JP2019147178A - Continuous casting machine - Google Patents

Continuous casting machine Download PDF

Info

Publication number
JP2019147178A
JP2019147178A JP2018034563A JP2018034563A JP2019147178A JP 2019147178 A JP2019147178 A JP 2019147178A JP 2018034563 A JP2018034563 A JP 2018034563A JP 2018034563 A JP2018034563 A JP 2018034563A JP 2019147178 A JP2019147178 A JP 2019147178A
Authority
JP
Japan
Prior art keywords
mold
short side
long side
taper
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018034563A
Other languages
Japanese (ja)
Other versions
JP7013941B2 (en
Inventor
塚口 友一
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018034563A priority Critical patent/JP7013941B2/en
Publication of JP2019147178A publication Critical patent/JP2019147178A/en
Application granted granted Critical
Publication of JP7013941B2 publication Critical patent/JP7013941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

To provide a continuous casting machine capable of sufficiently preventing remeltable breakout.SOLUTION: The taper ratio Ton the short side of a mold is 0.8 to 2.0%/m to the width W of the mold, the taper ratio Ton the long side of the mold is 0.4 to 1.5%/m to the thickness D of the mold, also, a ratio between the taper ratio Ton the short side of the mold and the taper ratio Ton the long side of the mold, T/Tsatisfies relation based on the rectangular ratio of the mold W/D, the thermal conductivity of a steel sheet composing the short side of the mold is 300W/(m k) or higher, and also, the thermal conductivity of the steel sheet composing the short side of the mold is higher than that of the steel sheet composing the long side of the mold.SELECTED DRAWING: Figure 1

Description

本発明は、溶鋼など溶融金属の連続鋳造において、鋳型内の凝固を均一かつ安定に保ってブレークアウト事故を防止するために用いて好適な連続鋳造機に関する。   The present invention relates to a continuous casting machine suitable for use in continuous casting of molten metal such as molten steel in order to keep the solidification in a mold uniform and stable and prevent a breakout accident.

溶鋼など溶融金属の連続鋳造において、鋳型内へ溶融金属を供給する方法には、耐火物製の浸漬ノズルを用いる方法が広く行われている。スラブの連続鋳造など矩型比の大きな幅広い鋳型へ溶融金属を供給する浸漬ノズルは、鋳型中央部から鋳型短辺側の両面に向かって2つの吐出孔を穿った2孔ノズルであるのが一般的である。ブルーム連続鋳造機に比べ鋳片厚みが小さく高速鋳造が可能なスラブ連続鋳造機においては、通常、2孔ノズルからの溶融金属流は斜め下向きに吐出し、鋳型短辺内壁近傍で上下に分かれて、鋳型短辺内壁に沿って上昇流と下降流とを形成する。   In continuous casting of molten metal such as molten steel, a method using a refractory immersion nozzle is widely used as a method for supplying molten metal into a mold. The immersion nozzle that supplies molten metal to a wide mold with a large rectangular ratio, such as continuous casting of slabs, is generally a two-hole nozzle that has two discharge holes from the center of the mold toward both sides of the mold short side. Is. In a slab continuous casting machine that has a smaller slab thickness than a continuous bloom casting machine and is capable of high-speed casting, the molten metal flow from the two-hole nozzle is discharged obliquely downward and divided up and down near the inner wall of the mold short side. Then, an upward flow and a downward flow are formed along the inner wall of the short side of the mold.

一方、高速鋳造条件下においては、浸漬ノズルからの溶融金属流は、鋳型短辺内壁側に形成された凝固シェルを溶解してブレークアウトを引き起こしたり、鋳型短辺内壁に沿った上昇流が湯面を乱して鋳片表面品質を悪化させたり、鋳型短辺内壁に沿った下降流が非金属介在物を鋳片深くへ持ち込んで鋳片内部品質を悪化させたりと、様々な悪影響を及ぼす。その中でも特にブレークアウトは、何トンもの溶鋼が流出する重大なトラブルであり、その防止は優先度の高い課題である。   On the other hand, under high-speed casting conditions, the molten metal flow from the immersion nozzle melts the solidified shell formed on the inner side of the mold short side and causes breakout, or the upward flow along the inner side of the mold short side is hot water. The slab surface quality is deteriorated by disturbing the surface, and the downflow along the inner wall of the mold short side brings nonmetallic inclusions deep into the slab and deteriorates the slab internal quality. . Among them, breakout is a serious problem that many tons of molten steel flows out, and prevention thereof is a high priority issue.

ブレークアウトの発生機構の1つとして再溶解性ブレークアウトがある。再溶解性ブレークアウトは、浸漬ノズルからの吐出流の熱量を受けて一旦成長した凝固シェルが再溶解することで生じる。再溶解性ブレークアウトは、浸漬ノズルからの吐出流が衝突する鋳型の短辺側で主に生じる。とりわけ、鋳型の短辺と長辺とが交わる鋳片コーナー部の近傍で生じることが多い。鋳片コーナー部では、鋳型の長辺および短辺の両方の凝固シェルが収縮する影響を受けるため、鋳片が鋳型から離れやすく、凝固が遅れがちであることがその理由である。   One of the breakout occurrence mechanisms is a remeltable breakout. The remeltability breakout occurs when the solidified shell that has once grown in response to the amount of heat of the discharge flow from the immersion nozzle is remelted. The remeltable breakout mainly occurs on the short side of the mold where the discharge flow from the immersion nozzle collides. In particular, it often occurs near the slab corner where the short and long sides of the mold intersect. This is because the slab corner is affected by shrinkage of the solidified shells on both the long side and the short side of the mold, so that the slab is easily separated from the mold and solidification tends to be delayed.

再溶解性ブレークアウトを防止するには、鋳型内における凝固シェルの成長を健全に保つことが求められる。そのためには、鋳型の短辺側に、収縮しながら成長する凝固シェルをしっかり押し付けることが重要である。   In order to prevent remeltability breakout, it is required to keep the growth of the solidified shell in the mold healthy. For that purpose, it is important to firmly press the solidified shell that grows while shrinking on the short side of the mold.

鋳型短辺側に、収縮しながら成長する凝固シェルをしっかり押し付けることに対しては、鋳型短辺側のテーパーを適正化する技術が知られている。例えば、特許文献1及び2に開示されているように、鋳型短辺側のテーパーを適正な範囲に制御する方法である。また、特許文献3には、鋳型の短辺側及び長辺側にテーパーを設けた技術が開示されている。   A technique for optimizing the taper on the short side of the mold is known to firmly press the solidified shell that grows while shrinking on the short side of the mold. For example, as disclosed in Patent Documents 1 and 2, the taper on the short side of the mold is controlled within an appropriate range. Patent Document 3 discloses a technique in which a taper is provided on the short side and the long side of the mold.

特開昭54−163726号公報JP 54-163726 A 特開昭58−145344号公報JP 58-145344 A 特開2012−157872号公報JP 2012-157872 A

しかしながら、凝固シェルを鋳型に密着させる作用がある凝固シェルのバルジング(溶鋼静圧による膨らみ)に着目すると、凝固シェルのバルジングが長辺側においてより大きく生じることから、鋳型内と凝固シェルの密着度をバランスさせるには、鋳型の短辺側に対して、長辺側の鋳型テーパーを小さく設定する必要がある。加えて、鋳型短辺銅板の熱伝導率を高くして冷却能力を増すことが再溶解性ブレークアウトの防止に有効である。それらの点が考慮されていないため、特許文献1及び2に記載の技術では、再溶解性ブレークアウトを十分に防止することができない。また、特許文献3に記載の技術は、鋳型の長辺側のテーパー率を規定しているが、特許文献3に記載の技術はブルーム連続鋳造機を想定しており、ブルーム連続鋳造機に比べ鋳型の矩形比が大きいスラブ連続鋳造機には適用できない。これは、矩形比が大きいほど長辺凝固シェルのバルジングが顕著に生じるからである。   However, focusing on the bulging of the solidified shell, which has the effect of bringing the solidified shell into close contact with the mold (bulging due to molten steel static pressure), the bulging of the solidified shell occurs more on the long side. In order to balance, it is necessary to set the mold taper on the long side smaller than the short side of the mold. In addition, increasing the thermal conductivity of the mold short-side copper plate to increase the cooling capacity is effective in preventing remeltability breakout. Since these points are not taken into consideration, the techniques described in Patent Documents 1 and 2 cannot sufficiently prevent re-dissolution breakout. Moreover, although the technique described in Patent Document 3 defines the taper ratio on the long side of the mold, the technique described in Patent Document 3 assumes a Bloom continuous casting machine, compared to the Bloom continuous casting machine. It cannot be applied to a slab continuous casting machine with a large rectangular ratio of the mold. This is because bulging of the long-side solidified shell is more noticeable as the rectangular ratio is larger.

本発明は前述の問題点を鑑み、再溶解性ブレークアウトを十分に防止可能な連続鋳造機を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a continuous casting machine that can sufficiently prevent remeltability breakout.

本発明者らは、鋳型内における凝固シェルの成長を健全に保つためには、(1)鋳型の短辺側に、収縮しながら成長する凝固シェルをしっかり押し付けること、(2)凝固シェルと鋳型の長辺側および短辺側それぞれとの密着度合いを適正に保って、凝固収縮に伴って凝固シェルが鋳型短辺側から乖離する量を最小限にとどめること、(3)鋳型短辺側で用いられる銅板に、特に熱伝導率の高い材料を用いて抜熱量を確保し、短辺側の凝固シェルの成長を促すこと、(4)鋳型の長辺側の凝固シェルを比較的緩やかに冷却して鋳型の短辺側で凝固シェルの乖離を抑制すること、の4つのポイントを同時に満たすべきであることに着目した。   In order to keep the growth of the solidified shell in the mold healthy, the inventors of the present invention (1) firmly press the solidified shell that grows while shrinking on the short side of the mold, and (2) the solidified shell and the mold. Keeping the degree of close contact with the long side and the short side of each mold appropriately, minimize the amount of the solidified shell deviating from the mold short side due to solidification shrinkage. (3) On the mold short side The copper plate used is made of a material with particularly high thermal conductivity to ensure heat removal and promote the growth of the solidified shell on the short side. (4) The solidified shell on the long side of the mold is cooled relatively slowly. Then, it was noted that the four points of suppressing the separation of the solidified shell on the short side of the mold should be satisfied at the same time.

その結果、鋳型矩形比に応じた鋳型短辺側のテーパーと鋳型長辺側のテーパーとの関係を規定し、さらに鋳型短辺側で用いられる銅板を特に熱伝導率の高い材料とすることによって、鋳型と凝固シェルとの密着度が適切に保たれ、さらに凝固シェルの成長を促進しつつ鋳型内の摩擦抵抗を低く維持できるようにした。加えて、鋳型短辺側の熱伝導率が十分に高いので、万一鋳型内で短辺側の凝固シェルが破断した場合にも、迅速に溶融金属が凝固する。これにより、再溶解性ブレークアウトが発生しにくい安定した連続鋳造機を提供することができる。   As a result, by defining the relationship between the taper on the short side of the mold and the taper on the long side of the mold corresponding to the mold rectangle ratio, and by making the copper plate used on the short side of the mold a material with particularly high thermal conductivity The degree of adhesion between the mold and the solidified shell was appropriately maintained, and the frictional resistance in the mold could be kept low while further promoting the growth of the solidified shell. In addition, since the thermal conductivity on the short side of the mold is sufficiently high, even if the solidified shell on the short side in the mold breaks, the molten metal quickly solidifies. Thereby, it is possible to provide a stable continuous casting machine in which remeltable breakout hardly occurs.

本発明は以下の通りである。
(1)鋳型の水平方向の断面が矩形比が3〜10の矩形であり、上方のタンディッシュから浸漬ノズルを介して前記鋳型内へ溶融金属が供給され、前記浸漬ノズルから鋳型短辺側の両面に向かって溶融金属流が吐出される連続鋳造機であって、
鋳型短辺側のテーパー率Trnが鋳型幅Wに対して0.8%/m〜2.0%/m、鋳型長辺側のテーパー率Trwが鋳型厚Dに対して0.4%/m〜1.5%/mであり、かつ前記鋳型短辺側のテーパー率Trnと前記鋳型長辺側のテーパー率Trwとの比Trw/Trnが前記鋳型の矩形比W/Dに対して以下の(1)式の関係を満たし、
前記鋳型短辺側を構成する銅板の熱伝導率が300W/(m・K)以上であり、かつ前記鋳型短辺側を構成する銅板の熱伝導率が前記鋳型長辺側を構成する銅板の熱伝導率よりも高いことを特徴とする連続鋳造機。
0.6/(W/D)1/2<Trw/Trn<2.0/(W/D)1/2 ・・・(1)
The present invention is as follows.
(1) The horizontal cross section of the mold is a rectangle having a rectangular ratio of 3 to 10, and molten metal is supplied from the upper tundish through the immersion nozzle into the mold, A continuous casting machine in which a molten metal stream is discharged toward both sides,
The taper rate T rn on the mold short side is 0.8% / m to 2.0% / m with respect to the mold width W, and the taper rate T rw on the mold long side is 0.4% with respect to the mold thickness D. / M to 1.5% / m, and the ratio T rw / T rn between the taper rate T rn on the mold short side and the taper rate T rw on the mold long side is the rectangular ratio W / of the mold Satisfying the relationship of the following expression (1) with respect to D,
The copper plate constituting the mold short side has a thermal conductivity of 300 W / (m · K) or more, and the copper plate constituting the mold short side has a heat conductivity of the copper plate constituting the mold long side. Continuous casting machine characterized by higher than thermal conductivity.
0.6 / (W / D) 1/2 <T rw / T rn <2.0 / (W / D) 1/2 (1)

本発明によれば、鋳型の矩形比が大きい場合にも、再溶解性ブレークアウトを十分に防止することができる。   According to the present invention, re-dissolvable breakout can be sufficiently prevented even when the rectangular ratio of the mold is large.

スラブ連続鋳造機における鋳型の断面を説明するための図である。It is a figure for demonstrating the cross section of the casting_mold | template in a slab continuous casting machine.

本発明者らは、再溶解性ブレークアウト対策の不備を解消し、安定した連続鋳造操業をもたらすために鋭意検討を重ね、本発明に至った。   The inventors of the present invention have made extensive studies to solve the deficiencies in measures for remeltability breakout and to provide a stable continuous casting operation, and have reached the present invention.

まず、鋳型のテーパーに関しては、金属の凝固収縮に応じて鋳型断面積を徐々に絞ることが技術的常識であり、鋳型の長辺側および短辺側ともにテーパーを付与する。一方、鋳型にテーパーを付与すると、鋳型と凝固シェルとが密着して凝固シェルの熱収縮が増す。そのため、例えば鋳型長辺側に過大なテーパーを付与すると、鋳型長辺側の凝固シェルの収縮が大きくなり、短辺側の凝固シェルが鋳型から乖離しやすくなる。したがって、鋳型短辺側と鋳型長辺側とで凝固シェルとの密着度のバランスを保つように鋳型にテーパーを付与することが重要である。   First, regarding the taper of the mold, it is a technical common sense that the mold cross-sectional area is gradually reduced according to the solidification shrinkage of the metal, and the taper is provided on both the long side and the short side of the mold. On the other hand, when a taper is given to the mold, the mold and the solidified shell are brought into close contact with each other, and the thermal shrinkage of the solidified shell is increased. Therefore, for example, if an excessive taper is provided on the long side of the mold, the shrinkage of the solidified shell on the long side of the mold becomes large, and the solidified shell on the short side tends to be separated from the mold. Therefore, it is important to give the mold a taper so as to maintain the balance of the degree of adhesion between the mold short side and the mold long side.

また、鋳型のテーパー率を大きくするほど、鋳型と凝固シェルとが強く密着するので、摩擦抵抗が増えるという一面もある。また、鋳型のテーパー率が大きいと、鋳型を構成する銅板の磨耗を促進し、銅板の寿命を縮めてしまう。このように、鋳型のテーパー率は、鋳型と凝固シェルとの密着度を支配する操業パラメータであり、大き過ぎても小さ過ぎても良くない。   Further, as the taper ratio of the mold is increased, the mold and the solidified shell are strongly adhered to each other, so that there is an aspect that the frictional resistance is increased. Moreover, when the taper ratio of the mold is large, the wear of the copper plate constituting the mold is promoted, and the life of the copper plate is shortened. Thus, the taper rate of the mold is an operation parameter that governs the degree of adhesion between the mold and the solidified shell, and may not be too large or too small.

本発明者らは、試行錯誤を伴う調査研究の結果、鋳型長辺側に鋳型短辺側と同じテーパーを付与した場合には、鋳型長辺側と凝固シェルとの密着度が、鋳型短辺側と凝固シェルとの密着度に比べて過大になりやすいことを突き止めた。これは、鋳型幅(鋳型長辺)が鋳型厚み(鋳型短辺)よりも大きい(すなわち水平方向の長さが長辺の方が大きい)ことから、凝固シェルのバルジング(溶鋼静圧による膨らみ)が長辺においてより大きく生じることに起因する。   As a result of investigation and research with trial and error, the present inventors have determined that when the same taper as the mold short side is given to the mold long side, the adhesion between the mold long side and the solidified shell is It has been found that it tends to be excessive compared to the degree of adhesion between the side and the solidified shell. This is because the width of the mold (long side of the mold) is larger than the thickness of the mold (short side of the mold) (that is, the long side is longer in the horizontal direction), so bulging of the solidified shell (bulging due to static pressure of molten steel) This is due to the fact that is larger on the long side.

本発明者らは、その発見を基に、鋳型短辺側のテーパー率を0.8〜2.0%/mの範囲、鋳型長辺側のテーパー率を0.4〜1.5%/mの範囲に定め、さらに、鋳型の矩形比に応じて、鋳型短辺側のテーパー率と鋳型長辺側のテーパー率との比率を適正範囲に設定する考えに至った。鋳型の矩形比が大きいほど短辺側の凝固シェルに比べて長辺側の凝固シェルのバルジング変形が大きくなって鋳型への密着度が増すので、鋳型長辺側のテーパー率を相対的に小さくして凝固シェルと鋳型との密着度合いをバランス良くする。   Based on the findings, the inventors of the present invention have a taper rate on the short side of the mold in the range of 0.8 to 2.0% / m and a taper rate on the long side of the mold of 0.4 to 1.5% / m. The range of m was determined, and further, the ratio of the taper ratio on the short side of the mold and the taper ratio on the long side of the mold was set to an appropriate range according to the rectangular ratio of the mold. The larger the rectangular ratio of the mold, the greater the bulging deformation of the solidified shell on the long side compared to the solidified shell on the short side, and the degree of adhesion to the mold increases, so the taper ratio on the long side of the mold is relatively small. As a result, the degree of adhesion between the solidified shell and the mold is improved.

また、鋳型長辺側での凝固シェルとの過度の密着を防止することは、両者の間の摩擦抵抗を抑制する上で有効である。すなわち、鋳型の矩形比に応じて、短辺側のテーパー率と長辺側のテーパー率との比率を適正化することによって、鋳型内の凝固シェルの収縮変形と摩擦抵抗との両面において、短辺側と長辺側とでバランスを好適に保つ効果を有する。これにより、鋳型内の潤滑性と凝固シェルの健全な成長とを両立できる。   Further, preventing excessive adhesion with the solidified shell on the long side of the mold is effective in suppressing the frictional resistance between the two. In other words, by optimizing the ratio of the taper ratio on the short side and the taper ratio on the long side according to the rectangular ratio of the mold, both the shrinkage deformation and the frictional resistance of the solidified shell in the mold can be shortened. It has the effect of maintaining a good balance between the side and the long side. Thereby, the lubricity in a casting_mold | template and the healthy growth of the solidification shell can be made compatible.

さらに、万一凝固シェルが破断して溶融金属が漏れ出したとしても、それが鋳型内で生じて速やかに漏れ出した溶融金属を凝固させることできれば、ブレークアウトに至らずに済む。このようにブレークアウトが発生しないようにするためには、鋳型を構成する銅板の熱伝導率を大きくする必要がある。具体的には、再溶解性ブレークアウトが発生しやすい鋳型短辺側には熱伝導率が高い材質の銅板を用いるようにする。   Furthermore, even if the solidified shell breaks and the molten metal leaks out, if the molten metal leaks out of the mold and leaks quickly, the breakout does not occur. In order to prevent such breakout from occurring, it is necessary to increase the thermal conductivity of the copper plate constituting the mold. Specifically, a copper plate made of a material having high thermal conductivity is used on the short side of the mold where remeltable breakout is likely to occur.

また、上述のように、短辺側の凝固シェルは収縮する長辺側の凝固シェルに引っ張られて鋳型短辺から乖離しやすくなることから、長辺側の凝固シェルの収縮を抑制することが、短辺側での再溶解性ブレークアウトを防止する上で有効である。本発明者らは、鋳型のテーパーを適正化するだけではなく、鋳型長辺側を構成する銅板の熱伝導率を相対的に低くすることも重要であり、短辺側の凝固シェルが鋳型からの乖離することを防止する上で有効であることを見出した。具体的には、鋳型長辺側を構成する銅板の熱伝導率を、鋳型短辺側を構成する銅板の熱伝導率よりも低くすることによって、上述の鋳型テーパー適正化と組み合わせることにより、さらに再溶解性ブレークアウトの防止効果が高まるのである。   In addition, as described above, since the solidified shell on the short side is pulled by the solidified shell on the long side to be contracted and easily separated from the short side of the mold, it is possible to suppress the contraction of the solidified shell on the long side. It is effective in preventing a re-dissolution breakout on the short side. In addition to optimizing the taper of the mold, it is important for the inventors to relatively lower the thermal conductivity of the copper plate constituting the long side of the mold, so that the solidified shell on the short side is separated from the mold. It was found that it is effective in preventing the divergence. Specifically, by making the thermal conductivity of the copper plate constituting the long side of the mold lower than the thermal conductivity of the copper plate constituting the short side of the mold, in combination with the above-described mold taper optimization, The effect of preventing re-dissolution breakout is enhanced.

次に、本発明で規定する数値限定理由等について説明する。
本発明は、鋳型の水平方向の断面が矩形比が3〜10の矩形であり、上方のタンディッシュから浸漬ノズルを介して前記鋳型内へ溶融金属が供給され、前記浸漬ノズルから鋳型短辺側の両面に向かって溶融金属流が吐出される連続鋳造機であって、鋳型短辺側のテーパー率Trnが鋳型幅Wに対して0.8%/m〜2.0%/m、鋳型長辺側のテーパー率Trwが鋳型厚Dに対して0.4%/m〜1.5%/mであり、かつ前記鋳型短辺側のテーパー率Trnと前記鋳型長辺側のテーパー率Trwとの比Trw/Trnが前記鋳型の矩形比W/Dに対して以下の(1)式の関係を満たし、前記鋳型短辺側を構成する銅板の熱伝導率が300W/(m・K)以上であり、かつ前記鋳型短辺側を構成する銅板の熱伝導率が前記鋳型長辺側を構成する銅板の熱伝導率よりも高いことを特徴とする連続鋳造機である。
0.6/(W/D)1/2<Trw/Trn<2.0/(W/D)1/2 ・・・(1)
Next, the reason for limiting the numerical values defined in the present invention will be described.
In the present invention, the horizontal cross section of the mold is a rectangle having a rectangular ratio of 3 to 10, and molten metal is supplied from the upper tundish into the mold through the immersion nozzle, and the mold short side of the mold is supplied from the immersion nozzle. a continuous casting machine molten metal stream is discharged towards both sides, 0.8% taper ratio T rn of the mold short side is against the mold width W / m~2.0% / m, the mold The taper rate T rw on the long side is 0.4% / m to 1.5% / m with respect to the mold thickness D, and the taper rate T rn on the short side of the mold and the taper on the long side of the mold The ratio T rw / T rn with the rate T rw satisfies the relationship of the following formula (1) with respect to the rectangular ratio W / D of the mold, and the thermal conductivity of the copper plate constituting the mold short side is 300 W / (M · K) or more, and the thermal conductivity of the copper plate constituting the mold short side is the heat transfer of the copper plate constituting the mold long side. It is a continuous casting machine characterized by being higher in conductivity.
0.6 / (W / D) 1/2 <T rw / T rn <2.0 / (W / D) 1/2 (1)

図1(a)は、スラブ連続鋳造機の構造例を説明するための図であり、図1(b)は、鋳型の水平方向の断面の形状を説明するための図である。
本発明では、鋳型の水平方向の断面(鉛直線と垂直な断面)が矩形であるスラブの連続鋳造機を対象とし、鋳型の矩形比W/Dが3〜10の連続鋳造機を対象とする。図1(a)に示すように、本実施形態に係る連続鋳造機1は、上方のタンディッシュから浸漬ノズル2を介して鋳型3内へ溶融金属(溶鋼)が供給される。そして、浸漬ノズル2から鋳型短辺側の両面に向かって2つの溶融金属流が吐出される。矢印4に示すように、溶融金属流は斜め下向きに吐出し、鋳型短辺内壁近傍で上下に分かれて、鋳型短辺内壁に沿って上昇流と下降流とを形成する。本発明は、このような一般的な構成のスラブ連続鋳造機に対して、主に鋳型短辺側における再溶解性ブレークアウト(溶融金属漏出事故)を防止する。
Fig.1 (a) is a figure for demonstrating the structural example of a slab continuous casting machine, and FIG.1 (b) is a figure for demonstrating the shape of the cross section of the horizontal direction of a casting_mold | template.
In the present invention, a slab continuous casting machine in which the horizontal section of the mold (cross section perpendicular to the vertical line) is rectangular is targeted, and a continuous casting machine having a rectangular ratio W / D of 3 to 10 is targeted. . As shown in FIG. 1A, in the continuous casting machine 1 according to the present embodiment, molten metal (molten steel) is supplied from the upper tundish into the mold 3 through the immersion nozzle 2. Then, two molten metal flows are discharged from the immersion nozzle 2 toward both surfaces on the mold short side. As shown by the arrow 4, the molten metal flow is discharged obliquely downward, and is divided into upper and lower parts near the inner wall of the mold short side to form an upward flow and a downward flow along the inner wall of the mold short side. The present invention prevents remeltability breakout (molten metal leakage accident) mainly on the mold short side with respect to the slab continuous casting machine having such a general configuration.

鋳型短辺側のテーパー率Trnは、鋳型幅Wに対して0.8%/m〜2.0%/mとする。鋳型短辺側のテーパー率Trnが0.8%/m未満だと、凝固シェル5と鋳型4とを密着させて凝固シェル5を健全に成長させることができない。一方、鋳型短辺側のテーパー率Trnが2.0%/mを超えると、密着によるメリットよりも摩擦抵抗が増大するデメリットの方が大きくなってしまう。 The taper rate T rn on the mold short side is 0.8% / m to 2.0% / m with respect to the mold width W. If the taper rate T rn on the short side of the mold is less than 0.8% / m, the solidified shell 5 and the mold 4 cannot be brought into close contact with each other to grow the solidified shell 5 in a healthy manner. On the other hand, when the taper rate T rn on the short side of the mold exceeds 2.0% / m, the disadvantage of increasing the frictional resistance is greater than the merit of adhesion.

鋳型長辺側のテーパー率Trwは、鋳型厚Dに対して0.4%/m〜1.5%/mとする。鋳型長辺側のテーパー率Trwが0.4%/m未満だと、凝固シェル5と鋳型4とを密着させて凝固シェル5を健全に成長させることができない。一方、鋳型長辺側のテーパー率Trwが1.5%/mを超えると、密着によるメリットよりも摩擦抵抗が増大するデメリットの方が大きくなってしまう。 Taper ratio T rw of the mold long side shall be 0.4% / m~1.5% / m to the template thickness D. If the taper rate Trw on the long side of the mold is less than 0.4% / m, the solidified shell 5 and the mold 4 cannot be brought into close contact with each other to grow the solidified shell 5 in a healthy manner. On the other hand, when the taper ratio Trw on the long side of the mold exceeds 1.5% / m, the disadvantage that the frictional resistance is increased is larger than the merit due to the adhesion.

さらに本発明では、鋳型短辺側のテーパー率Trnと鋳型長辺側のテーパー率Trwとの比率Trw/Trnを鋳型の矩形比W/Dに応じて(1)式の範囲内に設定することとする。これは、矩形比が大きいほど長辺側の凝固シェルのバルジング変形が相対的に大きくなり、鋳型との密着度を増す傾向を考慮したものである。 Further, in the present invention, the ratio T rw / T rn between the taper rate T rn on the mold short side and the taper rate T rw on the mold long side is within the range of the formula (1) according to the rectangular ratio W / D of the mold. Set to. This is because the larger the rectangular ratio, the larger the bulging deformation of the solidified shell on the long side becomes, and the tendency to increase the degree of adhesion with the mold is taken into consideration.

(1)式における比率Trw/Trnが0.6/(W/D)1/2よりも小さい場合には、長辺側のテーパー率Trwが短辺側のテーパー率Trnに対して過小となるので、鋳型長辺側は凝固シェルとの密着が悪く、逆に鋳型短辺側は凝固シェルとの密着が過大となりやすい。すなわち、鋳型長辺側と鋳型短辺側とにおいて、凝固シェルとの密着バランスを好適に保つことが難しく、例えば鋳型短辺側のテーパー率Trnを最適化しても、鋳型長辺側での凝固シェルの成長が阻害され、表面割れ等の欠陥を生じやすい。 When the ratio T rw / T rn in the equation (1) is smaller than 0.6 / (W / D) 1/2 , the long side taper rate T rw is smaller than the short side taper rate T rn. Therefore, the long side of the mold is poorly adhered to the solidified shell, and conversely, the short side of the mold is likely to be excessively close to the solidified shell. That is, it is difficult to maintain a good adhesion balance with the solidified shell on the mold long side and the mold short side. For example, even if the taper ratio T rn on the mold short side is optimized, The growth of the solidified shell is hindered, and defects such as surface cracks tend to occur.

一方、(1)式における比率Trw/Trnが2.0/(W/D)1/2よりも大きい場合には、長辺側のテーパー率Trwが短辺側のテーパー率Trnに対して過大となるので、鋳型長辺側は凝固シェルと過度に密着し、逆に鋳型短辺側は凝固シェルとの密着が悪くなりやすい。すなわち、鋳型長辺側と鋳型短辺側とにおいて、凝固シェルとの密着バランスを好適に保つことが難しく、例えば鋳型短辺側のテーパー率Trnを最適化しても、鋳型長辺と凝固シェルとの摩擦抵抗が増大し、焼き付き性の凝固シェル破断(拘束性ブレークアウト)や鋳片表面の割れを引き起こしやすい。 On the other hand, when the ratio T rw / T rn in the expression (1) is larger than 2.0 / (W / D) 1/2 , the long side taper rate T rw is short side taper rate T rn. Therefore, the long side of the mold is excessively in close contact with the solidified shell, and conversely, the short side of the mold is liable to deteriorate with the solidified shell. That is, it is difficult to maintain a good balance between the solidified shell on the long side of the mold and the short side of the mold. For example, even if the taper ratio Trn on the short side of the mold is optimized, Frictional resistance increases, and seizure-induced solidified shell breakage (constraint breakout) and cracks on the slab surface tend to occur.

本実施形態では、図1(b)に示すように、短辺側及び長辺側でそれぞれテーパー率が一定である例について説明したが、必ずしもテーパー率が一定である必要はない。鋳型のテーパー率が一定でない鋳型形状の場合には、その平均値をテーパー率として定義する。また、図1(b)に示すように、鋳型幅Wおよび鋳型厚Dは、それぞれ鋳型下端(出口)における値をもって規定するものとする。   In the present embodiment, as shown in FIG. 1B, an example in which the taper rate is constant on each of the short side and the long side has been described, but the taper rate is not necessarily constant. When the mold taper ratio is not constant, the average value is defined as the taper ratio. Further, as shown in FIG. 1B, the mold width W and the mold thickness D are each defined by values at the lower end (exit) of the mold.

鋳型短辺側を構成する銅板には、熱伝導率が300W/(m・K)(常温(20℃)の値。以下同様)以上である銅板を用いる。これにより、万一溶融金属が漏れ出した場合にも鋳型内で迅速に凝固させてブレークアウトを防止することができる。鋳型に用いられる銅板は、強度を高める目的で純銅に対して様々な元素が添加されていることが多い。その結果として、鋳型に用いられる銅板は純銅よりも熱伝導率が低い。本発明は、鋳型短辺側に関しては銅板の強度よりも熱伝導率が重要であり、再溶解性ブレークアウトの防止を優先することに基づいている。また、鋳型短辺側を構成する銅板の熱伝導率の上限は純銅の熱伝導率とする。   A copper plate having a thermal conductivity of 300 W / (m · K) (normal temperature (20 ° C.), the same applies hereinafter) is used for the copper plate constituting the mold short side. Thereby, even when molten metal leaks out, it can be quickly solidified in the mold to prevent breakout. In many cases, various elements are added to pure copper for the purpose of increasing the strength of a copper plate used for a mold. As a result, the copper plate used for the mold has a lower thermal conductivity than pure copper. The present invention is based on the fact that the heat conductivity is more important than the strength of the copper plate on the short side of the mold, and priority is given to preventing remeltability breakout. The upper limit of the thermal conductivity of the copper plate constituting the mold short side is the thermal conductivity of pure copper.

また、鋳型長辺側を構成する銅板には、鋳型短辺側を構成する銅板よりも熱伝導率の低い銅板を用いる。これにより、長辺側の凝固シェルを比較的緩やかに冷却して収縮量を抑制し、結果的に鋳型短辺側の凝固シェルを鋳型から乖離させないようにする。そして、短辺側の凝固シェルの成長を促し、再溶解性ブレークアウトを防止する。   In addition, a copper plate having a lower thermal conductivity than the copper plate constituting the mold short side is used as the copper plate constituting the mold long side. As a result, the solidified shell on the long side is relatively gently cooled to suppress the shrinkage, and as a result, the solidified shell on the short side of the mold is not separated from the mold. And it promotes the growth of the solidified shell on the short side and prevents remeltability breakout.

また、鋳型長辺側を構成する銅板の熱伝導率の下限値は特に規定しないが、一般的に、熱伝導率が200W/(m・K)を下回る銅板が鋳型に用いられることはまれである。   In addition, the lower limit value of the thermal conductivity of the copper plate constituting the long side of the mold is not specified, but generally, a copper plate having a thermal conductivity of less than 200 W / (m · K) is rarely used for the mold. is there.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

上方のタンディッシュから浸漬ノズルを介して鋳型内へ溶融金属を供給し、浸漬ノズルから鋳型両短辺に向かって溶融金属流を吐出した。このとき、鋳型の条件を表1に示す条件で変えて試験を行った。サンプルA〜Iに対する総合評価を○△×の3段階で評価し、再溶解性あるいは焼付(拘束)性のブレークアウトが問題とならず、鋳片表面品質も良好である場合は○とし、○と評価されたサンプルと比較して、ブレークアウトもしくは鋳片表面割れの発生率が3割以上上昇すると評価されたものを△とし、○と評価されたサンプルと比較して、ブレークアウトの発生率が5割以上上昇すると評価されたものを×とした。   Molten metal was supplied from the upper tundish through the immersion nozzle into the mold, and a molten metal flow was discharged from the immersion nozzle toward both short sides of the mold. At this time, the test was performed by changing the mold conditions under the conditions shown in Table 1. Comprehensive evaluation for samples A to I was evaluated in three stages of △△ ×, and a breakout of remeltability or seizure (restraint) was not a problem, and slab surface quality was good. Compared with the samples evaluated as と, △ indicates that the occurrence rate of breakout or slab surface cracking is increased by 30% or more, and compared with the samples evaluated as ○, the incidence of breakout Was evaluated as x when it rose by 50% or more.

Figure 2019147178
Figure 2019147178

表1のサンプルA〜Cは、本発明の実施例である。サンプルA〜Cにおいては、鋳型短辺側のテーパー率Trn、長辺側のテーパー率Trw、鋳型短辺側のテーパー率と鋳型長辺側のテーパー率との比率Trw/Trn、鋳型短辺側及び長辺側を構成する銅板の熱伝導率の全てが本発明の条件を満たしていたので、鋳型に対する凝固シェルの密着度を適度に保つことができた。その結果、短辺側の凝固シェルを健全に成長させ、再溶解性ブレークアウトのリスクが小さい安定した連続鋳造操業が実現できることが確認できた。 Samples A to C in Table 1 are examples of the present invention. In samples A to C, the taper rate T rn on the mold short side, the taper rate T rw on the long side, the ratio T rw / T rn between the taper rate on the mold short side and the taper rate on the mold long side, Since all of the thermal conductivity of the copper plate constituting the short side and long side of the mold satisfied the conditions of the present invention, the degree of adhesion of the solidified shell to the mold could be kept moderate. As a result, it was confirmed that the solidified shell on the short side can be grown soundly and a stable continuous casting operation with a low risk of remeltability breakout can be realized.

一方、表1のサンプルD及びEは、テーパー率の条件を満たさない比較例である。サンプルDは、鋳型短辺側のテーパー率Trnおよび鋳型長辺側のテーパー率Trwがともに大き過ぎたため、鋳型と凝固シェルとの間の摩擦抵抗が大きくなり、焼き付きが発生しやすい状態であった。
また、表1のサンプルEは、鋳型短辺側のテーパー率Trnおよび鋳型長辺側のテーパー率Trwが小さ過ぎたため、鋳型と凝固シェルとが十分に密着せず、凝固シェルの成長が滞り、再溶解性ブレークアウトが発生しやすいことが確認できた。
On the other hand, samples D and E in Table 1 are comparative examples that do not satisfy the taper rate condition. In sample D, the taper ratio T rn on the short side of the mold and the taper ratio T rw on the long side of the mold are both too large, so that the frictional resistance between the mold and the solidified shell increases and seizure is likely to occur. there were.
In addition, in sample E in Table 1, the taper rate T rn on the short side of the mold and the taper rate T rw on the long side of the mold were too small, so the mold and the solidified shell were not sufficiently adhered, and the solidified shell was not grown. It was confirmed that stagnation and re-dissolution breakout were likely to occur.

表1のサンプルF及びGは、短辺側及び長辺側のテーパー率の比率の条件を満たさない比較例である。サンプルFは、鋳型短辺側のテーパー率Trnおよび鋳型長辺側のテーパー率Trwはそれぞれ適正範囲内にあるが、鋳型短辺側のテーパー率と鋳型長辺のテーパー率との比率Trw/Trnが(1)式に規定された範囲よりも小さかったので、鋳型短辺側では鋳型長辺側に比べて過度に凝固シェルが密着した。その結果、凝固シェルの収縮や鋳型内での摩擦抵抗のバランスが悪化し、連続鋳造操業が不安定になり、鋳片の割れが発生しやすくなることが確認できた。
表1のサンプルGは、鋳型短辺側のテーパー率Trnおよび鋳型長辺側のテーパー率Trwはそれぞれ適正範囲内にあるが、鋳型短辺側のテーパー率と鋳型長辺側のテーパー率との比率Trw/Trnが(1)式に規定された範囲よりも大きかったので、鋳型長辺側では鋳型短辺側に比べて過度に凝固シェルが密着した。その結果、凝固シェルの収縮や鋳型内での摩擦抵抗のバランスが悪化し、連続鋳造操業が不安定になり、鋳片の割れが発生しやすくなることが確認できた。
Samples F and G in Table 1 are comparative examples that do not satisfy the condition of the ratio of the taper ratio on the short side and long side. In sample F, the taper ratio T rn on the mold short side and the taper ratio T rw on the mold long side are within the appropriate ranges, but the ratio T between the taper ratio on the mold short side and the taper ratio on the mold long side Since rw / T rn was smaller than the range defined in the formula (1), the solidified shell was adhered more closely on the mold short side than on the mold long side. As a result, it was confirmed that the balance of the shrinkage of the solidified shell and the frictional resistance in the mold deteriorates, the continuous casting operation becomes unstable, and the slab is likely to crack.
Sample G in Table 1 has a taper ratio T rn on the mold short side and a taper ratio T rw on the mold long side within the appropriate ranges, but the taper ratio on the mold short side and the taper ratio on the mold long side The ratio T rw / T rn was larger than the range defined in the formula (1), so that the solidified shell was in close contact with the mold long side compared to the mold short side. As a result, it was confirmed that the balance of the shrinkage of the solidified shell and the frictional resistance in the mold deteriorates, the continuous casting operation becomes unstable, and the slab is likely to crack.

表1のサンプルH及びIは、銅板の熱伝導率の条件を満たさない比較例である。サンプルHは、鋳型短辺側を構成する銅板の熱伝導率が300W/(m・K)未満であったため、鋳型内で凝固シェルが破断した場合に、漏れ出した溶融金属が迅速に凝固せず、ブレークアウト事故に至る確率が高まることが確認できた。
表1のサンプルIは、鋳型長辺側と鋳型短辺側とで熱伝導率が同じ銅板を用いていたため、鋳型のテーパー率が適正であっても長辺側の凝固シェルの冷却が進行しがちであった。その結果、鋳型長辺側の凝固シェルの収縮が大きくなり、短辺凝固シェルが鋳型から乖離しやすくなっていた。
Samples H and I in Table 1 are comparative examples that do not satisfy the condition of the thermal conductivity of the copper plate. In sample H, the thermal conductivity of the copper plate constituting the short side of the mold was less than 300 W / (m · K), so when the solidified shell broke in the mold, the leaked molten metal quickly solidified. It was confirmed that the probability of a breakout accident increases.
Sample I in Table 1 uses a copper plate having the same thermal conductivity on the long side of the mold and the short side of the mold. Therefore, cooling of the solidified shell on the long side proceeds even if the taper ratio of the mold is appropriate. It was apt. As a result, the shrinkage of the solidified shell on the long side of the mold was increased, and the short side solidified shell was easily separated from the mold.

以上のように実施例であるサンプルA〜Cに対して、比較例であるサンプルD〜Iは、再溶解性もしくは焼付(拘束)性のブレークアウトの発生率、あるいは鋳片表面割れの発生率が上昇することが確認できた。   As described above, samples D to I which are comparative examples have a remeltability or seizure (restraint) breakout occurrence rate, or a slab surface crack occurrence rate with respect to the sample samples A to C. Was confirmed to rise.

1 連続鋳造機
2 浸漬ノズル
3 鋳型
5 凝固シェル
1 Continuous casting machine 2 Immersion nozzle 3 Mold 5 Solidified shell

Claims (1)

鋳型の水平方向の断面が矩形比が3〜10の矩形であり、上方のタンディッシュから浸漬ノズルを介して前記鋳型内へ溶融金属が供給され、前記浸漬ノズルから鋳型短辺側の両面に向かって溶融金属流が吐出される連続鋳造機であって、
鋳型短辺側のテーパー率Trnが鋳型幅Wに対して0.8%/m〜2.0%/m、鋳型長辺側のテーパー率Trwが鋳型厚Dに対して0.4%/m〜1.5%/mであり、かつ前記鋳型短辺側のテーパー率Trnと前記鋳型長辺側のテーパー率Trwとの比Trw/Trnが前記鋳型の矩形比W/Dに対して以下の(1)式の関係を満たし、
前記鋳型短辺側を構成する銅板の熱伝導率が300W/(m・K)以上であり、かつ前記鋳型短辺側を構成する銅板の熱伝導率が前記鋳型長辺側を構成する銅板の熱伝導率よりも高いことを特徴とする連続鋳造機。
0.6/(W/D)1/2<Trw/Trn<2.0/(W/D)1/2 ・・・(1)
The horizontal section of the mold is a rectangle having a rectangular ratio of 3 to 10, and molten metal is supplied from the upper tundish through the immersion nozzle into the mold, and from the immersion nozzle toward both sides of the mold short side. A continuous casting machine in which a molten metal flow is discharged,
The taper rate T rn on the mold short side is 0.8% / m to 2.0% / m with respect to the mold width W, and the taper rate T rw on the mold long side is 0.4% with respect to the mold thickness D. / M to 1.5% / m, and the ratio T rw / T rn between the taper rate T rn on the mold short side and the taper rate T rw on the mold long side is the rectangular ratio W / of the mold Satisfying the relationship of the following expression (1) with respect to D,
The copper plate constituting the mold short side has a thermal conductivity of 300 W / (m · K) or more, and the copper plate constituting the mold short side has a heat conductivity of the copper plate constituting the mold long side. Continuous casting machine characterized by higher than thermal conductivity.
0.6 / (W / D) 1/2 <T rw / T rn <2.0 / (W / D) 1/2 (1)
JP2018034563A 2018-02-28 2018-02-28 Continuous casting machine Active JP7013941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018034563A JP7013941B2 (en) 2018-02-28 2018-02-28 Continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034563A JP7013941B2 (en) 2018-02-28 2018-02-28 Continuous casting machine

Publications (2)

Publication Number Publication Date
JP2019147178A true JP2019147178A (en) 2019-09-05
JP7013941B2 JP7013941B2 (en) 2022-02-01

Family

ID=67848790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034563A Active JP7013941B2 (en) 2018-02-28 2018-02-28 Continuous casting machine

Country Status (1)

Country Link
JP (1) JP7013941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022010944A (en) * 2020-06-29 2022-01-17 日本製鉄株式会社 Breakout prediction method in continuous casting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211936A (en) * 2004-01-29 2005-08-11 Jfe Steel Kk Method for continuously casting steel slab
JP2012157872A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Casting mold for continuous casting of steel and continuous casting method of steel
JP2015051442A (en) * 2013-09-06 2015-03-19 Jfeスチール株式会社 Continuous casting mold and continuous casting method for steel
JP2015107522A (en) * 2013-10-22 2015-06-11 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211936A (en) * 2004-01-29 2005-08-11 Jfe Steel Kk Method for continuously casting steel slab
JP2012157872A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Casting mold for continuous casting of steel and continuous casting method of steel
JP2015051442A (en) * 2013-09-06 2015-03-19 Jfeスチール株式会社 Continuous casting mold and continuous casting method for steel
JP2015107522A (en) * 2013-10-22 2015-06-11 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022010944A (en) * 2020-06-29 2022-01-17 日本製鉄株式会社 Breakout prediction method in continuous casting
JP7421103B2 (en) 2020-06-29 2024-01-24 日本製鉄株式会社 Breakout prediction method in continuous casting

Also Published As

Publication number Publication date
JP7013941B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP5673149B2 (en) Mold for continuous casting of steel and method for continuous casting of steel
KR101941506B1 (en) Continuous casting mold and method for continuous casting of steel
JP2019147178A (en) Continuous casting machine
JP4337565B2 (en) Steel slab continuous casting method
JP2015051442A (en) Continuous casting mold and continuous casting method for steel
JP4057831B2 (en) Steel continuous casting method
CN101155653B (en) Process for the casting of molten alloy
JP6065688B2 (en) Continuous casting method of ultra-low carbon steel slab
JP4749997B2 (en) Continuous casting method
JP2015062948A (en) Scum weir and method and apparatus for production of thin slab
JP2017024079A (en) Continuous casting method for steel
JP7047495B2 (en) Continuous casting method of slabs
JP4717357B2 (en) High-speed continuous casting method for carbon steel
JP2009136908A (en) Method for drawing out slab after completion of casting in continuous casting
JP2020121329A (en) Mold and method for steel continuous casting
JP7560725B2 (en) Mold for continuous casting and method for continuous casting of steel
JP5828295B2 (en) Continuous casting mold and steel continuous casting method using the same
KR20200036533A (en) Mold for continuous casting and coating method of mold for continuous casting
KR102179558B1 (en) Mold, apparatus and method for casting
JP4777090B2 (en) Vertical continuous casting method for large section slabs for thick steel plates
JP3971636B2 (en) Continuous casting method of steel
JP5626438B2 (en) Continuous casting method
JP4992459B2 (en) Mold flux for continuous casting of steel and continuous casting method using the mold flux
JP5397213B2 (en) Continuous casting method
JP2024047887A (en) Mold for continuous casting, manufacturing method of the same and continuous casting method of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103