JP2019149578A - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
JP2019149578A
JP2019149578A JP2019102740A JP2019102740A JP2019149578A JP 2019149578 A JP2019149578 A JP 2019149578A JP 2019102740 A JP2019102740 A JP 2019102740A JP 2019102740 A JP2019102740 A JP 2019102740A JP 2019149578 A JP2019149578 A JP 2019149578A
Authority
JP
Japan
Prior art keywords
substrate
chamber
partition member
space
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019102740A
Other languages
Japanese (ja)
Other versions
JP6684943B2 (en
Inventor
雄二 浅川
Yuji Asakawa
雄二 浅川
洋平 緑川
Yohei Midorikawa
洋平 緑川
戸田 聡
Satoshi Toda
聡 戸田
宏幸 ▲高▼橋
宏幸 ▲高▼橋
Hiroyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of JP2019149578A publication Critical patent/JP2019149578A/en
Application granted granted Critical
Publication of JP6684943B2 publication Critical patent/JP6684943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

To ensure further uniformity of a process when putting a substrate to be processed on a work-holder table and processing the substrate with a process gas.SOLUTION: A substrate processing apparatus comprises: a cylindrical part surrounded by a side wall of a chamber and provided so as to correspond to a substrate work-holder table; and a partition wall member which can be lifted up and down between an upper position and a lower position in the chamber. When the partition wall member stays at the lower position, a space in the cylindrical part communicates with a space between the side wall of the chamber and the partition wall member. When the partition wall member stays at the upper position, the cylindrical part surrounds the substrate work-holder table to define a process space therein, and the process space in the cylindrical part and the space between the side wall of the chamber and the partition wall member are partitioned airtightly to each other.SELECTED DRAWING: Figure 2

Description

本発明は、基板に処理を施す基板処理装置および基板処理方法に関する。   The present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate.

半導体デバイスの製造においては、基板である半導体ウエハ(以下単にウエハと記す)にエッチング処理や成膜処理等の各種の処理を繰り返し行って所望のデバイスを製造する。   In manufacturing a semiconductor device, a desired device is manufactured by repeatedly performing various processes such as an etching process and a film forming process on a semiconductor wafer (hereinafter simply referred to as a wafer) as a substrate.

従来、このような基板処理としては、基板を一枚ずつ処理する枚葉式の処理装置が多用されている。また、このような処理装置はスループットを向上させることが求められており、枚葉式のプラットフォームを維持したまま一度に2枚以上の基板を処理する処理装置も提案されている(例えば特許文献1、2)。   Conventionally, as such a substrate processing, a single-wafer processing apparatus for processing substrates one by one is frequently used. Further, such a processing apparatus is required to improve throughput, and a processing apparatus that processes two or more substrates at a time while maintaining a single-wafer type platform has also been proposed (for example, Patent Document 1). 2).

特許文献1、2に開示された基板処理装置は、チャンバー内に一つの基板載置台を設け、基板載置台の上方に対向して一つのシャワー状をなすガス分散プレートを設け、基板載置台に複数(2枚)の基板を載置し、チャンバー内を真空に保持するとともに、ガス分散プレートから処理ガスを供給し、基板に所定の処理を行うものである。   In the substrate processing apparatus disclosed in Patent Documents 1 and 2, a single substrate mounting table is provided in the chamber, and a gas dispersion plate that forms a shower is formed facing the upper side of the substrate mounting table. A plurality (two) of substrates are placed, the inside of the chamber is kept in a vacuum, and a processing gas is supplied from a gas dispersion plate to perform a predetermined process on the substrates.

特表2010−520649号公報Special table 2010-520649 特開2012−015285号公報JP2012-015285A

ところで、エッチング処理等の基板処理においては、基板の大型化にともなって処理の均一性が確保し難くなっていることに加え、処理の均一性の要求はますます高まっており、上記特許文献1、2の技術では、所望の処理均一性を得ることが困難となりつつある。すなわち、上記特許文献1、2の技術では、複数の基板の干渉等により温度の不均一やガス供給の不均一が生じ、十分な処理の均一性を得難くなっている。さらに、通常の枚葉式の処理装置においてさえ、十分な処理の均一性を確保することができない場合も生じている。   By the way, in the substrate processing such as etching processing, in addition to the difficulty in ensuring the uniformity of processing due to the increase in size of the substrate, there is an increasing demand for processing uniformity. With the second technique, it is becoming difficult to obtain desired processing uniformity. That is, in the techniques of Patent Documents 1 and 2 described above, nonuniform temperature and nonuniform gas supply occur due to interference of a plurality of substrates, and it is difficult to obtain sufficient processing uniformity. Furthermore, even in a normal single wafer processing apparatus, there are cases where sufficient processing uniformity cannot be ensured.

本発明は、載置台上へ基板を載せて処理ガスにより基板処理を行う際に、さらなる処理の均一性を確保することができる基板処理装置および基板処理方法を提供する。   The present invention provides a substrate processing apparatus and a substrate processing method capable of ensuring further processing uniformity when a substrate is placed on a mounting table and substrate processing is performed with a processing gas.

上記課題を解決するため、本発明の一態様は、真空雰囲気下で基板に処理ガスにより処理を施す基板処理装置であって、側壁を含み、真空雰囲気に保持され、基板が収容されるチャンバーと、前記チャンバー内で前記基板を載置するように構成された基板載置台と、前記チャンバー内に処理ガスを含むガスを導入するように構成されたガス導入部材と、前記側壁により囲まれ、前記基板載置台に対応するように設けられた筒状部を含み、前記チャンバー内の上部位置と下部位置との間で昇降可能に構成された隔壁部材と、前記隔壁部材を昇降させる昇降機構とを備え、前記隔壁部材が前記下部位置にある際、前記筒状部内の空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間が互いに連通し、前記隔壁部材が前記上部位置にある際、前記筒状部は前記基板載置台を囲み、その内部に処理空間を規定し、前記筒状部内の前記処理空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間は、互いに気密に区画されることを特徴とする基板処理装置を提供する。   In order to solve the above problems, one embodiment of the present invention is a substrate processing apparatus that performs processing on a substrate with a processing gas in a vacuum atmosphere. The substrate processing apparatus includes a sidewall, a chamber that is held in a vacuum atmosphere, and accommodates a substrate. A substrate mounting table configured to mount the substrate in the chamber; a gas introduction member configured to introduce a gas containing a processing gas into the chamber; and the side wall, A partition member including a cylindrical portion provided to correspond to the substrate mounting table and configured to be movable up and down between an upper position and a lower position in the chamber, and an elevating mechanism for moving the partition member up and down And when the partition member is in the lower position, the space in the cylindrical portion and the space between the side wall of the chamber and the partition member communicate with each other, and the partition member is in the upper position. The cylindrical portion surrounds the substrate mounting table, defines a processing space therein, and the processing space in the cylindrical portion and the space between the side wall of the chamber and the partition member are airtight to each other. Provided is a substrate processing apparatus that is partitioned into two sections.

本発明によれば、載置台上へ基板を載せて処理ガスにより基板処理を行う際に、さらなる処理の均一性を確保することができる基板処理装置および基板処理方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, when mounting a board | substrate on a mounting base and performing a substrate process with process gas, the substrate processing apparatus and the substrate processing method which can ensure the uniformity of the further process are provided.

本発明の一実施形態に係る基板処理装置であるCOR処理装置を備えた処理システムを示す概略構成図である。It is a schematic block diagram which shows the processing system provided with the COR processing apparatus which is a substrate processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るCOR処理装置を示す断面図であり、隔壁部材を上昇させた状態を示す図である。It is sectional drawing which shows the COR processing apparatus which concerns on one Embodiment of this invention, and is a figure which shows the state which raised the partition member. 本発明の一実施形態に係るCOR処理装置を示す断面図であり、隔壁部材を下降させた状態を示す図である。It is sectional drawing which shows the COR processing apparatus which concerns on one Embodiment of this invention, and is a figure which shows the state which lowered | hung the partition member. 隔壁部材を示す斜視図である。It is a perspective view which shows a partition member. フランジ部を断面で示した隔壁部材の側面図である。It is a side view of the partition member which showed the flange part in the section. COR処理装置の駆動軸設置部分とガイド軸設置部分を示す断面図である。It is sectional drawing which shows the drive shaft installation part and guide shaft installation part of a COR processing apparatus. ガイド軸の上部軸と下部軸との接合部分を示す断面図である。It is sectional drawing which shows the junction part of the upper axis | shaft of a guide axis | shaft, and a lower axis | shaft. 隔壁部材を駆動させた際に条件を変化させてガス流を形成したときのウエハに付着したパーティクルの個数を評価した結果を示す図である。It is a figure which shows the result of having evaluated the number of the particles adhering to a wafer when changing a condition when driving a partition member and forming a gas flow. 隔壁部材を設けない従来の装置でCOR処理を行った場合と、隔壁部材を設け、図2の状態にしてCOR処理を行った場合の処理分布を比較した結果を示す図である。It is a figure which shows the result of having compared the process distribution at the time of performing a COR process with the conventional apparatus which does not provide a partition member, and when providing a partition member and performing the COR process in the state of FIG. 本発明の他の実施形態に係るCOR処理装置を示す断面図である。It is sectional drawing which shows the COR processing apparatus which concerns on other embodiment of this invention.

以下、図面を参照しながら、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<COR処理装置を備えた処理システム>
図1は、本発明の一実施形態に係る基板処理装置である化学的酸化物除去(Chemical Oxide Removal;COR)処理を行うCOR処理装置を備えた処理システムを示す概略構成図である。この処理システム1は、被処理基板である半導体ウエハ(以下、単にウエハと記す)Wを搬入出する搬入出部2と、搬入出部2に隣接させて設けられた2つのロードロック室(L/L)3と、各ロードロック室3にそれぞれ隣接して設けられた、ウエハWに対してPHT(Post Heat Treatment)処理を行なうPHT処理装置4と、各PHT処理装置4にそれぞれ隣接して設けられた、ウエハWに対してCOR処理を行なうCOR処理装置5とを備えている。ロードロック室3、PHT処理装置4およびCOR処理装置5は、この順に一直線上に並べて設けられている。PHT処理装置4およびCOR処理装置5はウエハWを2枚ずつ処理するようになっている。
<Processing system with COR processing device>
FIG. 1 is a schematic configuration diagram showing a processing system including a COR processing apparatus that performs a chemical oxide removal (COR) process, which is a substrate processing apparatus according to an embodiment of the present invention. The processing system 1 includes a loading / unloading section 2 for loading / unloading a semiconductor wafer (hereinafter simply referred to as a wafer) W, which is a substrate to be processed, and two load lock chambers (L / L) 3, a PHT processing device 4 that is provided adjacent to each load lock chamber 3 and performs a PHT (Post Heat Treatment) process on the wafer W, and adjacent to each PHT processing device 4. A COR processing apparatus 5 that performs COR processing on the wafer W is provided. The load lock chamber 3, the PHT processing apparatus 4, and the COR processing apparatus 5 are arranged in a straight line in this order. The PHT processing device 4 and the COR processing device 5 process the wafers W by two.

搬入出部2は、ウエハWを搬送する第1ウエハ搬送機構11が内部に設けられた搬送室(L/M)12を有している。第1ウエハ搬送機構11は、ウエハWを略水平に保持する2つの搬送アーム11a,11bを有している。搬送室12の長手方向の側部には、載置台13が設けられており、この載置台13には、ウエハWを複数枚並べて収容可能なキャリアCが例えば3つ接続できるようになっている。また、搬送室12に隣接して、ウエハWを回転させて偏心量を光学的に求めて位置合わせを行なうオリエンタ14が設置されている。   The loading / unloading unit 2 has a transfer chamber (L / M) 12 in which a first wafer transfer mechanism 11 for transferring the wafer W is provided. The first wafer transfer mechanism 11 has two transfer arms 11a and 11b that hold the wafer W substantially horizontally. A mounting table 13 is provided on the side of the transfer chamber 12 in the longitudinal direction. For example, three carriers C capable of accommodating a plurality of wafers W arranged side by side can be connected to the mounting table 13. . In addition, an orienter 14 is installed adjacent to the transfer chamber 12 to rotate the wafer W and optically determine the amount of eccentricity.

搬入出部2において、ウエハWは、搬送アーム11a,11bによって保持され、第1ウエハ搬送機構11の駆動により略水平面内で直進移動され、また昇降させられることにより、所望の位置に搬送させられる。そして、載置台13上のキャリアC、オリエンタ14、ロードロック室3に対してそれぞれ搬送アーム11a,11bが進退することにより、搬入出させられるようになっている。   In the loading / unloading unit 2, the wafer W is held by the transfer arms 11a and 11b, moved straight in a substantially horizontal plane by driving the first wafer transfer mechanism 11, and moved up and down to be transferred to a desired position. . The transfer arms 11a and 11b are moved forward and backward with respect to the carrier C, the orienter 14 and the load lock chamber 3 on the mounting table 13, respectively.

各ロードロック室3は、搬送室12との間にそれぞれゲートバルブ16が介在された状態で、搬送室12にそれぞれ連結されている。各ロードロック室3内には、ウエハWを搬送する第2ウエハ搬送機構17が設けられている。また、ロードロック室3は、所定の真空度まで真空引き可能に構成されている。   Each load lock chamber 3 is connected to the transfer chamber 12 with a gate valve 16 interposed between the load lock chamber 3 and the transfer chamber 12. In each load lock chamber 3, a second wafer transfer mechanism 17 for transferring the wafer W is provided. The load lock chamber 3 is configured to be evacuated to a predetermined degree of vacuum.

第2ウエハ搬送機構17は、多関節アーム構造を有しており、ウエハWを略水平に保持するピックを有している。この第2のウエハ搬送機構17においては、多関節アームを縮めた状態でピックがロードロック室3内に位置し、多関節アームを伸ばすことにより、ピックがPHT処理装置4に到達し、さらに伸ばすことによりCOR処理装置5に到達することが可能となっており、ウエハWをロードロック室3、PHT処理装置4、およびCOR処理装置5間で搬送することが可能となっている。   The second wafer transfer mechanism 17 has an articulated arm structure, and has a pick that holds the wafer W substantially horizontally. In the second wafer transfer mechanism 17, the pick is positioned in the load lock chamber 3 with the articulated arm contracted, and the pick reaches the PHT processing apparatus 4 and extends further by extending the articulated arm. Thus, it is possible to reach the COR processing apparatus 5, and the wafer W can be transferred between the load lock chamber 3, the PHT processing apparatus 4, and the COR processing apparatus 5.

PHT処理装置4は、真空引き可能なチャンバー20と、その中で被処理基板であるウエハWを2枚、水平状態で載置する基板載置台23を有し、基板載置台23にはヒーターが埋設されており、このヒーターによりCOR処理が施された後のウエハWを加熱してCOR処理により生成した後述する反応生成物を気化(昇華)させるPHT処理を行なう。PHT処理の際には、チャンバー20内にNガス等の不活性ガスが導入される。チャンバー20のロードロック室3側にはゲートバルブ22が設けられており、チャンバー20のCOR処理装置5側にはゲートバルブ54が設けられている。 The PHT processing apparatus 4 includes a chamber 20 that can be evacuated, and a substrate mounting table 23 on which two wafers W that are substrates to be processed are mounted in a horizontal state. The substrate mounting table 23 has a heater. The PHT process which heats the wafer W after being COR-processed by this heater and vaporizes (sublimates) a reaction product, which will be described later generated by the COR process, is performed. In the PHT process, an inert gas such as N 2 gas is introduced into the chamber 20. A gate valve 22 is provided on the load lock chamber 3 side of the chamber 20, and a gate valve 54 is provided on the COR processing device 5 side of the chamber 20.

本実施形態に係るCOR処理装置5は、チャンバー40内でウエハW表面の酸化膜に対しHFガスおよびNHガスによりCOR処理を行うものであり、その詳細な構成は後述する。 The COR processing apparatus 5 according to the present embodiment performs COR processing on the oxide film on the surface of the wafer W in the chamber 40 using HF gas and NH 3 gas, and the detailed configuration thereof will be described later.

制御部6は、処理システム1の各構成部を制御するマイクロプロセッサ(コンピュータ)を備えたプロセスコントローラ91を有している。プロセスコントローラ91には、オペレータが処理システム1を管理するためにコマンドの入力操作等を行うキーボードや、処理システム1の稼働状況を可視化して表示するディスプレイ等を有するユーザーインターフェース92が接続されている。また、プロセスコントローラ91には、処理システム1で実行される各種処理、例えば後述するCOR処理装置5における処理ガスの供給やチャンバー内の排気などをプロセスコントローラの制御にて実現するための制御プログラムや処理条件に応じて処理システム1の各構成部に所定の処理を実行させるための制御プログラムである処理レシピや、各種データベース等が格納された記憶部93が接続されている。レシピは記憶部93の中の適宜の記憶媒体(図示せず)に記憶されている。そして、必要に応じて、任意のレシピを記憶部93から呼び出してプロセスコントローラ91に実行させることで、プロセスコントローラ91の制御下で、処理システム1での所望の処理が行われる。   The control unit 6 includes a process controller 91 including a microprocessor (computer) that controls each component of the processing system 1. Connected to the process controller 91 is a user interface 92 having a keyboard for an operator to input commands and the like for managing the processing system 1 and a display for visualizing and displaying the operating status of the processing system 1. . Further, the process controller 91 includes a control program for realizing various processes executed by the processing system 1, for example, supply of a processing gas in the COR processing apparatus 5 to be described later, exhaust in a chamber, and the like by controlling the process controller. A processing recipe that is a control program for causing each component of the processing system 1 to execute a predetermined process according to the processing conditions, and a storage section 93 in which various databases are stored are connected. The recipe is stored in an appropriate storage medium (not shown) in the storage unit 93. If necessary, an arbitrary recipe is called from the storage unit 93 and is executed by the process controller 91, whereby a desired process in the processing system 1 is performed under the control of the process controller 91.

次に、このような処理システム1における処理動作について説明する。
まず、被処理基板である表面にシリコン酸化膜を有するウエハWをキャリアC内に収納し、処理システム1に搬送する。処理システム1においては、大気側のゲートバルブ16を開いた状態で搬入出部2のキャリアCから第1ウエハ搬送機構11の搬送アーム11a、11bのいずれかによりウエハWを1枚ロードロック室3に搬送し、ロードロック室3内の第2ウエハ搬送機構17のピックに受け渡す。
Next, the processing operation in such a processing system 1 will be described.
First, a wafer W having a silicon oxide film on the surface as a substrate to be processed is accommodated in the carrier C and transferred to the processing system 1. In the processing system 1, a single wafer W is loaded from the carrier C of the loading / unloading unit 2 by one of the transfer arms 11 a and 11 b of the first wafer transfer mechanism 11 with the atmosphere side gate valve 16 opened. To the pick of the second wafer transfer mechanism 17 in the load lock chamber 3.

その後、大気側のゲートバルブ16を閉じてロードロック室3内を真空排気し、次いでゲートバルブ54を開いて、ピックをCOR処理装置5まで伸ばしてウエハWをCOR処理装置5へ搬送する。   Thereafter, the gate valve 16 on the atmosphere side is closed and the load lock chamber 3 is evacuated, then the gate valve 54 is opened, the pick is extended to the COR processing apparatus 5, and the wafer W is transferred to the COR processing apparatus 5.

その後、ピックをロードロック室3に戻し、ゲートバルブ54を閉じ、COR処理装置5において後述するようにしてCOR処理を行う。   Thereafter, the pick is returned to the load lock chamber 3, the gate valve 54 is closed, and COR processing is performed in the COR processing device 5 as described later.

COR処理が終了した後、ゲートバルブ22、54を開き、第2ウエハ搬送機構17のピックにより処理後のウエハWを受け取り、PHT処理装置4のチャンバー20内の載置台23上に載置する。そして、ピックをロードロック室3に退避させ、ゲートバルブ22、54を閉じ、PHT処理装置4のチャンバー20内でウエハWを加熱してPHT処理を行う。これにより、上記COR処理によって生じた反応生成物が加熱されて気化し、除去される。   After the COR processing is completed, the gate valves 22 and 54 are opened, the processed wafer W is received by the pick of the second wafer transfer mechanism 17 and mounted on the mounting table 23 in the chamber 20 of the PHT processing apparatus 4. Then, the pick is retracted to the load lock chamber 3, the gate valves 22 and 54 are closed, and the wafer W is heated in the chamber 20 of the PHT processing apparatus 4 to perform the PHT processing. Thereby, the reaction product generated by the COR treatment is heated and vaporized and removed.

PHT処理装置4における熱処理が終了した後、ゲートバルブ22を開き、第2ウエハ搬送機構17のピックにより載置台23上のエッチング処理後のウエハWをロードロック室3に退避させ、第1ウエハ搬送機構11の搬送アーム11a、11bのいずれかによりキャリアCに戻す。これにより、一枚のウエハの処理が完了する。このような一連の処理をキャリアC内に収容されたウエハWの数だけ繰り返す。   After the heat treatment in the PHT processing apparatus 4 is completed, the gate valve 22 is opened, and the wafer W after the etching process on the mounting table 23 is retracted to the load lock chamber 3 by the pick of the second wafer transfer mechanism 17 to transfer the first wafer. The carrier 11 is returned to the carrier C by one of the transport arms 11 a and 11 b of the mechanism 11. Thereby, processing of one wafer is completed. Such a series of processes is repeated by the number of wafers W accommodated in the carrier C.

<COR処理装置の構成>
次に、本発明の一実施形態に係るCOR処理装置について説明する。
図2および図3は、本発明の一実施形態に係るCOR処理装置を示す断面図であり、図2は隔壁部材を上昇させた状態を示し、図3は隔壁部材を下降させた状態を示す。
<Configuration of COR processing apparatus>
Next, a COR processing apparatus according to an embodiment of the present invention will be described.
2 and 3 are cross-sectional views showing a COR processing apparatus according to an embodiment of the present invention. FIG. 2 shows a state where the partition member is raised, and FIG. 3 shows a state where the partition member is lowered. .

これらの図に示すように、COR処理装置5は、密閉構造のチャンバー40を備え、また、チャンバー40の内部に、被処理基板であるウエハWを1枚ずつ水平状態で載置するための2つの基板載置台41と、これら基板載置台41の上方にそれぞれ対向するように、処理ガスをチャンバー40内に導入するための2つのガス導入部材42と、2つの基板載置台41の下部の周囲にそれぞれ設けられた2つのインナーウォール43と、各基板載置台41と対応するガス導入部材42との間のウエハWを含む領域に、それぞれ密閉された処理空間Sを規定する隔壁を形成するための昇降可能な隔壁部材44と、隔壁部材44を昇降する昇降機構45と、HFガスおよびNHガス等を供給するガス供給機構46と、チャンバー40内を排気する排気機構47を備えている。 As shown in these drawings, the COR processing apparatus 5 includes a chamber 40 having a hermetically sealed structure. In addition, the COR processing apparatus 5 includes a chamber 2 for placing wafers W to be processed in a horizontal state one by one in the chamber 40. Two substrate mounting tables 41, two gas introduction members 42 for introducing a processing gas into the chamber 40 so as to oppose each of the substrate mounting tables 41, and the periphery of the lower portions of the two substrate mounting tables 41 In order to form a partition that defines a sealed processing space S in a region including the wafer W between the two inner walls 43 provided in each of the substrate 43 and the gas introduction member 42 corresponding to each substrate mounting table 41. A partition member 44 that can be moved up and down, a lifting mechanism 45 that lifts and lowers the partition member 44, a gas supply mechanism 46 that supplies HF gas, NH 3 gas, and the like, and exhausts the inside of the chamber 40. An exhaust mechanism 47 is provided.

チャンバー40は、例えばアルミニウムまたはアルミニウム合金からなり、チャンバー本体51と蓋部52とによって構成されている。チャンバー本体51は、側壁部51aと底部51bとを有し、上部は開口となっており、この開口が蓋部52で閉止される。側壁部51aと蓋部52とは、シール部材51cにより封止されて、チャンバー40内の気密性が確保される。蓋部52の内側には、上述した2つのガス導入部材42が嵌め込まれている。チャンバー本体51の側壁部51aには、PHT処理装置4のチャンバーとの間でウエハWを搬送するための搬入出口(図示せず)が設けられており、この搬入出口は、上述したゲートバルブ54により開閉可能となっている。   The chamber 40 is made of, for example, aluminum or an aluminum alloy, and includes a chamber main body 51 and a lid portion 52. The chamber body 51 has a side wall portion 51 a and a bottom portion 51 b, and an upper portion is an opening, and the opening is closed by a lid portion 52. The side wall portion 51a and the lid portion 52 are sealed by a seal member 51c, and airtightness in the chamber 40 is ensured. The two gas introduction members 42 described above are fitted inside the lid portion 52. A loading / unloading port (not shown) for transferring the wafer W to / from the chamber of the PHT processing apparatus 4 is provided on the side wall 51a of the chamber body 51, and the loading / unloading port is connected to the gate valve 54 described above. Can be opened and closed.

基板載置台41は、略円柱状をなしており、ウエハWの載置面を有する載置プレート61と、チャンバー本体51の底部51bに固定され、載置プレートを支持するベースブロック62とを有する。載置プレート61の内部にはウエハWを温調する温度調節機63が設けられている。温度調節器63は、例えば温度調節用媒体(例えば水など)が循環する管路を備えており、このような管路内を流れる温度調節用媒体と熱交換が行なわれることにより、ウエハWの温度制御がなされる。また、基板載置台41には、ウエハWを搬送する際に用いる複数の昇降ピン(図示せず)がウエハの載置面に対して突没可能に設けられている。   The substrate mounting table 41 has a substantially cylindrical shape, and includes a mounting plate 61 having a mounting surface for the wafer W, and a base block 62 that is fixed to the bottom 51b of the chamber body 51 and supports the mounting plate. . Inside the mounting plate 61, a temperature controller 63 for adjusting the temperature of the wafer W is provided. The temperature controller 63 includes, for example, a pipe line through which a temperature adjusting medium (for example, water) circulates, and heat exchange with the temperature adjusting medium flowing in the pipe line allows the wafer W to move. Temperature control is performed. Further, the substrate mounting table 41 is provided with a plurality of lifting pins (not shown) that are used when the wafer W is transferred so as to protrude and retract with respect to the wafer mounting surface.

インナーウォール43は、円筒状をなし、基板載置台41のベースブロック62の周囲に間隔をあけて設けられており、ベースブロック62との間は円環状をなす排気空間68となっている。インナーウォール43の上部にはフランジ67が形成されている。インナーウォール43にはスリット(図示せず)が形成されており、処理空間Sから円環状の排気空間68に至った排ガスがインナーウォール43のスリットを介してインナーウォール43の外側空間に均一に排出され、後述する排気機構47により排気されるようになっている。   The inner wall 43 has a cylindrical shape, and is provided around the base block 62 of the substrate mounting table 41 with a space therebetween. The inner wall 43 is an exhaust space 68 that forms an annular shape with the base block 62. A flange 67 is formed on the upper portion of the inner wall 43. A slit (not shown) is formed in the inner wall 43, and exhaust gas from the processing space S to the annular exhaust space 68 is uniformly discharged to the outer space of the inner wall 43 through the slit of the inner wall 43. The air is exhausted by an exhaust mechanism 47 described later.

ガス供給機構46は、HFガス、NHガス、およびArガスやNガス等の希釈ガスをガス導入部材42に供給するものであり、各ガスの供給源、供給配管、バルブ、およびマスフローコントローラ等の流量制御器を有している。 The gas supply mechanism 46 supplies HF gas, NH 3 gas, and dilution gas such as Ar gas and N 2 gas to the gas introduction member 42. Each gas supply source, supply piping, valve, and mass flow controller Etc. have a flow controller.

ガス導入部材42は、ガス供給機構46から供給されたガスをチャンバー40内に導入するためのものであり、内部にガス拡散空間64を有し、全体形状が円筒状をなしている。ガス導入部材42の上面にはチャンバー40の上壁からつながるガス導入孔65が形成され、底面にガス拡散空間64につながる多数のガス吐出孔66を有している。そして、ガス供給機構46から供給されたHFガス、NHガス等のガスが、ガス導入孔65を経てガス拡散空間64に至り、ガス拡散空間64で拡散され、ガス吐出孔66から均一にシャワー状に吐出される。すなわち、ガス導入部材42は、ガスを分散して吐出するガス分散ヘッド(シャワーヘッド)として機能する。なお、ガス導入部材42は、HFガスとNHガスとを別個の流路で吐出するポストミックスタイプであってもよい。 The gas introduction member 42 is for introducing the gas supplied from the gas supply mechanism 46 into the chamber 40, has a gas diffusion space 64 therein, and has an overall shape of a cylinder. A gas introduction hole 65 connected to the upper wall of the chamber 40 is formed on the upper surface of the gas introduction member 42, and a plurality of gas discharge holes 66 connected to the gas diffusion space 64 are formed on the bottom surface. Gases such as HF gas and NH 3 gas supplied from the gas supply mechanism 46 reach the gas diffusion space 64 through the gas introduction hole 65, are diffused in the gas diffusion space 64, and are uniformly showered from the gas discharge holes 66. It is discharged in a shape. That is, the gas introduction member 42 functions as a gas dispersion head (shower head) that disperses and discharges the gas. The gas introduction member 42 may be a post-mix type that discharges HF gas and NH 3 gas through separate flow paths.

隔壁部材44は、2つの基板載置台41に対応する2つの処理空間を規定する隔壁を一括して形成するものであり、図4の斜視図にも示すように、各処理空間を形成するための2つの円筒部(筒状部)71と、円筒部71の上部に鍔状に設けられたフランジ部72とを有している。また、円筒部71の底部には内フランジ部73が形成されている(図2参照)。   The partition member 44 collectively forms partition walls that define two processing spaces corresponding to the two substrate mounting tables 41, and forms each processing space as shown in the perspective view of FIG. These two cylindrical parts (tubular parts) 71 and a flange part 72 provided in a bowl shape on the upper part of the cylindrical part 71 are provided. An inner flange portion 73 is formed at the bottom of the cylindrical portion 71 (see FIG. 2).

隔壁部材44には、フランジ部72の上面に各処理空間Sに対応して二つのシール部材74が設けられている。また、図3に示すように、インナーウォール43のフランジ67の下面にはそれぞれシール部材75が設けられている。そして、図2に示すように、隔壁部材44を上昇させた状態で、シール部材74がガス導入部材42の上面に当接して、隔壁部材44とガス導入部材42との間が密着され、シール部材75が隔壁部材44の内フランジ部73の上面に当接して、隔壁部材44とインナーウォール43との間が密着されて、略密閉された空間である処理空間Sが形成される。   The partition member 44 is provided with two seal members 74 corresponding to the processing spaces S on the upper surface of the flange portion 72. As shown in FIG. 3, seal members 75 are provided on the lower surface of the flange 67 of the inner wall 43. As shown in FIG. 2, with the partition member 44 raised, the seal member 74 comes into contact with the upper surface of the gas introduction member 42 so that the partition member 44 and the gas introduction member 42 are in close contact with each other. The member 75 comes into contact with the upper surface of the inner flange portion 73 of the partition wall member 44, and the partition wall member 44 and the inner wall 43 are brought into close contact with each other to form a processing space S that is a substantially sealed space.

シール部材74,75としては、本体部と、本体部から斜めに突出するリップ部とを有するリップシールを好適に用いることができる。リップシールはリップ部がシール部を構成するため、シール部材74,75をリップシールとすることにより、隔壁部材44とガス導入部材42、および隔壁部材44とインナーウォール43が直接接触することなくクリアランスを保った状態でシールすることができる。このため、隔壁部材44とガス導入部材42、および隔壁部材44とインナーウォール43が接触することによるパーティクルの発生を防止することができる。また、リップシールはクリアランスをリップ部で調整するのでクリアランス調整の自由度が高い。隔壁部材44とガス導入部材42、および隔壁部材44とインナーウォール43の接触を防止しつつ所望のシール性を得るためには、これらの間のクリアランスが1.6〜3.6mmの範囲になるようにシールすることが好ましい。   As the seal members 74 and 75, a lip seal having a main body portion and a lip portion protruding obliquely from the main body portion can be suitably used. In the lip seal, since the lip portion constitutes the seal portion, the seal members 74 and 75 are lip seals so that the partition member 44 and the gas introduction member 42 and the partition member 44 and the inner wall 43 are not in direct contact with each other. It is possible to seal in a state where it is kept. For this reason, generation | occurrence | production of the particle by the partition member 44 and the gas introduction member 42 and the partition member 44 and the inner wall 43 contacting can be prevented. Moreover, since the lip seal adjusts the clearance at the lip portion, the clearance adjustment is highly flexible. In order to obtain a desired sealing property while preventing the partition member 44 and the gas introduction member 42 and the partition member 44 and the inner wall 43 from contacting each other, the clearance between them is in the range of 1.6 to 3.6 mm. It is preferable to seal in such a manner.

また、後述するように、隔壁部材44の上昇には真空状態のチャンバー40内部と大気空間であるチャンバー40外部との差圧を利用しており、駆動力が小さいため、シール部材74,75としては極力反力が小さい状態で均一にシールできるものが要求される。これに対して、リップシールは、シール状態において、反力がほぼ0に近く一定であるため、このように駆動力が小さくても十分シールが可能である。   Also, as will be described later, the partition member 44 is lifted by utilizing a differential pressure between the inside of the chamber 40 in a vacuum state and the outside of the chamber 40 that is an atmospheric space, and since the driving force is small, the sealing members 74 and 75 are used. Is required to be able to seal uniformly with as little reaction force as possible. On the other hand, since the reaction force of the lip seal is almost constant in the sealed state, it can be sufficiently sealed even with such a small driving force.

ただし、リップシールは、真空と真空または大気と大気等の差圧の小さい環境下でのシールに適しているものであり、シール部材74,75としてリップシールを用いた場合には、隔壁部材44の内側と外側の差圧が小さい状態である必要があり、これらの差圧が300Torr以下であることが好ましい。   However, the lip seal is suitable for sealing in an environment with a small differential pressure such as vacuum and vacuum or air and air. When the lip seal is used as the seal members 74 and 75, the partition member 44 is used. It is necessary that the differential pressure between the inside and the outside of the tube is small, and it is preferable that these differential pressures are 300 Torr or less.

リップシールは、リップ部が圧力の高い方に向いている必要があるため、シール部材74にリップシールを適用する場合には、圧力がより高い処理空間S側、すなわち内側にリップ部が向いているリップシールを用いる。また、シール部材75にリップシールを適用する場合には、圧力がより高い処理空間S側、すなわち外側にリップ部が向いているリップシールを用いる。   Since the lip seal needs to have the lip portion facing the higher pressure side, when the lip seal is applied to the seal member 74, the lip portion faces the processing space S side where the pressure is higher, that is, the inner side. Use the lip seal. Further, when a lip seal is applied to the seal member 75, a lip seal having a lip portion facing the processing space S side where pressure is higher, that is, the outside is used.

なお、シール部材75は、インナーウォール43のフランジ67の下面に設けられているが、隔壁部材44の内フランジ部73の上面に設けてもよい。   The seal member 75 is provided on the lower surface of the flange 67 of the inner wall 43, but may be provided on the upper surface of the inner flange portion 73 of the partition wall member 44.

図5に示すように、隔壁部材44のフランジ部72は、周回する溝部76を有する本体部72aを有し、溝部76の内部には、溝部76に沿って周回するようにヒーター77が設けられている。本体部72aの上部には蓋部72bが溶接されており、溝部76が密閉された空間となっている。ヒーター77は、チャンバー40外部のヒーター電源(図示せず)につながっており、ヒーター77に給電することによりヒーター77が発熱し、その熱が隔壁部材44の上部から下部へ速やかに拡散し、処理空間S内を例えば30〜150℃に加熱することができ、処理空間S内を均熱性の高い状態に保持することが可能となっている。溝部76は、後述するように、昇降機構45のガイド軸を介して大気と繋がっており、大気空間となっている。このため、過昇温等が起こり難く、ヒーター77の制御性が良好である。   As shown in FIG. 5, the flange portion 72 of the partition wall member 44 has a body portion 72 a having a groove portion 76 that circulates, and a heater 77 is provided inside the groove portion 76 so as to circulate along the groove portion 76. ing. A lid part 72b is welded to the upper part of the main body part 72a, and the groove part 76 is a sealed space. The heater 77 is connected to a heater power supply (not shown) outside the chamber 40. When power is supplied to the heater 77, the heater 77 generates heat, and the heat is quickly diffused from the upper part to the lower part of the partition wall member 44, and processed. The inside of the space S can be heated to, for example, 30 to 150 ° C., and the inside of the processing space S can be kept in a highly uniform state. As will be described later, the groove portion 76 is connected to the atmosphere via a guide shaft of the elevating mechanism 45 and is an atmospheric space. For this reason, overheating etc. do not occur easily and the controllability of the heater 77 is good.

隔壁部材44を昇降する昇降機構45は、チャンバー40の外部に配置され、隔壁部材44を昇降動可能なアクチュエータ81と、アクチュエータ81から延びてチャンバー40内に侵入し、先端が隔壁部材44のフランジ部72に取り付けられた駆動軸82と、先端が隔壁部材44に取り付けられ、他端がチャンバー40外に延びる中空の複数のガイド軸83とを有する。ガイド軸83は2本あれば駆動軸82とともに3軸支持となり安定した支持が可能であり、隔壁部材44を安定して昇降させることができる。ガイド軸83を2本より多くし、例えば4本にすると隔壁部材44をより均一に上昇させることができるようになるが、本数が増えるとコスト性やメンテナンス性が低下する。したがって、そのような点を考慮してガイド軸83の本数を決定すればよい。   An elevating mechanism 45 that elevates and lowers the partition wall member 44 is disposed outside the chamber 40, and an actuator 81 that can move the partition wall member 44 up and down, extends from the actuator 81, enters the chamber 40, and a tip is a flange of the partition wall member 44. The drive shaft 82 is attached to the portion 72, and a plurality of hollow guide shafts 83 whose front ends are attached to the partition wall member 44 and whose other ends extend outside the chamber 40. If there are two guide shafts 83, the drive shaft 82 and the three-shaft support are possible and stable support is possible, and the partition member 44 can be raised and lowered stably. If the number of the guide shafts 83 is increased from two, for example, four, the partition wall member 44 can be raised more uniformly. However, when the number of the guide shafts 83 is increased, the cost and maintenance are reduced. Therefore, the number of guide shafts 83 may be determined in consideration of such points.

図6に示すように、駆動軸82は、上部軸82aと下部軸82bとにより構成され、上部軸82aの下端には、伸縮可能なベローズ84の一端が取り付けられている。下部軸82bはチャンバー40外で上部軸82aに連続するように上部軸82aに取り付けられ、ボールスプラインのスプライン軸として構成される。ベローズ84は、駆動軸82の上部軸82aの周囲に設けられ、他端はチャンバー40の底部に取り付けられている。これにより、駆動軸82が昇降した際に、それに対応してベローズ84が伸縮し、チャンバー40内の真空状態が保持されるようになっている。チャンバー40の底部には、ベローズ84の外側を覆うように、駆動軸82を収容するケース85が取り付けられている。ケース85の下部軸82bに対応する部分の内側にはボールスプラインのスリーブ86が取り付けられている。   As shown in FIG. 6, the drive shaft 82 is composed of an upper shaft 82a and a lower shaft 82b, and one end of an extendable bellows 84 is attached to the lower end of the upper shaft 82a. The lower shaft 82b is attached to the upper shaft 82a so as to be continuous with the upper shaft 82a outside the chamber 40, and is configured as a spline shaft of a ball spline. The bellows 84 is provided around the upper shaft 82 a of the drive shaft 82, and the other end is attached to the bottom of the chamber 40. Thereby, when the drive shaft 82 moves up and down, the bellows 84 expands and contracts correspondingly, and the vacuum state in the chamber 40 is maintained. A case 85 that accommodates the drive shaft 82 is attached to the bottom of the chamber 40 so as to cover the outside of the bellows 84. A ball spline sleeve 86 is attached to the inside of the portion of the case 85 corresponding to the lower shaft 82b.

また、図6に示すように、ガイド軸83は、上部軸83aと下部軸83bとにより構成され、上部軸83aの下端には、伸縮可能なベローズ87の一端が取り付けられている。下部軸83bはチャンバー40外で上部軸83aに連続するように上部軸83aに取り付けられ、ガイドブッシュ89にガイドされるようになっている。ベローズ87は、ガイド軸83の上部軸83aの周囲に設けられ、他端はチャンバー40の底部に取り付けられている。これにより、ガイド軸83が昇降した際に、それに対応してベローズ87が伸縮し、チャンバー40内の真空状態が保持されるようになっている。チャンバー40の底部には、ベローズ87の外側を覆うように、ガイド軸83を収容するケース88が取り付けられている。ケース88の下部軸83bに対応する部分の内側にガイドブッシュ89が取り付けられている。   As shown in FIG. 6, the guide shaft 83 includes an upper shaft 83a and a lower shaft 83b, and one end of an expandable / contractible bellows 87 is attached to the lower end of the upper shaft 83a. The lower shaft 83 b is attached to the upper shaft 83 a so as to be continuous with the upper shaft 83 a outside the chamber 40, and is guided by the guide bush 89. The bellows 87 is provided around the upper shaft 83 a of the guide shaft 83, and the other end is attached to the bottom of the chamber 40. Thereby, when the guide shaft 83 moves up and down, the bellows 87 expands and contracts correspondingly, and the vacuum state in the chamber 40 is maintained. A case 88 that accommodates the guide shaft 83 is attached to the bottom of the chamber 40 so as to cover the outside of the bellows 87. A guide bush 89 is attached to the inside of the portion of the case 88 corresponding to the lower shaft 83b.

ガイド軸83は下端がチャンバー40の外部の大気圧空間に設けられていることから、チャンバー40の内部が真空に保持された状態では、これらの差圧により、ガイド軸83にはその断面積に比例したに押上げ力が作用する。ガイド軸83には、ベローズ87のばね反力およびガイド軸83の自重等の下向きに作用する力が存在するが、ガイド軸83の内径等を適宜設定することにより、押上げ力のほうを大きくすることができる。これにより適切な圧力で隔壁部材44を押し上げることができる。このため、隔壁部材44を複数のガイド軸83によりガイドして安定して駆動させることができるとともに、隔壁部材44を均等に上昇させて確実なシール性を確保することができる。   Since the lower end of the guide shaft 83 is provided in the atmospheric pressure space outside the chamber 40, the cross-sectional area of the guide shaft 83 is reduced due to the differential pressure in the state where the inside of the chamber 40 is held in vacuum. A push-up force acts in proportion. The guide shaft 83 has a downward acting force such as the spring reaction force of the bellows 87 and the weight of the guide shaft 83. By appropriately setting the inner diameter of the guide shaft 83, the push-up force is increased. can do. Thereby, the partition member 44 can be pushed up with an appropriate pressure. For this reason, the partition member 44 can be stably driven by being guided by the plurality of guide shafts 83, and the partition member 44 can be evenly raised to ensure reliable sealing performance.

隔壁部材44を下降させる際には、このような差圧による隔壁部材44を押し上げる力に抗してアクチュエータ81により駆動軸82を介して隔壁部材44を下降させればよい。アクチュエータ81は隔壁部材44の下降の際のみに用いればよいので、アクチュエータ81および駆動軸82の負担が軽減される。隔壁部材44を下降させて、図3に示すように、隔壁部材44が基板載置台41の載置面の下方に位置させることにより、ウエハWの搬送が可能となる。   When the partition member 44 is lowered, the partition member 44 may be lowered by the actuator 81 via the drive shaft 82 against the force of pushing up the partition member 44 due to such differential pressure. Since the actuator 81 may be used only when the partition member 44 is lowered, the burden on the actuator 81 and the drive shaft 82 is reduced. The partition wall member 44 is lowered and the partition wall member 44 is positioned below the mounting surface of the substrate mounting table 41 as shown in FIG.

なお、図6は、COR処理装置5の断面を示すが、左側は駆動軸82の存在領域の断面を示し、右側はガイド軸の存在領域の断面を示すものであり、二点鎖線を挟んで左右異なる部分の断面をとっている。   6 shows a cross section of the COR processing apparatus 5. The left side shows a cross section of the existence area of the drive shaft 82, and the right side shows a cross section of the existence area of the guide shaft, with the two-dot chain line in between. The cross section of the part which is different in right and left is taken.

図7はガイド軸83の上部軸83aと下部軸83bとの接合部分を示す断面図であるが、上部軸83aの下端はベローズ87を支持するフランジ91となっており、下部軸83bの上端はフランジ91に対応するフランジ92となっている。フランジ92の上面にはPTFE等の滑りの良い樹脂材料で形成された滑り部材93が設けられ、フランジ91と滑り部材93との間で滑りが生じるようになっている。そして、滑り部材93とフランジ91との滑りを許容した状態で、フランジ91とフランジ92とがネジ90により結合されている。ガイド軸83の上部軸83aは、ヒーター77による加熱等により温度が高くなることがあり、それによって比較的大きく熱膨張するが、下部軸83bは加熱の影響が小さい。そのため、その熱膨張差によりガイド軸83が変形して昇降に支障をきたすおそれがある。これに対して、滑り部材93を設けることにより、上部軸83aが滑り部材93上を滑ることにより、熱膨張差を吸収することができる。   FIG. 7 is a cross-sectional view showing a joint portion between the upper shaft 83a and the lower shaft 83b of the guide shaft 83. The lower end of the upper shaft 83a is a flange 91 that supports the bellows 87, and the upper end of the lower shaft 83b is The flange 92 corresponds to the flange 91. A sliding member 93 made of a resin material having good sliding property such as PTFE is provided on the upper surface of the flange 92 so that sliding occurs between the flange 91 and the sliding member 93. The flange 91 and the flange 92 are coupled by the screw 90 in a state where the sliding between the sliding member 93 and the flange 91 is allowed. The temperature of the upper shaft 83a of the guide shaft 83 may increase due to heating by the heater 77 and the like, and thereby the thermal expansion of the lower shaft 83b is relatively small. For this reason, the guide shaft 83 may be deformed due to the difference in thermal expansion, which may hinder raising and lowering. On the other hand, by providing the sliding member 93, the upper shaft 83a slides on the sliding member 93, so that the thermal expansion difference can be absorbed.

排気機構47は、チャンバー40の底部51bに形成された排気口(図示せず)に繋がる排気配管101を有しており、さらに、排気配管101に設けられた、チャンバー40内の圧力を制御するための自動圧力制御弁(APC)102およびチャンバー40内を排気するための真空ポンプ103を有している。   The exhaust mechanism 47 has an exhaust pipe 101 connected to an exhaust port (not shown) formed in the bottom 51 b of the chamber 40, and further controls the pressure in the chamber 40 provided in the exhaust pipe 101. And an automatic pressure control valve (APC) 102 for evacuating and a vacuum pump 103 for evacuating the chamber 40.

チャンバー40内の2つの処理空間Sの圧力をそれぞれ計測するため、チャンバーの底面から各処理空間Sに対応する排気空間68へ挿入されるように、圧力計として高圧力用のキャパシタンスマノメータ105aおよび低圧力用のキャパシタンスマノメータ105bがそれぞれ設けられている。キャパシタンスマノメータ105aまたは105bにより検出された圧力に基づいて自動圧力制御弁(APC)102の開度が制御される。   In order to measure the pressures of the two processing spaces S in the chamber 40, a high pressure capacitance manometer 105 a and a low pressure manometer 105 a are used as pressure gauges so as to be inserted into the exhaust spaces 68 corresponding to the processing spaces S from the bottom surface of the chamber. A pressure capacitance manometer 105b is provided. The opening degree of the automatic pressure control valve (APC) 102 is controlled based on the pressure detected by the capacitance manometer 105a or 105b.

<COR処理装置による処理動作>
次に、このように構成されたCOR処理装置による処理動作について説明する。
<Processing by COR processing device>
Next, the processing operation by the COR processing apparatus configured as described above will be described.

最初に、アクチュエータ81により駆動軸82を介して隔壁部材44を下降させた図3の状態で、ゲートバルブ54を開けて、図示しない搬入出口からチャンバー40内に2枚のウエハWを搬入し、各基板載置台41上に載置する。   First, in the state of FIG. 3 in which the partition member 44 is lowered by the actuator 81 via the drive shaft 82, the gate valve 54 is opened, and two wafers W are loaded into the chamber 40 from a loading / unloading port (not shown). Placed on each substrate mounting table 41.

次いで、アクチュエータ81の動作を停止し、真空状態のチャンバー40の内部と大気圧空間であるチャンバー40の外部との差圧による押し上げ力によりガイド軸83を上昇させ、隔壁部材44を押し上げて図2の状態とする。すなわち、シール部材74をガス導入部材42の上面に当接させて、隔壁部材44とガス導入部材42との間を密着し、シール部材75を隔壁部材44の内フランジ部73の上面に当接させて、隔壁部材44とインナーウォール43との間を密着させることにより、略密閉された空間である処理空間Sを形成する。   Next, the operation of the actuator 81 is stopped, the guide shaft 83 is raised by the pushing-up force due to the differential pressure between the inside of the chamber 40 in a vacuum state and the outside of the chamber 40 which is an atmospheric pressure space, and the partition member 44 is pushed up, and FIG. State. That is, the seal member 74 is brought into contact with the upper surface of the gas introduction member 42 to closely contact the partition member 44 and the gas introduction member 42, and the seal member 75 is brought into contact with the upper surface of the inner flange portion 73 of the partition member 44. Thus, the partition wall member 44 and the inner wall 43 are brought into close contact with each other, thereby forming a processing space S that is a substantially sealed space.

次いで、ガス供給機構46から、HFガス、NHガスおよびNガスやArガス等の不活性ガスをガス導入部材42の多数のガス吐出孔66からシャワー状に分散して吐出し、ウエハW表面のSiO膜に対してCOR処理を施す。COR処理は、HFガスおよびNHガスとウエハW表面に形成されたSiO膜とを反応させて、熱により分解除去可能なフルオロケイ酸アンモニウム(AFS)を生成させる。 Next, an inert gas such as HF gas, NH 3 gas, N 2 gas, or Ar gas is dispersed and discharged in a shower form from the gas discharge holes 66 of the gas introduction member 42 from the gas supply mechanism 46. A COR process is performed on the surface SiO 2 film. In the COR process, HF gas and NH 3 gas react with the SiO 2 film formed on the surface of the wafer W to generate ammonium fluorosilicate (AFS) that can be decomposed and removed by heat.

COR処理が終了後、昇降機構45のアクチュエータ81により隔壁部材44を下降させて図3の状態とし、ゲートバルブ54を開けて、図示しない搬入出口から処理済の2枚のウエハWを搬出する。   After completion of the COR process, the partition member 44 is lowered by the actuator 81 of the elevating mechanism 45 to the state shown in FIG. 3, the gate valve 54 is opened, and two processed wafers W are unloaded from a loading / unloading port (not shown).

以上の処理動作において、隔壁部材44は昇降駆動されるため、その駆動により隔壁部材44に付着している付着物が脱離してパーティクルが発生することがある。また、隔壁部材44が上昇してガス導入部材42に接触した際には、その接触部からパーティクルが発生することがある。このようなパーティクルがウエハWに付着するとウエハWに欠陥が生じる。   In the above processing operation, since the partition member 44 is driven up and down, the adhered matter attached to the partition member 44 may be detached by the drive, and particles may be generated. Further, when the partition member 44 rises and contacts the gas introduction member 42, particles may be generated from the contact portion. When such particles adhere to the wafer W, a defect occurs in the wafer W.

そこで、隔壁部材44を昇降する際に、パーティクルが排気側に導かれるガスの流れを形成して、ウエハWへのパーティクルの付着を抑制するようにガス導入部材42からガスを導入する。このときのガスはウエハWの処理に寄与せずかつ悪影響を及ぼさないガスであればよく、不活性ガスであることが好ましい。本例では、NガスおよびArガスのいずれかまたは両方を用いることができる。このときのガスの流量および圧力は、ウエハWにパーティクルが付着しないような流れが形成されるように制御される。ガス流量が少なすぎると有効な流れが形成されず、ガス流量が多すぎるとパーティクルが舞い上がってかえってパーティクルがウエハWに付着しやすくなる。また、圧力が低すぎるとガスが分子流となり排気側に向かうガス流が形成しにくい。このような観点から、ガス流量は500〜1000sccm(mL/min)、チャンバー内の圧力は1000mTorr(133.3Pa)以上が好ましい。適切なガス流を形成する観点からは圧力の上限は存在しないが、処理の都合上、3000mTorr(400Pa)以下であることが好ましい。 Therefore, when the partition member 44 is moved up and down, a gas flow in which particles are guided to the exhaust side is formed, and the gas is introduced from the gas introduction member 42 so as to suppress the adhesion of the particles to the wafer W. The gas at this time may be any gas that does not contribute to the processing of the wafer W and does not have an adverse effect, and is preferably an inert gas. In this example, either or both of N 2 gas and Ar gas can be used. At this time, the flow rate and pressure of the gas are controlled so that a flow is formed so that particles do not adhere to the wafer W. If the gas flow rate is too low, an effective flow is not formed, and if the gas flow rate is too high, particles rise and the particles are likely to adhere to the wafer W. If the pressure is too low, the gas becomes a molecular flow and it is difficult to form a gas flow toward the exhaust side. From such a viewpoint, the gas flow rate is preferably 500 to 1000 sccm (mL / min), and the pressure in the chamber is preferably 1000 mTorr (133.3 Pa) or more. Although there is no upper limit of pressure from the viewpoint of forming an appropriate gas flow, it is preferably 3000 mTorr (400 Pa) or less for convenience of processing.

実際に、隔壁部材44を昇降させる際に、条件を変化させてガス流を形成したときのウエハに付着したパーティクルの個数を評価した。その結果を図8に示す。ここでは、ガスとしてNガスを用い、隔壁部材44駆動時にガスを流さない場合を基準として、ガスの流量を750sccm、2000sccmの2水準、圧力を750mTorr、2000mTorrの2水準で変化させた場合の付着パーティクルの個数を3回ずつカウントした。その結果、流量が750sccmで圧力が2000mTorrでガスを流さない場合に比較してパーティクルが半分程度まで低減された。これに対して他の条件では効果が見られなかった。この結果から、ガス流量および圧力を適切に調整することにより、パーティクルがウエハWに付着しないようなガス流が形成できることが確認された。 Actually, when the partition member 44 was moved up and down, the number of particles adhering to the wafer when the gas flow was formed by changing the conditions was evaluated. The result is shown in FIG. Here, N 2 gas is used as the gas, and the gas flow rate is changed to two levels of 750 sccm and 2000 sccm, and the pressure is changed to two levels of 750 mTorr and 2000 mTorr, based on the case where no gas flows when the partition member 44 is driven. The number of adhered particles was counted three times. As a result, the particles were reduced to about half compared with the case where the flow rate was 750 sccm, the pressure was 2000 mTorr, and no gas was passed. On the other hand, the effect was not seen on other conditions. From this result, it was confirmed that a gas flow in which particles do not adhere to the wafer W can be formed by appropriately adjusting the gas flow rate and pressure.

このようにガス流を形成しながら隔壁部材44を上昇させる場合は、隔壁部材44がガス導入部材42に接触して処理空間Sが形成された後、処理空間S内の圧力を調整し、COR処理を施す。また、ガス流を形成しながら隔壁部材44を下降させる場合には、隔壁部材44の下降が終了した後、ガスを停止し、ウエハWを搬出する。   When the partition member 44 is raised while forming the gas flow in this way, the partition member 44 contacts the gas introduction member 42 to form the processing space S, and then the pressure in the processing space S is adjusted to adjust the COR. Apply processing. When the partition member 44 is lowered while forming a gas flow, the gas is stopped and the wafer W is unloaded after the partition member 44 has been lowered.

<実施形態の効果>
本実施形態によれば、隔壁部材44を上昇させることにより、ウエハW1枚ずつの処理空間Sが形成されるので、他のウエハの干渉等がない条件で、均一にCOR処理を行うことができる。また、各処理空間Sに対し、ウエハWに対向してガス導入部材42からシャワー状に処理ガスを供給するので、ガス分布を均一にすることができ、処理分布をより均一にすることができる。しかも、処理済のガスを基板載置台41とインナーウォール43との間の円環状の排気空間68からインナーウォール43のスリットを介して排出するので、均一に排気することができ、処理空間Sにおけるガスの分布を一層均一にすることができる。また、隔壁部材44で囲まれた狭い空間内で処理するので、ガス使用量が減少して省エネルギー効果が得られるとともに、圧力調整時間の短縮によるスループット向上効果を得ることができる。
<Effect of embodiment>
According to this embodiment, since the processing space S for each wafer W is formed by raising the partition member 44, the COR processing can be performed uniformly under the condition that there is no interference with other wafers. . Further, since the processing gas is supplied in a shower form from the gas introduction member 42 so as to face the wafer W in each processing space S, the gas distribution can be made uniform, and the processing distribution can be made more uniform. . Moreover, since the processed gas is discharged from the annular exhaust space 68 between the substrate mounting table 41 and the inner wall 43 through the slit of the inner wall 43, it can be exhausted uniformly, and in the processing space S The gas distribution can be made more uniform. Further, since the processing is performed in a narrow space surrounded by the partition wall member 44, the amount of gas used can be reduced to obtain an energy saving effect, and the effect of improving the throughput by shortening the pressure adjustment time can be obtained.

また、このとき、隔壁部材44の上部のフランジ部72に設けられたヒーター77により、隔壁部材44のフランジ部72を例えば30〜150℃に加熱する。これにより、熱伝導性が高いアルミニウムまたはアルミニウム合金製の隔壁部材44の上部から下部へ速やかに拡散し、処理空間S内を極めて均熱性の高い状態に温度制御することができ、処理の均一性をさらに一層高めることができる。また、ヒーター77を設けた溝部76は、昇降機構45のガイド軸83を介して大気と繋がっており、大気空間となっている。このため、過昇温等が起こり難く、ヒーター77の制御性が良好である。   At this time, the flange portion 72 of the partition wall member 44 is heated to, for example, 30 to 150 ° C. by the heater 77 provided on the flange portion 72 on the upper side of the partition wall member 44. Accordingly, the partition member 44 made of aluminum or aluminum alloy having high thermal conductivity can be quickly diffused from the upper part to the lower part, and the temperature in the processing space S can be controlled to an extremely high temperature uniformity state. Can be further increased. Further, the groove portion 76 provided with the heater 77 is connected to the atmosphere via the guide shaft 83 of the elevating mechanism 45 and is an atmospheric space. For this reason, overheating etc. do not occur easily and the controllability of the heater 77 is good.

実際に、隔壁部材44を設けない従来の装置でCOR処理を行った場合と、隔壁部材44を設け、図2の状態にしてCOR処理を行った場合の処理分布を比較した。その結果を図9に示す。従来の装置の場合には、図9(a)に示すように、いずれのウエハも他のウエハと干渉により処理が不均一であったが、隔壁部材44を設けた本実施形態の場合には、図9(b)に示すように、処理分布が同心円状をなし、処理の均一性が向上したことが確認された。   Actually, the distribution of processing when the COR processing is performed by a conventional apparatus without the partition member 44 and the processing when the COR processing is performed in the state shown in FIG. The result is shown in FIG. In the case of the conventional apparatus, as shown in FIG. 9A, the processing of each wafer is non-uniform due to interference with other wafers, but in the case of the present embodiment in which the partition wall member 44 is provided. As shown in FIG. 9B, it was confirmed that the processing distribution was concentric and the processing uniformity was improved.

また、上述のように、ガイド軸83の上部軸83aは、ヒーター77による隔壁部材44の加熱等により温度が高くなることがあり、それによって比較的大きく熱膨張するが、下部軸83bは加熱の影響が小さいため、その熱膨張差によりガイド軸が変形して昇降に支障をきたすおそれがある。これに対して、本実施形態では、ガイド軸83の上部軸83aの下端のフランジ91と、下部軸83bの上端のフランジ92の間にPTFE等の滑りの良い樹脂材料で形成された滑り部材93を設け、フランジ91と滑り部材93との間で滑りが生じるようにし、滑り部材93とフランジ91との滑りを許容した状態で、フランジ91とフランジ92とをネジ90により結合したので、上部軸83aが滑り部材93上を滑ることにより、熱膨張差を吸収することができる。   In addition, as described above, the temperature of the upper shaft 83a of the guide shaft 83 may increase due to the heating of the partition wall member 44 by the heater 77 and the like, and thereby the thermal expansion of the lower shaft 83b is relatively large. Since the influence is small, there is a possibility that the guide shaft is deformed due to the difference in thermal expansion and hinders lifting. On the other hand, in the present embodiment, a sliding member 93 formed of a resin material with good sliding property such as PTFE between the flange 91 at the lower end of the upper shaft 83a of the guide shaft 83 and the flange 92 at the upper end of the lower shaft 83b. And the flange 91 and the flange 92 are coupled by the screw 90 in a state where the sliding between the flange 91 and the sliding member 93 is allowed and the sliding between the sliding member 93 and the flange 91 is allowed. When 83a slides on the sliding member 93, a difference in thermal expansion can be absorbed.

さらに、真空状態のチャンバー40の内部と大気圧空間であるチャンバー40の外部との差圧により押し上げ力が作用するガイド軸83を複数設け、これら複数のガイド軸83を介して隔壁部材44を上昇させるので、複数のガイド軸83により安定した駆動を行うことができるとともに、隔壁部材44を均等に上昇させて、シール面の平面安定化を実現することができ、確実なシール性を確保することができる。また、アクチュエータ81は、隔壁部材44を下降させるときのみ用いればよいので、アクチュエータ81や駆動軸82の負担を軽減することができる。   Further, a plurality of guide shafts 83 on which a pushing force is applied by a differential pressure between the inside of the chamber 40 in a vacuum state and the outside of the chamber 40 which is an atmospheric pressure space are provided, and the partition wall member 44 is raised through the plurality of guide shafts 83. Therefore, stable driving can be performed by the plurality of guide shafts 83, and the partition wall member 44 can be evenly lifted to achieve planar stabilization of the sealing surface, thereby ensuring reliable sealing performance. Can do. Further, since the actuator 81 may be used only when the partition member 44 is lowered, the burden on the actuator 81 and the drive shaft 82 can be reduced.

さらに、隔壁部材44を上昇させて処理空間Sを形成する際に、ガス導入部材42との間のシール部材74と、インナーウォール43との間のシール部材75とにより、上下でシールするので、密閉性の良好な処理空間を形成することができる。   Furthermore, when the partition member 44 is raised to form the processing space S, the seal member 74 between the gas introduction member 42 and the seal member 75 between the inner wall 43 seals up and down. A processing space with good hermeticity can be formed.

さらに、一つの隔壁部材44により、2つの処理空間を一括して形成することが可能であるので、昇降機構の複雑化を回避することができる。   Furthermore, since the two processing spaces can be collectively formed by the single partition wall member 44, it is possible to avoid complication of the lifting mechanism.

さらにまた、隔壁部材44を駆動させているときに、パーティクルが排気側に導かれるガスの流れが形成されるようにすることにより、隔壁部材44の駆動時に発生するパーティクルがウエハWに付着することを有効に抑制することができる。   Furthermore, when the partition member 44 is being driven, a gas flow in which particles are guided to the exhaust side is formed, so that particles generated when the partition member 44 is driven adhere to the wafer W. Can be effectively suppressed.

<他の適用>
なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、COR処理装置に本発明を適用した例を示したが、これに限らず、ガスによる処理であれば、例えば化学蒸着法(CVD法)による成膜処理等の他の処理にも適用することができる。また、プラズマを利用した処理であってもよい。
<Other applications>
The present invention can be variously modified without being limited to the above embodiment. For example, in the above-described embodiment, an example in which the present invention is applied to the COR processing apparatus has been described. It can also be applied to processing. Moreover, the process using plasma may be sufficient.

また、上記実施形態では、基板載置台に対向して設けられたガス導入部材からシャワー状にガスを吐出した場合について示したが、これに限らず、ノズルからガスを吐出する等、他のガス吐出態様であってもよい。   Moreover, in the said embodiment, although it showed about the case where gas was discharged in the shape of a shower from the gas introduction member provided facing the substrate mounting base, it is not restricted to this, and other gas, such as discharging gas from a nozzle, is shown. It may be a discharge mode.

さらに、上記実施形態では、基板載置台とインナーウォールとの間の排気空間からインナーウォールのスリットを介してガスを排出する例を示したが、これに限らず、ガス導入部材側等、他の部分から排気するようにしてもよい。   Furthermore, in the above embodiment, an example is shown in which gas is discharged from the exhaust space between the substrate mounting table and the inner wall through the slit of the inner wall. You may make it exhaust from a part.

さらにまた、上記実施形態では、被処理体を2枚ずつ処理する例について示したが、これに限らず、1枚ずつ処理する枚葉式のものであっても、3枚以上ずつ処理するものであってもよい。   Furthermore, in the above-described embodiment, an example is shown in which the objects to be processed are processed two by two. However, the present invention is not limited to this. It may be.

枚葉式のCOR処理装置の例を図10に示す。このCOR処理装置5′は、チャンバー40′を有し、その中に図2、3のCOR処理装置5と同じ構造の基板載置台41、ガス導入部材42、およびインナーウォール43が一つずつ配置されている。また、基板載置台41とガス導入部材42との間に一つの略密閉状態の処理空間Sを形成するための隔壁部材44′が、図2、3のCOR処理装置5とほぼ同じ構造の昇降機構45′により昇降可能に設けられている。また、COR処理装置5と同じガス供給機構46と排気機構47を有している。   An example of a single-wafer type COR processing apparatus is shown in FIG. This COR processing apparatus 5 'has a chamber 40', in which a substrate mounting table 41, a gas introduction member 42, and an inner wall 43 having the same structure as the COR processing apparatus 5 of FIGS. Has been. In addition, a partition member 44 ′ for forming one substantially sealed processing space S between the substrate mounting table 41 and the gas introduction member 42 is raised and lowered with substantially the same structure as the COR processing apparatus 5 of FIGS. It can be moved up and down by a mechanism 45 '. Further, it has the same gas supply mechanism 46 and exhaust mechanism 47 as the COR processing apparatus 5.

このような枚葉式の処理装置であっても、隔壁部材が存在しない場合には、ガスの流れや温度の均一性が保てない場合があり、必ずしも均一な処理を行えないが、このように隔壁部材44′を設けることにより、処理の均一性を高めることができる。また、隔壁部材44′で囲まれた狭い空間内で処理するので、ガス使用量が減少して省エネルギー効果が得られるとともに、圧力調整時間の短縮によるスループット向上効果を得ることもできる。   Even in such a single wafer processing apparatus, if there is no partition member, the gas flow and temperature may not be uniform, and uniform processing may not always be possible. By providing the partition member 44 ′, the uniformity of processing can be improved. In addition, since the processing is performed in a narrow space surrounded by the partition wall member 44 ', the amount of gas used can be reduced and an energy saving effect can be obtained, and an effect of improving the throughput by shortening the pressure adjustment time can be obtained.

さらにまた、上記実施形態では、被処理基板として半導体ウエハを例にとって説明したが、本発明の原理からして被処理基板は半導体ウエハに限るものではないことは明らかであり、他の種々の基板の処理に適用できることは言うまでもない。   Furthermore, in the above-described embodiment, the semiconductor wafer is described as an example of the substrate to be processed. However, it is obvious that the substrate to be processed is not limited to the semiconductor wafer based on the principle of the present invention. Needless to say, the present invention can be applied to this process.

1;処理システム
2;搬入出部
3;ロードロック室
4;PHT処理装置
5;COR処理装置
6;制御部
40;チャンバー
41;基板載置台
42;ガス導入部材
43;インナーウォール
44、44′;隔壁部材
45、45′;昇降機構
46;ガス供給機構
47;排気機構
68;排気空間
77;ヒーター
74,75;シール部材
81;アクチュエータ
82;駆動軸
83;ガイド軸
93;滑り部材
S;処理空間
W;半導体ウエハ(被処理基板)
DESCRIPTION OF SYMBOLS 1; Processing system 2; Carrying in / out part 3; Load lock chamber 4; PHT processing apparatus 5; COR processing apparatus 6; Control part 40; Chamber 41; Substrate mounting table 42; Gas introduction member 43; Elevating mechanism 46; Gas supply mechanism 47; Exhaust mechanism 68; Exhaust space 77; Heater 74, 75; Seal member 81; Actuator 82; Drive shaft 83; Guide shaft 93; Sliding member S; W: Semiconductor wafer (substrate to be processed)

Claims (24)

真空雰囲気下で基板に処理ガスにより処理を施す基板処理装置であって、
側壁を含み、真空雰囲気に保持され、基板が収容されるチャンバーと、
前記チャンバー内で前記基板を載置するように構成された基板載置台と、
前記チャンバー内に処理ガスを含むガスを導入するように構成されたガス導入部材と、
前記側壁により囲まれ、前記基板載置台に対応するように設けられた筒状部を含み、前記チャンバー内の上部位置と下部位置との間で昇降可能に構成された隔壁部材と、
前記隔壁部材を昇降させる昇降機構と
を備え、
前記隔壁部材が前記下部位置にある際、前記筒状部内の空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間が互いに連通し、
前記隔壁部材が前記上部位置にある際、前記筒状部は前記基板載置台を囲み、その内部に処理空間を規定し、前記筒状部内の前記処理空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間は、互いに気密に区画されることを特徴とする基板処理装置。
A substrate processing apparatus for processing a substrate with a processing gas under a vacuum atmosphere,
A chamber including a side wall, maintained in a vacuum atmosphere and containing a substrate;
A substrate mounting table configured to mount the substrate in the chamber;
A gas introduction member configured to introduce a gas containing a processing gas into the chamber;
A partition wall member that is surrounded by the side wall and includes a cylindrical portion provided so as to correspond to the substrate mounting table, and is configured to be movable up and down between an upper position and a lower position in the chamber;
An elevating mechanism for elevating and lowering the partition member,
When the partition member is in the lower position, the space in the cylindrical portion and the space between the side wall of the chamber and the partition member communicate with each other,
When the partition member is in the upper position, the cylindrical portion surrounds the substrate mounting table, defines a processing space therein, the processing space in the cylindrical portion, the sidewall of the chamber, and the partition The substrate processing apparatus, wherein the space between the members is partitioned in an airtight manner.
前記隔壁部材は、前記筒状部の上部に鍔状に設けられたフランジ部をさらに有することを特徴とする請求項1に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the partition member further includes a flange portion provided in a bowl shape on an upper portion of the cylindrical portion. 前記隔壁部材は、前記フランジ部内に設けられたヒーターをさらに有し、前記ヒーターの熱により前記処理空間の均熱性を高めることを特徴とする請求項2の基板処理装置。   The substrate processing apparatus according to claim 2, wherein the partition member further includes a heater provided in the flange portion, and the heat uniformity of the processing space is enhanced by heat of the heater. 前記ヒータは、前記フランジ部内の大気圧に保持された空間に設けられていることを特徴とする請求項3に記載の基板処理装置。   The substrate processing apparatus according to claim 3, wherein the heater is provided in a space maintained at an atmospheric pressure in the flange portion. 真空雰囲気下で複数の基板に処理ガスにより処理を施す基板処理装置であって、
側壁を含み、真空雰囲気に保持され、複数の基板が収容されるチャンバーと、
前記チャンバー内で前記基板をそれぞれ載置するように構成された複数の基板載置台と、
前記チャンバー内に処理ガスを含むガスを導入するように構成された少なくとも一つのガス導入部材と、
前記側壁により囲まれ、前記複数の基板載置台のそれぞれに対応するように設けられた複数の筒状部を含み、前記チャンバー内の上部位置と下部位置との間で昇降可能に構成された隔壁部材と、
前記隔壁部材を昇降させる昇降機構と
を備え、
前記隔壁部材が前記下部位置にある際、前記複数の筒状部内の空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間が互いに連通し、
前記隔壁部材が前記上部位置にある際、前記複数の筒状部は、それぞれ対応する前記基板載置台を囲み、前記複数の筒状部のそれぞれは、内部に処理空間を規定し、前記筒状部内の前記処理空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間は、互いに気密に区画されることを特徴とする基板処理装置。
A substrate processing apparatus for processing a plurality of substrates with a processing gas under a vacuum atmosphere,
A chamber including a side wall, maintained in a vacuum atmosphere, and containing a plurality of substrates;
A plurality of substrate platforms configured to each mount the substrate in the chamber;
At least one gas introduction member configured to introduce a gas containing a processing gas into the chamber;
A partition wall that is surrounded by the side wall and includes a plurality of cylindrical portions provided so as to correspond to the plurality of substrate mounting tables, and is configured to be movable up and down between an upper position and a lower position in the chamber. Members,
An elevating mechanism for elevating and lowering the partition member,
When the partition member is in the lower position, the space in the plurality of cylindrical portions and the space between the side wall of the chamber and the partition member communicate with each other,
When the partition member is in the upper position, the plurality of cylindrical portions each surround the corresponding substrate mounting table, and each of the plurality of cylindrical portions defines a processing space inside, and the cylindrical shape The substrate processing apparatus, wherein the processing space in the section and the space between the side wall of the chamber and the partition member are partitioned in an airtight manner.
前記複数の筒状部は、一体で形成されることを特徴とする請求項5に記載の基板処理装置。   The substrate processing apparatus according to claim 5, wherein the plurality of cylindrical portions are integrally formed. 前記少なくとも一つのガス導入部材は、前記処理空間に対応するように設けられた複数のガス導入部材を含み、前記各ガス導入部材から対応する前記処理空間に処理ガスが導入されることを特徴とする請求項5または請求項6に記載の基板処理装置。   The at least one gas introduction member includes a plurality of gas introduction members provided so as to correspond to the processing space, and a processing gas is introduced from the gas introduction members into the corresponding processing space. The substrate processing apparatus according to claim 5 or 6. 前記隔壁部材は、前記筒状部の上部に鍔状に設けられたフランジ部をさらに有することを特徴とする請求項5から請求項7のいずれか1項に記載の基板処理装置。   The substrate processing apparatus according to claim 5, wherein the partition member further includes a flange portion provided in a bowl shape on the upper portion of the cylindrical portion. 前記隔壁部材は、前記フランジ部内に設けられたヒーターをさらに有し、前記ヒーターの熱により前記処理空間の均熱性を高めることを特徴とする請求項8の基板処理装置。   The substrate processing apparatus according to claim 8, wherein the partition member further includes a heater provided in the flange portion, and heat uniformity of the processing space is enhanced by heat of the heater. 前記ヒーターは、前記フランジ部内の大気圧に保持された空間に設けられていることを特徴とする請求項9に記載の基板処理装置。   The substrate processing apparatus according to claim 9, wherein the heater is provided in a space held at an atmospheric pressure in the flange portion. 前記少なくとも一つのガス導入部材は、前記基板載置台に対向して設けられ、前記処理空間を形成する際に前記隔壁部材と前記ガス導入部材との間のギャップをシールする第1のシール部材をさらに備えることを特徴とする請求項5から請求項10のいずれか1項に記載の基板処理装置。   The at least one gas introduction member is provided to face the substrate mounting table, and includes a first seal member that seals a gap between the partition member and the gas introduction member when forming the processing space. The substrate processing apparatus according to claim 5, further comprising: 前記第1のシール部材は、本体部と、本体部から斜めに突出し、シール部を構成するリップ部とを有するリップシールであり、前記隔壁部材と前記ガス導入部材との間のクリアランスが1.6〜3.6mmの範囲になるように前記ギャップをシールすることを特徴とする請求項11に記載の基板処理装置。   The first seal member is a lip seal having a main body portion and a lip portion that obliquely protrudes from the main body portion and constitutes the seal portion, and the clearance between the partition wall member and the gas introduction member is 1. The substrate processing apparatus according to claim 11, wherein the gap is sealed so as to be in a range of 6 to 3.6 mm. 前記基板載置台の周囲に間隔をあけて設けられたスリットを有するインナーウォールと、前記処理空間を形成する際に前記隔壁部材と前記インナーウォールとの間のギャップをシールする第2のシール部材とをさらに備え、前記処理空間からの排気は、前記基板載置台とインナーウォールの間の空間から前記スリットを介して行われることを特徴とする請求項11または請求項12に記載の基板処理装置。   An inner wall having slits provided at intervals around the substrate mounting table, and a second seal member for sealing a gap between the partition member and the inner wall when forming the processing space; The substrate processing apparatus according to claim 11, wherein exhaust from the processing space is performed through the slit from a space between the substrate mounting table and an inner wall. 前記第2のシール部材は、本体部と、本体部から斜めに突出し、シール部を構成するリップ部とを有するリップシールであり、前記隔壁部材と前記インナーウォールとの間のクリアランスが1.6〜3.6mmの範囲になるようにシールすることを特徴とする請求項13に記載の基板処理装置。   The second seal member is a lip seal having a main body portion and a lip portion that obliquely protrudes from the main body portion and constitutes the seal portion, and a clearance between the partition wall member and the inner wall is 1.6. The substrate processing apparatus according to claim 13, wherein sealing is performed so as to be in a range of ˜3.6 mm. 前記隔壁部材の内側と外側の差圧が300Torr以下であることを特徴とする請求項12または請求項14に記載の基板処理装置。   The substrate processing apparatus according to claim 12, wherein a differential pressure between the inner side and the outer side of the partition member is 300 Torr or less. 前記昇降機構は、前記隔壁部材を昇降動可能なアクチュエータと、アクチュエータから延び、先端が前記隔壁部材に取り付けられた駆動軸と、先端が前記隔壁部材に取り付けられ、前記チャンバーの外部に延びる複数のガイド軸とを有し、前記ガイド軸は、真空状態に保持された前記チャンバーの内部と大気圧空間である前記チャンバーの外部との差圧による押し上げ力により上昇して前記隔壁部材を上昇させることを特徴とする請求項5から請求項15のいずれか1項に記載の基板処理装置。   The elevating mechanism includes an actuator capable of moving the partition member up and down, a drive shaft extending from the actuator, having a tip attached to the partition member, a tip attached to the partition member, and extending to the outside of the chamber. A guide shaft, and the guide shaft is raised by a push-up force due to a differential pressure between the inside of the chamber held in a vacuum state and the outside of the chamber which is an atmospheric pressure space, and raises the partition member. The substrate processing apparatus according to claim 5, wherein: 前記ガイド軸は、前記隔壁部材に接続された上部軸と、前記上部軸に接続された下部軸とを有し、前記上部軸と前記下部軸とは、これらとの間で滑りを生じる滑り部材を介して、滑りを許容した状態で結合され、熱膨張差を吸収可能に構成されていることを特徴とする請求項16に記載の基板処理装置。   The guide shaft has an upper shaft connected to the partition wall member and a lower shaft connected to the upper shaft, and the upper shaft and the lower shaft cause a slip between them. The substrate processing apparatus according to claim 16, wherein the substrate processing apparatus is configured so as to be capable of absorbing a difference in thermal expansion by being coupled in a state allowing slipping. 前記ガス導入部材は、前記基板載置台に対向して設けられ、下面に多数のガス吐出孔を有し、前記処理空間にシャワー状に処理ガスを吐出することを特徴とする請求項5から請求項17のいずれか1項に記載の基板処理装置。   6. The gas introduction member according to claim 5, wherein the gas introduction member is provided to face the substrate mounting table, has a plurality of gas discharge holes on a lower surface, and discharges the processing gas into the processing space in a shower shape. Item 18. The substrate processing apparatus according to any one of Items 17 above. 前記隔壁部材を昇降させる際に、前記チャンバー内にパーティクルが排気側に導かれるガスの流れを形成して、前記基板へのパーティクルの付着を抑制するように前記ガス導入部材からのガスの導入を制御するように構成された制御部をさらに備えることを特徴とする請求項5から請求項18のいずれか1項に記載の基板処理装置。   When raising and lowering the partition member, a gas flow is introduced into the chamber so that particles are led to the exhaust side, and gas is introduced from the gas introduction member so as to suppress adhesion of the particles to the substrate. The substrate processing apparatus according to claim 5, further comprising a control unit configured to control the substrate processing apparatus. 前記制御部は、前記隔壁部材を昇降させる際に、前記ガスのガス流量が500〜1000sccm、前記チャンバー内の圧力が1000mTorr以上となるように前記ガス導入部材からのガスの導入を制御することを特徴とする請求項19に記載の基板処理装置。   The controller controls the introduction of gas from the gas introduction member so that the gas flow rate of the gas is 500 to 1000 sccm and the pressure in the chamber is 1000 mTorr or more when the partition member is raised and lowered. The substrate processing apparatus according to claim 19, wherein the apparatus is a substrate processing apparatus. 側壁を含み、真空雰囲気に保持されたチャンバー内で基板を基板載置台に載置し、前記側壁により囲まれ、前記基板載置台に対応するように設けられた筒状部を含み、前記チャンバー内の上部位置と下部位置との間で昇降可能に構成された隔壁部材を設け、ガス導入部材から処理ガスを処理空間に導入して前記基板に所定の処理を施す基板処理方法であって、
前記基板載置台へ基板を搬送可能なように前記隔壁部材を前記下部位置に下降させる工程と、
前記基板を前記チャンバー内に搬入し、前記基板載置台に載置する工程と、
前記チャンバー内に前記処理空間を形成するように、前記隔壁部材を前記上部位置に上昇させる工程と、
前記基板に所定の処理を施すために、前記処理空間内に前記処理ガスを導入する工程と、
前記基板を前記チャンバーから搬出可能なように前記隔壁部材を前記下部位置に下降させる工程と、
前記隔壁部材が前記下部位置に下降された状態で、前記基板を前記チャンバーから搬出する工程と
を含み、
前記隔壁部材が前記下部位置にある際、前記筒状部内の空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間は、互いに連通され、
前記隔壁部材が前記上部位置にある際、前記筒状部は前記基板載置台を囲み、前記筒状部は内部に処理空間を規定し、前記筒状部内の前記処理空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間は、互いに気密に区画されることを特徴とする基板処理方法。
The substrate is placed on a substrate mounting table in a chamber that includes a side wall and is maintained in a vacuum atmosphere. The substrate is surrounded by the side wall and includes a cylindrical portion provided to correspond to the substrate mounting table. A substrate processing method in which a partition member configured to be movable up and down between an upper position and a lower position is provided, a processing gas is introduced into a processing space from a gas introduction member, and a predetermined process is performed on the substrate,
Lowering the partition member to the lower position so that the substrate can be transferred to the substrate mounting table;
Carrying the substrate into the chamber and placing the substrate on the substrate placing table;
Raising the partition member to the upper position so as to form the processing space in the chamber;
Introducing the processing gas into the processing space to perform a predetermined processing on the substrate;
Lowering the partition member to the lower position so that the substrate can be unloaded from the chamber;
A step of unloading the substrate from the chamber with the partition member lowered to the lower position,
When the partition member is in the lower position, the space in the cylindrical portion and the space between the side wall of the chamber and the partition member are communicated with each other,
When the partition member is in the upper position, the cylindrical portion surrounds the substrate mounting table, the cylindrical portion defines a processing space inside, the processing space in the cylindrical portion, and the chamber of the chamber The substrate processing method, wherein a space between the side wall and the partition member is partitioned airtightly.
側壁を含み、真空雰囲気に保持されたチャンバー内で複数の基板を複数の基板載置台に載置し、前記側壁により囲まれ、前記複数の基板載置台のそれぞれに対応するように設けられた複数の筒状部を含み、前記チャンバー内の上部位置と下部位置との間で昇降可能に構成された隔壁部材を設け、ガス導入部材から処理ガスを処理空間に導入して前記基板に所定の処理を施す基板処理方法であって、
前記基板載置台へ基板を搬送可能なように前記隔壁部材を前記下部位置に下降させる工程と、
前記基板を前記チャンバー内に搬入し、前記基板載置台に載置する工程と、
前記チャンバー内に前記処理空間を形成するように、前記隔壁部材を前記上部位置に上昇させる工程と、
前記基板に所定の処理を施すために、前記処理空間内に前記処理ガスを導入する工程と、
前記基板を前記チャンバーから搬出可能なように前記隔壁部材を前記下部位置に下降させる工程と、
前記隔壁部材が前記下部位置に下降された状態で、前記基板を前記チャンバーから搬出する工程と
を含み、
前記隔壁部材が前記下部位置にある際、前記複数の筒状部内の空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間は、互いに連通され、
前記隔壁部材が前記上部位置にある際、前記複数の筒状部は、それぞれ対応する前記基板載置台を囲み、前記複数の筒状部のそれぞれは、内部に処理空間を規定し、前記筒状部内の前記処理空間と、前記チャンバーの前記側壁と前記隔壁部材との間の空間は、互いに気密に区画されることを特徴とする基板処理方法。
A plurality of substrates are placed on a plurality of substrate platforms in a chamber that includes a side wall and is maintained in a vacuum atmosphere. The plurality of substrates are surrounded by the sidewalls and provided to correspond to each of the plurality of substrate platforms. And a partition member configured to be movable up and down between an upper position and a lower position in the chamber, and a processing gas is introduced from the gas introduction member into the processing space to perform a predetermined process on the substrate. A substrate processing method for applying
Lowering the partition member to the lower position so that the substrate can be transferred to the substrate mounting table;
Carrying the substrate into the chamber and placing the substrate on the substrate placing table;
Raising the partition member to the upper position so as to form the processing space in the chamber;
Introducing the processing gas into the processing space to perform a predetermined processing on the substrate;
Lowering the partition member to the lower position so that the substrate can be unloaded from the chamber;
A step of unloading the substrate from the chamber with the partition member lowered to the lower position,
When the partition member is in the lower position, the space in the plurality of cylindrical portions and the space between the side wall of the chamber and the partition member are communicated with each other,
When the partition member is in the upper position, the plurality of cylindrical portions each surround the corresponding substrate mounting table, and each of the plurality of cylindrical portions defines a processing space inside, and the cylindrical shape The substrate processing method, wherein the processing space in the section and the space between the side wall of the chamber and the partition member are partitioned in an airtight manner.
前記隔壁部材を昇降させる際に、前記チャンバー内にパーティクルが排気側に導かれるガスの流れを形成して、前記基板へのパーティクルの付着を抑制するように前記チャンバー内にガスを導入することを特徴とする請求項21または請求項22に記載の基板処理方法。   When raising and lowering the partition member, forming a gas flow in which particles are guided to the exhaust side in the chamber, and introducing the gas into the chamber so as to suppress adhesion of the particles to the substrate. The substrate processing method according to claim 21 or 22, wherein the substrate processing method is characterized in that: 前記隔壁部材を昇降させる際に、前記ガスのガス流量が500〜1000sccm、前記チャンバー内の圧力が1000mTorr以上となるようにガスを導入することを特徴とする請求項23に記載の基板処理方法。
24. The substrate processing method according to claim 23, wherein when raising or lowering the partition member, the gas is introduced so that a gas flow rate of the gas is 500 to 1000 sccm and a pressure in the chamber is 1000 mTorr or more.
JP2019102740A 2014-07-24 2019-05-31 Substrate processing apparatus and substrate processing method Active JP6684943B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014151121 2014-07-24
JP2014151121 2014-07-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015039883A Division JP6541374B2 (en) 2014-07-24 2015-03-02 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2019149578A true JP2019149578A (en) 2019-09-05
JP6684943B2 JP6684943B2 (en) 2020-04-22

Family

ID=67850817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102740A Active JP6684943B2 (en) 2014-07-24 2019-05-31 Substrate processing apparatus and substrate processing method

Country Status (1)

Country Link
JP (1) JP6684943B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774206A (en) * 2020-06-09 2021-12-10 韩国光洋热电系统有限公司 Heater power supply device of heat treatment furnace
CN115190918A (en) * 2020-02-14 2022-10-14 爱思强有限公司 CVD reactor and method for processing a process chamber cover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035855A (en) * 2005-07-26 2007-02-08 Shibaura Mechatronics Corp Plasma processing apparatus and cleaning method thereof
JP2007059943A (en) * 1997-02-24 2007-03-08 Foi:Kk Plasma treatment apparatus
JP2009094530A (en) * 1996-11-18 2009-04-30 Applied Materials Inc Ultra high throughput wafer vacuum processing system
JP2009212482A (en) * 2008-02-05 2009-09-17 Tokyo Electron Ltd Treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094530A (en) * 1996-11-18 2009-04-30 Applied Materials Inc Ultra high throughput wafer vacuum processing system
JP2007059943A (en) * 1997-02-24 2007-03-08 Foi:Kk Plasma treatment apparatus
JP2007035855A (en) * 2005-07-26 2007-02-08 Shibaura Mechatronics Corp Plasma processing apparatus and cleaning method thereof
JP2009212482A (en) * 2008-02-05 2009-09-17 Tokyo Electron Ltd Treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190918A (en) * 2020-02-14 2022-10-14 爱思强有限公司 CVD reactor and method for processing a process chamber cover
CN113774206A (en) * 2020-06-09 2021-12-10 韩国光洋热电系统有限公司 Heater power supply device of heat treatment furnace
CN113774206B (en) * 2020-06-09 2023-08-04 韩国捷太格特热处理设备有限公司 Heater power supply device of heat treatment furnace

Also Published As

Publication number Publication date
JP6684943B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6541374B2 (en) Substrate processing equipment
JP7195060B2 (en) Substrate processing method and substrate processing apparatus
JP2016143781A (en) Etching method
KR101170356B1 (en) Substrate processing system and substrate transfer method
KR101867194B1 (en) Etching device, etching method, and substrate-mounting mechanism
KR20100110822A (en) Heat treatment apparatus, and method for controlling the same
US10312079B2 (en) Etching method
WO2013187192A1 (en) Substrate placing table and substrate processing apparatus
US9418866B2 (en) Gas treatment method
JP6684943B2 (en) Substrate processing apparatus and substrate processing method
US10115611B2 (en) Substrate cooling method, substrate transfer method, and load-lock mechanism
KR101211551B1 (en) vacuum processing apparatus and vacuum processing method
KR101922811B1 (en) Substrate processing apparatus
TWI805603B (en) Inner wall and substrate processing equipment
US11594417B2 (en) Etching method and apparatus
JP2013201333A (en) Substrate processing apparatus, manufacturing method of semiconductor device, and substrate processing method
JP2014013841A (en) Processing method and conditioning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6684943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250