JP2019151072A - Fiber structure and pressure vessel - Google Patents

Fiber structure and pressure vessel Download PDF

Info

Publication number
JP2019151072A
JP2019151072A JP2018039678A JP2018039678A JP2019151072A JP 2019151072 A JP2019151072 A JP 2019151072A JP 2018039678 A JP2018039678 A JP 2018039678A JP 2018039678 A JP2018039678 A JP 2018039678A JP 2019151072 A JP2019151072 A JP 2019151072A
Authority
JP
Japan
Prior art keywords
liner
fiber sheet
reinforcing fiber
axial direction
fiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018039678A
Other languages
Japanese (ja)
Inventor
雅彦 安江
Masahiko Yasue
雅彦 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018039678A priority Critical patent/JP2019151072A/en
Priority to PCT/JP2019/004914 priority patent/WO2019171889A1/en
Publication of JP2019151072A publication Critical patent/JP2019151072A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)
  • Woven Fabrics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a fiber structure and a pressure vessel capable of suppressing decrease of pressure resistance.SOLUTION: In a high pressure tank 10, a reinforcement fiber sheet 19 has a starting end part 19a which extends in an axial direction of a liner 12 and becomes a starting point to be winded on the liner 12. The liner 12 is assembled with an abutting surface 12a extending in an axial direction and a radial direction, and a circular arc-shaped wrapping surface 12b continuous with the abutting surface 12a and having a radius different from a radius of an outer peripheral surface of the liner 12. A height of the abutting surface 12a matches with a thickness of the reinforcement fiber sheet 19. The starting end part 19a of the reinforcement fiber sheet 19 is abutted with the abutting surface 12a and a part of the reinforcement fiber sheet 19 is winded on the wrapping surface 12b.SELECTED DRAWING: Figure 7

Description

本発明は、ライナを外側から覆う強化繊維シートを有する繊維構造体、及び圧力容器に関する。   The present invention relates to a fiber structure having a reinforcing fiber sheet that covers a liner from the outside, and a pressure vessel.

圧縮天然ガス(CNG)、液化天然ガス(LNG)等を収容する圧力容器(所謂、高圧タンク)は、一般にスチールやアルミニウム合金等の金属製のため重量が重い。近年、天然ガスを燃料とする自動車が低公害車として注目されており、より低公害のものとして、燃料電池を動力源とする自動車も注目されている。燃料電池の燃料として水素ガスを燃料タンクに収容する自動車もあるが、燃料タンクとなる圧力容器の重量が重く燃費が悪くなる。この不都合を解消するため、ガスバリア性を有するライナ(内殻)の外側を耐圧性の繊維強化複合材層で覆った圧力容器が提案されている。   A pressure vessel (a so-called high pressure tank) that accommodates compressed natural gas (CNG), liquefied natural gas (LNG), or the like is generally heavy because it is made of metal such as steel or aluminum alloy. In recent years, automobiles using natural gas as fuel have attracted attention as low-emission vehicles, and automobiles using fuel cells as a power source have attracted attention as low-emission vehicles. Some automobiles store hydrogen gas in the fuel tank as the fuel for the fuel cell, but the pressure vessel serving as the fuel tank is heavy and the fuel consumption is deteriorated. In order to eliminate this inconvenience, a pressure vessel has been proposed in which the outer side of a liner (inner shell) having gas barrier properties is covered with a pressure-resistant fiber-reinforced composite material layer.

圧力容器において、一般に、ライナは円筒状の胴体部の中心軸線の延びる方向(以下、軸方向とする)の両端側に曲面状のドーム部を有する形状である。圧力容器内には数十MPaの圧力になるようにガスが充填されるが、繊維強化複合材層により、ライナが補強されている。このような圧力容器は、例えば、特許文献1に開示されるように、1枚の強化繊維シートを、胴体部の軸芯に対して直交する方向から胴体部の外周面に複数回巻き付け、強化繊維シートとマトリックス樹脂とが複合化されて製造される。   In a pressure vessel, a liner generally has a shape having curved dome portions on both end sides in a direction in which a central axis of a cylindrical body portion extends (hereinafter referred to as an axial direction). The pressure vessel is filled with gas so as to have a pressure of several tens of MPa, but the liner is reinforced by a fiber reinforced composite material layer. Such a pressure vessel, for example, as disclosed in Patent Document 1, is reinforced by winding a single reinforcing fiber sheet around the outer peripheral surface of the body part a plurality of times from a direction orthogonal to the axis of the body part. A fiber sheet and a matrix resin are combined and manufactured.

特開2017−141947号公報JP 2017-141947 A

強化繊維シートは、その周方向の一端部の始端部を、胴体部への巻き始めとして胴体部に巻き付けられ、強化繊維シートの始端部には、強化繊維シートが複数回に亘って巻き重ねられる。このため、強化繊維シートによって形成された繊維層には、始端部の高さを原因とした段差が形成されている。よって、繊維層には段差を原因として繊維の歪みが形成され、圧力容器の繊維強化複合材層の耐圧性が低下してしまう。   The reinforcing fiber sheet is wound around the body portion with the start end portion at one end in the circumferential direction being wound around the body portion, and the reinforcing fiber sheet is wound around the start end portion of the reinforcing fiber sheet a plurality of times. . For this reason, the level | step difference resulting from the height of the start part is formed in the fiber layer formed of the reinforced fiber sheet. Therefore, fiber distortion is formed in the fiber layer due to the step, and the pressure resistance of the fiber reinforced composite material layer of the pressure vessel is lowered.

本発明の目的は、耐圧性の低下を抑制できる繊維構造体及び圧力容器を提供することにある。   The objective of this invention is providing the fiber structure and pressure vessel which can suppress a pressure | voltage resistant fall.

上記問題点を解決するための繊維構造体は、円筒状の胴体部と、前記胴体部の軸方向の少なくとも一端に連続するドーム部と、を備えるライナを有するとともに、前記ライナの周方向に沿って当該ライナの外周面に巻き付けられ、前記ライナを外側から覆う強化繊維シートを有し、前記強化繊維シートは、前記ライナの周方向及び軸方向の少なくとも一方に糸主軸方向が延びるように前記胴体部に配列された強化繊維糸を含む繊維構造体であって、前記強化繊維シートは、前記ライナの軸方向に延在し当該ライナへの巻き始めとなる始端部を有し、前記ライナは、少なくとも前記胴体部の軸方向及び径方向に延在する突き合わせ面と、前記突き合わせ面に連続し、前記胴体部の外周面における半径と異なる半径を有する円弧状の巻き付け面と、を備え、前記胴体部の径方向に沿った前記突き合わせ面の高さは、前記強化繊維シートの厚さに合致し、前記突き合わせ面に前記強化繊維シートの始端部が突き合わされるとともに、前記巻き付け面に前記強化繊維シートの一部が巻き付けられていることを要旨とする。   A fiber structure for solving the above problem includes a liner including a cylindrical body part and a dome part continuous with at least one end in the axial direction of the body part, and along a circumferential direction of the liner. A reinforcing fiber sheet that is wound around an outer peripheral surface of the liner and covers the liner from the outside, and the reinforcing fiber sheet extends in the thread main axis direction in at least one of the circumferential direction and the axial direction of the liner. The reinforcing fiber sheet includes reinforcing fiber yarns arranged in a portion, wherein the reinforcing fiber sheet has a starting end portion that extends in an axial direction of the liner and starts to be wound around the liner, A butting surface extending at least in the axial direction and the radial direction of the body portion; and an arcuate winding surface that is continuous with the butting surface and has a radius different from the radius of the outer peripheral surface of the body portion; And the height of the butting surface along the radial direction of the body portion matches the thickness of the reinforcing fiber sheet, and the start end of the reinforcing fiber sheet is butted against the butting surface, and the winding The gist is that a part of the reinforcing fiber sheet is wound around the surface.

これによれば、突き合わせ面に始端部を突き合わせることで、突き合わせ面の高さを利用して、強化繊維シートの始端部の厚さを吸収できる。そして、胴体部の周方向において突き合わせ面を挟んだ強化繊維シートの周面に段差が形成されにくくなる。このため、強化繊維シートの始端部に、強化繊維シートが巻き重ねられて形成された繊維構造体であっても、始端部を原因とした歪みを抑制でき、歪みを原因とした耐圧性の低下を抑制できる。   According to this, the thickness of the starting end portion of the reinforcing fiber sheet can be absorbed by using the height of the abutting surface by abutting the starting end portion with the abutting surface. And it becomes difficult to form a level | step difference in the surrounding surface of the reinforcing fiber sheet which pinched | interposed the abutting surface in the circumferential direction of the trunk | drum part. For this reason, even if the fiber structure is formed by winding the reinforcing fiber sheet around the start end of the reinforcing fiber sheet, it is possible to suppress the distortion caused by the start end, and the pressure resistance is reduced due to the distortion. Can be suppressed.

また、繊維構造体について、前記巻き付け面は、前記胴体部の外周面に対し0度より大きく2度以下の角度を有するのが好ましい。
これによれば、少なくとも胴体部において、巻き付け面と胴体部の外周面とが交わる位置は、半径が変化する位置である。このため、ライナに巻き付けられた強化繊維シートには、ライナの軸方向に延びる歪みが生じる。しかし、巻き付け面の角度を2度以下に設定することにより、強化繊維シートに歪みが生じても、繊維強化複合材における歪みを原因とした強度低下を抑えることができる。
Moreover, about a fiber structure, it is preferable that the said winding surface has an angle larger than 0 degree | times and 2 degrees or less with respect to the outer peripheral surface of the said trunk | drum part.
According to this, at least in the body part, the position where the winding surface and the outer peripheral surface of the body part intersect is a position where the radius changes. For this reason, the distortion | strain extended in the axial direction of a liner arises in the reinforcing fiber sheet wound around the liner. However, by setting the angle of the winding surface to 2 degrees or less, even if the reinforcing fiber sheet is distorted, it is possible to suppress a decrease in strength due to the distortion in the fiber reinforced composite material.

また、繊維構造体について、前記ライナは、前記突き合わせ面及び前記巻き付け面を前記ドーム部にも備えるのが好ましい。
これによれば、ライナの軸方向全体において、強化繊維シートの周面に段差が形成されにくくなる。このため、強化繊維シートの始端部に、強化繊維シートが巻き重ねられても、始端部を原因とした歪みが形成されることを抑制できる。
Moreover, about the fiber structure, it is preferable that the said liner equips the said dome part with the said butt | matching surface and the said winding surface.
According to this, it becomes difficult to form a step on the peripheral surface of the reinforcing fiber sheet in the entire axial direction of the liner. For this reason, even if the reinforcing fiber sheet is wound around the starting end portion of the reinforcing fiber sheet, it is possible to suppress the distortion caused by the starting end portion.

また、繊維構造体について、前記強化繊維シートは織物製であり、前記ライナの周方向へ糸主軸方向が延びるように前記胴体部及び前記ドーム部に配列された第1の糸と、前記第1の糸と前記織物を形成する第2の糸と、を有し、前記第2の糸は、前記胴体部の軸方向へ糸主軸方向が延びるように配列されるとともに、前記ドーム部に配列された部分の糸主軸方向が前記ドーム部の軸方向へ延びるように配列されているのが好ましい。   Further, for the fiber structure, the reinforcing fiber sheet is made of woven fabric, and the first yarn arranged in the body portion and the dome portion so that the yarn main shaft direction extends in the circumferential direction of the liner, and the first And a second yarn forming the woven fabric, and the second yarn is arranged so that a yarn main axis direction extends in an axial direction of the body portion, and is arranged in the dome portion. It is preferable that the yarn main axis direction of the portion is arranged so as to extend in the axial direction of the dome portion.

これによれば、第1の糸の糸主軸方向はライナの周方向へ延び、ライナを径方向に補強できる。また、第2の糸の糸主軸方向はライナにおける胴体部及びドーム部の軸方向に延びる。第2の糸の糸主軸方向が、胴体部及びドーム部の軸方向に傾斜して配列される場合よりもライナを軸方向に補強できる。   According to this, the direction of the main spindle of the first yarn extends in the circumferential direction of the liner, and the liner can be reinforced in the radial direction. The yarn main axis direction of the second yarn extends in the axial direction of the body portion and the dome portion of the liner. The liner can be reinforced in the axial direction as compared with the case where the yarn main axis direction of the second yarn is inclined and arranged in the axial direction of the body portion and the dome portion.

また、繊維構造体について、前記突き合わせ面及び前記巻き付け面は、前記ライナに形成されていてもよい。
これによれば、突き合わせ面及び巻き付け面をライナとは別部品で設ける場合と比べて、突き合わせ面及び巻き付け面を所望する場所に配置できる。
Moreover, about the fiber structure, the said butt | matching surface and the said winding surface may be formed in the said liner.
According to this, compared with the case where a butt | matching surface and a winding surface are provided with components different from a liner, a butt | matching surface and a winding surface can be arrange | positioned in the desired place.

また、繊維構造体について、前記突き合わせ面及び前記巻き付け面は、前記ライナにスペーサを一体化して設けられていてもよい。
これによれば、ライナの強度変化を抑制できる。
In the fiber structure, the butt surface and the winding surface may be provided by integrating a spacer with the liner.
According to this, the change in the strength of the liner can be suppressed.

上記問題点を解決するための圧力容器は、ライナを外側から覆う強化繊維シートを備える繊維構造体を有し、マトリックス樹脂と前記繊維構造体が複合化されている圧力容器であって、前記繊維構造体が請求項1〜請求項6のうちいずれか一項に記載の繊維構造体であることを要旨とする。   A pressure vessel for solving the above problem is a pressure vessel having a fiber structure including a reinforcing fiber sheet that covers a liner from the outside, wherein the matrix resin and the fiber structure are combined, and the fiber The gist is that the structure is the fiber structure according to any one of claims 1 to 6.

これによれば、突き合わせ面に始端部を突き合わせることで、突き合わせ面の高さを利用して、強化繊維シートの始端部の厚さを吸収できる。そして、胴体部の周方向において突き合わせ面を挟んで両側に位置した強化繊維シートの周面に段差が形成されにくくなる。このため、強化繊維シートの始端部に、強化繊維シートが巻き重ねられて形成された繊維構造体であっても、始端部を原因とした歪みを抑制できる。よって、マトリックス樹脂と繊維構造体とが複合化された圧力容器において、歪みを原因とした耐圧性の低下を抑制できる。   According to this, the thickness of the starting end portion of the reinforcing fiber sheet can be absorbed by using the height of the abutting surface by abutting the starting end portion with the abutting surface. And it becomes difficult to form a level | step difference in the surrounding surface of the reinforced fiber sheet located in the both sides on both sides of the abutting surface in the circumferential direction of a trunk | drum part. For this reason, even if it is a fiber structure formed by winding the reinforcing fiber sheet around the starting end portion of the reinforcing fiber sheet, the distortion caused by the starting end portion can be suppressed. Therefore, in the pressure vessel in which the matrix resin and the fiber structure are combined, a decrease in pressure resistance due to distortion can be suppressed.

本発明によれば、耐圧性の低下を抑制できる。   According to the present invention, a decrease in pressure resistance can be suppressed.

高圧タンクを模式的に示す断面図。Sectional drawing which shows a high pressure tank typically. 繊維構造体を模式的に示す正面図。The front view which shows a fiber structure typically. ライナを模式的に示す斜視図。The perspective view which shows a liner typically. 突き合わせ面及び巻き付け面を拡大して示す部分断面図。The fragmentary sectional view which expands and shows a butt | matching surface and a winding surface. 強化繊維シートを示す拡大図。The enlarged view which shows a reinforced fiber sheet. (a)は胴体部を覆う強化繊維シートを示す拡大断面図、(b)はドーム部を覆う強化繊維シートを示す拡大断面図。(A) is an expanded sectional view which shows the reinforced fiber sheet which covers a trunk | drum, (b) is an expanded sectional view which shows the reinforced fiber sheet which covers a dome part. 始端部と突き合わせ面とを突き合わせた部分を拡大して示す部分断面図。The fragmentary sectional view which expands and shows the part which faced the start end part and the butted surface. 織機による繊維構造体の製造方法を模式的に示す図。The figure which shows typically the manufacturing method of the fiber structure by a loom. (a)は緯糸を緯入れした状態を模式的に示す図、(b)は筬打ち動作後の状態を模式的に示す図、(c)はライナに強化繊維シートを巻き取った状態を模式的に示す図。(A) is a diagram schematically showing a state in which wefts are inserted, (b) is a diagram schematically showing a state after a beating operation, and (c) is a diagram schematically showing a state in which a reinforcing fiber sheet is wound around a liner. FIG. スペーサによって形成された突き合わせ面及び巻き付け面を示す断面図。Sectional drawing which shows the butt | matching surface and winding surface which were formed of the spacer. 突き合わせ面及び巻き付け面の別例を示す断面図。Sectional drawing which shows another example of a butting surface and a winding surface.

以下、繊維構造体、及び圧力容器を、高圧タンクが備える繊維構造体、及び高圧タンクに具体化した一実施形態を図1〜図10に従って説明する。
図1又は図2に示すように、圧力容器としての高圧タンク10は、細長中空状のライナ12と、ライナ12の外側を覆う強化繊維シート19と、を有する繊維構造体21とマトリックス樹脂Maとを複合化させて構成されている。高圧タンク10は、マトリックス樹脂Maと強化繊維シート19とが複合化された繊維強化複合材層11によってライナ12を補強し、高圧タンク10の耐圧性(機械的強度)を確保している。
Hereinafter, an embodiment in which a fiber structure and a pressure vessel are embodied in a fiber structure and a high-pressure tank included in a high-pressure tank will be described with reference to FIGS.
As shown in FIG. 1 or FIG. 2, a high-pressure tank 10 as a pressure vessel includes a fiber structure 21 having a thin and hollow liner 12 and a reinforcing fiber sheet 19 that covers the outside of the liner 12, and a matrix resin Ma. It is composed by combining. The high-pressure tank 10 reinforces the liner 12 with a fiber-reinforced composite material layer 11 in which a matrix resin Ma and a reinforcing fiber sheet 19 are combined, and ensures the pressure resistance (mechanical strength) of the high-pressure tank 10.

ライナ12は、樹脂製であり、細長中空状である。ライナ12の中心軸線Lの延びる方向を軸方向とする。ライナ12は、円筒状の胴体部13を備える。胴体部13の中心軸線はライナ12の中心軸線Lと一致する。ライナ12は、胴体部13の軸方向Y両端にドーム部14を有する。ドーム部14の軸方向は、ライナ12の軸方向と一致する。ライナ12は、各ドーム部14から軸方向Yに沿って外側に突出した口金部15を備える。各口金部15は金属製(例えばステンレス製)である。各口金部15は、ライナ12内の空間と連通する孔部16を備える。ライナ12の軸方向Y一端側の口金部15の孔部16にはバルブ17が装着され、ライナ12の軸方向Y他端側の口金部15の孔部16には螺子18が螺合されている。   The liner 12 is made of resin and has an elongated hollow shape. The direction in which the central axis L of the liner 12 extends is the axial direction. The liner 12 includes a cylindrical body portion 13. The central axis of the body portion 13 coincides with the central axis L of the liner 12. The liner 12 has dome portions 14 at both ends in the axial direction Y of the body portion 13. The axial direction of the dome portion 14 coincides with the axial direction of the liner 12. The liner 12 includes a base portion 15 that protrudes outward along the axial direction Y from each dome portion 14. Each base part 15 is made of metal (for example, made of stainless steel). Each base portion 15 includes a hole portion 16 communicating with the space in the liner 12. A valve 17 is mounted in the hole 16 of the base portion 15 on one end side in the axial direction Y of the liner 12, and a screw 18 is screwed into the hole portion 16 in the base portion 15 on the other end side in the axial direction Y of the liner 12. Yes.

図3又は図4に示すように、ライナ12は、ライナ12の軸方向全体、すなわち胴体部13及び両ドーム部14の軸方向全体に延在する突き合わせ面12aを備える。突き合わせ面12aは、ライナ12と一体成形されている。突き合わせ面12aは、ライナ12の径方向に沿って、ライナ12の外周面から延在する。ライナ12の外周面とは、ライナ12の半径をとした円Cに沿う面である。ライナ12の径方向に沿った断面視では、突き合わせ面12aは、その断面を形成した部分での外周面に沿う円Cよりも径方向に沿って外側に突出するようにライナ12の外周面から延在する。   As shown in FIG. 3 or FIG. 4, the liner 12 includes an abutting surface 12 a extending in the entire axial direction of the liner 12, that is, in the entire axial direction of the body portion 13 and both dome portions 14. The abutting surface 12 a is integrally formed with the liner 12. The butting surface 12 a extends from the outer peripheral surface of the liner 12 along the radial direction of the liner 12. The outer peripheral surface of the liner 12 is a surface along a circle C having a radius of the liner 12. In a cross-sectional view along the radial direction of the liner 12, the abutting surface 12 a extends from the outer peripheral surface of the liner 12 so as to protrude outward along the radial direction from the circle C along the outer peripheral surface at the portion where the cross section is formed. Extend.

突き合わせ面12aにおいて、ライナ12の外周面(円C)からの高さHは、後に詳述する強化繊維シート19の厚さと同じである。なお、突き合わせ面12aは、設計上の中央値を狙って製造されるが、製造誤差等によって中央値からずれる。この中央値からのずれ量は公差として設定されている。よって、突き合わせ面12aの高さは、設計上の中央値、及び中央値に公差を加味した値を含む。   In the butt surface 12a, the height H from the outer peripheral surface (circle C) of the liner 12 is the same as the thickness of the reinforcing fiber sheet 19 described in detail later. The abutting surface 12a is manufactured aiming at a design median value, but deviates from the median value due to a manufacturing error or the like. The amount of deviation from the median is set as a tolerance. Therefore, the height of the abutting surface 12a includes a design median value and a value in which a tolerance is added to the median value.

また、ライナ12は、突き合わせ面12aに連続する巻き付け面12bを備える。巻き付け面12bはライナ12と一体成形されている。巻き付け面12bは、ライナ12の軸方向全体、すなわち胴体部13及び両ドーム部14の軸方向全体に延在する。ライナ12の径方向に沿った断面視では、巻き付け面12bは円弧状である。巻き付け面12bは、その断面を形成した部分での外周面に沿う円Cよりも径方向外側に膨出している。巻き付け面12bの半径は、円Cの半径と異なり、本実施形態では、円Cの半径よりも大きい。そして、巻き付け面12bの半径は、ライナ12の周方向に沿って突き合わせ面12aから離れるに従い、徐々に小さくなっていく。   Moreover, the liner 12 is provided with the winding surface 12b which follows the butting surface 12a. The winding surface 12 b is integrally formed with the liner 12. The winding surface 12 b extends in the entire axial direction of the liner 12, that is, in the entire axial direction of the body portion 13 and both dome portions 14. In a cross-sectional view along the radial direction of the liner 12, the winding surface 12b has an arc shape. The winding surface 12b bulges outward in the radial direction from the circle C along the outer peripheral surface at the portion where the cross section is formed. Unlike the radius of the circle C, the radius of the winding surface 12b is larger than the radius of the circle C in the present embodiment. The radius of the winding surface 12b gradually decreases as the distance from the butt surface 12a increases along the circumferential direction of the liner 12.

径方向に沿う断面視において、ライナ12の外周面に沿う円Cと、巻き付け面12bに沿う円弧とが交わる位置を交差部Pとする。交差部Pは、ライナ12の軸方向全体に延在する。そして、巻き付け面12bは、交差部Pと、突き合わせ面12aの突出方向の先端とを繋ぐ。巻き付け面12bは、ライナ12の外周面の円Cに対し、巻き付け面12bが0度より大きく2度以下の角度で傾くように形成されている。本実施形態では、巻き付け面12bは、ライナ12の外周面の円Cに対し2度傾くように形成されている。   In a cross-sectional view along the radial direction, a position where a circle C along the outer peripheral surface of the liner 12 intersects with an arc along the winding surface 12b is defined as an intersection P. The intersecting portion P extends in the entire axial direction of the liner 12. And the winding surface 12b connects the cross | intersection part P and the front-end | tip of the protrusion direction of the butting surface 12a. The winding surface 12b is formed such that the winding surface 12b is inclined with respect to the circle C on the outer peripheral surface of the liner 12 at an angle of greater than 0 degrees and less than 2 degrees. In the present embodiment, the winding surface 12 b is formed to be inclined by 2 degrees with respect to the circle C on the outer peripheral surface of the liner 12.

図5に示すように、強化繊維シート19は、強化繊維を束ねた繊維束である。強化繊維としては、有機繊維や無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維の種類としては、アラミド繊維、ポリ−p−フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維の種類としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。本実施形態では、強化繊維として炭素繊維を使用した。   As shown in FIG. 5, the reinforcing fiber sheet 19 is a fiber bundle in which reinforcing fibers are bundled. As the reinforcing fibers, organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fibers in which organic fibers and inorganic fibers are mixed may be used. Examples of the organic fiber include aramid fiber, poly-p-phenylenebenzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber, and the like, and examples of the inorganic fiber include carbon fiber, glass fiber, and ceramic fiber. In this embodiment, carbon fiber is used as the reinforcing fiber.

強化繊維シート19は、第1の糸としての複数本の経糸22と、第2の糸としての複数本の緯糸23とを平織りして製織された織物24を積層した構造である。経糸22と緯糸23は互いに直交して配列されている。図2に示すように、複数本の経糸22は、ライナ12の軸方向Yへ互いに平行な状態で胴体部13及び各ドーム部14に配列されている。各経糸22の糸主軸方向X1は、胴体部13及びドーム部14においてライナ12の周方向へ直線的に延びている。また、経糸22の糸主軸方向X1に対し、ライナ12の径方向が直交している。   The reinforcing fiber sheet 19 has a structure in which a woven fabric 24 woven by plain weaving a plurality of warp yarns 22 as first yarns and a plurality of weft yarns 23 as second yarns is laminated. The warp 22 and the weft 23 are arranged orthogonal to each other. As shown in FIG. 2, the plurality of warps 22 are arranged in the body portion 13 and each dome portion 14 in a state parallel to each other in the axial direction Y of the liner 12. The yarn main axis direction X1 of each warp 22 extends linearly in the circumferential direction of the liner 12 at the body portion 13 and the dome portion 14. Further, the radial direction of the liner 12 is orthogonal to the main spindle direction X1 of the warp 22.

複数本の緯糸23は、ライナ12の周方向へ互いに平行な状態で配列されている。各緯糸23において、胴体部13の外周面に沿って、ライナ12の軸方向へ直線的に延びる部分が胴体用糸部23aとなる。各緯糸23において、ドーム部14の外周面に沿って、ライナ12の軸方向へ延びる部分がドーム部用糸部23bとなる。ドーム部用糸部23bは、ライナ12の軸方向に沿って胴体用糸部23aの両端に連続する。緯糸23において、ドーム部用糸部23bの糸主軸方向X2は、ライナ12の軸方向へ延びる一方、ドーム部14の曲面に沿って湾曲している。また、緯糸23において、胴体用糸部23aの糸主軸方向X2は、ライナ12における胴体部13の軸方向へ延びる。   The plurality of wefts 23 are arranged in parallel with each other in the circumferential direction of the liner 12. In each weft 23, a portion linearly extending in the axial direction of the liner 12 along the outer peripheral surface of the body portion 13 is a body thread portion 23a. In each weft 23, a portion extending in the axial direction of the liner 12 along the outer peripheral surface of the dome portion 14 becomes a dome portion yarn portion 23 b. The dome thread portion 23 b is continuous with both ends of the trunk thread portion 23 a along the axial direction of the liner 12. In the weft 23, the yarn main axis direction X2 of the dome portion yarn portion 23b extends in the axial direction of the liner 12, and is curved along the curved surface of the dome portion 14. Further, in the weft 23, the yarn main axis direction X <b> 2 of the trunk yarn portion 23 a extends in the axial direction of the trunk portion 13 in the liner 12.

経糸22と緯糸23は直交して配列され、経糸22の糸主軸方向X1の延びる方向をライナ12の周方向に一致させることで、ライナ12の径方向を補強し、緯糸23の糸主軸方向X2をライナ12の軸方向に一致させることで、ライナ12の軸方向を補強している。   The warp yarns 22 and the weft yarns 23 are arranged orthogonally, and the radial direction of the liner 12 is reinforced by aligning the extending direction of the yarn main shaft direction X1 of the warp yarn 22 with the circumferential direction of the liner 12, and the yarn main shaft direction X2 of the weft yarn 23 Is aligned with the axial direction of the liner 12 to reinforce the axial direction of the liner 12.

図6(a)に示すように、胴体部13では、緯糸23が扁平状であり、厚さが薄く、幅広な形状である。図6(b)に示すように、ドーム部14では、緯糸23は、胴体用糸部23aよりも厚さが厚く、幅狭な形状であり、胴体部13から口金部15に向かってドーム部14が縮径するほど、緯糸23の厚さが厚く、幅狭になっている。一方、経糸22は、胴体部13及びドーム部14で厚さ及び幅は同じである。繊維構造体21において、ライナ12の周方向への緯糸23の本数は胴体部13とドーム部14とで同じである。   As shown to Fig.6 (a), in the trunk | drum 13, the weft 23 is flat shape, thickness is thin and it is a wide shape. As shown in FIG. 6B, in the dome portion 14, the weft 23 is thicker and narrower than the trunk yarn portion 23 a, and the dome portion is directed from the trunk portion 13 toward the base portion 15. As the diameter of the thread 14 decreases, the weft 23 becomes thicker and narrower. On the other hand, the warp yarn 22 has the same thickness and width at the body portion 13 and the dome portion 14. In the fiber structure 21, the number of wefts 23 in the circumferential direction of the liner 12 is the same in the body portion 13 and the dome portion 14.

上記構成の強化繊維シート19は、長尺帯状である。強化繊維シート19は、長手方向がライナ12の周方向へ延びるようにライナ12の外周面に巻き付けられている。このため、上記したように、複数本の経糸22は、ライナ12の軸方向Yへ互いに平行な状態で胴体部13及び各ドーム部14に配列され、各経糸22の糸主軸方向X1は、胴体部13及びドーム部14においてライナ12の周方向へ直線的に延びている。また、複数本の緯糸23は、ライナ12の周方向へ互いに平行な状態で配列されている。   The reinforcing fiber sheet 19 having the above configuration has a long belt shape. The reinforcing fiber sheet 19 is wound around the outer peripheral surface of the liner 12 such that the longitudinal direction extends in the circumferential direction of the liner 12. Therefore, as described above, the plurality of warp yarns 22 are arranged in the body portion 13 and the respective dome portions 14 in a state parallel to the axial direction Y of the liner 12, and the yarn main axis direction X1 of each warp yarn 22 The portion 13 and the dome portion 14 linearly extend in the circumferential direction of the liner 12. The plurality of wefts 23 are arranged in parallel with each other in the circumferential direction of the liner 12.

図5に示すように、強化繊維シート19は、周方向の一端部に始端部19aを備える。始端部19aは、ライナ12に対し、強化繊維シート19を巻き付けるときの、巻き始めとなる端部である。始端部19aは、ライナ12の軸方向全体に亘って延在する。始端部19aは、ライナ12の軸方向と一致する強化繊維シート19の短手方向に並んだ複数本の経糸22の糸主軸方向X1の先端面によって形成されている。このため、始端部19aは、経糸22の厚さを有し、始端部19aの厚さは、強化繊維シート19の厚さである。そして、上記したライナ12の突き合わせ面12aの高さHは、始端部19aの厚さに合致している。   As shown in FIG. 5, the reinforcing fiber sheet 19 includes a start end 19 a at one end in the circumferential direction. The start end portion 19 a is an end portion that starts winding when the reinforcing fiber sheet 19 is wound around the liner 12. The start end portion 19 a extends over the entire axial direction of the liner 12. The start end portion 19 a is formed by the tip end surface of the plurality of warp yarns 22 aligned in the short direction of the reinforcing fiber sheet 19 that coincides with the axial direction of the liner 12 in the yarn main axis direction X1. For this reason, the start end 19 a has the thickness of the warp 22, and the thickness of the start end 19 a is the thickness of the reinforcing fiber sheet 19. The height H of the abutting surface 12a of the liner 12 matches the thickness of the starting end portion 19a.

図7に示すように、繊維構造体21は、上記構成のライナ12と強化繊維シート19とを有する。繊維構造体21において、始端部19aは、ライナ12の突き合わせ面12aに突き合わされている。すなわち、始端部19aを構成する各経糸22の先端面は、突き合わせ面12aに突き合わされている。始端部19aが突き合わせ面12aに突き合わされた強化繊維シート19は、ライナ12の外周面の円Cに沿って巻き付けられた後、一部が巻き付け面12bに巻き付けられている。ライナ12の外周面及び巻き付け面12bに巻き付けられた強化繊維シート19の層に対し、強化繊維シート19が複数層に亘って巻き重ねられている。   As shown in FIG. 7, the fiber structure 21 includes the liner 12 and the reinforcing fiber sheet 19 configured as described above. In the fiber structure 21, the start end 19 a is butted against the butting surface 12 a of the liner 12. That is, the front end surface of each warp 22 constituting the starting end portion 19a is abutted against the abutting surface 12a. The reinforcing fiber sheet 19 with the start end portion 19a butted against the butting surface 12a is wound along the circle C on the outer peripheral surface of the liner 12, and then partially wrapped around the winding surface 12b. The reinforcing fiber sheet 19 is wound over a plurality of layers with respect to the layer of the reinforcing fiber sheet 19 wound around the outer peripheral surface of the liner 12 and the winding surface 12b.

繊維構造体21において、突き合わせ面12aに始端部19aが突き合わされていることで、始端部19aの厚さと巻き付け面12bの高さが合わせられ、ライナ12の外周面に巻き付けられた強化繊維シート19の外周面と、巻き付け面12bとの間に大きな段差は形成されていない。このため、繊維構造体21において、始端部19aに巻き重ねられた部位には、始端部19aの高さを原因とした歪みが僅かに形成されているだけである。   In the fiber structure 21, the start end 19 a is abutted against the abutting surface 12 a so that the thickness of the start end 19 a and the height of the winding surface 12 b are matched, and the reinforcing fiber sheet 19 wound around the outer peripheral surface of the liner 12. No large step is formed between the outer peripheral surface of the wire and the winding surface 12b. For this reason, in the fiber structure 21, only a slight distortion due to the height of the start end portion 19a is formed in the portion wound around the start end portion 19a.

次に、高圧タンク10の製造方法を説明する。
高圧タンク10を製造する際は、経糸22と緯糸23を平織りしつつ、製職された織物24をライナ12に巻き付けていく。
Next, a method for manufacturing the high-pressure tank 10 will be described.
When the high-pressure tank 10 is manufactured, the knitted fabric 24 is wound around the liner 12 while plain weaving the warp 22 and the weft 23.

図8に示すように、織物24の製織は、例えば、経糸22のうち、上下に分かれて配列された経糸22a,22bの開口を行う2枚の綜絖枠31a,31bを備えた平織織機で行う。平織織機は、一方の経糸22aを供給する経糸ビーム32と、他方の経糸22bを供給する経糸ビーム33とが上下に配置された構造を有する。一方の経糸ビーム32から送り出される経糸22aは一方の綜絖枠31aにより開口動作が行われ、他方の経糸ビーム33から送り出される経糸22bは他方の綜絖枠31bにより開口動作が行われるようになっている。なお、綜絖枠31a,31bの目は図において黒丸で示されている。筬34は綜絖枠31a,31bと織り前35との間に配置されている。緯糸23は経糸22a,22bの開口に対して緯入れ機構(図示せず)により緯入れ(挿入)されるようになっている。経糸22a,22bの送り出し方向において、織り前35よりも先にはライナ12が回転可能に支持されている。ライナ12は、中心軸線Lを回転中心として回転する。   As shown in FIG. 8, the weaving of the fabric 24 is performed by, for example, a plain weaving machine including two warp frames 31a and 31b for opening the warp yarns 22a and 22b arranged in the upper and lower parts of the warp yarn 22. . The plain weaving machine has a structure in which a warp beam 32 for supplying one warp 22a and a warp beam 33 for supplying the other warp 22b are arranged vertically. The warp yarn 22a fed from one warp beam 32 is opened by one warp frame 31a, and the warp yarn 22b fed from the other warp beam 33 is opened by the other warp frame 31b. . Note that the eyes of the collar frames 31a and 31b are indicated by black circles in the figure. The reed 34 is disposed between the reed frames 31 a and 31 b and the pre-weaving 35. The weft 23 is inserted (inserted) into the openings of the warps 22a and 22b by a weft insertion mechanism (not shown). In the delivery direction of the warps 22a and 22b, the liner 12 is rotatably supported before the weave 35. The liner 12 rotates about the center axis L as the center of rotation.

上記の平織織機で強化繊維シート19を製織する場合、図8の拡大図及び図9(a)に示すように、経糸ビーム32,33から引き出された複数本の経糸22a,22bの端部を、始端部19aとして突き合わせ面12aに突き合わせる。始端部19aを形成する経糸22a,22bの厚さが、突き合わせ面12aに吸収され、始端部19aを形成する経糸22a,22bと、巻き付け面12bとが同じ高さに位置する。そして、始端部19aを、例えば接着剤によってライナ12の外周面に固定する。なお、接着剤は、強化繊維シート19にマトリックス樹脂Maを含浸硬化させる際の加熱によって溶融する材質が好ましいが、溶融しない材質の接着剤を用いてもよい。   When weaving the reinforcing fiber sheet 19 with the plain weaving machine, as shown in the enlarged view of FIG. 8 and FIG. 9A, the ends of the plurality of warp yarns 22a and 22b drawn from the warp beams 32 and 33 are used. Then, it is abutted against the abutting surface 12a as the starting end portion 19a. The warp yarns 22a and 22b forming the start end portion 19a are absorbed by the butt surface 12a, and the warp yarns 22a and 22b forming the start end portion 19a and the winding surface 12b are positioned at the same height. Then, the starting end portion 19a is fixed to the outer peripheral surface of the liner 12 with an adhesive, for example. The adhesive is preferably a material that melts by heating when the reinforcing fiber sheet 19 is impregnated and cured with the matrix resin Ma, but an adhesive that does not melt may be used.

図9(a)に示すように、経糸22a,22bは、ライナ12の軸方向Yに沿って胴体部13及びドーム部14に配列されるとともに、始端部19aがライナ12の軸方向全体に亘って延在するようにライナ12に固定される。   As shown in FIG. 9A, the warps 22a and 22b are arranged in the body portion 13 and the dome portion 14 along the axial direction Y of the liner 12, and the start end portion 19a extends over the entire axial direction of the liner 12. It is fixed to the liner 12 so as to extend.

ライナ12を回転させない状態で、綜絖枠31a,31bを交互に上下方向に移動させることにより、一方の綜絖枠31aと、他方の綜絖枠31bとが逆方向に移動される。そして、経糸22a,22bは隣接するもの同士で交互に上下に開き、その都度形成される経糸開口37に対して、緯糸23が緯入れ(挿入)される。緯入れされる緯糸23は扁平状である。   While the liner 12 is not rotated, the collar frames 31a and 31b are alternately moved in the vertical direction, whereby the one collar frame 31a and the other collar frame 31b are moved in the opposite directions. The adjacent warps 22a and 22b are alternately opened up and down, and the weft 23 is inserted (inserted) into the warp opening 37 formed each time. The weft 23 to be inserted is a flat shape.

そして、緯糸23が緯入れされて、筬34の筬打ち動作が行われ、綜絖枠31a,31bが逆方向に移動されて開口状態が変更されて、次の緯入れ動作が行われる。これらの動作が繰り返されて経糸22と緯糸23とが平織りされた織物24の一部が製織されるとともに、ライナ12に織物24の一部が一体化された状態が形成される。   Then, the weft 23 is inserted, the beating operation of the reed 34 is performed, the reed frames 31a and 31b are moved in the reverse direction, the opening state is changed, and the next weft inserting operation is performed. By repeating these operations, a part of the fabric 24 in which the warp 22 and the weft 23 are plain woven is woven, and a state in which a part of the fabric 24 is integrated with the liner 12 is formed.

図9(b)に示すように、緯糸23は筬34の筬打ち動作により始端部19aに向けて送り込まれる。筬34は、ライナ12の軸方向へ直線状に延びる部材である。このため、緯糸23が筬打ち動作されたとき、ドーム部14は胴体部13と比べて直径が小さいことから、ドーム部14に配列される緯糸23は、胴体部13に配列された部分より押し潰され、厚さが厚くなるように変形する。その結果、直径の異なる胴体部13とドーム部14であっても、緯糸23の変形により、緯糸23は互いに平行な状態でライナ12の周方向に配列されていく。   As shown in FIG. 9B, the weft 23 is fed toward the starting end 19a by the beating operation of the reed 34. The flange 34 is a member that extends linearly in the axial direction of the liner 12. For this reason, when the weft 23 is beaten, the dome portion 14 has a smaller diameter than the body portion 13, so the weft 23 arranged in the dome portion 14 is pushed from the portion arranged in the body portion 13. It is crushed and deformed to increase its thickness. As a result, even with the body portion 13 and the dome portion 14 having different diameters, the wefts 23 are arranged in the circumferential direction of the liner 12 in parallel with each other due to the deformation of the wefts 23.

その後、図9(c)に示すように、ライナ12を中心軸線Lを回転中心に回転させて織物24をライナ12に巻き取らせつつ、続けて、上記と同様に織物24の製織を行う。その結果、ドーム部14及び胴体部13の全体を覆う状態で織物24、すなわち強化繊維シート19がライナ12に巻き付けられていく。そして、織物24が所要する積層数となるまで巻き付けられることで、ライナ12の外周面に強化繊維シート19を備える繊維構造体21が製造される。   Thereafter, as shown in FIG. 9C, the woven fabric 24 is woven in the same manner as described above while rotating the liner 12 around the central axis L and winding the woven fabric 24 around the liner 12. As a result, the fabric 24, that is, the reinforcing fiber sheet 19 is wound around the liner 12 so as to cover the entire dome portion 14 and the trunk portion 13. And the fiber structure 21 provided with the reinforced fiber sheet 19 in the outer peripheral surface of the liner 12 is manufactured by winding until the textile fabric 24 becomes the required number of lamination | stacking.

上記のように構成された繊維構造体21は、マトリックス樹脂Maを含浸硬化させることにより、強化繊維シート19から繊維強化複合材層11が形成され、ライナ12の外側が繊維強化複合材層11で覆われた高圧タンク10が製造される。マトリックス樹脂Maの含浸硬化は、例えば、RTM(レジン・トランスファー・モールディング)法で行なわれる。   In the fiber structure 21 configured as described above, the fiber reinforced composite material layer 11 is formed from the reinforcing fiber sheet 19 by impregnating and curing the matrix resin Ma, and the outer side of the liner 12 is the fiber reinforced composite material layer 11. The covered high-pressure tank 10 is manufactured. The matrix resin Ma is impregnated and cured by, for example, an RTM (resin transfer molding) method.

次に、高圧タンク10の作用を説明する。
高圧タンク10は、例えば燃料電池自動車の燃料電池の水素源として使用される。高圧タンク10は図示しない配管がバルブ17に連結された状態で使用され、水素ガスの充填時には充填用の配管から水素ガスが高圧タンク10に充填される。高圧タンク10内には例えば数十MPaの圧力になるように水素ガスが充填される。
Next, the operation of the high-pressure tank 10 will be described.
The high-pressure tank 10 is used as a hydrogen source of a fuel cell of a fuel cell vehicle, for example. The high-pressure tank 10 is used in a state where a pipe (not shown) is connected to the valve 17, and hydrogen gas is filled into the high-pressure tank 10 from the filling pipe when filling with hydrogen gas. The high-pressure tank 10 is filled with hydrogen gas so as to have a pressure of several tens of MPa, for example.

高圧タンク10に水素ガスが充填されると高圧タンク10内の圧力が高くなり、ライナ12が内側から押圧される。ライナ12には軸方向Y及び径方向への力が大きく作用し、内圧応力が発生する。この実施形態では、緯糸23により、ライナ12は軸方向へ補強され、経糸22により、ライナ12は径方向に補強されており、高圧タンク10の変形が抑止される。   When the high-pressure tank 10 is filled with hydrogen gas, the pressure in the high-pressure tank 10 increases and the liner 12 is pressed from the inside. A large force in the axial direction Y and the radial direction acts on the liner 12 to generate an internal pressure stress. In this embodiment, the liner 12 is reinforced in the axial direction by the wefts 23, and the liner 12 is reinforced in the radial direction by the warps 22, and deformation of the high-pressure tank 10 is suppressed.

上記実施形態によれば、以下のような効果を得ることができる。
(1)高圧タンク10は、ライナ12の外周面から径方向外側に延在する突き合わせ面12aを備え、突き合わせ面12aの高さHは、強化繊維シート19の始端部19aの厚さと合致する。このため、突き合わせ面12aに強化繊維シート19の始端部19aを突き合わせることで、始端部19aの厚さを吸収して、ライナ12の周方向において突き合わせ面12aを挟んで両側に位置した巻き付け面12bと強化繊維シート19の周面との間に段差が形成されにくくなる。このため、強化繊維シート19の始端部19aに、強化繊維シート19が巻き重ねられて形成された繊維構造体21であっても、始端部19aを原因とした歪みを抑制できる。その結果として、繊維構造体21の歪みを原因とした高圧タンク10の耐圧性の低下を抑制できる。
According to the above embodiment, the following effects can be obtained.
(1) The high-pressure tank 10 includes a butt surface 12 a extending radially outward from the outer peripheral surface of the liner 12, and the height H of the butt surface 12 a matches the thickness of the start end portion 19 a of the reinforcing fiber sheet 19. For this reason, the thickness of the start end 19a is absorbed by butting the start end 19a of the reinforcing fiber sheet 19 to the butting surface 12a, and the winding surfaces positioned on both sides of the butting surface 12a in the circumferential direction of the liner 12 It becomes difficult to form a step between 12b and the peripheral surface of the reinforcing fiber sheet 19. For this reason, even if it is the fiber structure 21 formed by winding the reinforcing fiber sheet 19 around the starting end portion 19a of the reinforcing fiber sheet 19, distortion due to the starting end portion 19a can be suppressed. As a result, a decrease in pressure resistance of the high-pressure tank 10 due to the distortion of the fiber structure 21 can be suppressed.

(2)ライナ12において、巻き付け面12bとライナ12の外周面に沿う円Cとが交わる位置は、半径が変化する位置である。このため、ライナ12に巻き付けられた強化繊維シート19には、ライナ12の軸方向に延びる歪みが生じる。しかし、巻き付け面12bは、ライナ12の外周面の円Cに対し2度傾くように形成されている。このため、強化繊維シート19に歪みが生じても、その歪みを原因とした強度低下を抑えることができる。   (2) In the liner 12, the position where the winding surface 12b and the circle C along the outer peripheral surface of the liner 12 intersect is a position where the radius changes. For this reason, the reinforcing fiber sheet 19 wound around the liner 12 is distorted to extend in the axial direction of the liner 12. However, the winding surface 12 b is formed so as to be inclined by 2 degrees with respect to the circle C on the outer peripheral surface of the liner 12. For this reason, even if distortion occurs in the reinforcing fiber sheet 19, it is possible to suppress a decrease in strength due to the distortion.

(3)ライナ12は、突き合わせ面12a及び巻き付け面12bを胴体部13及び両方のドーム部14にも備える。このため、ライナ12の軸方向全体において、ライナ12の周方向において突き合わせ面12aを挟んで両側に位置した巻き付け面12bと強化繊維シート19の周面との間に段差が形成されにくくなる。   (3) The liner 12 includes a butting surface 12 a and a winding surface 12 b in the body portion 13 and both dome portions 14. For this reason, in the entire axial direction of the liner 12, a step is hardly formed between the winding surface 12 b located on both sides of the butting surface 12 a in the circumferential direction of the liner 12 and the peripheral surface of the reinforcing fiber sheet 19.

(4)高圧タンク10を構成する繊維構造体21において、緯糸23の糸主軸方向X2が胴体部13及びドーム部14の軸方向Yへ延びる。このため、緯糸23によりライナ12を軸方向に補強できる。   (4) In the fiber structure 21 constituting the high-pressure tank 10, the yarn main shaft direction X <b> 2 of the weft 23 extends in the axial direction Y of the body portion 13 and the dome portion 14. For this reason, the liner 12 can be reinforced in the axial direction by the weft 23.

(5)緯糸23の糸主軸方向X2は、ライナ12のドーム部14の曲面に沿って軸方向Yへ延びる。このため、ドーム部14で緯糸23が軸方向Yに対し傾斜することがなく、ドーム部14であっても軸方向に補強できる。   (5) The yarn main axis direction X2 of the weft 23 extends in the axial direction Y along the curved surface of the dome portion 14 of the liner 12. For this reason, the weft 23 does not incline with respect to the axial direction Y at the dome portion 14, and even the dome portion 14 can be reinforced in the axial direction.

(6)突き合わせ面12a及び巻き付け面12bは、ライナ12の成形時に一体成形される。このため、突き合わせ面12a及び巻き付け面12bをライナ12とは別部品で設ける場合と比べて、突き合わせ面12a及び巻き付け面12bを所望する場所に配置できる。   (6) The butting surface 12a and the winding surface 12b are integrally formed when the liner 12 is formed. For this reason, compared with the case where the butt | matching surface 12a and the winding surface 12b are provided with components different from the liner 12, the butt | matching surface 12a and the winding surface 12b can be arrange | positioned in the desired place.

(7)ライナ12の外側に強化繊維シート19を備える繊維構造体21を製造する方法として、フィラメントワインディングがある。しかし、この方法では、糸を1本ずつライナ12に巻いていくため、生産性が低い。本実施形態では、経糸22と緯糸23で織物24を製織しつつ、織物24をライナ12に巻き付けていくため、フィラメントワインディングと比べると、生産性を高めることができる。   (7) As a method of manufacturing the fiber structure 21 including the reinforcing fiber sheet 19 outside the liner 12, there is filament winding. However, this method has low productivity because the yarn is wound around the liner 12 one by one. In this embodiment, since the fabric 24 is wound around the liner 12 while weaving the fabric 24 with the warp 22 and the weft 23, the productivity can be improved as compared with the filament winding.

なお、上記実施形態は以下のように変更してもよい。
○ 図10に示すように、ライナ12とは別体のスペーサ38をライナ12の外周面に一体化し、そのスペーサ38によって突き合わせ面12a及び巻き付け面12bを設けてもよい。これによれば、ライナ12の厚さが変化する場所はないため、ライナ12の強度変化を抑制できる。
In addition, you may change the said embodiment as follows.
As shown in FIG. 10, a spacer 38 separate from the liner 12 may be integrated with the outer peripheral surface of the liner 12, and the abutting surface 12 a and the winding surface 12 b may be provided by the spacer 38. According to this, since there is no place where the thickness of the liner 12 changes, a change in the strength of the liner 12 can be suppressed.

○ 図11に示すように、ライナ12の外周面の一部を、円Cから円弧状に凹ませて、円弧状に凹ませた部位に巻き付け面12bを形成するとともに、巻き付け面12bと、円Cとの境界できた段差面に突き合わせ面12aを形成してもよい。この場合、巻き付け面12bの半径は、ライナ12の外周面に沿う円Cの半径よりも小さくなる。   As shown in FIG. 11, a part of the outer peripheral surface of the liner 12 is recessed from the circle C in an arc shape, and a winding surface 12 b is formed in a portion recessed in the arc shape, and the winding surface 12 b and the circle The abutting surface 12a may be formed on the stepped surface formed with the boundary with C. In this case, the radius of the winding surface 12 b is smaller than the radius of the circle C along the outer peripheral surface of the liner 12.

○ 強化繊維シート19の始端部19aは、複数本の経糸22の先端部で形成したが、これに限らない。例えば、すだれ織りによって強化繊維シート19を製織する場合は、ライナ12の軸方向に延在する糸によって始端部19aを形成する。   The start end portion 19a of the reinforcing fiber sheet 19 is formed by the tip portions of a plurality of warps 22, but is not limited thereto. For example, when the reinforcing fiber sheet 19 is woven by a weave weave, the start end portion 19 a is formed by a thread extending in the axial direction of the liner 12.

○ 突き合わせ面12a及び巻き付け面12bは、ライナ12の胴体部13のみに設けられていてもよい。
○ 強化繊維シート19は、ライナ12の軸方向に延びる糸のみで形成されていてもよい。
The butting surface 12 a and the winding surface 12 b may be provided only on the body portion 13 of the liner 12.
The reinforcing fiber sheet 19 may be formed of only yarns extending in the axial direction of the liner 12.

○ 強化繊維シート19は織物24ではなく、繊維基材に樹脂が予め含浸されたプリプレグであってもよい。この場合、プリプレグ製の強化繊維シート19をライナ12に巻き付けて繊維構造体21を製造した後、繊維構造体21を加熱して、樹脂を硬化させることで、繊維構造体21とマトリックス樹脂Maが複合化して繊維強化複合材層11が形成されるとともに、高圧タンク10が製造される。   The reinforcing fiber sheet 19 may be a prepreg in which a fiber base material is pre-impregnated with a resin instead of the woven fabric 24. In this case, after manufacturing the fiber structure 21 by winding the reinforced fiber sheet 19 made of prepreg around the liner 12, the fiber structure 21 and the matrix resin Ma are heated by heating the fiber structure 21 and curing the resin. The fiber reinforced composite material layer 11 is formed by compounding, and the high-pressure tank 10 is manufactured.

○ 実施形態では、強化繊維シート19は、平織りして製織された織物24を積層して構成したが、これに限らない。例えば、強化繊維シート19は、第1の糸としての複数本の経糸22と、第2の糸としての複数本の緯糸23とを朱子織り又は綾織りして製織された織物を積層した構造であってもよい。   In the embodiment, the reinforcing fiber sheet 19 is configured by laminating the woven fabric 24 woven by plain weaving, but is not limited thereto. For example, the reinforcing fiber sheet 19 has a structure in which a plurality of warp yarns 22 as first yarns and a plurality of weft yarns 23 as second yarns are laminated and weaved by weaving satin or twill. There may be.

○ 実施形態では、第1の糸を経糸22とし、第2の糸を緯糸23としたが、第1の糸を緯糸23とし、第2の糸を経糸22としてもよい。
○ ライナ12は、胴体部13の軸方向Yの一端側にドーム部14が連続し、胴体部13の軸方向Yの他端側には平坦面な底壁が連続した形状であってもよい。この場合、口金部15はドーム部14の存在する軸方向Y一端側のみに存在する。
In the embodiment, the first yarn is the warp yarn 22 and the second yarn is the weft yarn 23, but the first yarn may be the weft yarn 23 and the second yarn may be the warp yarn 22.
The liner 12 may have a shape in which the dome portion 14 is continuous with one end side in the axial direction Y of the body portion 13 and a flat bottom wall is continuous on the other end side in the axial direction Y of the body portion 13. . In this case, the base part 15 exists only on one end side in the axial direction Y where the dome part 14 exists.

○ ライナ12全体をアルミニウム製とする代わりにアルミニウム合金製としたり、口金部15の材質をステンレスとは異なる金属で形成したりしてもよい。
○ ライナ12は、別体である胴体部13とドーム部14とを溶接して一体化したものでもよい。
The entire liner 12 may be made of aluminum alloy instead of aluminum, or the base portion 15 may be made of a metal different from stainless steel.
The liner 12 may be a united body part 13 and dome part 14, which are separate bodies.

○ 高圧タンク10は燃料電池搭載電気自動車の水素源として搭載されて使用するものに限らず、例えば、水素エンジンの水素源やヒートポンプ等に適用してもよい。また、家庭用電源の燃料電池の水素源として使用してもよい。   The high-pressure tank 10 is not limited to the one used as a hydrogen source for an electric vehicle equipped with a fuel cell. For example, the high-pressure tank 10 may be applied to a hydrogen source of a hydrogen engine, a heat pump, or the like. Moreover, you may use as a hydrogen source of the fuel cell of a household power supply.

○ 圧力容器として水素を貯蔵する高圧タンクに限らず、例えば窒素、圧縮天然ガス等の他のガスを貯蔵す圧力容器に適用してもよい。   O It may apply not only to the high pressure tank which stores hydrogen as a pressure vessel but to a pressure vessel which stores other gas, such as nitrogen and compressed natural gas, for example.

10…圧力容器としての高圧タンク、12…ライナ、12a…突き合わせ面、12b…巻き付け面、13…胴体部、14…ドーム部、19…強化繊維シート、19a…始端部、21…繊維構造体、22…第1の糸としての経糸、23…第2の糸としての緯糸、24…織物、38…スペーサ。   DESCRIPTION OF SYMBOLS 10 ... High pressure tank as a pressure vessel, 12 ... Liner, 12a ... Butt | matching surface, 12b ... Winding surface, 13 ... Body part, 14 ... Dome part, 19 ... Reinforcement fiber sheet, 19a ... Start end part, 21 ... Fiber structure, 22 ... Warp yarn as first yarn, 23 ... Weft yarn as second yarn, 24 ... Woven fabric, 38 ... Spacer.

Claims (7)

円筒状の胴体部と、
前記胴体部の軸方向の少なくとも一端に連続するドーム部と、を備えるライナを有するとともに、
前記ライナの周方向に沿って当該ライナの外周面に巻き付けられ、前記ライナを外側から覆う強化繊維シートを有し、
前記強化繊維シートは、前記ライナの周方向及び軸方向の少なくとも一方に糸主軸方向が延びるように前記胴体部に配列された強化繊維糸を含む繊維構造体であって、
前記強化繊維シートは、前記ライナの軸方向に延在し当該ライナへの巻き始めとなる始端部を有し、
前記ライナは、少なくとも前記胴体部の軸方向及び径方向に延在する突き合わせ面と、
前記突き合わせ面に連続し、前記胴体部の外周面における半径と異なる半径を有する円弧状の巻き付け面と、を備え、
前記胴体部の径方向に沿った前記突き合わせ面の高さは、前記強化繊維シートの厚さに合致し、
前記突き合わせ面に前記強化繊維シートの始端部が突き合わされるとともに、前記巻き付け面に前記強化繊維シートの一部が巻き付けられていることを特徴とする繊維構造体。
A cylindrical body,
And having a liner comprising a dome portion continuous with at least one end in the axial direction of the body portion,
The reinforcing fiber sheet is wound around the outer peripheral surface of the liner along the circumferential direction of the liner, and covers the liner from the outside,
The reinforcing fiber sheet is a fiber structure including reinforcing fiber yarns arranged in the body portion so that a yarn main axis direction extends in at least one of a circumferential direction and an axial direction of the liner,
The reinforcing fiber sheet has a starting end portion that extends in the axial direction of the liner and starts to be wound on the liner,
The liner includes at least a butting surface extending in the axial direction and the radial direction of the body portion;
An arcuate winding surface that is continuous with the abutting surface and has a radius different from the radius of the outer peripheral surface of the body portion;
The height of the butting surface along the radial direction of the body portion matches the thickness of the reinforcing fiber sheet,
A fiber structure, wherein a starting end portion of the reinforcing fiber sheet is butted against the butted surface, and a part of the reinforcing fiber sheet is wound around the winding surface.
前記巻き付け面は、前記胴体部の外周面に対し0度より大きく2度以下の角度を有する請求項1に記載の繊維構造体。   2. The fiber structure according to claim 1, wherein the winding surface has an angle of greater than 0 degree and less than or equal to 2 degrees with respect to the outer peripheral surface of the body portion. 前記ライナは、前記突き合わせ面及び前記巻き付け面を前記ドーム部にも備える請求項1又は請求項2に記載の繊維構造体。   The fiber structure according to claim 1 or 2, wherein the liner includes the butt surface and the winding surface also in the dome portion. 前記強化繊維シートは織物製であり、前記ライナの周方向へ糸主軸方向が延びるように前記胴体部及び前記ドーム部に配列された第1の糸と、
前記第1の糸と前記織物を形成する第2の糸と、を有し、
前記第2の糸は、前記胴体部の軸方向へ糸主軸方向が延びるように配列されるとともに、前記ドーム部に配列された部分の糸主軸方向が前記ドーム部の軸方向へ延びるように配列されている請求項1〜請求項3のうちいずれか一項に記載の繊維構造体。
The reinforcing fiber sheet is made of woven fabric, and a first thread arranged in the body part and the dome part so that a thread main axis direction extends in a circumferential direction of the liner,
The first yarn and the second yarn forming the fabric,
The second yarns are arranged so that the yarn main axis direction extends in the axial direction of the body portion, and the yarn main axis direction of the portion arranged in the dome portion extends in the axial direction of the dome portion. The fiber structure as described in any one of Claims 1-3 which are made.
前記突き合わせ面及び前記巻き付け面は、前記ライナに形成されている請求項1〜請求項4のうちいずれか一項に記載の繊維構造体。   The said abutting surface and the said winding surface are the fiber structures as described in any one of Claims 1-4 currently formed in the said liner. 前記突き合わせ面及び前記巻き付け面は、前記ライナにスペーサを一体化して設けられている請求項1〜請求項4のうちいずれか一項に記載の繊維構造体。   The fiber structure according to any one of claims 1 to 4, wherein the butting surface and the winding surface are provided by integrating a spacer with the liner. ライナを外側から覆う強化繊維シートを備える繊維構造体を有し、
マトリックス樹脂と前記繊維構造体が複合化されている圧力容器であって、
前記繊維構造体が請求項1〜請求項6のうちいずれか一項に記載の繊維構造体であることを特徴とする圧力容器。
A fiber structure comprising a reinforcing fiber sheet covering the liner from the outside;
A pressure vessel in which a matrix resin and the fiber structure are combined,
The pressure container, wherein the fiber structure is the fiber structure according to any one of claims 1 to 6.
JP2018039678A 2018-03-06 2018-03-06 Fiber structure and pressure vessel Pending JP2019151072A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018039678A JP2019151072A (en) 2018-03-06 2018-03-06 Fiber structure and pressure vessel
PCT/JP2019/004914 WO2019171889A1 (en) 2018-03-06 2019-02-12 Fiber structure and pressure container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039678A JP2019151072A (en) 2018-03-06 2018-03-06 Fiber structure and pressure vessel

Publications (1)

Publication Number Publication Date
JP2019151072A true JP2019151072A (en) 2019-09-12

Family

ID=67846001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039678A Pending JP2019151072A (en) 2018-03-06 2018-03-06 Fiber structure and pressure vessel

Country Status (2)

Country Link
JP (1) JP2019151072A (en)
WO (1) WO2019171889A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002965A (en) * 2018-06-25 2020-01-09 豊田合成株式会社 High-pressure tank
US11654607B2 (en) 2020-07-08 2023-05-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing high pressure tank
US11821586B2 (en) 2020-10-09 2023-11-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method of high-pressure tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022186431A (en) * 2021-06-04 2022-12-15 株式会社豊田自動織機 fiber structure
CN114737299A (en) * 2022-03-15 2022-07-12 云路复合材料(上海)有限公司 Carbon fiber composite hydrogen storage tank preformed body weaving forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6588360B2 (en) * 2016-02-29 2019-10-09 トヨタ自動車株式会社 Tank manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002965A (en) * 2018-06-25 2020-01-09 豊田合成株式会社 High-pressure tank
JP7093240B2 (en) 2018-06-25 2022-06-29 豊田合成株式会社 High pressure tank
US11654607B2 (en) 2020-07-08 2023-05-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing high pressure tank
US11821586B2 (en) 2020-10-09 2023-11-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method of high-pressure tank

Also Published As

Publication number Publication date
WO2019171889A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP6729472B2 (en) Fiber structure, pressure vessel, and method for manufacturing fiber structure
WO2019171889A1 (en) Fiber structure and pressure container
CN107850259B (en) Pressure container with reinforced seal head
US11549643B2 (en) Pressure vessel and pressure-vessel manufacturing method
JP6975895B2 (en) Manufacturing method of FRP tubular body and FRP tubular body
JP7040347B2 (en) Pressure vessel and manufacturing method of pressure vessel
WO2020209034A1 (en) Fiber structure and pressure vessel
KR102347694B1 (en) Method for manufacturing a pressure vessel
CN111503265B (en) High-pressure tank and method for manufacturing high-pressure tank
JP6493094B2 (en) Fiber structure and fiber reinforced composite
JP2010249147A (en) Frp tank and method for manufacturing the same
JP7040346B2 (en) Pressure vessel and manufacturing method of pressure vessel
CN214249125U (en) Anti-burst plastic inner container composite material storage tank
EP4349588A1 (en) Fiber structure
CN108139024B (en) Pressure vessel with continuous fibers
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
JP2021091976A (en) Fiber structure
WO2023181951A1 (en) Fiber structure
JP2021091977A (en) Fiber structure
CN113639187B (en) Three-dimensional woven high-performance hydrogen storage pressure vessel with reinforced fiber continuous filament structure
CN112797307B (en) Composite material inner container and manufacturing method thereof
CN117255737A (en) Method for manufacturing high pressure composite pressure vessel and related products
JP2021091106A (en) Fiber preform for pressure vessel
JP2022029208A (en) General composite container