JP2019149264A - Switching device and electrode replacement method thereof - Google Patents

Switching device and electrode replacement method thereof Download PDF

Info

Publication number
JP2019149264A
JP2019149264A JP2018032697A JP2018032697A JP2019149264A JP 2019149264 A JP2019149264 A JP 2019149264A JP 2018032697 A JP2018032697 A JP 2018032697A JP 2018032697 A JP2018032697 A JP 2018032697A JP 2019149264 A JP2019149264 A JP 2019149264A
Authority
JP
Japan
Prior art keywords
electrode
arc
time
fixed side
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018032697A
Other languages
Japanese (ja)
Inventor
宏和 古井
Hirokazu FURUI
宏和 古井
淳 額賀
Atsushi Nukaga
淳 額賀
山根 雄一郎
Yuichiro Yamane
雄一郎 山根
六戸 敏昭
Toshiaki Rokunohe
敏昭 六戸
優 楯身
Masaru Tatemi
楯身  優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018032697A priority Critical patent/JP2019149264A/en
Publication of JP2019149264A publication Critical patent/JP2019149264A/en
Pending legal-status Critical Current

Links

Images

Abstract

To formulate a planed update and maintenance by directly measuring and accurately estimating an electrode consumption amount so as to solve the problems in the conventional art that the electrode consumption amount is conservatively estimated from an estimated equation using a coefficient depending on a breaking current value, the number of breaking times, and a material of a contact point.SOLUTION: An antenna capable of detecting an electromagnetic wave generated by an arc is provided to a switching device, and the electromagnetic wave of the arc generated between main contact point electrodes immediately before a closing of the main contact point electrodes or simultaneously with an opening thereof. The generation time of the arc is measured from a signal of the electromagnetic wave generated by the arc, and an electrode consumption amount is derived from a time difference between the generation time of the arc and an output time of a trip signal that notifies a start of a projection operation or an electrode opening operation of the main contact point electrodes.SELECTED DRAWING: Figure 5

Description

本発明は,電力系統に用いられる開閉装置及びその電極交換方法に関する。   The present invention relates to a switchgear used in a power system and an electrode replacement method thereof.

電力を安定供給するために, 電力系統では高い信頼性が求められている。電力系統を構成する開閉器などの電力機器は,電力の安定供給を実現するための中枢であり,開閉器が事故を引き起こした場合には停電事故によるさまざまな損失が生じる。近年では,開閉器の高経年運用が増加しており,開閉器の余寿命を正確に診断することで機器の更新および補修を促進し,経年劣化による事故を未然に防ぐことが重要となっている。   In order to supply power stably, high reliability is required in the power system. Electric power equipment such as a switch constituting the power system is the center for realizing a stable supply of electric power, and when the switch causes an accident, various losses due to a power failure occur. In recent years, switch aging operation has increased, and it is important to promote equipment renewal and repair by accurately diagnosing the remaining life of the switch and prevent accidents due to aging. Yes.

開閉器を構成する部品の中では,開閉器の健全性に与える影響度の高い機能損失のひとつが主接点電極の消耗量である。開閉器は, その組入れられた電力系統の状態より年間当たりの動作回数は数回から数百回という差があり,各種の定格と形式の製品が存在するため,単器あたりの主接点電極消耗量は大きく異なっている。主接点電極の交換に際しては,適当な時期に開閉器内部を目視点検することで主接点電極の交換の必要性の有無を判定していたため,一律的に一定の作業が要求され,保守員の確保や点検に伴う計画停電手続と停止等の無駄な要素が生じていた。近年,絶縁性能の高いSF6ガスをタンク内に充填したガス絶縁開閉装置やガス遮断器の普及に伴い,単器あたりの遮断性能が向上し,据付体積もコンパクト化した反面,SF6ガスの回収や充填作業の追加により点検のための付帯作業時間が長くなる欠点も生じている。従って,その点検周期を減らすことが望ましく,各々の開閉器について,主接点電極の消耗量に伴う主接点電極の交換時期を外部から明確に把握した上で点検作業を実施する必要がある。 Among the components that make up a switch, one of the functional losses that has a high impact on the health of the switch is the amount of wear of the main contact electrode. Since the number of operations per year varies from several to several hundred times depending on the state of the installed power system, and there are products of various ratings and types, the main contact electrode consumption per unit The amount is very different. When replacing the main contact electrode, the inside of the switch was visually inspected at an appropriate time to determine whether or not the main contact electrode needs to be replaced. There were wasted elements such as planned power outage procedures and outages associated with securing and inspection. In recent years, with the spread of gas insulated switchgear and gas circuit breakers filled with highly insulating SF 6 gas in the tank, the shut-off performance per unit has improved and the installation volume has been reduced, while the SF 6 gas There is also a drawback that the additional work time for inspection becomes longer due to the addition of the collection and filling work. Therefore, it is desirable to reduce the inspection cycle. For each switch, it is necessary to carry out the inspection work after clearly knowing from the outside the replacement timing of the main contact electrode according to the amount of consumption of the main contact electrode.

特許文献1では,主接点電極の消耗量を目視点検することなく外部から把握することを目的とし,遮断電流値のピークツウピーク iP-P,接点材質によって決まる定数 α, β,アーク時間 t に基づいた電極消耗量の推定式{iP-P/2 ・21/2}β・t(α:接点材質,iP-P:遮断電流値,t:アーク時間)を電流の遮断ごとに算出し,遮断回数の積算値から開閉器の主接点電極の消耗量を計算している。 In Patent Document 1, the amount of consumption of the main contact electrode is grasped from the outside without visual inspection, and is based on the peak-to-peak i PP of the breaking current value, the constants α and β determined by the contact material, and the arc time t. Electrode consumption estimation formula {i PP / 2 · 2 1/2 } β · t (α: contact material, i PP : breaking current value, t: arc time) is calculated for each interruption of current, and the number of interruptions The amount of consumption of the main contact electrode of the switch is calculated from the integrated value.

特開平4-169027号公報Japanese Patent Laid-Open No. 4-169027

上記のように,従来技術では遮断電流値と遮断回数,接点の材質に依存した係数を用いた推定式から主接点電極消耗量を見積もっている。推定式にはアークの継続時間や電流の非対称性による誤差が含まれており精度が低い場合がある。   As described above, in the prior art, the consumption amount of the main contact electrode is estimated from an estimation formula using a cutoff current value, the number of interruptions, and a coefficient depending on the contact material. The estimation formula includes errors due to arc duration and current asymmetry, and may have low accuracy.

本発明の目的は、精度の高い消耗量の推定を可能にする開閉装置及びその電極交換方法を提供することにある。   An object of the present invention is to provide a switchgear and an electrode replacement method for the switchgear that make it possible to estimate a consumption amount with high accuracy.

上記目的は、第一電極と、前記第一電極に対して相対移動可能な第二電極と、開始信号に基づいて前記第二電極を駆動する駆動手段と、前記第一電極と前記第二電極との間のアークを検出するアーク検出手段と、前記第一電極と前記第二電極との相対速度と、前記アークの発生を検出した時刻と前記開始信号の時刻の時間差との比に基づいて、前記第一電極と前記第二電極の電極消耗量を演算する演算手段とを備えた開閉装置によって達成される。   The object is to provide a first electrode, a second electrode movable relative to the first electrode, a driving means for driving the second electrode based on a start signal, the first electrode and the second electrode. Arc detecting means for detecting an arc between the first electrode and the second electrode, and a ratio of a time difference between the time when the occurrence of the arc is detected and the time of the start signal. This is achieved by a switchgear provided with a calculation means for calculating an electrode consumption amount of the first electrode and the second electrode.

本発明によれば、精度の高い消耗量の推定を可能にする開閉装置及びその電極交換方法を提供できる。   According to the present invention, it is possible to provide a switchgear and an electrode replacement method thereof that enable estimation of a consumption amount with high accuracy.

ガス絶縁開閉装置の構成を示す断面図Sectional view showing the configuration of the gas insulated switchgear 遮断器の構成を示す断面図Sectional view showing the configuration of the circuit breaker 遮断器の投入動作時の様子を示した拡大図Enlarged view showing circuit breaker closing operation 本実施例における主接点電極消耗量計測の実施形態を示す簡略図Simplified diagram showing an embodiment of main contact electrode consumption measurement in this example 投入動作時における主回路電流,先行アークが発する電磁波,投入動作開始を知らせるトリップ信号のタイミングを示す図The figure which shows the timing of the trip signal which notifies the main circuit current at the time of making operation, the electromagnetic wave which the preceding arc emits, and the making operation start 電極消耗前と電極消耗後の遮断位置における固定側電極先端から可動側電極先端までの距離の違いを示した図A diagram showing the difference in distance from the tip of the fixed electrode to the tip of the movable electrode at the blocking position before and after electrode consumption 主接点電極交換時期の予測方法を示した図Figure showing the prediction method of main contact electrode replacement time 遮断器の開極動作時の様子を示した拡大図Enlarged view showing the circuit breaker opening operation 開極動作時における主回路電流,アークが発する光,開極動作開始を知らせるトリップ信号のタイミングを示す図The figure which shows the timing of the trip signal which notifies the main circuit current at the time of opening operation, the light which an arc emits, and the opening operation start 電極消耗前と電極消耗後の投入位置における固定側電極先端から可動側電極先端までの距離の違いを示した図A diagram showing the difference in distance from the fixed electrode tip to the movable electrode tip at the loading position before and after electrode consumption

以上にて説明した開閉器の電極消耗量の計測について,ガス絶縁開閉装置およびガス絶縁開閉装置に組み込まれたガス遮断器を参考にし,図面を参照しつつ本実施例を説明する。   Regarding the measurement of the electrode consumption of the switch described above, this embodiment will be described with reference to the drawings with reference to the gas insulated switchgear and the gas circuit breaker incorporated in the gas insulated switchgear.

図1は,実施形態に係るガス絶縁開閉装置の構成を示す断面図である。ガス絶縁開閉装置は,遮断器1,断路器2,接地開閉器3,計器用変流器4,計器用変圧器5などにより構成されている。高電圧導体6はアルミニウムや銅などの金属材料で構成された円筒形状の導体であり,円筒状の金属容器の接地タンク7の中に絶縁スペーサ8によって支持・固定されている。絶縁スペーサ8は接地タンク7間に挟みこまれることで,接地タンク7の軸線と直行した状態で接地タンク7内に取り付けられており,高電圧導体6は絶縁スペーサ8の埋め込み導体と接続され,接地タンク7の軸線と高電圧導体6の軸線が一致している。接地タンク7内には,絶縁性能の高いSF6ガスが封入されている。 FIG. 1 is a cross-sectional view illustrating a configuration of a gas insulated switchgear according to an embodiment. The gas insulated switchgear includes a circuit breaker 1, a disconnect switch 2, a ground switch 3, an instrument current transformer 4, an instrument transformer 5, and the like. The high voltage conductor 6 is a cylindrical conductor made of a metal material such as aluminum or copper, and is supported and fixed by an insulating spacer 8 in a ground tank 7 of a cylindrical metal container. The insulating spacer 8 is sandwiched between the ground tanks 7 so that it is mounted in the ground tank 7 in a state of being orthogonal to the axis of the ground tank 7, and the high voltage conductor 6 is connected to the embedded conductor of the insulating spacer 8, The axis of the ground tank 7 and the axis of the high voltage conductor 6 coincide. The ground tank 7 is filled with SF 6 gas having high insulation performance.

図2は,実施形態に係る遮断器1の構成を示す断面図である。遮断器1は主接点の内の固定側電極10と固定側電極11, 可動側電極カバー12, ノズル13で構成される。固定側電極10および固定側電極11は操作ロッドを介して油圧操作器やばね操作器へと接続される。図1の遮断器1において,固定側電極10および固定側電極11は遮断位置にあり,投入動作には図中の矢印方向へそれぞれ移動する。   Drawing 2 is a sectional view showing the composition of circuit breaker 1 concerning an embodiment. The circuit breaker 1 includes a fixed side electrode 10, a fixed side electrode 11, a movable side electrode cover 12, and a nozzle 13 among the main contacts. The fixed side electrode 10 and the fixed side electrode 11 are connected to a hydraulic operating device or a spring operating device via an operating rod. In the circuit breaker 1 of FIG. 1, the fixed side electrode 10 and the fixed side electrode 11 are in the blocking position, and move in the direction of the arrows in the drawing for the closing operation.

図3は,遮断器1の投入動作時の様子を示した図である。図3(a)では固定側電極10と固定側電極11が遮断位置にある。固定側電極10と固定側電極11の投入動作開始後,図3(b)のように固定側電極10と固定側電極11は近づく。固定側電極10と固定側電極11が近づくことにより,固定側電極10と固定側電極11の間には先行アーク14が発生する。先行アーク14は電磁波を発し,固定側電極10と固定側電極11の間には電流が流れる。図3(c)は投入動作完了後の様子を示す。このとき,固定側電極10と固定側電極11は接続され閉状態となり,先行アーク14は消滅する。   FIG. 3 is a diagram showing a state during the closing operation of the circuit breaker 1. In FIG. 3A, the fixed side electrode 10 and the fixed side electrode 11 are in the blocking position. After the input operation of the fixed side electrode 10 and the fixed side electrode 11 is started, the fixed side electrode 10 and the fixed side electrode 11 approach each other as shown in FIG. As the fixed side electrode 10 and the fixed side electrode 11 approach, a leading arc 14 is generated between the fixed side electrode 10 and the fixed side electrode 11. The leading arc 14 emits an electromagnetic wave, and a current flows between the fixed side electrode 10 and the fixed side electrode 11. FIG. 3C shows a state after the closing operation is completed. At this time, the fixed side electrode 10 and the fixed side electrode 11 are connected and closed, and the leading arc 14 disappears.

図4は,主接点電極消耗量計測の実施形態を示す図である。遮断器1は主回路15に接続され,アークが発する電磁波計測用のアンテナ16とトリップ回路17は演算装置18に接続される。図4(a)は,投入開始前の状態を示しており,トリップ回路は開極状態にある。投入動作が開始すると,図4(b)のようにトリップ回路は閉極する。投入動作開始と同時にトリップ回路17の端子には電圧が印加される。演算装置18にてこの電圧を計測する。アークが発する電磁波計測用のアンテナ16と演算装置18は図1におけるハンドホール9部に取り付けられている。   FIG. 4 is a diagram showing an embodiment of main contact electrode consumption measurement. The circuit breaker 1 is connected to the main circuit 15, and the electromagnetic wave measurement antenna 16 and the trip circuit 17 that generate an arc are connected to the arithmetic device 18. FIG. 4 (a) shows the state before the start of charging, and the trip circuit is in an open state. When the closing operation starts, the trip circuit is closed as shown in Fig. 4 (b). A voltage is applied to the terminal of the trip circuit 17 simultaneously with the start of the closing operation. This voltage is measured by the arithmetic unit 18. An antenna 16 and an arithmetic unit 18 for measuring an electromagnetic wave generated by an arc are attached to the hand hole 9 in FIG.

図5は,図4の投入動作時における主回路15に流れる主回路電流の信号19,アークが発する電磁波計測用のアンテナ16を用いて計測した先行アーク14が発する電磁波の信号19,投入動作開始を知らせるトリップ信号21のタイミングを示した図である。図6に示すように,投入動作開始時刻aにてトリップ信号21が出力され,固定側電極10と固定側電極11が近づいたときに先行アーク14が発生し,アークが発する電磁波計測用のアンテナ16により先行アークが発する電磁波信号20が出力される。先行アーク発生時刻と同時に主回路15には主回路電流が流れる。図4の演算装置18にて,投入動作開始時刻aおよび先行アーク発生時刻bの時間差Tabを計測する。このとき,投入動作開始時刻aがわかればよいので, 投入動作開始時刻aを計測する信号はトリップ信号に限るものではなく補助接点信号でもよい。また,先行アークの発生時刻bにおいても同様であり, 先行アークの発生時刻bを計測する検出器は, アークが発する電磁波計測用のアンテナ16に限るものではなく,アークの発生時刻bを計測できる検出器であればよい。たとえば,光検出器を用いてもよい。アークが発する電磁波計測用のアンテナ16と同様に,アークが発する光を計測する検出器も図1のハンドホール9部に取り付けられる。   FIG. 5 shows the signal 19 of the main circuit current flowing through the main circuit 15 during the closing operation of FIG. 4, the signal 19 of the electromagnetic wave emitted by the preceding arc 14 measured using the antenna 16 for measuring the electromagnetic wave emitted by the arc, and the start of the closing operation. It is the figure which showed the timing of the trip signal 21 which informs. As shown in FIG. 6, the trip signal 21 is output at the closing operation start time a, the leading arc 14 is generated when the fixed side electrode 10 and the fixed side electrode 11 are approached, and the antenna for electromagnetic wave measurement generated by the arc. 16 outputs an electromagnetic wave signal 20 generated by a preceding arc. The main circuit current flows through the main circuit 15 simultaneously with the time of occurrence of the preceding arc. The time difference Tab between the closing operation start time a and the preceding arc occurrence time b is measured by the arithmetic unit 18 in FIG. At this time, since it is only necessary to know the closing operation start time a, the signal for measuring the closing operation start time a is not limited to the trip signal but may be an auxiliary contact signal. The same applies to the occurrence time b of the preceding arc. The detector for measuring the occurrence time b of the preceding arc is not limited to the antenna 16 for measuring the electromagnetic wave emitted by the arc, and can measure the occurrence time b of the arc. Any detector may be used. For example, a photodetector may be used. Similarly to the antenna 16 for measuring the electromagnetic wave emitted by the arc, a detector for measuring the light emitted by the arc is also attached to the hand hole 9 shown in FIG.

図6は,電極消耗前と電極消耗後の遮断位置における固定側電極10の先端から固定側電極11の先端までの距離の違いを示した図である。図6(a)は電極消耗前の遮断位置,図6(b)は電極消耗後の遮断位置を示す。電極が消耗すると,電極消耗前の遮断位置における固定側電極10の先端から固定側電極11の先端までの距離Lに比べて電極消耗後の遮断位置における固定側電極10の先端から固定側電極11の先端までの距離Lは長くなる。LとLの差が電極消耗量ΔL12となる。この電極消耗量ΔL12は,投入動作時における固定側電極10と固定側電極11の移動速度から求めた相対速度Vと,投入動作開始時刻aおよび先行アーク発生時刻bの時間差Tabの比から求めることができる。あらかじめ,演算装置18にはLとVを記憶させておき,投入動作開始時刻aおよび先行アーク発生時刻bの時間差Tabの計測後,VとTabからLを導出する。ΔL12は式(1)を用いて以下のように計算できる。
ΔL12 = L2 - L1
= Tab×V1 - L1 (1)
FIG. 6 is a diagram showing the difference in distance from the tip of the fixed electrode 10 to the tip of the fixed electrode 11 at the blocking position before and after electrode consumption. FIG. 6A shows a blocking position before electrode consumption, and FIG. 6B shows a blocking position after electrode consumption. When the electrode is depleted, the fixed-side electrode from a tip of the fixed-side electrode 10 in the blocking position after electrode consumption as compared with the distance L 1 to the tip of the fixed electrode 11 from the tip of the fixed electrode 10 at the blocking position before the electrode wear distance L 2 to the tip of the 11 becomes longer. The difference between L 1 and L 2 is the electrode consumption amount ΔL 12 . The electrode consumption amount ΔL 12 is obtained from the ratio of the relative speed V 1 obtained from the moving speeds of the fixed side electrode 10 and the fixed side electrode 11 during the closing operation and the time difference Tab between the closing operation start time a and the preceding arc occurrence time b. Can be sought. In advance, L 1 and V 1 are stored in the arithmetic unit 18, and L 2 is derived from V 1 and Tab after measuring the time difference Tab between the starting operation start time a and the preceding arc occurrence time b. ΔL 12 can be calculated as follows using Equation (1).
ΔL 12 = L 2 -L 1
= Tab × V 1 -L 1 (1)

図7に主接点電極交換時期の予測方法を示す。図7の横軸は日付,縦軸は電極消耗量である。図7に示すように,演算装置18に記憶された電極消耗量ΔL12より,電極消耗量が閾値となる時期を直線近似してに求めることで電極消耗量の交換時期を予測する。 FIG. 7 shows a method of predicting the main contact electrode replacement time. The horizontal axis in FIG. 7 is the date, and the vertical axis is the amount of electrode consumption. As shown in FIG. 7, from the electrode consumption amount ΔL 12 stored in the arithmetic unit 18, the replacement time of the electrode consumption amount is predicted by obtaining the time when the electrode consumption amount becomes a threshold value by linear approximation.

図8は,遮断器1の開極動作時の様子を示した図である。図8(a)では固定側電極10と固定側電極11は接続され投入位置にある。開極動作開始後,固定側電極10と固定側電極11は図3(a)の矢印方向に移動する。この際,固定側電極10と固定側電極11の間にはアーク13が発生する。アーク13は光を発しし,このとき,主回路にはアーク13よって主回路電流が流れている。図8(c)は開極動作完了後の様子を示す。固定側電極10と固定側電極11は遮断位置にあり,固定側電極10と固定側電極11の距離も十分に長いことからアーク13は消滅し,主回路電流もゼロとなる。   FIG. 8 is a diagram illustrating a state in which the circuit breaker 1 is opened. In FIG. 8A, the fixed side electrode 10 and the fixed side electrode 11 are connected and are in the closing position. After starting the opening operation, the fixed side electrode 10 and the fixed side electrode 11 move in the direction of the arrow in FIG. At this time, an arc 13 is generated between the fixed side electrode 10 and the fixed side electrode 11. The arc 13 emits light, and at this time, the main circuit current flows through the main circuit due to the arc 13. FIG. 8C shows a state after completion of the opening operation. Since the fixed side electrode 10 and the fixed side electrode 11 are in the cut-off position, and the distance between the fixed side electrode 10 and the fixed side electrode 11 is sufficiently long, the arc 13 disappears and the main circuit current becomes zero.

図9は,開極動作時における主回路15に流れる主回路電流の信号19,アークが発する光を計測する検出器23を用いて計測したアーク光の信号24,開極動作開始を知らせるトリップ信号21のタイミングを示した図である。図9に示すように,開極動作開始時刻cにてトリップ信号21が出力され,固定側電極10と固定側電極11が開極したと同時にアーク13が発生する。アークが点いている間は主回路15には主回路電流が流れるが,アーク消滅時刻eの直後では主回路電流はゼロとなる。図4の演算装置18にて,開極動作開始時刻cおよびアーク発生時刻dの時間差Tcdを計測する。   FIG. 9 shows a signal 19 of the main circuit current flowing in the main circuit 15 during the opening operation, an arc light signal 24 measured using the detector 23 for measuring the light emitted by the arc, and a trip signal for informing the start of the opening operation. It is the figure which showed the timing of 21. FIG. As shown in FIG. 9, the trip signal 21 is output at the opening operation start time c, and the arc 13 is generated at the same time when the fixed electrode 10 and the fixed electrode 11 are opened. While the arc is on, the main circuit current flows through the main circuit 15, but immediately after the arc extinction time e, the main circuit current becomes zero. 4 is used to measure the time difference Tcd between the opening operation start time c and the arc occurrence time d.

図10は,電極消耗前と電極消耗後の投入位置における固定側電極10と固定側電極11の距離の違いを示した図である。図10(a)は電極消耗前の投入位置,図10(b)は電極消耗後の投入位置を示す。電極が消耗すると,電極消耗前の投入位置における固定側電極10の先端から固定側電極11の先端までの距離Lに比べて電極消耗後の投入位置における固定側電極10の先端から固定側電極11の先端までの距離Lは短くなる。LとLの差が電極消耗量ΔL34となる。この電極消耗量ΔL34は,開極動作時における固定側電極10と固定側電極11の移動速度から求めた相対速度V3と,開極動作開始時刻cおよびアーク発生時刻dの時間差Tcdの比から求めることができる。あらかじめ,演算装置にはLとV3を記憶させておき,開極動作開始時刻cおよびアーク発生時刻dの時間差Tcdの計測後,VとTcdからLを導出する。ΔL34は式(2)を用いて以下のように計算できる。
ΔL34 = -(L4 - L3)
= -(Tcd×V3 - L3) (2)
FIG. 10 is a diagram showing a difference in distance between the fixed side electrode 10 and the fixed side electrode 11 at the loading position before and after electrode consumption. FIG. 10A shows a loading position before electrode consumption, and FIG. 10B shows a loading position after electrode consumption. When the electrode is depleted, the fixed-side electrode from a tip of the fixed-side electrode 10 in the loading position after electrode consumption than the distance L 3 to the tip of the fixed side electrode 11 from the tip of the fixed-side electrode 10 in the electrode wear prior to the loading position distance L 4 to the tip 11 is shortened. The difference between L 3 and L 4 is the electrode consumption amount ΔL 34 . This electrode consumption amount ΔL 34 is a ratio of the relative speed V 3 obtained from the moving speed of the fixed side electrode 10 and the fixed side electrode 11 during the opening operation, and the time difference Tcd between the opening operation start time c and the arc generation time d. Can be obtained from The arithmetic unit stores L 3 and V 3 in advance, and after measuring the time difference Tcd between the opening operation start time c and the arc occurrence time d, L 4 is derived from V 3 and Tcd. ΔL 34 can be calculated as follows using equation (2).
ΔL 34 =-(L 4 -L 3 )
=-(Tcd × V 3 -L 3 ) (2)

実施例によれば、主接点電極の消耗量をアークの発生時刻と主接点電極の動作開始時刻に基づき導出するため,主接点の電極消耗量を正確に外部から把握し,開閉器の内部を目視点検することなく主接点電極の交換時期や開閉器の余寿命を予測し, 計画的な更新および補修を策定可能にする。SF6ガスをタンク内に充填したガス絶縁開閉装置やガス遮断器においては,SF6ガスの回収や充填作業が不要となるため,点検のための付帯作業時間を短縮できる。 According to the embodiment, the amount of consumption of the main contact electrode is derived based on the arc occurrence time and the operation start time of the main contact electrode. Without visual inspection, it is possible to predict the replacement timing of the main contact electrode and the remaining life of the switch, and to make planned updates and repairs. The SF 6 gas in the gas insulated switchgear and gas circuit breaker which is filled in the tank, since the collection and filling work of the SF 6 gas is not required, can be shortened supplementary work time for inspection.

1.遮断器,
2.断路器,
3.接地開閉器,
4.計器用変流器,
5.計器用変圧器,
6.高電圧導体,
7.接地タンク,
8.絶縁スペーサ,
9.ハンドホール,
10.固定側電極,
11.可動側電極,
12.可動側電極カバー,
13.ノズル,
14.先行アーク,
15.主回路,
16.アークが発する電磁波計測用のアンテナ,
17.トリップ回路,
18.演算装置,
19.主回路電流の信号,
20.先行アークが発する電磁波信号,
21.トリップ信号,
22.アーク,
23.アークが発する光を計測する検出器,
24.アーク光の信号,
a.投入動作開始時刻,
b.先行アーク発生時刻,
.電極消耗前の遮断位置における固定側電極の先端から可動側電極の先端までの距離,
.電極消耗後の遮断位置における固定側電極の先端から可動側電極の先端までの距離,
ΔL12.電極消耗量,
.投入動作時における主接点電極の相対的な移動速度,
c.開極動作開始時刻,
d.アーク発生時刻,
e.アーク消滅時刻,
.電極消耗前の投入位置における固定側電極の先端から可動側電極の先端までの距離,
.電極消耗後の投入位置における固定側電極の先端から可動側電極の先端までの距離,
ΔL34.電極消耗量,
.開極動作時における主接点電極の相対的な移動速度
1. Circuit breaker,
2. Disconnector,
3. Ground switch,
4). Current transformer for instrument,
5. Instrument transformers,
6). High voltage conductor,
7). Ground tank,
8). Insulation spacer,
9. Handhole,
10. Fixed electrode,
11. Movable electrode,
12 Movable electrode cover,
13. nozzle,
14 Leading arc,
15. Main circuit,
16. Antenna for measuring electromagnetic waves generated by arcs,
17. Trip circuit,
18. Arithmetic unit,
19. Main circuit current signal,
20. Electromagnetic wave signal emitted by the leading arc,
21. Trip signal,
22. arc,
23. Detector to measure the light emitted by the arc,
24. Arc light signal,
a. Input operation start time,
b. Preceding arc occurrence time,
L 1 . The distance from the tip of the fixed electrode to the tip of the movable electrode at the blocking position before electrode consumption,
L 2 . The distance from the tip of the fixed electrode to the tip of the movable electrode at the blocking position after electrode consumption,
ΔL 12 . Electrode consumption,
V 1 . The relative movement speed of the main contact electrode during the closing operation,
c. Opening operation start time,
d. Arc occurrence time,
e. Arc extinction time,
L 3 . The distance from the tip of the fixed electrode to the tip of the movable electrode at the loading position before electrode consumption,
L 4 . The distance from the tip of the fixed electrode to the tip of the movable electrode at the loading position after electrode consumption,
ΔL 34 . Electrode consumption,
V 3 . Relative moving speed of main contact electrode during opening operation

Claims (4)

第一電極と、
前記第一電極に対して相対移動可能な第二電極と、
開始信号に基づいて前記第二電極を駆動する駆動手段と、
前記第一電極と前記第二電極との間のアークを検出するアーク検出手段と、
前記第一電極と前記第二電極との相対速度と、前記アークの発生を検出した時刻と前記開始信号の時刻の時間差との比に基づいて、前記第一電極と前記第二電極の電極消耗量を演算する演算手段とを備えた開閉装置。
A first electrode;
A second electrode movable relative to the first electrode;
Driving means for driving the second electrode based on a start signal;
Arc detecting means for detecting an arc between the first electrode and the second electrode;
Based on the relative speed between the first electrode and the second electrode, and the ratio of the time difference between the time when the occurrence of the arc is detected and the time of the start signal, the electrode wear of the first electrode and the second electrode An opening / closing device comprising a calculation means for calculating a quantity.
請求項1において、
前記アーク検出手段は、アークを電磁波又は光により検出することを特徴とする開閉装置。
In claim 1,
The arc detecting means detects an arc by electromagnetic waves or light.
請求項2において、
SFガスが内部に充填されたタンクを備え、
前記第一電極と前記第二電極が、前記タンクの内部に設置されたことを特徴とする開閉装置。
In claim 2,
Equipped with a tank filled with SF 6 gas,
The switchgear characterized in that the first electrode and the second electrode are installed inside the tank.
第一電極と、前記第一電極に対して相対移動可能な第二電極と、開始信号に基づいて前記第二電極を駆動する駆動手段と、前記第一電極と前記第二電極との間のアークを検出するアーク検出手段と、前記第一電極と前記第二電極との相対速度と、前記アークの発生を検出した時刻と前記開始信号の時刻の時間差との比に基づいて、前記第一電極と前記第二電極の電極消耗量を演算する演算手段とを備えた開閉装置の電極交換方法であって、
前記演算手段の出力に基づいて、前記第一電極と前記第二電極の交換時期を予測し、
前記予測に基づいて、前記第一電極と前記第二電極の交換を行うことを特徴とする開閉装置の電極交換方法。
A first electrode; a second electrode movable relative to the first electrode; a driving means for driving the second electrode based on a start signal; and between the first electrode and the second electrode Based on the arc detection means for detecting the arc, the relative speed between the first electrode and the second electrode, and the ratio of the time difference between the time when the occurrence of the arc is detected and the time of the start signal, An electrode exchange method for a switchgear comprising an electrode and a calculation means for calculating an electrode consumption amount of the second electrode,
Based on the output of the computing means, predict the replacement time of the first electrode and the second electrode,
An electrode exchange method for a switchgear, wherein the first electrode and the second electrode are exchanged based on the prediction.
JP2018032697A 2018-02-27 2018-02-27 Switching device and electrode replacement method thereof Pending JP2019149264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018032697A JP2019149264A (en) 2018-02-27 2018-02-27 Switching device and electrode replacement method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018032697A JP2019149264A (en) 2018-02-27 2018-02-27 Switching device and electrode replacement method thereof

Publications (1)

Publication Number Publication Date
JP2019149264A true JP2019149264A (en) 2019-09-05

Family

ID=67850655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018032697A Pending JP2019149264A (en) 2018-02-27 2018-02-27 Switching device and electrode replacement method thereof

Country Status (1)

Country Link
JP (1) JP2019149264A (en)

Similar Documents

Publication Publication Date Title
EP2612338B1 (en) Circuit breaker interrupter travel curve estimation
CN201302605Y (en) High-power switch capable of determining and displaying burning loss of contact part
CA2865094C (en) Moisture monitoring system
JP2011210546A (en) Relay end-of-service-life forecasting device
JPH01122530A (en) Breaking performance deterioration predicting device for vacuum breaker
US20150096874A1 (en) Switching device and method for detecting malfunctioning of such a switching device
CN104198928A (en) Circuit breaker contact ablation degree measuring method
KR20140006413A (en) Valuation apparatus for soundness of gis breaker
US4864286A (en) Switch operation monitoring apparatus
US5941370A (en) Electrical contact wear
US20230268723A1 (en) Method for Determining the State of an Electrical Switchgear Assembly, Monitoring Unit for an Electrical Switchgear Assembly, And Electrical Switchgear Assembly
JP2019149264A (en) Switching device and electrode replacement method thereof
KR20170010206A (en) Apparatus and Method for evaluating in insulating performance of Gas Insulated Switchgear
JP7243153B2 (en) Reed contact life diagnosis method and device for electrical equipment
JP5502669B2 (en) Life evaluation method for gas insulated switchgear
CN113806913B (en) SF based on arc energy 6 Method for predicting service life of arc extinguishing chamber of circuit breaker
JP5225323B2 (en) Method for detecting wear of arc contact of gas circuit breaker
CN1331174C (en) Method for detecting open arcing time of circuit breaker
JP2019040832A (en) Vacuum opening/closing device and abnormality monitoring method therefor
KR20070016348A (en) Trouble diagnosis method and system for circuit breaker
JP6207805B1 (en) Vacuum deterioration monitoring device for vacuum valve and switchgear equipped with the same
Dalke et al. Application of numeric protective relay circuit breaker duty monitoring
JP2003281976A (en) Consumption detecting device for gas-blast circuit breaker
JP2001258113A (en) Method of determining performance of gas insulated switch and of controlling the same switch
JP2012075233A (en) Fault point locating device and fault point locating method