria.
JP5802518B2 (en) Novel compound, method for producing the same, and use thereof
JP2000086627A (en) Antibacterial substance be-54476 and its production
JP4730879B2 (en) Kigamycinones, method for producing the same, and medicinal composition containing the kigamycinones

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211206

R150 Certificate of patent or registration of utility model

Ref document number: 6994737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150