JP2019147110A - Method of treating contaminated water - Google Patents

Method of treating contaminated water Download PDF

Info

Publication number
JP2019147110A
JP2019147110A JP2018033586A JP2018033586A JP2019147110A JP 2019147110 A JP2019147110 A JP 2019147110A JP 2018033586 A JP2018033586 A JP 2018033586A JP 2018033586 A JP2018033586 A JP 2018033586A JP 2019147110 A JP2019147110 A JP 2019147110A
Authority
JP
Japan
Prior art keywords
contaminated water
seawater
solution
treating
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018033586A
Other languages
Japanese (ja)
Inventor
柱国 李
Zhuguo Li
柱国 李
攻 池田
Osamu Ikeda
攻 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2018033586A priority Critical patent/JP2019147110A/en
Publication of JP2019147110A publication Critical patent/JP2019147110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide a method of treating contaminated water capable of immobilizing and sealing contaminants such as radioactive nuclides and heavy metals contained in the contaminated water, stably for a long period.SOLUTION: A method of treating contaminated water of this invention includes mixing papermaking sludge incinerated ash, an alkaline activator, chlorine, and contaminated water into a solidified geopolymer.SELECTED DRAWING: None

Description

本発明は、放射能汚染水等の汚染水の処理方法に関する。   The present invention relates to a method for treating contaminated water such as radioactively contaminated water.

2011年3月11日に発生した東北地方太平洋沖地震により、福島第一原子力発電所が甚大な被害を受けた結果、大量の放射能汚染水が発生し、その処理が大きな課題となっている。この放射能汚染水に含まれる主な放射性核種は、セシウム(137Cs、134Cs)、ストロンチウム(85Sr)及びトリチウムである。 As a result of the Tohoku-Pacific Ocean Earthquake that occurred on March 11, 2011, the Fukushima Daiichi Nuclear Power Station suffered enormous damage. . Major radionuclides in the radioactive contaminated water, cesium (137 Cs, 134 Cs), strontium (85 Sr) and tritium.

現在、この放射能汚染水の処理は、前処理、中間処理及び吸着処理を含む、いわゆる吸着法によって実施されている。しかし、吸着法による処理システムは設備構成が複雑であり、設備稼働と維持管理に多額な費用を要する。更に、吸着法では、放射能汚染水の処理にゼオライトや活性炭などの吸着材を使用するため、高レベルに汚染された使用後の吸着材の廃棄処理という困難な問題が新たに生じる。   Currently, this radioactively contaminated water is treated by a so-called adsorption method including pretreatment, intermediate treatment and adsorption treatment. However, the treatment system using the adsorption method has a complicated equipment configuration, and requires a large amount of money for operation and maintenance of the equipment. Furthermore, in the adsorption method, an adsorbent such as zeolite or activated carbon is used for the treatment of radioactively contaminated water, so that a difficult problem of disposal of the adsorbent after use contaminated at a high level newly arises.

そこで本発明者らは、放射能汚染水等の汚染水の処理方法として、製紙スラッジ焼却灰と、アルカリ活性剤と、汚染水とを液固比が1.0以上となるように混合して、ジオポリマー固化体とする汚染水の処理方法を発明した(特許文献1参照)。この処理方法によれば、汚染水に含まれる放射性核種等の汚染物質をジオポリマー固化体内に固定して閉じ込めることができる。   Therefore, the present inventors mixed paper sludge incineration ash, alkali activator, and contaminated water so that the liquid-solid ratio is 1.0 or more as a method for treating contaminated water such as radioactively contaminated water. Invented a method for treating contaminated water as a geopolymer solidified body (see Patent Document 1). According to this treatment method, contaminants such as radionuclides contained in the contaminated water can be fixed and confined in the geopolymer solidified body.

ところが、本発明者らが放射能汚染水を模擬して非放射性のストロンチウム(Sr)及びセシウム(Cs)を含む汚染水を、上記処理方法によりジオポリマー固化体とし、このジオポリマー固化体からのSr及びCsの溶出試験を継続したところ、長期材齢においてジオポリマー固化体の組成が不安定化する結果、ストロンチウムとセシウムの固定率も不安定化することがわかった。   However, the present inventors simulated radioactive radioactive water and converted the contaminated water containing non-radioactive strontium (Sr) and cesium (Cs) into a geopolymer solidified body by the above treatment method. When the elution test of Sr and Cs was continued, it was found that the composition of the solid geopolymer was destabilized in the long-term age, and as a result, the fixing ratio of strontium and cesium was also destabilized.

特許第5669120号公報Japanese Patent No. 5669120

本発明が解決しようとする課題は、汚染水に含まれる放射性核種や重金属等の汚染物質を長期にわたり安定的に固定して閉じ込めることができる汚染水の処理方法を提供することにある。   The problem to be solved by the present invention is to provide a method for treating contaminated water that can stably fix and confine contaminants such as radionuclides and heavy metals contained in the contaminated water over a long period of time.

福島第一原子力発電所の事故の初期段階では、冷却水に使う緊急用の真水が調達困難であったため、海水で代用していた。したがって、海水を含む放射能汚染水(海水含有放射能汚染水)がタンク貯留のままである。そこで本発明者らは、この海水含有放射能汚染水を対象に研究を進めた結果、従来、不安定であったストロンチウムとセシウムの固定率が海水を加えると長期にわたり安定化できることを見出した。すなわち、海水含有放射能汚染水を対象とした研究開発をきっかけに、ジオポリマー固化体による放射性核種等の汚染物質の固定を安定化させる塩素添加法を発明した。   In the early stage of the accident at the Fukushima Daiichi NPS, emergency fresh water used for cooling water was difficult to procure, so seawater was substituted. Therefore, radioactively contaminated water including seawater (seawater-containing radioactively contaminated water) remains in tank storage. Thus, as a result of research on the seawater-containing radioactively contaminated water, the present inventors have found that the conventionally unstable strontium and cesium fixation rates can be stabilized for a long time when seawater is added. In other words, we invented a chlorine addition method that stabilizes the fixation of pollutants such as radionuclides by solidified geopolymers, triggered by research and development for seawater-containing radioactively contaminated water.

すなわち本発明の汚染水の処理方法は、製紙スラッジ焼却灰と、アルカリ活性剤と、塩素と、汚染水とを混合して、ジオポリマー固化体とすることを特徴とするものである。   That is, the method for treating contaminated water according to the present invention is characterized in that a papermaking sludge incineration ash, an alkali activator, chlorine, and contaminated water are mixed to obtain a solid polymer.

本発明によれば、汚染水に含まれる放射性核種等の汚染物質を長期にわたり安定的に固定して閉じ込めることができる   According to the present invention, pollutants such as radionuclides contained in contaminated water can be stably fixed and confined over a long period of time.

本発明の汚染水の処理方法は、基本的にはジオポリマー技術を応用したものである。ジオポリマー技術自体は公知であり、可溶性のケイ素及びアルミニウムを含む活性フィラーと、これを活性化させるアルカリ活性剤を含むアルカリ溶液とを混合し縮重合反応させることでシロキサン結合の生成を助長し、ジオポリマー固化体を得る技術である。   The method for treating contaminated water according to the present invention is basically an application of geopolymer technology. Geopolymer technology is known per se, and the active filler containing soluble silicon and aluminum and the alkali solution containing the alkali activator for activating this are mixed to promote the formation of siloxane bonds by the condensation polymerization reaction. This is a technique for obtaining a solid geopolymer.

従来、活性フィラーとしては、フライアッシュ(微粉炭ボイラー石炭灰、流動床ボイラー石炭灰)、高炉スラグ粉末、メタカオリン、都市ごみ焼却灰溶融スラグ粉末、下水汚泥焼却灰溶融スラグ粉末等が知られているが、本発明では製紙スラッジ焼却灰を活性フィラーとして用いる。製紙スラッジ焼却灰とは、パルプ製造工程、紙製造工程、古紙処理工程等から発生する製紙スラッジ(ペーパースラッジ)を焼却処理した際に発生する焼却灰である。   Conventionally, as the active filler, fly ash (pulverized coal boiler coal ash, fluidized bed boiler coal ash), blast furnace slag powder, metakaolin, municipal waste incineration ash molten slag powder, sewage sludge incineration ash molten slag powder, and the like are known. However, in the present invention, paper sludge incineration ash is used as an active filler. Papermaking sludge incineration ash is incineration ash generated when papermaking sludge (paper sludge) generated from a pulp manufacturing process, a paper manufacturing process, a used paper processing process, and the like is incinerated.

上記特許文献1に開示したように、本発明者らが製紙スラッジ焼却灰(以下「PS灰」という。)の性状を調査したところ、PS灰はSiOとAlを含み、ジオポリマーの活性フィラーとして利用可能であることがわかった。更に、PS灰は巣状多孔構造を有し、吸水性が高いため、PS灰を活性フィラーとしてジオポリマー固化体を作製するには、従来一般的な活性フィラーを用いる場合に比べ多量の液体が必要であることもわかった。すなわち、従来一般的な活性フィラーを用いた場合の液固比(アルカリ溶液の質量/活性フィラーの質量)は高々0.5程度であるところ、PS灰を活性フィラーとした場合、液固比は1.0以上が適正であることがわかった。 As disclosed in the above-mentioned Patent Document 1, the present inventors investigated the properties of paper sludge incineration ash (hereinafter referred to as “PS ash”). As a result, PS ash contains SiO 2 and Al 2 O 3 and is a geopolymer. It was found that it can be used as an active filler. Furthermore, since PS ash has a nest-like porous structure and high water absorption, a larger amount of liquid is required to produce a solidified geopolymer using PS ash as an active filler than when using a conventional active filler. I also found it necessary. That is, the liquid-solid ratio (mass of alkali solution / mass of active filler) when using a conventional active filler is about 0.5 at most. However, when PS ash is used as the active filler, the liquid-solid ratio is It was found that 1.0 or more is appropriate.

このように本発明は、PS灰を活性フィラーとして用いることを特徴の一つとするが、PS灰を活性フィラーとすることによる吸水特性を消失させない範囲で、他の活性フィラーを併用することは可能である。また、放射性核種等の汚染物質を吸着できる吸着改質剤をPS灰と併用してもよい。この吸着改質剤としては、例えばゼオライト、酸化チタン、ベントナイト等を併用することが好ましい。この併用によって、PS灰ジオポリマー固化体の放射性核種等の吸着性を更に改善できる。   As described above, the present invention is characterized in that PS ash is used as an active filler. However, other active fillers can be used in combination as long as the water absorption characteristics of PS ash as an active filler are not lost. It is. An adsorption modifier that can adsorb contaminants such as radionuclides may be used in combination with PS ash. As this adsorption modifier, for example, zeolite, titanium oxide, bentonite and the like are preferably used in combination. By this combined use, the adsorptivity of the radionuclide of the PS ash geopolymer solidified body can be further improved.

一方、アルカリ溶液中のアルカリ活性剤は、活性フィラーから溶出したケイ素成分、及び金属成分(主としてアルミニウム)の重合を促進させる成分である。アルカリ活性剤としては、水酸化カリウム、水酸化ナトリウム、ケイ酸ナトリウム、ケイ酸カリウムが挙げられるが、後述の試験結果より、ケイ酸ナトリウムを単独で用いることが好ましいことがわかった。典型的には、汚染水を溶媒として粉末乃至粒状のケイ酸ナトリウムを所定の割合で混合してアルカリ溶液とする。   On the other hand, the alkali activator in the alkaline solution is a component that accelerates the polymerization of the silicon component eluted from the active filler and the metal component (mainly aluminum). Examples of the alkali activator include potassium hydroxide, sodium hydroxide, sodium silicate, and potassium silicate. From the test results described below, it was found that sodium silicate is preferably used alone. Typically, powdered or granular sodium silicate is mixed at a predetermined ratio using contaminated water as a solvent to form an alkaline solution.

そして、本発明では上述のとおり、PS灰と、アルカリ活性剤と、塩素と、汚染水とを混合してジオポリマー固化体とすることで、当該汚染水を処理する。このとき、液固比は1.5以上とすることができる。塩素を添加しない上記特許文献1の処理方法では、液固比は1.0〜1.2程度が適正であったが、塩素を添加する本発明の処理方法では、液固比を1.5以上(1.5〜2.0程度)と更に大きくできることがわかった。すなわち本発明の処理方法によれば、上記特許文献1の処理方法に比べ、より大量の汚染水を処理できる。   And in this invention, as mentioned above, the said contaminated water is processed by mixing PS ash, an alkali activator, chlorine, and contaminated water to make a geopolymer solidified body. At this time, the liquid-solid ratio can be 1.5 or more. In the treatment method of Patent Document 1 in which chlorine is not added, the liquid-solid ratio is about 1.0 to 1.2. However, in the treatment method of the present invention in which chlorine is added, the liquid-solid ratio is 1.5. It has been found that it can be further increased (approximately 1.5 to 2.0). That is, according to the treatment method of the present invention, a larger amount of contaminated water can be treated as compared with the treatment method of Patent Document 1.

本発明が主に処理対象とする汚染水は、放射性核種を含む放射能汚染水、典型的には福島第一原子力発電所で発生しているセシウム(137Cs、134Cs)及びストロンチウム(90Sr)等、並びに海水を含む海水含有放射能汚染水である。すなわち、本発明において塩素は特別に添加混合することなく、もともと汚染水に含まれる海水又は塩分を含む河川水由来(以下、総称して「海水等由来」という。)とすることができる。ただし、本発明において塩素は海水等由来に限定されず、塩化ナトリウム等の無機塩類を汚染水に添加混合することもできる。そして、塩素の含有率は、アルカリ活性剤と汚染水との合量を100質量%としたとき0.1〜2質量%となるようにすることが好ましい。 Contaminated water to be treated mainly by the present invention is radioactive contaminated water containing radionuclides, typically cesium ( 137 Cs, 134 Cs) and strontium ( 90 Sr) generated at the Fukushima Daiichi Nuclear Power Station. ), And seawater-containing radioactively contaminated water including seawater. That is, in the present invention, chlorine can be derived from seawater or saltwater originally containing contaminated water (hereinafter collectively referred to as “seawater or the like”) without special addition and mixing. However, in this invention, chlorine is not limited to seawater etc., Inorganic salts, such as sodium chloride, can also be added and mixed with contaminated water. The chlorine content is preferably 0.1 to 2% by mass when the total amount of the alkali activator and the contaminated water is 100% by mass.

本発明の適用範囲は放射能汚染水には限定されない。ジオポリマー固化体は、放射性核種のほかに重金属イオン等の汚染物質を固定できるという特性を有しているので、メッキ廃液や鉱山廃液等の重金属イオンを含む汚染水の処理にも適用可能である。また、水以外の汚染土、汚染泥、汚染灰、汚染スラッジ、使用済核種吸着材等の泥状又は固形状の廃棄物の固化処理にも適用できる。すなわち、本発明の処理方法では、泥状又は固形状の廃棄物を更に混合して、ジオポリマー固化体とすることができる。   The scope of application of the present invention is not limited to radioactively contaminated water. The geopolymer solidified material has the property that it can fix pollutants such as heavy metal ions in addition to radionuclides, so it can be applied to the treatment of contaminated water containing heavy metal ions such as plating waste liquid and mine waste liquid. . Further, it can be applied to solidification treatment of muddy or solid waste such as contaminated soil other than water, contaminated mud, contaminated ash, contaminated sludge, and used nuclide adsorbent. That is, in the treatment method of the present invention, mud or solid waste can be further mixed to obtain a geopolymer solidified body.

以下のとおり、海水含有放射能汚染水を模擬した汚染水をジオポリマー固化体(GP固化体)とする試験を行った。   The test which made the contaminated water which simulated seawater containing radioactively contaminated water as follows was made into a geopolymer solidified body (GP solidified body) was conducted.

1.アルカリ溶液(GP液)の調製
海水混合アルカリ溶液(GP液)として、JIS1号水ガラス(ケイ酸ナトリウム水溶液NaO・2SiO・aq、標準組成)と呼ばれる市販品を購入し、純水で希釈し比重1.54に調製したケイ酸ナトリウム原液に対して海水を混合し、比重1.27に調製したもの(以下「1号GP液」という。)と、この1号GP液に対して更に、容積比で1号GP液3部に対して10M苛性ソーダ水溶液1部の混合割合で調製したもの(以下「0号GP液」という。)の、2種類のアルカリ溶液(GP液)を調製した。その詳細は表1のとおりである。なお、実際には、海水含有放射能汚染水を混合する。
1. Preparation of alkaline solution (GP solution) As a seawater mixed alkaline solution (GP solution), a commercial product called JIS No. 1 water glass (sodium silicate aqueous solution Na 2 O · 2SiO 2 · aq, standard composition) was purchased and purified water was used. Seawater was mixed with a diluted sodium silicate stock solution having a specific gravity of 1.54, and a specific gravity of 1.27 (hereinafter referred to as “No. 1 GP solution”) and this No. 1 GP solution Furthermore, two kinds of alkaline solutions (GP solutions) prepared by mixing 1 part of 10M caustic soda aqueous solution with 3 parts of No. 1 GP solution by volume ratio (hereinafter referred to as “No. 0 GP solution”) were prepared. did. The details are shown in Table 1. In practice, seawater-containing radioactively contaminated water is mixed.

Figure 2019147110
Figure 2019147110

一方、比較のため、海水非混合アルカリ溶液(GP液)として、海水混合の1号GP液、0号GP液相当の、海水非混合の1号GP液、0号GP液を調製した。   On the other hand, as a seawater-unmixed alkaline solution (GP solution), seawater-mixed No. 1 GP solution and No. 0 GP solution equivalent No. 1 GP solution and No. 0 GP solution were prepared.

2.活性フィラー(PS灰)の化学成分と物理性質
活性フィラーとして用いたPS灰の化学分析値及び物理性質は表2のとおりである。
2. Chemical composition and physical properties of active filler (PS ash) Table 2 shows the chemical analysis values and physical properties of PS ash used as the active filler.

Figure 2019147110
Figure 2019147110

3.ジオポリマー固化体(GP固化体)の作製法
表2に示した2種類の活性フィラー(PS灰)をそれぞれ使ってGP固化体を作製した。
具体的には、活性フィラー100gを秤量し、ブリージングが起こらない限界まで海水混合GP液を混合し、手練でよく攪拌混合し型枠に流し込んだ。なお、表3a及び表3bに示すように、液固比(L/F)=「GP液(アルカリ溶液)/活性フィラー(PS灰)」(重量比)は、活性フィラーの種類により異なった。
3. Production method of geopolymer solidified body (GP solidified body) A GP solidified body was produced using each of the two types of active fillers (PS ash) shown in Table 2.
Specifically, 100 g of the active filler was weighed, the seawater-mixed GP solution was mixed up to the limit where no breathing occurred, and well mixed by hand kneading and poured into a mold. As shown in Tables 3a and 3b, the liquid-solid ratio (L / F) = “GP liquid (alkali solution) / active filler (PS ash)” (weight ratio) varied depending on the type of active filler.

使用型枠は角柱3個取りで、大きさは20×20×80mmの砲金製であった。離型剤としてグリースを事前に型枠の内面に塗布した。型枠に流し込んだ後、亀裂や収縮発生を防止するために、底に水を張った飽和湿度100%のプラスチック製容器内に移し、20℃の恒温チャンバー内で一晩空気中養生を行った。脱型後更に同条件で4週材齢まで養生した。4週材齢の時点で、型枠寸法とGP固化体重量からGP固化体の嵩密度を測定した。また、3点曲げ試験を行い、3本の平均値をもって曲げ強度を得た。3点曲げ試験では、下部支点のスパン距離は50mm、載荷速度は0.2mm/minであった。   The mold used was made of 3 square pillars, and the size was 20 × 20 × 80 mm. Grease was previously applied to the inner surface of the mold as a release agent. After pouring into the mold, in order to prevent cracks and shrinkage, it was transferred into a 100% saturated humidity plastic container with water on the bottom, and was cured in air overnight in a constant temperature chamber at 20 ° C. . After demolding, it was further cured under the same conditions until the age of 4 weeks. At the time of the age of 4 weeks, the bulk density of the GP solidified body was measured from the mold size and the weight of the GP solidified body. Further, a three-point bending test was performed, and bending strength was obtained with an average value of three pieces. In the three-point bending test, the span distance of the lower fulcrum was 50 mm, and the loading speed was 0.2 mm / min.

その後、GP固化体を室内に放置し風乾状態で6(4+2),12,24,52週の材齢に達するまで養生を続けた。各材齢において嵩密度を測定し元素溶出率の計算に用いた。GP固化体の当初寸法を便宜上型枠寸法とした。   Thereafter, the GP solidified body was left in the room and kept in an air-dried state until it reached the age of 6 (4 + 2), 12, 24, 52 weeks. The bulk density was measured at each age and used to calculate the element elution rate. The initial dimension of the GP solidified body was used as a formwork dimension for convenience.

放射能汚染水の主体をなす核種は137Cs,134Cs,90Srであるから、非放射性の硝酸塩試薬(Sr(NO,CsNO)を活性フィラー重量に対して外掛けで1%添加した。これらは可溶性であり少量なので便宜上、液固比の計算から除外している。福島第一原子力発電所の汚染水の放射線量は10〜10Bq/Lと推定される。これに対して加えた硝酸塩は1012Bq/L相当であり、十分な添加量である。 Since nuclides that mainly form radioactively contaminated water are 137 Cs, 134 Cs, 90 Sr, 1% of non-radioactive nitrate reagent (Sr (NO 3 ) 2 , CsNO 3 ) is applied to the active filler weight as an external factor. Added. Since these are soluble and small amounts, they are excluded from the calculation of the liquid-solid ratio for convenience. The radiation dose of contaminated water at Fukushima Daiichi NPS is estimated to be 10 8 to 10 9 Bq / L. On the other hand, the added nitrate is equivalent to 10 12 Bq / L, which is a sufficient addition amount.

比較のため、同様のGP固化体を、海水非混合GP液を用いて作製した。   For comparison, a similar GP solidified body was prepared using a seawater-unmixed GP solution.

Figure 2019147110
Figure 2019147110

Figure 2019147110
Figure 2019147110

4.GP固化体の嵩密度と強度試験結果
表3aに海水混合GP液を用いたGP固化体の嵩密度と曲げ強度の試験結果を示している。また、比較のため、表3bに海水非混合GP液を用いたGP固化体の嵩密度と曲げ強度の試験結果を示している。
4). Bulk density and strength test results of GP solidified body Table 3a shows the test results of the bulk density and bending strength of the GP solidified body using the seawater mixed GP liquid. For comparison, Table 3b shows the test results of the bulk density and bending strength of the GP solidified body using the seawater-unmixed GP solution.

表3a及び表3bからわかるように、海水混合GP液を用いたGP固化体の特徴の一つは、海水非混合GP液を用いたGP固化体に比べて液固比を大きく取れることである。これは汚染水を更に大きく取り込み固化できる点で非常に有効である。   As can be seen from Table 3a and Table 3b, one of the characteristics of the GP solidified body using the seawater-mixed GP liquid is that the liquid-solid ratio can be made larger than that of the GP solidified body using the seawater-unmixed GP liquid. . This is very effective in that the contaminated water can be taken in larger and solidified.

曲げ強度については、海水混合GP液を用いた場合、海水非混合GP液を用いた場合に比べて液固比が高い分だけ低いが、例外的に海水混合1号GP液を用いたGP固化体の一部はやや高い値であった(現時点で理由はよくわからない。)。   The bending strength is lower when the seawater-mixed GP solution is used than when the seawater-unmixed GP solution is used. However, the GP solidification using the seawater-mixed No.1 GP solution is exceptionally low. Some parts of the body were slightly higher (the reason is not clear at this time).

嵩密度については、海水混合GP液を用いた場合、液固比が高いにもかかわらず、全材齢にわたり海水非混合GP液を用いた場合と際立った違いはない。しかし、例外的に海水混合0号液を用いたOTo3のGP固化体の嵩密度は低い傾向にあり、発泡が顕著で多孔質であり、水分蒸発を助長する結果であると考えられる。発泡は海水混合、海水非混合を問わず1号GP液を用いたOTo3のGP固化体でも見られたが、発泡はわずかであり、その影響は認められなかった。発泡の原因は、一部のPS灰は原料に古紙を使っている場合があり、それに紛れ込んだアルミ箔が炉内で蒸発して酸化されず残った超微細粒が、GP液(アルカリ溶液)の中で反応し、水素を発生するためであると考えられる。   Regarding the bulk density, when seawater-mixed GP liquid is used, there is no significant difference from the case where seawater-unmixed GP liquid is used over all ages, although the liquid-solid ratio is high. However, exceptionally, the bulk density of the OTo3 GP solidified body using the seawater mixed solution No. 0 tends to be low, and foaming is remarkable and porous, which is considered to be a result of promoting moisture evaporation. Foaming was also observed in the solidified GP of OTo3 using No. 1 GP liquid regardless of seawater mixing or non-seawater mixing, but foaming was slight and no effect was observed. The cause of foaming is that some PS ash may use waste paper as the raw material, and the ultrafine particles left unoxidized by evaporation of the aluminum foil in the furnace are the GP solution (alkaline solution). It is thought that this is because it reacts in this to generate hydrogen.

5.GP固化体の溶出試験結果
表4aに海水混合GP液を用いたGP固化体の溶出試験結果を示している。また、比較のため、表4bに海水非混合GP液を用いたGP固化体の溶出試験結果を示している。
5. Result of dissolution test of GP solidified body Table 4a shows the result of the dissolution test of the GP solidified body using the seawater mixed GP solution. For comparison, Table 4b shows the results of the dissolution test of the GP solidified body using the seawater-unmixed GP solution.

溶出試験法は本発明者らが開発した方法による。具体的には、GP固化体を4mm以下に粉砕し、12.5gを秤量する。そのサンプルを250mLの広口ポリ瓶に移し、10倍量の浸出液を加え密栓をする。浸出液としてはフタール酸塩を主剤とするpH4.01の標準液を使用する。これをボールミル回転機にかけて60rpmの回転条件で6時間浸出を行い、定性濾紙131番で濾過し、純水で10倍に薄めたものを検液とする。検液の濃度測定はICP−AESによる。
この検液の濃度測定結果から元素の固定率(%)を算出する。すなわち固定率(%)=(100−溶出率)である。溶出率の算出においては、各材齢における嵩密度を4週嵩密度と比較し、減量値を水分蒸発量として残りの固形重量(活性フィラー重量)を再計算した。その結果から添加した硝酸塩の含有量を求め、Sr2+及びCsの換算含有重量を求める。一方、ICP−AESの結果から溶出重量を求め、次に換算含有量との比から、最終的に溶出率を算出する。
The dissolution test method is based on the method developed by the present inventors. Specifically, the GP solidified body is pulverized to 4 mm or less, and 12.5 g is weighed. Transfer the sample to a 250 mL wide-mouth plastic bottle, add 10 volumes of exudate, and seal. As the leachate, a pH 4.01 standard solution containing phthalate as a main ingredient is used. This is applied to a ball mill rotating machine for 6 hours under a rotation condition of 60 rpm, filtered through qualitative filter paper No. 131, and diluted 10 times with pure water to obtain a test solution. The concentration of the test solution is measured by ICP-AES.
The element fixation rate (%) is calculated from the concentration measurement result of the test solution. That is, the fixation rate (%) = (100−elution rate). In the calculation of the dissolution rate, the bulk density at each age was compared with the 4-week bulk density, and the remaining solid weight (active filler weight) was recalculated using the weight loss value as the water evaporation amount. The content of the added nitrate is obtained from the result, and the converted content weight of Sr 2+ and Cs + is obtained. On the other hand, the elution weight is obtained from the result of ICP-AES, and the elution rate is finally calculated from the ratio with the converted content.

Figure 2019147110
Figure 2019147110

Figure 2019147110
Figure 2019147110

表4a及び表4bからわかるように、海水混合GP液を用いた場合、海水非混合GP液を用いた場合と比べると、GP液とPS灰の種類を問わず全材齢にわたりSr2+,Csの固定率が安定しており、スケールオーバー(S.O.)は見受けられなかった。
ただし、52週材齢では、0号GP液を用いた場合に若干の固定率の低下が認められた。総合的に判断すると1号GP液を使った場合に高い固定率の結果が得られ、材料強度も高く、しかも苛性ソーダ無添加なのでその分安価である。すなわち、GP液(アルカリ活性剤)としては、ケイ酸ナトリウムを含み水酸化ナトリウムを追加混合しないものを用いることが好ましい。
As can be seen from Table 4a and Table 4b, when using the seawater mixed GP liquid, compared to the case of using the seawater unmixed GP liquid, Sr 2+ , Cs over all ages regardless of the type of GP liquid and PS ash. The fixing rate of + was stable, and no scale over (SO) was observed.
However, at the age of 52 weeks, a slight decrease in the fixation rate was observed when the No. 0 GP solution was used. When judging comprehensively, when using No. 1 GP solution, a result of a high fixation rate is obtained, the material strength is high, and since no caustic soda is added, it is inexpensive. That is, as the GP solution (alkali activator), it is preferable to use a solution containing sodium silicate and not additionally mixed with sodium hydroxide.

Claims (7)

製紙スラッジ焼却灰と、アルカリ活性剤と、塩素と、汚染水とを混合して、ジオポリマー固化体とする汚染水の処理方法。   A method for treating contaminated water by mixing paper sludge incineration ash, an alkali activator, chlorine, and contaminated water to obtain a solidified geopolymer. アルカリ活性剤と汚染水との合量を100質量%としたとき、塩素の含有率が0.1〜2質量%となるようにする、請求項1に記載の汚染水の処理方法。   The method for treating contaminated water according to claim 1, wherein the chlorine content is 0.1 to 2 mass% when the total amount of the alkali activator and the contaminated water is 100 mass%. 塩素が海水と塩分を含む河川水のいずれかの由来である、請求項1又は2の記載の汚染水の処理方法。   The method for treating contaminated water according to claim 1 or 2, wherein the chlorine is derived from any of river water containing seawater and salinity. 泥状又は固形状の廃棄物を更に混合する、請求項1から3のいずれかに記載の汚染水の処理方法。   The method for treating contaminated water according to any one of claims 1 to 3, wherein a muddy or solid waste is further mixed. アルカリ活性剤が、ケイ酸ナトリウムを含み水酸化ナトリウムを追加混合していない、請求項1から4のいずれかに記載の汚染水の処理方法。   The method for treating contaminated water according to any one of claims 1 to 4, wherein the alkali activator contains sodium silicate and is not further mixed with sodium hydroxide. 汚染水が、海水を含む放射能汚染水である、請求項1から5のいずれかに記載の汚染水の処理方法。   The method for treating contaminated water according to any one of claims 1 to 5, wherein the contaminated water is radioactively contaminated water including seawater. 汚染水が、重金属を含む汚染水である、請求項1から5のいずれかに記載の汚染水の処理方法。   The method for treating contaminated water according to any one of claims 1 to 5, wherein the contaminated water is contaminated water containing heavy metals.
JP2018033586A 2018-02-27 2018-02-27 Method of treating contaminated water Pending JP2019147110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033586A JP2019147110A (en) 2018-02-27 2018-02-27 Method of treating contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033586A JP2019147110A (en) 2018-02-27 2018-02-27 Method of treating contaminated water

Publications (1)

Publication Number Publication Date
JP2019147110A true JP2019147110A (en) 2019-09-05

Family

ID=67849624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033586A Pending JP2019147110A (en) 2018-02-27 2018-02-27 Method of treating contaminated water

Country Status (1)

Country Link
JP (1) JP2019147110A (en)

Similar Documents

Publication Publication Date Title
JP5669120B1 (en) Treatment method of contaminated water
Jang et al. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium
JP5734807B2 (en) Method for treating radioactive cesium and radioactive strontium-containing substances
Kozai et al. Sewage sludge ash contaminated with radiocesium: Solidification with alkaline-reacted metakaolinite (geopolymer) and Portland cement
Szajerski et al. Cesium retention and release from sulfur polymer concrete matrix under normal and accidental conditions
Dyer et al. The use of natural zeolites for radioactive waste treatment: studies on leaching from zeolite/cement composites
Kononenko et al. Immobilization of NPP evaporator bottom high salt-bearing liquid radioactive waste into struvite-based phosphate matrices
Li et al. Review on selection and experiment method of commonly studied simulated radionuclides in researches of nuclear waste solidification
JP5047400B1 (en) Method for producing radioactive waste incineration ash cement solidified body and solidified body thereof
RU2381580C1 (en) Method of stabilising highly saline high-activity wastes
JP2023510461A (en) Method for treating liquid tritium-containing radioactive waste
Vance et al. Geopolymers for nuclear waste immobilisation
RU2142173C1 (en) Method for solidifying iodine-containing radioactive wastes
JP2019147110A (en) Method of treating contaminated water
JP2017125785A (en) Method for decontaminating particles of material polluted by radioactive material
JP5879281B2 (en) Method for cleaning incinerated ash containing radioactive cesium
JP6347766B2 (en) Method for producing radioactive cesium-removing concrete product and method for removing radioactive cesium
JP2015158496A (en) Device for manufacturing cement solidified material of radioactive cesium-containing fly ash
Ichikawa et al. Ion Chromatographic Decontamination of ¹³⁷Cs-enriched Fly Ash Using Poly (vinyl alcohol)-bound Copper Ferrocyanide as Cs Adsorbent
JP3833294B2 (en) Solidification method of radioactive waste
JP5961977B2 (en) Method for producing solid cement of radioactive cesium-containing fly ash
Curi et al. In-column immobilization of Cs-saturated crystalline silicotitanates using phenolic resins
JP6104547B2 (en) Treatment method of waste ion exchange resin
Phillip et al. Evaluation of radium and caesium containment performance of palm oil fuel ash-supplemented cementitious backfill for borehole disposal: Kinetic investigations
Mishra et al. Inorganic particulates in removal of toxic heavy metal ions: rapid and efficient removal of Zn (II) from aqueous solutions by sodium titanate