JP2019148535A - Wood inspection method - Google Patents

Wood inspection method Download PDF

Info

Publication number
JP2019148535A
JP2019148535A JP2018034343A JP2018034343A JP2019148535A JP 2019148535 A JP2019148535 A JP 2019148535A JP 2018034343 A JP2018034343 A JP 2018034343A JP 2018034343 A JP2018034343 A JP 2018034343A JP 2019148535 A JP2019148535 A JP 2019148535A
Authority
JP
Japan
Prior art keywords
wood
inspected
frequency
inspection method
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018034343A
Other languages
Japanese (ja)
Inventor
大稀 石川
Daiki Ishikawa
大稀 石川
一聡 高橋
Kazutoshi Takahashi
一聡 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2018034343A priority Critical patent/JP2019148535A/en
Publication of JP2019148535A publication Critical patent/JP2019148535A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a wood inspection method capable of accurately identifying a deteriorated part of a wood.SOLUTION: A wood inspection method uses a high-frequency moisture meter 2 and is configured to arrange a high-frequency transmission unit 3 and a high-frequency reception unit 4 which are parallel each other at a distance in a fiber direction D of a wood 1 to be inspected and so that longitudinal directions of the high-frequency transmission unit 3 and the high-frequency reception unit 4 are generally vertical to the fiber direction D, generate an electromagnetic wave to measure an electrostatic capacitance of the wood 1 to be inspected, and determine a degree of deterioration of the wood 1 to be inspected based on the electrostatic capacitance. The wood inspection method determines that the wood 1 to be inspected is in a high hydrous/low density state when the electrostatic capacitance of the wood 1 to be inspected is equal to or greater than a preset upper limit, and determines that the wood 1 to be inspected is in a low hydrous/low density state when the electrostatic capacitance of the wood 1 to be inspected is equal to or lower than a preset lower limit.SELECTED DRAWING: Figure 1

Description

本発明は、高周波水分計を用いた木材検査方法に関する。   The present invention relates to a wood inspection method using a high-frequency moisture meter.

従来より、木材の含水率を測定して、当該木材の含水率が異常に高い場合に、木材に水が含浸しており、木材が腐朽・劣化している可能性が高いと判断する方法が知られている(特許文献1、特許文献2参照)。また木材の含水率を測定する装置としては、距離を開けて一対の電極を平行に配置し、木材に高周波を流して静電容量の変化を検出することにより、木材の含水率を測定する高周波水分計が知られている(非特許文献1)。このような高周波水分計を用いた木材の含水率の測定は、図6に示すように、木材の繊維による誘電率の影響を排除するために、それぞれの電極を木材の繊維方向に略平行に並べて配置し、高周波の電磁波の進行方向が木材の繊維方向に対して略垂直となるようにして測定している。   Conventionally, there has been a method of measuring the moisture content of wood and determining that it is highly likely that the wood has been impregnated with water if the moisture content of the wood is abnormally high, and that the wood is decayed or deteriorated. Known (see Patent Document 1 and Patent Document 2). In addition, as a device for measuring the moisture content of wood, a pair of electrodes are arranged in parallel at a distance, and a high frequency that measures the moisture content of wood by detecting a change in capacitance by flowing a high frequency through the wood. A moisture meter is known (Non-Patent Document 1). As shown in FIG. 6, the moisture content of wood using such a high-frequency moisture meter is measured so that each electrode is substantially parallel to the fiber direction of the wood in order to eliminate the influence of the dielectric constant due to the wood fibers. They are arranged side by side and are measured so that the traveling direction of the high-frequency electromagnetic wave is substantially perpendicular to the fiber direction of the wood.

特開2004−317373号公報JP 2004-317373 A 特開2005−168362号公報JP 2005-168362 A

株式会社ケツト科学研究所 木材水分計HM−520 取扱説明書Ketto Science Laboratory Wood Moisture Analyzer HM-520 Instruction Manual

ところで、上述のように高周波の電磁波の進行方向が木材の繊維方向に対して略垂直となるようにして測定する場合、互いに平行な一対の電極の間の電気力線の経路は当該電極の端部で外側に膨らむので、測定する箇所が健全部であったとしても、測定箇所に隣接して劣化部があった場合に、電気力線の一部が劣化部を通過することになり、当該劣化部の影響を受けるおそれがある。また、木材の端部に近い位置を測定する場合にも電気力線が木材の外部を通過することになって測定精度が低下するおそれがある。したがって、木材の腐朽・劣化の判断精度の低下や腐朽・劣化している範囲の特定が困難となる問題がある。   By the way, when the measurement is performed so that the traveling direction of the high-frequency electromagnetic wave is substantially perpendicular to the fiber direction of the wood as described above, the path of the lines of electric force between the pair of parallel electrodes is the end of the electrode. Since the part to be measured is a healthy part, when there is a deteriorated part adjacent to the measurement part, a part of the lines of electric force will pass through the deteriorated part. There is a risk of being affected by the degraded part. In addition, when measuring a position close to the end of the wood, the lines of electric force pass outside the wood, and the measurement accuracy may be reduced. Therefore, there is a problem that it becomes difficult to specify the range of decay or deterioration of wood and the deterioration of the judgment accuracy of wood decay or deterioration.

また、従来の技術は木材の含水率の異常な高値を木材の腐朽・劣化として判断しているので、木材自体は腐朽していたとしても、木材が乾燥して含水率が高くない場合には腐朽・劣化を判断することが出来ない。   In addition, since the conventional technology determines that the moisture content of the wood is abnormally high as decay or deterioration of the wood, even if the wood itself is decayed, if the wood is dry and the moisture content is not high Cannot judge decay or deterioration.

そこで本発明は、木材の劣化部を精度よく特定することができる木材検査方法を提供することを目的とする。   Then, an object of this invention is to provide the wood inspection method which can pinpoint the degradation part of wood accurately.

本発明の木材検査方法は、高周波水分計を用いた木材検査方法であって、互いに平行な高周波送信部及び高周波受信部を被検査木材の繊維方向に距離を開けて、当該高周波送信部及び当該高周波受信部の長さ方向が前記繊維方向に対して略垂直となるように配置して電磁波を発生させて前記被検査木材の静電容量を測定し、前記静電容量に基づいて前記被検査木材の劣化を判定することを特徴とすることを特徴としている。   The wood inspection method of the present invention is a wood inspection method using a high-frequency moisture meter, wherein a high-frequency transmission unit and a high-frequency reception unit that are parallel to each other are spaced apart in the fiber direction of the inspected wood, and the high-frequency transmission unit and the high-frequency transmission unit An electromagnetic wave is generated by arranging the length direction of the high-frequency receiving unit to be substantially perpendicular to the fiber direction, and the capacitance of the inspected wood is measured, and the inspected based on the capacitance It is characterized by judging deterioration of wood.

本発明の木材検査方法は、前記被検査木材の前記静電容量が予め設定した上限値以上である場合に、前記被検査木材が高含水低密度状態であると判定するとともに、前記被検査木材の前記静電容量が予め設定した下限値以下である場合に、前記被検査木材が低含水低密度状態であると判定することを特徴としている。   In the wood inspection method of the present invention, when the capacitance of the wood to be inspected is equal to or higher than a preset upper limit value, the wood to be inspected is determined to be in a high water content and low density state, and the wood to be inspected When the electrostatic capacity is less than or equal to a preset lower limit value, it is determined that the inspected wood is in a low water content and low density state.

本発明の木材検査方法は、前記被検査木材は木造建築物の構造躯体であり、前記高周波送信部及び前記高周波受信部を壁面、床面、又は天井面の板体表面に沿って配置して、当該板体の裏側に配置される被検査木材の静電容量を測定することを特徴としている。   In the wood inspection method of the present invention, the wood to be inspected is a structural frame of a wooden building, and the high-frequency transmission unit and the high-frequency reception unit are arranged along a plate surface of a wall surface, a floor surface, or a ceiling surface. The capacitance of the wood to be inspected arranged on the back side of the plate is measured.

本発明の木材検査方法によると、被検査木材は基本的に繊維方向に長尺となるので高周波送信部及び高周波受信部は被検査木材の長尺方向に距離を開けて互いに平行に配置されることとなる。このとき、高周波電気力線の通路を考えると、高周波送信部及び高周波受信部の端部においては電界が乱れて電気力線が外方向に膨出するので、被検査木材の幅によっては、電気力線の一部が被検査木材の側縁を越えて外側の空気中を通過することになり、被検査木材の静電容量の測定に誤差が生じるが、被検査木材の長尺方向のどの位置を測定する場合でも被検査木材の幅は変わらないので誤差を一定とすることができる。そして、電気力線が膨出するのは被検査木材の幅方向であり、被検査木材の長尺方向には膨出しないので、被検査木材の健全部と劣化部との境界が近い場合や被検査木材の端部が近い場合であっても精度よく被検査木材の劣化度を判定することができ、劣化部位を精度よく特定することができる。
さらに、被検査木材の劣化部は当該被検査木材の繊維が腐朽菌による分解や白蟻による食害などによって断裂しているので、繊維を流れる電磁波は、繊維の断裂箇所で減衰することとなる。したがって被検査木材の含水率が低い場合であっても、被検査木材の繊維の断裂箇所の多寡を判別することができるので、被検査木材の劣化を判定することができる。
According to the wood inspection method of the present invention, the wood to be inspected is basically long in the fiber direction, so the high-frequency transmitter and the high-frequency receiver are arranged parallel to each other with a distance in the length direction of the wood to be inspected. It will be. At this time, considering the path of the high-frequency electric lines of force, the electric field lines bulge outwardly at the ends of the high-frequency transmitter and the high-frequency receiver, so that the electric lines of force bulge outward. A part of the line of force passes through the outside air beyond the side edge of the wood to be inspected, and an error occurs in the measurement of the capacitance of the wood to be inspected. Even when the position is measured, the width of the wood to be inspected does not change, so the error can be made constant. The lines of electric force bulge in the width direction of the wood to be inspected and do not bulge in the longitudinal direction of the wood to be inspected, so the boundary between the healthy part and the deteriorated part of the wood to be inspected is close. Even when the end of the wood to be inspected is close, the deterioration degree of the wood to be inspected can be determined with high accuracy, and the deteriorated part can be specified with high accuracy.
Further, since the deteriorated portion of the inspected wood is torn due to the decomposition of the fiber of the inspected wood by decaying fungi or the damage caused by white ants, the electromagnetic wave flowing through the fiber is attenuated at the location where the fiber is broken. Therefore, even when the moisture content of the inspected wood is low, it is possible to determine the number of tears in the fibers of the inspected wood, so that deterioration of the inspected wood can be determined.

本発明の木材検査方法によると、被検査木材の静電容量が予め設定した上限値以上である場合のみならず、被検査木材の静電容量が予め設定した下限値以下である場合にも、被検査木材が低密度状態であると判定するので、被検査木材が乾燥している場合であっても被検査木材の劣化を判定することができる。   According to the wood inspection method of the present invention, not only when the capacitance of the wood to be inspected is not less than a preset upper limit value, but also when the capacitance of the wood to be inspected is not more than a preset lower limit value, Since it is determined that the inspected wood is in a low density state, deterioration of the inspected wood can be determined even when the inspected wood is dry.

本発明の木材検査方法によると、木造建築物の構造躯体となっている柱や梁を被検査木材とすることができ、電磁波が壁面、床面、又は天井面の板体を透過することで、板体を取り外すことなく、内部の被検査木材の劣化を判定することができる。特に柱脚などの水が存在しやすく、被検査木材の劣化が発生しやすい箇所であっても、高周波電気力線が下端方向に膨らむことがないので、精度よく被検査木材の劣化度を判定することができる。   According to the wood inspection method of the present invention, pillars and beams that are the structural frame of a wooden building can be used as inspection object wood, and electromagnetic waves can pass through the wall, floor, or ceiling plate. The deterioration of the inspected wood inside can be determined without removing the plate. Especially in places where water such as column bases is likely to exist and deterioration of the inspected wood is likely to occur, the high-frequency electric lines of force do not swell in the lower end direction, so the degree of deterioration of the inspected wood can be accurately determined. can do.

本実施形態の木材検査方法を用いて被検査木材の健全部の高周波静電容量を測定する状態を説明する図。The figure explaining the state which measures the high frequency electrostatic capacitance of the healthy part of to-be-inspected wood using the wood inspection method of this embodiment. 本実施形態の木材検査方法を用いて被検査木材の劣化部の高周波静電容量を測定する状態を説明する図。The figure explaining the state which measures the high frequency electrostatic capacitance of the degradation part of to-be-inspected wood using the wood inspection method of this embodiment. 本実施形態の木材検査方法を用いて屋外側又は屋内側から被検査木材の高周波静電容量を測定する状態を説明する図。The figure explaining the state which measures the high frequency electrostatic capacitance of to-be-inspected wood from the outdoor side or indoor side using the wood test | inspection method of this embodiment. 含水率の測定結果に基づいて被検査木材の劣化を判断する状態を示す表。The table | surface which shows the state which judges the deterioration of to-be-inspected wood based on the measurement result of a moisture content. 実施例の測定結果を示すグラフ。The graph which shows the measurement result of an Example. 比較例の測定結果を示すグラフ。The graph which shows the measurement result of a comparative example. 従来の木材の検査方法の一例を示す図。The figure which shows an example of the inspection method of the conventional timber.

以下、本発明に係る木材検査方法の実施形態に付いて各図を参照しつつ説明する。本実施形態の木材検査方法は、木造建築物の構造躯体としての柱材又は梁材など被検査木材1の劣化度を非破壊で判定する方法である。なお、本発明の木材検査方法は木造建築物の構造躯体に限定されるものではなく、その他の構造物に用いられる木材や材料としての木材の内部の劣化度を判定するものも含まれる。   Hereinafter, an embodiment of a wood inspection method according to the present invention will be described with reference to the drawings. The wood inspection method according to the present embodiment is a method for nondestructively determining the degree of deterioration of the inspected wood 1 such as a column member or a beam member as a structural frame of a wooden building. Note that the wood inspection method of the present invention is not limited to a structural frame of a wooden building, and includes a method for determining the degree of deterioration inside wood as a wood or material used in other structures.

検査に用いる高周波水分計2は、高周波電磁波を発信する高周波送信部3と、当該電磁波を受信する高周波受信部4とを備えており、被検査木材1の誘電率(高周波静電容量)の変化を検出して被検査木材1の含水率を測定するものである。高周波送信部3及び高周波受信部4は所定の距離を開けて互いに平行に高周波水分計2の測定面に配置されている。被検査木材1の劣化部の範囲を特定するためには、高周波送信部3と高周波受信部4との間の距離が短いほうが好ましいが、被検査木材1の深い位置を測定するためには高周波送信部3と高周波受信部4との距離が長いほうが有利である。高周波送信部3と高周波受信部4との間の距離は例えば50mm程度である。また、高周波送信部3と高周波受信部4の長さは、被検査木材1の幅の長さよりも短いことが好ましく、例えば100mm以下である。なお、誘電率、高周波静電容量、含水率は正比例の関係にあるので、後述する被検査木材1の劣化の判断は、誘電率、高周波静電容量、及び含水率のいずれの値に基づいて判断するものであってもよい。   The high-frequency moisture meter 2 used for inspection includes a high-frequency transmitter 3 that transmits high-frequency electromagnetic waves and a high-frequency receiver 4 that receives the electromagnetic waves, and changes in the dielectric constant (high-frequency capacitance) of the wood 1 to be inspected. And the moisture content of the inspected wood 1 is measured. The high-frequency transmitter 3 and the high-frequency receiver 4 are arranged on the measurement surface of the high-frequency moisture meter 2 in parallel with each other at a predetermined distance. In order to specify the range of the deteriorated part of the inspected wood 1, it is preferable that the distance between the high-frequency transmitting unit 3 and the high-frequency receiving unit 4 is short, but in order to measure the deep position of the inspected wood 1, the high frequency It is advantageous that the distance between the transmitter 3 and the high-frequency receiver 4 is long. The distance between the high frequency transmission part 3 and the high frequency reception part 4 is about 50 mm, for example. Moreover, it is preferable that the length of the high frequency transmission part 3 and the high frequency reception part 4 is shorter than the width of the to-be-inspected wood 1, for example, 100 mm or less. Since the dielectric constant, the high frequency capacitance, and the moisture content are in a directly proportional relationship, the determination of deterioration of the inspected wood 1 to be described later is based on any value of the dielectric constant, the high frequency capacitance, and the moisture content. It may be determined.

なお、高周波送信部3と高周波受信部4との間に形成される電界の電気力線5の側方への膨出を考慮し、被検査木材1の周辺部からのノイズや干渉を回避するためには、高周波送信部3及び高周波受信部4は被検査木材1の幅よりも相当程度短いことが好ましい。電気力線5の膨出部が被検査木材1の側縁よりも外側の空気を通過することによるノイズなどを減らすことができるからである。また、本実施形態の高周波水分計2の使用周波数は20MHzであるがこれに限定されるものではない。例えば高周波水分計2の使用周波数は1MHzから300MHzである。被検査木材1の誘電率や高周波静電容量の変化を測定する用途に適した周波数の高周波水分計2を用いることができる。   In addition, in consideration of the bulging of the electric field formed between the high-frequency transmitter 3 and the high-frequency receiver 4 to the side of the electric field lines 5, noise and interference from the periphery of the inspected wood 1 are avoided. For this purpose, it is preferable that the high-frequency transmitter 3 and the high-frequency receiver 4 are considerably shorter than the width of the inspected wood 1. It is because the noise etc. by the bulging part of the electric force line 5 passing the air outside the side edge of the to-be-inspected wood 1 can be reduced. Moreover, although the use frequency of the high frequency moisture meter 2 of this embodiment is 20 MHz, it is not limited to this. For example, the operating frequency of the high-frequency moisture meter 2 is 1 MHz to 300 MHz. A high-frequency moisture meter 2 having a frequency suitable for an application for measuring changes in dielectric constant and high-frequency capacitance of the inspected wood 1 can be used.

被検査木材1は無垢材又は集成材などの木質材料である。木材を積層した材料の場合には繊維方向Dが全てのラミナの繊維方向Dがほぼ長尺方向となる材料である。本実施形態においては、被検査木材1は柱材である。被検査木材1は上述の通り柱材に限定されるものではなく、梁材などの他の木材であってもよい。   The inspected wood 1 is a wood material such as a solid material or a laminated material. In the case of a material in which wood is laminated, the fiber direction D is a material in which the fiber direction D of all laminaes is substantially the long direction. In the present embodiment, the inspected wood 1 is a pillar material. The inspected wood 1 is not limited to the pillar material as described above, and may be other wood such as a beam material.

木材検査方法は、まず、図1及び図2に示すように、被検査木材1の柾目面の外側に、高周波水分計2の高周波送信部3及び高周波受信部4がそれぞれ被検査木材1の繊維方向Dに垂直となるように配置する。本実施形態においては、被検査木材1が鉛直に立設される柱材であるので、高周波送信部3及び高周波受信部4が距離を開けて上下に並べられるように配置されている。このとき被検査木材1の表面に直接高周波水分計2の高周波送信部3及び高周波受信部4は接触させると測定時のノイズを最小限とすることができ好ましい。   In the wood inspection method, first, as shown in FIGS. 1 and 2, the high-frequency transmitter 3 and the high-frequency receiver 4 of the high-frequency moisture meter 2 are respectively disposed on the outside of the grid surface of the inspected wood 1. Arranged so as to be perpendicular to the direction D. In the present embodiment, since the inspected wood 1 is a pillar material standing vertically, the high-frequency transmitter 3 and the high-frequency receiver 4 are arranged so as to be arranged vertically with a distance therebetween. At this time, it is preferable that the high-frequency transmitter 3 and the high-frequency receiver 4 of the high-frequency moisture meter 2 are in direct contact with the surface of the wood 1 to be inspected because noise during measurement can be minimized.

しかし、被検査木材1が壁内、床下、天井裏、又は小屋裏などに収まっている場合には、壁面、床面、天井面、又は屋根面の板体表面に沿って高周波送信部3及び高周波受信部4を配置する。具体的には、本実施形態の被検査木材1としての柱材は、図3に示すように、その屋内側に石こうボード6が張り渡されて内壁面を形成しており、被検査木材1の屋外側に通気層7、壁下地合板8、及びサイディング材9が積層されている。したがって被検査木材1の屋内側部分を主として測定する場合には屋内側の石こうボード6の表面に貼付されている壁クロスに高周波送信部3及び高周波受信部4を接触させる。また、被検査木材1の屋外側部分を主として測定する場合には屋外側のサイディング材9の表面に高周波送信部3及び高周波受信部4を接触させる。   However, when the inspected wood 1 is contained in the wall, under the floor, behind the ceiling, or behind the shed, the high-frequency transmitter 3 and the plate surface of the wall surface, floor surface, ceiling surface, or roof surface, and A high frequency receiving unit 4 is arranged. Specifically, as shown in FIG. 3, the pillar material as the inspected wood 1 of the present embodiment has a gypsum board 6 stretched over the indoor side to form an inner wall surface. A ventilation layer 7, a wall base plywood 8, and a siding material 9 are laminated on the outdoor side. Therefore, when mainly measuring the indoor side portion of the inspected wood 1, the high frequency transmitting unit 3 and the high frequency receiving unit 4 are brought into contact with a wall cloth attached to the surface of the indoor gypsum board 6. Moreover, when measuring mainly the outdoor side part of the to-be-inspected wood 1, the high frequency transmission part 3 and the high frequency reception part 4 are made to contact the surface of the outdoor side siding material 9. FIG.

そして、高周波送信部3から高周波の電磁波を発信し、高周波受信部4が当該電磁波を受信することにより、被検査木材1の誘電率(高周波静電容量)を測定する。このとき、図1及び図2に示すように、高周波送信部3と高周波受信部4との間の電界の高周波電気力線5は、高周波送信部3及び高周波受信部4のそれぞれの両端部においては電界が乱れて電気力線5が外方向に膨出する。したがって、被検査木材1の幅によっては、電気力線5の一部が被検査木材1の側縁を越えて外側の空気中を通過することになるが、被検査木材1の長尺方向のどの位置を測定する場合でも被検査木材1の幅が一定であれば被検査木材1の側縁を越えて外側を通過する電気力線5も一定となるので、この現象による誘電率及び高周波静電容量の測定への影響が一定であり、補正が容易となるとともに、被検査木材1の健全部及び劣化部の判断精度を高めることができる。   And the high frequency electromagnetic wave is transmitted from the high frequency transmission part 3, and the dielectric constant (high frequency electrostatic capacitance) of the to-be-inspected wood 1 is measured by the high frequency receiving part 4 receiving the said electromagnetic wave. At this time, as shown in FIGS. 1 and 2, the high-frequency electric field lines 5 of the electric field between the high-frequency transmission unit 3 and the high-frequency reception unit 4 are at both ends of the high-frequency transmission unit 3 and the high-frequency reception unit 4. The electric field is disturbed and the electric lines of force 5 bulge outward. Therefore, depending on the width of the wood to be inspected 1, a part of the electric lines of force 5 pass through the outside air beyond the side edge of the wood to be inspected 1. In any measurement position, if the width of the inspected wood 1 is constant, the electric lines of force 5 passing through the outside beyond the side edge of the inspected wood 1 are also constant. The influence on the measurement of the electric capacity is constant, the correction becomes easy, and the judgment accuracy of the healthy part and the deteriorated part of the inspected wood 1 can be increased.

また、図3に示すように、屋内側から測定する場合には、高周波電磁波が石こうボード6を透過して被検査木材1の誘電率(高周波静電容量)を測定する。屋外側から測定する場合には、サイディング材9、壁下地合板8、通気層7を透過して被検査木材1の誘電率(高周波静電容量)を測定する。このように本実施形態の木材検査方法は、高周波水分計2を用いて誘電率及び高周波静電容量を測定することで被検査木材1の劣化度を測定するので、各面材を取り外すことなく、被検査木材1の劣化を判定することができる。   Moreover, as shown in FIG. 3, when measuring from the indoor side, high frequency electromagnetic waves permeate | transmit the gypsum board 6 and the dielectric constant (high frequency electrostatic capacitance) of the to-be-inspected wood 1 is measured. When measuring from the outdoor side, the dielectric constant (high-frequency capacitance) of the inspected wood 1 is measured through the siding material 9, the wall base plywood 8 and the ventilation layer 7. As described above, the wood inspection method according to the present embodiment measures the degree of deterioration of the inspected wood 1 by measuring the dielectric constant and the high-frequency capacitance using the high-frequency moisture meter 2, so that each surface material is not removed. The deterioration of the inspected wood 1 can be determined.

また、図2に示すように被検査木材1の劣化部では、被検査木材1の繊維(細胞壁)が腐朽菌による分解や白蟻による食害などによって断裂している。したがって、繊維を流れる電磁波は、繊維の断裂箇所Tで減衰することとなる。これにより被検査木材1の含水率が低い場合であっても、被検査木材1の繊維の断裂箇所Tの多寡を判別することができるので、被検査木材1の劣化を判定することができる。   In addition, as shown in FIG. 2, in the deteriorated part of the inspected wood 1, the fibers (cell walls) of the inspected wood 1 are torn due to decomposition by decaying fungi or damage by white ants. Therefore, the electromagnetic wave flowing through the fiber is attenuated at the fiber tearing point T. Thereby, even when the moisture content of the wood to be inspected 1 is low, the number of fiber tear locations T of the wood to be inspected 1 can be determined, so that the deterioration of the wood to be inspected 1 can be determined.

以上のように測定した被検査木材1の誘電率(高周波静電容量)は、高周波水分計2の図示しないディスプレイに含水率として表示されることとなる。すなわち、予め水分と誘電率(高周波静電容量)との関係を求めておき、水を含むことで増加する誘電率(高周波静電容量)を測定することで、含水率を算出し、図示しないディスプレイに表示している。   The dielectric constant (high-frequency capacitance) of the inspected wood 1 measured as described above is displayed as a moisture content on a display (not shown) of the high-frequency moisture meter 2. That is, the relationship between moisture and dielectric constant (high-frequency capacitance) is obtained in advance, and the moisture content is calculated by measuring the dielectric constant (high-frequency capacitance) that increases by containing water, and is not shown in the figure. It is shown on the display.

このようにして含水率が算出されると、この含水率に基づいて被検査木材1の劣化を判定する。被検査木材1の劣化の判定は、図4に示すように、正常範囲よりも含水率が高い場合のみならず、正常範囲よりも含水率が低い場合にも被検査木材1が劣化していると判定する。例えば、含水率が予め設定された上限値以上である場合には、被検査木材1の繊維密度が低下している低密度状態であると判定する。具体的には本実施形態においては含水率が18%以上である場合に高含水の低密度状態であると判定する。すなわち、防水処理された建築物の構造躯体の含水率としては通常考えられない異常状態であると判別できるとともに、含水率が異常に高い状態では腐朽菌によって被検査木材1の繊維(細胞壁)が破壊されている可能性が高い、又は白蟻などの害虫によって食害されて被検査木材1の内部に蟻道が形成されており、且つ、白蟻の排泄物や餌の食べかすなどの吸水性の高い付着物が蟻道に付着していることから含水率が異常な高値となっていると推定される。なお、被検査木材1の含水率の正常と異常の境界を定める上限値は、18%に限定されるものではなく、被検査木材1の材料や被検査木材1の設置場所などの要素によって変更されるものである。   When the moisture content is thus calculated, the deterioration of the inspected wood 1 is determined based on the moisture content. As shown in FIG. 4, the deterioration of the inspected wood 1 is deteriorated not only when the moisture content is higher than the normal range, but also when the moisture content is lower than the normal range. Is determined. For example, when the moisture content is equal to or higher than a preset upper limit value, it is determined that the fiber density of the inspected wood 1 is in a low density state. Specifically, in the present embodiment, when the moisture content is 18% or more, it is determined that the low density state is a high moisture content. In other words, it can be determined that the moisture content of the structural frame of the waterproofed building is an abnormal state that is not normally considered, and the fibers (cell walls) of the wood 1 to be inspected are caused by decaying fungi when the moisture content is abnormally high. There is a high possibility of being destroyed, or an ant path is formed inside the inspected wood 1 by being eaten by a pest such as a white ant, and also has a high water absorption such as white ant excrement and food waste. It is estimated that the moisture content is abnormally high because the kimono is attached to the ant road. Note that the upper limit value that defines the boundary between normal and abnormal moisture content of the inspected wood 1 is not limited to 18%, but changes depending on factors such as the material of the inspected wood 1 and the location of the inspected wood 1 It is what is done.

また、例えば、含水率が予め設定された下限値以下である場合にも、被検査木材1の繊維密度が低下している低密度状態であると判定する。具体的には本実施形態においては含水率が8%以下である場合に低密度状態であると判定する。すなわち、含水率が異常に低い状態は腐朽菌や白蟻などの害虫によって被検査木材1の繊維が破壊されて内部に空洞ができて被検査木材1の保水能力が低下し、その後周辺の乾燥に伴って水分が蒸発して、含水率が極めて低くなっていると推定される。なお、被検査木材1の含水率の正常と異常の境界を定める下限値は、8%に限定されるものではなく、被検査木材1の材料や被検査木材1の設置場所などの要素によって変更されるものである。   For example, when the moisture content is equal to or lower than a preset lower limit value, it is determined that the fiber density of the inspected wood 1 is in a low density state. Specifically, in this embodiment, when the moisture content is 8% or less, the low density state is determined. That is, when the moisture content is abnormally low, fibers of the inspected wood 1 are destroyed by pests such as decaying fungi and white ants, creating a cavity in the interior, reducing the water retention capacity of the inspected wood 1 and then drying the surroundings. Along with this, the water is evaporated and the water content is estimated to be extremely low. Note that the lower limit value that defines the boundary between normal and abnormal moisture content of the inspected wood 1 is not limited to 8%, but changes depending on factors such as the material of the inspected wood 1 and the location of the inspected wood 1 It is what is done.

なお、図4においては、被検査木材1が腐朽によって高含水又は低含水となる異常と、蟻害によって高含水又は低含水となる異常とを区別して説明しているが、高含水状態で腐朽及び蟻害が複合的に作用して被検査木材1の密度が低下する場合もあり得る。また、これら腐朽及び蟻害が複合的に作用して被検査木材1の密度が低下した結果、被検査木材1の保水能力が低下し、その後の乾燥によって、含水率が低下する場合もあり得る。そして、本実施形態の木材検査方法は、含水率を測定し高含水又は低含水を判別することで、これら腐朽及び蟻害が複合的に作用して被検査木材1が劣化した場合にも被検査木材1の劣化を判定することができる。   In FIG. 4, the abnormality in which the inspected wood 1 becomes high or low in water content due to decay and the abnormality in which high or low water content due to ant damage are distinguished are described. In addition, ant damage may act in a complex manner, and the density of the inspected wood 1 may decrease. Moreover, as a result of the combined action of decay and ant damage and the density of the wood to be inspected 1 decreased, the water retention capacity of the wood to be inspected 1 may be reduced, and the moisture content may be reduced by subsequent drying. . The wood inspection method of the present embodiment measures the moisture content and discriminates between high moisture content and low moisture content, so that even when the to-be-inspected wood 1 deteriorates due to the combined action of decay and ant damage, The deterioration of the inspection wood 1 can be determined.

このように、被検査木材1の含水率の正常範囲の上限のみならず下限を定めて、被検査木材1の劣化を判定するので、劣化した被検査木材1が湿っている場合はもとより乾燥している場合であっても被検査木材1の劣化を判定することができる。   As described above, since the lower limit is set as well as the upper limit of the normal range of the moisture content of the inspected wood 1, the deterioration of the inspected wood 1 is judged. Even if it is the case, degradation of the to-be-inspected wood 1 can be determined.

なお、本実施形態では被検査木材1の含水率に基づいて被検査木材1の劣化を判断しているが、含水率と正比例の関係にある被検査木材1の高周波静電容量又は被検査木材1の誘電率に基づいて当該被検査木材1の劣化を判断してもよい。   In this embodiment, the deterioration of the inspected wood 1 is determined based on the moisture content of the inspected wood 1, but the high-frequency capacitance of the inspected wood 1 or the inspected wood that is directly proportional to the moisture content. The deterioration of the inspected wood 1 may be determined based on the dielectric constant of 1.

〔実施例〕
次に、本発明の木材検査方法の実施例及び比較例を説明する。幅105mm×奥行き105mm×繊維方向Dの長さ250mmの寸法で、長さ方向の一端から50mmまでの範囲に劣化部を有するトドマツの供試体を、温度が20±2℃で、湿度が65±5%RHの恒温恒湿室内にて3ヶ月以上養生し、劣化部の劣化が激しい材(以下、激劣化)と、劣化部の劣化が軽微な材(以下、微劣化)とを用意した。
〔Example〕
Next, examples and comparative examples of the wood inspection method of the present invention will be described. A todomatsu specimen having a width of 105 mm, a depth of 105 mm, and a length of 250 mm in the fiber direction D and having a deteriorated portion in a range from one end in the length direction to 50 mm, a temperature of 20 ± 2 ° C., and a humidity of 65 ± A material was cured in a constant temperature and humidity room of 5% RH for 3 months or more, and a material with a severe deterioration of the deteriorated part (hereinafter, abrupt deterioration) and a material with a slight deterioration of the deteriorated part (hereinafter, a slight deterioration) were prepared.

また、高周波水分計2として、コンクリート・モルタル水分計HI−520−2、株式会社ケツト科学研究所製を使用し、当該高周波水分計2のDモードにて前述の供試体の高周波静電容量を計測した。なお、Dモードは水分値ではなく、高周波静電容量と相関のある0から1999の数値を表示するモードである。計測は、繊維方向Dに間隔を開けて当該繊維方向Dに直交するように高周波送信部3及び高周波受信部4を配置して、目視上健全部である250mm〜50mmを50mm毎に計測するとともに、目視上劣化部である0mm〜50mmを計測した。上記の計測は激劣化の供試体及び微劣化の供試体でそれぞれ実施した。計測した結果、表示された高周波静電容量を示す値は図5の通りである。   Further, as the high-frequency moisture meter 2, a concrete / mortar moisture meter HI-520-2, manufactured by Ketto Scientific Laboratory Co., Ltd. is used, and the high-frequency capacitance of the above-mentioned specimen is set in the D mode of the high-frequency moisture meter 2. Measured. In addition, D mode is a mode which displays the numerical value of 0 to 1999 which has a correlation with a high frequency capacitance instead of a moisture value. In the measurement, the high-frequency transmission unit 3 and the high-frequency reception unit 4 are arranged so as to be perpendicular to the fiber direction D with an interval in the fiber direction D, and 250 mm to 50 mm that are visually sound portions are measured every 50 mm. In addition, 0 mm to 50 mm, which is a visually deteriorated portion, was measured. The above measurement was carried out on a specimen with severe deterioration and a specimen with slight deterioration. As a result of the measurement, the value indicating the displayed high-frequency capacitance is as shown in FIG.

〔比較例〕
また、実施例と同一の激劣化の供試体及び微劣化の供試体を用いて、実施例と同一の高周波水分計2のDモードにて、繊維方向Dに直交する方向に間隔を開けて当該繊維方向Dに平行に高周波送信部3及び高周波受信部4を配置して、250mm〜0mmを50mm毎に計測した。計測した結果、表示された高周波静電容量を示す値は図6の通りである。
[Comparative example]
In addition, using the same severely deteriorated specimen and the slightly deteriorated specimen as in the example, in the D mode of the same high-frequency moisture meter 2 as in the example, the gap is spaced in the direction orthogonal to the fiber direction D. The high frequency transmission unit 3 and the high frequency reception unit 4 were arranged in parallel to the fiber direction D, and 250 mm to 0 mm were measured every 50 mm. As a result of the measurement, the value indicating the displayed high-frequency capacitance is as shown in FIG.

まず、微劣化の供試体の結果を検討する。実施例及び比較例ともに微劣化の供試体の値は健全部と劣化部との間でほとんど静電容量に変化が見られない。但し、図6に示す比較例においては、微劣化の供試体の200mm〜250mm及び0mm〜50mmの範囲で静電容量が僅かに低下している。これは、比較例の方法では、例えば図7(B)に示すように端部の近くを計測する際に、電界の電気力線5の側端部が膨らんで一部の電気力線5が供試体の外側を通過することになるため、その部分の誘電率が低下し、見かけ上の静電容量及び含水率が低下しているものであり、劣化判断のノイズとなっていることがわかる。   First, the results of the slightly deteriorated specimen are examined. In both Examples and Comparative Examples, the value of the slightly deteriorated specimen hardly changes in capacitance between the healthy part and the deteriorated part. However, in the comparative example shown in FIG. 6, the capacitance slightly decreases in the range of 200 mm to 250 mm and 0 mm to 50 mm of the slightly deteriorated specimen. In the method of the comparative example, for example, when measuring the vicinity of the end as shown in FIG. 7B, the side end of the electric field lines 5 of the electric field swells, and some of the lines of electric force 5 are generated. Since it passes through the outside of the specimen, the dielectric constant of that portion is lowered, the apparent capacitance and moisture content are lowered, and it can be seen that it is a noise for judging deterioration. .

次に、激劣化の供試体の結果を検討する。実施例の激劣化の供試体の静電容量は健全部でほとんど低下が見られず、劣化部において明確に低下している。一方比較例の激劣化の供試体の静電容量は50mm〜100mmの健全部でやや低下しており、0mm〜50mmの劣化部でさらに低下している。このように、実施例においては、健全部と劣化部との境界が明確であり、劣化範囲が特定できるのに対して、比較例では健全部と劣化部との境界があいまいになり、劣化範囲が十分に特定できない。これは、図7(A)に示すように、比較例では劣化部の近くの健全部を計測する際に、電界の電気力線5の側部が膨らんで一部の電気力線5が劣化部を通過することになるため、その部分の誘電率が低下し、見かけ上の静電容量及び含水率が低下しているものであり、劣化部を特定する際にノイズとなっていることがわかる。   Next, the result of the specimen with severe deterioration will be examined. The capacitance of the specimen with severe deterioration in the example hardly shows a decrease in the healthy part, but clearly decreases in the deteriorated part. On the other hand, the electrostatic capacity of the specimen with severe deterioration of the comparative example is slightly reduced in the healthy part of 50 mm to 100 mm, and further lowered in the deteriorated part of 0 mm to 50 mm. Thus, in the example, the boundary between the healthy part and the deteriorated part is clear and the deterioration range can be specified, whereas in the comparative example, the boundary between the healthy part and the deteriorated part becomes ambiguous and the deterioration range Cannot be specified sufficiently. As shown in FIG. 7A, in the comparative example, when measuring the healthy part near the deteriorated part, the side part of the electric force lines 5 of the electric field swells and some of the electric lines of force 5 deteriorate. Since the dielectric constant of the portion is lowered, the apparent capacitance and the moisture content are lowered, and it is a noise when specifying the deteriorated portion. Recognize.

以上のように、本発明の木材検査方法によると、健全部と劣化部との判断の精度を高めることができ、また、被検査木材1の含水率が高い場合及び低い場合のいずれの場合でも被検査木材1の劣化判断を行うことができる。   As described above, according to the wood inspection method of the present invention, it is possible to increase the accuracy of judgment between a healthy part and a deteriorated part, and in both cases where the moisture content of the inspected wood 1 is high and low. Deterioration judgment of the inspected wood 1 can be performed.

本発明の実施の形態は上述の形態に限ることなく、本発明の思想の範囲を逸脱しない範囲で適宜変更することができることは云うまでもない。   It goes without saying that the embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the idea of the present invention.

本発明に係る木材検査方法は、例えば木造建築物の構造躯体の非破壊検査方法として好適である。   The wood inspection method according to the present invention is suitable, for example, as a non-destructive inspection method for a structural frame of a wooden building.

1 被検査木材
2 高周波水分計
3 高周波送信部
4 高周波受信部
6 石こうボード(板体)
9 サイディングボード(板体)
D 繊維方向
1 Wood to be inspected 2 High-frequency moisture meter 3 High-frequency transmitter 4 High-frequency receiver 6 Gypsum board (plate)
9 Siding board
D Fiber direction

Claims (3)

高周波水分計を用いた木材検査方法であって、
互いに平行な高周波送信部及び高周波受信部を被検査木材の繊維方向に距離を開けて、当該高周波送信部及び当該高周波受信部の長さ方向が前記繊維方向に対して略垂直となるように配置して電磁波を発生させて前記被検査木材の静電容量を測定し、
前記静電容量に基づいて前記被検査木材の劣化を判定することを特徴とすることを特徴とする木材検査方法。
A wood inspection method using a high-frequency moisture meter,
A high-frequency transmission unit and a high-frequency reception unit that are parallel to each other are spaced apart in the fiber direction of the wood to be inspected, and are arranged so that the length directions of the high-frequency transmission unit and the high-frequency reception unit are substantially perpendicular to the fiber direction. To generate electromagnetic waves and measure the capacitance of the inspected wood,
A wood inspection method, wherein deterioration of the inspection wood is determined based on the capacitance.
前記被検査木材の前記静電容量が予め設定した上限値以上である場合に、前記被検査木材が高含水低密度状態であると判定するとともに、
前記被検査木材の前記静電容量が予め設定した下限値以下である場合に、前記被検査木材が低含水低密度状態であると判定することを特徴とする請求項1に記載の木材検査方法。
When the capacitance of the wood to be inspected is equal to or higher than a preset upper limit value, the wood to be inspected is determined to be in a high water content and low density state,
The wood inspection method according to claim 1, wherein when the capacitance of the wood to be inspected is equal to or less than a preset lower limit value, the wood to be inspected is determined to be in a low water content and low density state. .
前記被検査木材は木造建築物の構造躯体であり、
前記高周波送信部及び前記高周波受信部を壁面、床面、天井面、又は屋根面の板体表面に沿って配置して、当該板体の裏側に配置される被検査木材の静電容量を測定することを特徴とする請求項1又は請求項2に記載の木材検査方法。
The inspected wood is a structural frame of a wooden building,
The high-frequency transmitter and the high-frequency receiver are arranged along the plate surface of the wall surface, floor surface, ceiling surface, or roof surface, and the capacitance of the inspected wood arranged on the back side of the plate body is measured. The wood inspection method according to claim 1, wherein the wood inspection method is performed.
JP2018034343A 2018-02-28 2018-02-28 Wood inspection method Pending JP2019148535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018034343A JP2019148535A (en) 2018-02-28 2018-02-28 Wood inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034343A JP2019148535A (en) 2018-02-28 2018-02-28 Wood inspection method

Publications (1)

Publication Number Publication Date
JP2019148535A true JP2019148535A (en) 2019-09-05

Family

ID=67850477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034343A Pending JP2019148535A (en) 2018-02-28 2018-02-28 Wood inspection method

Country Status (1)

Country Link
JP (1) JP2019148535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183919A (en) * 2019-05-09 2020-11-12 積水ハウス株式会社 Method for diagnosing deterioration inside wooden building and wooden building

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299854U (en) * 1985-12-13 1987-06-25
US6340892B1 (en) * 1999-02-23 2002-01-22 Rynhart Research Limited Hand-held digital moisture meter with memory and communications
JP2005168362A (en) * 2003-12-10 2005-06-30 Joto Techno Co Ltd Method for inspecting termite path
JP2007192571A (en) * 2006-01-17 2007-08-02 Kett Electric Laboratory Flaw detecting and filling degree measuring instrument and method of concrete during casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299854U (en) * 1985-12-13 1987-06-25
US6340892B1 (en) * 1999-02-23 2002-01-22 Rynhart Research Limited Hand-held digital moisture meter with memory and communications
JP2005168362A (en) * 2003-12-10 2005-06-30 Joto Techno Co Ltd Method for inspecting termite path
JP2007192571A (en) * 2006-01-17 2007-08-02 Kett Electric Laboratory Flaw detecting and filling degree measuring instrument and method of concrete during casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183919A (en) * 2019-05-09 2020-11-12 積水ハウス株式会社 Method for diagnosing deterioration inside wooden building and wooden building

Similar Documents

Publication Publication Date Title
Dackermann et al. In situ assessment of structural timber using stress-wave measurements
AU2006289050B2 (en) Method for the determination of the stresses occurring in wood when drying
US7254987B2 (en) Method and system for conducting an on-site measurement of the density of an insulation material
JP6396076B2 (en) Detection method and non-contact acoustic detection system using sound waves
EP1589339A2 (en) Methods for quantitatively determining lengthwise shrinkage in wood products
RU2279069C1 (en) Mode of ultrasound control in the process of exploitation of concrete and reinforced concrete constructions of erections for availability of deep cracks
JP2019148535A (en) Wood inspection method
US20140266255A1 (en) Automated profiling of the dielectric behavior of wood
Kloiber et al. Comparative evaluation of acoustic techniques for detection of damages in historical wood
US20240003796A1 (en) Devices and Methods for Determining the Density of Insulation
Reinprecht et al. The type and degree of decay in spruce wood analyzed by the ultrasonic method in three anatomical directions
WO2017055689A1 (en) Method and apparatus for detecting moisture content of building structures
CN206719223U (en) Rail reference block
CN111190080B (en) High-voltage electrode corona discharge audible noise measuring device, system and method
JP2002228643A (en) Method and apparatus for measuring sound insulation performance
JP4399245B2 (en) Local inspection method for white ants
Cats et al. Exploration of the differences between a pressure-velocity based in situ absorption measurement method and the standardized reverberant room method
RU2707984C1 (en) Method of determining fire resistance of construction materials and structural elements
RU2368730C1 (en) Method for performance of operational monitoring of irrigation system tray channels technical condition
JP2003065880A (en) Inspection method and inspection system of water leak spot of building
US7415865B2 (en) Determining the extent of a lateral shadow zone in an ultrasound inspection method
RU2262695C1 (en) Method of ultrasonic testing of concrete and ferrum concrete structures
Hongisto et al. Enhancing maximum measurable sound reduction index using sound intensity method and strong receiving room absorption
KR20180027274A (en) Non-destruction testing apparatus having effective detection distance measurement function
Papanikolaou et al. Design of a test facility for transmission loss measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220421