JP2019142385A - Air flow controller, aircraft and air flow control method - Google Patents

Air flow controller, aircraft and air flow control method Download PDF

Info

Publication number
JP2019142385A
JP2019142385A JP2018029486A JP2018029486A JP2019142385A JP 2019142385 A JP2019142385 A JP 2019142385A JP 2018029486 A JP2018029486 A JP 2018029486A JP 2018029486 A JP2018029486 A JP 2018029486A JP 2019142385 A JP2019142385 A JP 2019142385A
Authority
JP
Japan
Prior art keywords
pressure gas
boundary layer
airflow control
sensor
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018029486A
Other languages
Japanese (ja)
Other versions
JP7012226B2 (en
Inventor
直子 徳川
Naoko Tokugawa
直子 徳川
康二 深潟
Koji Fukagata
康二 深潟
佑亮 近藤
Yusuke Kondo
佑亮 近藤
薫子 江藤
Shigeko Eto
薫子 江藤
詩歩 廣川
Shiho Hirokawa
詩歩 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Keio University
Original Assignee
Japan Aerospace Exploration Agency JAXA
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Keio University filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2018029486A priority Critical patent/JP7012226B2/en
Publication of JP2019142385A publication Critical patent/JP2019142385A/en
Application granted granted Critical
Publication of JP7012226B2 publication Critical patent/JP7012226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Abstract

To freely perform both of reduction of a pressure resistance and reduction of friction resistance, and perform air flow control therefor in a state of having no penalty substantially.SOLUTION: An air flow controller 4 comprises: a sensor 5 for detecting a state of a boundary layer on a machine body surface; a removal prevention device 7 which is arranged on the machine body surface, which is operated by high pressure gas, which applies a momentum to the boundary layer for controlling removal; a blowing device 8 which is arranged on the machine body surface, which blows the high pressure gas equally for reducing a turbulent flow frictional resistance; and a control system 9 for, according to a detection result by the sensor 5, switching between supply of the high pressure gas to the removal prevention device 7 and the supply of the high pressure gas to the blowing device 8.SELECTED DRAWING: Figure 3

Description

本発明は、航空機の機体表面上の境界層の気流制御装置及び気流制御方法、並びにそのような気流制御装置を備える航空機に関する。   The present invention relates to an airflow control device and airflow control method for a boundary layer on an aircraft body surface, and an aircraft including such an airflow control device.

航空機には一般的に、揚力依存抵抗、造波抵抗、有害抵抗が働き、このうち有害抵抗が干渉抵抗と形状抵抗に、更に形状抵抗は摩擦抵抗及び圧力抵抗に分類される、とされる。ただし、この分類は航空機全体を遠方から観察した場合の分類であり、機体の極近傍から観測した場合、航空機に航空機周りの流れが及ぼす力は、圧力と速度の場を通してのみである。従って、この意味から、航空機に働く抗力は、圧力抵抗と摩擦抵抗の二つに分類することができる。この圧力抵抗を、結果として生じる働きにより揚力依存抵抗、造波抵抗、干渉抵抗及びそれ以外の圧力抵抗に分類し、特別な役割を持たない圧力抵抗をのみを改めて「圧力抵抗」と呼称したのが文頭の分類である(非特許文献1参照)。   In general, lift-dependent resistance, wave-forming resistance, and harmful resistance act on aircraft, and harmful resistance is classified into interference resistance and shape resistance, and shape resistance is classified into friction resistance and pressure resistance. However, this classification is a classification when the entire aircraft is observed from a distance, and when observed from the very vicinity of the aircraft, the force exerted by the flow around the aircraft on the aircraft is only through pressure and velocity fields. Therefore, in this sense, the drag acting on the aircraft can be classified into two types, pressure resistance and friction resistance. This pressure resistance was classified into lift dependent resistance, wave resistance, interference resistance and other pressure resistance according to the resulting action, and only the pressure resistance that does not have a special role was called “pressure resistance”. Is the classification of sentence heads (see Non-Patent Document 1).

このうち圧力抵抗は、機体まわりの空気が剥れ、後方に渦を作り圧力が低下することによって機体を後方に引っ張ろうとする力で、物体の形状にのみ依存して変化する形状抵抗の一種である。機体まわりの流れが剥がれにくくすることができれば、圧力抵抗は小さくなる。一般的に、機体の気流に対する迎え角を大きくすると、機体まわりの空気が剥がれやすくなる。航空機にとって、このように機体まわり、特に主翼まわりの流れが大きく剥がれることは致命的である。なぜなら、大きく流れが剥がれる現象は、圧力抵抗が爆発的に増大するだけでなく揚力も低下するため、墜落に通じる失速と呼ばれる現象だからである。これを避けるためには、流れが剥がれにくいよう、vortex generator(特許文献1参照)と呼ばれるデバイスを機体表面上に配置し、境界層(後述)を強制的に乱流へ遷移させる方法がとられることが多い。機体表面に沿って、ジェットを吹出すことにより、表面付近の運動量を増加させる方法をとることもある(非特許文献2、非特許文献3参照)。流れが機体まわりから剥がれると、剥がれた位置より後流では、剥がれを補うために表面近傍に弱い逆流が生じる。この表面近傍の、境界層と呼ばれる領域の流れが順方向に大きな運動量を持っていれば、逆流は生じず流れも剥がれないからである。   Pressure resistance is a type of shape resistance that changes depending only on the shape of the object. is there. If the flow around the airframe can be made difficult to peel off, the pressure resistance becomes small. Generally, when the angle of attack with respect to the airflow of the aircraft is increased, the air around the aircraft is easily peeled off. For an aircraft, it is fatal that the flow around the fuselage, particularly around the main wing, is greatly separated. This is because the phenomenon in which the flow is largely separated is a phenomenon called stall that leads to a crash because not only the pressure resistance increases explosively but also the lift force decreases. In order to avoid this, a method called a vortex generator (refer to Patent Document 1) is arranged on the airframe surface so that the flow is not easily separated, and the boundary layer (described later) is forced to transition to turbulent flow. There are many cases. A method of increasing the momentum in the vicinity of the surface by blowing a jet along the surface of the airframe may be used (see Non-Patent Document 2 and Non-Patent Document 3). When the flow is peeled off from the periphery of the aircraft, a weak backflow is generated in the vicinity of the surface in the wake after the peeled position in order to compensate for the peeling. This is because if the flow in a region called the boundary layer near the surface has a large momentum in the forward direction, no backflow occurs and the flow does not peel off.

一方、摩擦抵抗は、機体表面上に発達する境界層と呼ばれる領域において、粘性の影響により機体表面の流れを流れにくくする力で、境界層が層流と呼ばれる状態では小さく、乱流状態と呼ばれる状態では大きい。従って、境界層が層流状態から乱流状態へ遷移する過程を遅らせることができれば、摩擦抵抗は小さくなる。自然層流翼設計(特許文献2、特許文献3、非特許文献4、非特許文献5などを参照)を行い遷移しにくい形状を獲得するのが最もロバストな方法であるが、DRE(非特許文献6)やDBDプラズマアクチュエータ(非特許文献7)、一様吸い込み(非特許文献8)などのデバイスを用いる層流制御(いわゆる境界層制御)もある。遷移を遅らせる以外にも、境界層が乱流状態を維持したままでも、何らかの制御を加えることで摩擦抵抗の低減が可能なことが知られている。乱流境界層の摩擦抵抗を低減する技術としてよく知られているのは、リブレット(非特許文献9)や一様吹き出し(非特許文献10、非特許文献11)などの乱流制御技術である。   On the other hand, frictional resistance is a force that makes the flow of the airframe surface difficult to flow due to the influence of viscosity in an area called the boundary layer that develops on the airframe surface, and is small when the boundary layer is called laminar flow, and is called a turbulent state Big in condition. Therefore, if the process of transition of the boundary layer from the laminar flow state to the turbulent flow state can be delayed, the frictional resistance becomes small. The most robust method is to perform natural laminar flow blade design (see Patent Document 2, Patent Document 3, Non-Patent Document 4, Non-Patent Document 5, etc.) to obtain a shape that is difficult to transition, but DRE (Non-Patent Document) There is also laminar flow control (so-called boundary layer control) using devices such as Document 6), DBD plasma actuator (Non-patent Document 7), uniform suction (Non-Patent Document 8). In addition to delaying the transition, it is known that the frictional resistance can be reduced by applying some control even when the boundary layer maintains the turbulent state. Well-known techniques for reducing the frictional resistance of the turbulent boundary layer are turbulent flow control techniques such as riblets (Non-patent Document 9) and uniform blowout (Non-patent Documents 10 and 11). .

米国特許第2740596号公報U.S. Pat. No. 2,740,596 特許第5747343号号公報Japanese Patent No. 5747343 特開2017−222188号公報JP 2017-222188 A

山崎渉,松島紀佐,中橋和博,"CFDでの抵抗要素分解手法の検証",ながれ, 24,(2005), pp. 525-533.Wataru Yamazaki, Kisa Matsushima, Kazuhiro Nakahashi, "Verification of resistive element decomposition method in CFD", Nagare, 24, (2005), pp. 525-533. D. C. McCormick,"Boundary Layer Separation Control with Directed Synthetic Jets",(2000),AIAA Paper 2000-0519.D. C. McCormick, “Boundary Layer Separation Control with Directed Synthetic Jets” (2000), AIAA Paper 2000-0519. Jesse Little,Keisuke Takashima, Munetake Nishihara, Igor Adamovich and Mo Samimy,"Separation Control with Nanosecond-Pulse-Driven Dielectric Barrier Discharge Plasma Actuators",AIAA JOURNAL,50,(2012),pp. 350-365.Jesse Little, Keisuke Takashima, Munetake Nishihara, Igor Adamovich and Mo Samimy, "Separation Control with Nanosecond-Pulse-Driven Dielectric Barrier Discharge Plasma Actuators", AIAA JOURNAL, 50, (2012), pp. 350-365. Hiroaki Ishikawa, Yoshine Ueda, Naoko Tokugawa , Michelle N. Lynde, Richard L. Campbell and Meelan M. Choudhari,"Natural Laminar Flow Wing Design for a Low-Boom Supersonic Aircraft",(2017),AIAA Paper 2017-1860.Hiroaki Ishikawa, Yoshine Ueda, Naoko Tokugawa, Michelle N. Lynde, Richard L. Campbell and Meelan M. Choudhari, "Natural Laminar Flow Wing Design for a Low-Boom Supersonic Aircraft", (2017), AIAA Paper 2017-1860. 牛山 剣吾,石川 敬掲,徳川 直子,小池 寿宜,"小型超音速旅客機の自然層流翼設計",(2016),JAXA-RR-16-001.Ken Ushiyama, Takaki Ishikawa, Naoko Tokugawa, Toshiyoshi Koike, “Natural Laminar Airfoil Design of Small Supersonic Airliner” (2016), JAXA-RR-16-001. Andrew Carpenter, William S. Saric, and Helen L. Reed ,"Laminar Flow Control on a Swept Wing with Distributed Roughness",(2008),AIAA Paper 2008-7335.Andrew Carpenter, William S. Saric, and Helen L. Reed, "Laminar Flow Control on a Swept Wing with Distributed Roughness", (2008), AIAA Paper 2008-7335. 郭東潤, 上田良稲, 野口正芳,"プラズマアクチュエータによる大きな後退角を持つ翼の境界層制御",日本航空宇宙学会論文集,63,(2015),pp. 233-240.Jun Guo, Ryoin Ueda, Masayoshi Noguchi, “Boundary Layer Control of Wings with Large Retraction Angle by Plasma Actuator”, Journal of Japan Aerospace Society, 63, (2015), pp. 233-240. Ronald D. Joslin,"Overview of Laminar Flow Control",(1998),NASA/TP-1998-208705.Ronald D. Joslin, "Overview of Laminar Flow Control" (1998), NASA / TP-1998-208705. M. J. Walsh,"Turbulent Boundary Layer Drag Reduction Using Riblets",(1998),AIAA Paper 82-0169.M. J. Walsh, “Turbulent Boundary Layer Drag Reduction Using Riblets”, (1998), AIAA Paper 82-0169. Kametani, K., Fukagata, K., "Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction," J. Fluid Mech., 681, (2011), pp. 154-172.Kametani, K., Fukagata, K., "Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction," J. Fluid Mech., 681, (2011), pp. 154-172. Noguchi, D., Fukagata, K., Tokugawa, N., "Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing," J. Fluid Sci. Technol. 11, JFST0004 (2016).Noguchi, D., Fukagata, K., Tokugawa, N., "Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing," J. Fluid Sci. Technol. 11, JFST0004 (2016). Y. Ito, K. Yamamoto, K. Kusunose, S. Koike, K. Nakakita, M. Murayama and K. Tanaka, "Effect of Vortex Generators on Transonic Swept Wings", Journal of Aircraft. 53, (2016), pp.1890-1904.Y. Ito, K. Yamamoto, K. Kusunose, S. Koike, K. Nakakita, M. Murayama and K. Tanaka, "Effect of Vortex Generators on Transonic Swept Wings", Journal of Aircraft. 53, (2016), pp .1890-1904. K. Eto, Y. Kondo, K. Fukagata and N. Tokugawa, "Wind-Tunnel Experiment of a Friction Drag Reduction on a Clark-Y Airfoil Using Uniform Blowing", Proceedings of 9th JSME-KSME Thermal and Fluids Engineering Conference, (2017), TFEC9-1345.K. Eto, Y. Kondo, K. Fukagata and N. Tokugawa, "Wind-Tunnel Experiment of a Friction Drag Reduction on a Clark-Y Airfoil Using Uniform Blowing", Proceedings of 9th JSME-KSME Thermal and Fluids Engineering Conference, ( 2017), TFEC9-1345.

ところで、上記した二つの抵抗、すなわち圧力抵抗と摩擦抵抗を同時に低減するのは困難である。なぜなら、失速(剥離)抑制、すなわち圧力抵抗を低減するためには境界層は乱流状態であるべきであるし、摩擦抵抗を低減するためには境界層は乱流ではなく層流であるべきだからである。   By the way, it is difficult to reduce the two resistances mentioned above, that is, the pressure resistance and the frictional resistance at the same time. Because the boundary layer should be turbulent in order to suppress stall (separation), that is, to reduce pressure resistance, and to reduce frictional resistance, the boundary layer should be laminar rather than turbulent That's why.

以上のような事情に鑑み、本発明の目的は、圧力抵抗低減と摩擦抵抗低減の両方を自在に行うことができる気流制御装置、航空機及び気流制御方法を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide an airflow control device, an aircraft, and an airflow control method capable of freely performing both pressure resistance reduction and frictional resistance reduction.

本発明の更なる目的は、そのための気流制御を実質的にペナルティレスで行うこと、つまりエネルギーをほぼ必要とせずに気流制御を行うことができる気流制御装置、航空機及び気流制御方法を提供することにある。   A further object of the present invention is to provide an air flow control device, an aircraft, and an air flow control method capable of performing air flow control substantially without penalty, that is, performing air flow control with substantially no energy required. It is in.

上記目的を達成するため、本発明の一形態に係る気流制御装置は、機体表面上の境界層の状態を検知するセンサと、前記機体表面に配置され、高圧の気体によって動作し、境界層に運動量を与えることによって剥離を制御する剥離防止デバイスと、前記機体表面に配置され、前記高圧の気体を一様に吹き出すことによって乱流摩擦抵抗を低減する吹き出しデバイスと、前記センサによる検知結果に応じて、前記高圧の気体を前記剥離防止デバイスに供給するか、前記吹き出しデバイスに供給するかを切り替えるコントロールシステムとを具備する。   In order to achieve the above object, an airflow control device according to an aspect of the present invention includes a sensor that detects a state of a boundary layer on a body surface, and is disposed on the surface of the body and operates with a high-pressure gas. Depending on the detection result by the sensor, the peeling prevention device that controls the peeling by giving momentum, the blowing device that is arranged on the surface of the body and that reduces the turbulent frictional resistance by blowing out the high-pressure gas uniformly. And a control system for switching whether to supply the high-pressure gas to the delamination prevention device or to the blowing device.

本発明では、境界層の状態に応じて剥離防止デバイスの動作か、吹き出しデバイスによる高圧の気体の吹き出しかを切り替えているので、圧力抵抗低減と摩擦抵抗低減の両方を自在に行うことができる。
また、剥離防止デバイス及び吹き出しデバイスは高圧の気体で駆動するように構成されており、航空機では高圧の気体を特別に発生させる必要がないので、気流制御を実質的にペナルティレスで行うこと、つまりエネルギーをほぼ必要とせずに気流制御を行うことができる。
In the present invention, since the operation of the peeling prevention device or the high-pressure gas blowing by the blowing device is switched according to the state of the boundary layer, both the pressure resistance reduction and the frictional resistance reduction can be performed freely.
In addition, the peeling prevention device and the blowing device are configured to be driven by high-pressure gas, and it is not necessary to generate high-pressure gas specially in an aircraft. Airflow control can be performed with almost no energy required.

本発明の一形態に係る気流制御装置は、前記高圧の気体を前記機体表面より吸い込む吸い込みデバイスを更に具備してもよい。これにより、より簡単な構成で上記の駆動に必要な高圧の気体を得ることができる。   The airflow control apparatus according to an aspect of the present invention may further include a suction device that sucks the high-pressure gas from the body surface. Thereby, the high-pressure gas required for the above driving can be obtained with a simpler configuration.

本発明の一形態に係る気流制御装置では、前記吸い込みデバイスは、前記機体表面上の気体の高圧領域に位置するように配置され、前記剥離防止デバイスは、前記機体表面上の気体の加速領域に位置するように、又は前記機体表面上の気体の減速開始領域に位置するように配置され、前記吹き出しデバイスは、前記機体表面上の気体の低圧かつ境界層が発達する領域に位置するように配置されていてもよい。これにより、吸い込み側では気流の乱れを生じることなく、かつ、圧力抵抗低減と摩擦抵抗低減の両方を自在に効果的に行うことができる。   In the airflow control device according to an aspect of the present invention, the suction device is disposed so as to be positioned in a high pressure region of the gas on the surface of the airframe, and the separation preventing device is disposed in an acceleration region of the gas on the surface of the airframe. Positioned to be located or located in a gas deceleration start region on the airframe surface, and the blowing device is located in a gas low pressure and boundary layer developing region on the airframe surface May be. Thereby, it is possible to freely and effectively perform both the pressure resistance reduction and the frictional resistance reduction without causing the turbulence of the airflow on the suction side.

本発明の一形態に係る気流制御装置は、前記コントロールシステムは、電磁弁と、前記センサによる検知結果を入力し、前記検知結果に応じて前記電磁弁の切り替えをコントロールするコントローラとを有し、前記吸い込みデバイスと前記電磁弁の入力側とを接続する第1の高圧気体流路と、前記電磁弁の第1の出力側と前記剥離防止デバイスとを接続する第2の高圧気体流路と、前記電磁弁の第2の出力側と前記吹き出しデバイスとを接続する第3の高圧気体流路とを更に具備してもよい。これにより、制御装置を簡単な構成で実現できる。   In the airflow control device according to an aspect of the present invention, the control system includes an electromagnetic valve, and a controller that inputs a detection result by the sensor and controls switching of the electromagnetic valve according to the detection result. A first high pressure gas flow path connecting the suction device and the input side of the solenoid valve; a second high pressure gas flow path connecting the first output side of the solenoid valve and the delamination prevention device; You may further comprise the 3rd high pressure gas flow path which connects the 2nd output side of the said solenoid valve, and the said blowing device. Thereby, the control device can be realized with a simple configuration.

本発明の一形態に係る気流制御装置では、前記センサは、剥離しそうであるか否か及び層流か乱流かを検知可能であり、前記コントローラは、前記センサが剥離しそうであることを検知したとき、前記剥離防止デバイスに前記高圧の気体を送るように前記電磁弁を切り替え、前記センサが乱流を検知したとき、前記吹き出しデバイスに前記高圧の気体を送るように前記電磁弁を切り替えてもよい。これにより、センサを簡単な構成とでき、かつ、圧力抵抗低減と摩擦抵抗低減の両方を自在に効果的に行うことができる。   In the airflow control device according to an aspect of the present invention, the sensor can detect whether or not the sensor is likely to separate and whether it is a laminar flow or a turbulent flow, and the controller detects that the sensor is likely to separate. The solenoid valve is switched to send the high-pressure gas to the peeling prevention device, and when the sensor detects turbulence, the solenoid valve is switched to send the high-pressure gas to the blowing device. Also good. As a result, the sensor can have a simple configuration, and both pressure resistance reduction and frictional resistance reduction can be performed effectively and freely.

本発明の一形態に係る航空機は、上記構成の気流制御装置を備える。
本発明の一形態に係る気流制御方法は、機体表面上の境界層の状態を検知し、前記検知結果に応じて、高圧の気体に由来する運動量を境界層に与えることによって前記機体表面の剥離を制御するか、前記高圧の気体を一様に吹き出すことによって乱流摩擦抵抗を低減するかを切り替える。
An aircraft according to an aspect of the present invention includes the airflow control device configured as described above.
An airflow control method according to an aspect of the present invention detects a state of a boundary layer on a surface of an airframe, and applies a momentum derived from a high-pressure gas to the boundary layer according to the detection result, thereby peeling the surface of the airframe. Or whether to reduce the turbulent frictional resistance by blowing out the high-pressure gas uniformly.

本発明により、圧力抵抗低減と摩擦抵抗低減の両方を自在に行うことができ、またそのための気流制御を実質的にペナルティレスで行うこと、つまりエネルギーをほぼ必要とせずに気流制御を行うことができる。   According to the present invention, both pressure resistance reduction and frictional resistance reduction can be performed freely, and airflow control therefor can be performed substantially without penalty, that is, airflow control can be performed with almost no energy required. it can.

本発明の一実施形態に係る航空機を示す概略的な斜視図である。1 is a schematic perspective view showing an aircraft according to an embodiment of the present invention. 航空機の翼の各部を説明するための図であり、翼の縦断面の表面だけを示している。It is a figure for demonstrating each part of the wing | blade of an aircraft, and has shown only the surface of the longitudinal cross-section of a wing | blade. 本発明の一実施形態に係る航空機の翼の概略的な縦断面図である。1 is a schematic longitudinal sectional view of an aircraft wing according to an embodiment of the present invention. 図3に示した吸い込みデバイスの立体図である。FIG. 4 is a three-dimensional view of the suction device shown in FIG. 3. 図3に示した吸い込みデバイスの側面図である。FIG. 4 is a side view of the suction device shown in FIG. 3. 図3に示した剥離防止デバイスの側面図である。It is a side view of the peeling prevention device shown in FIG. 他の形態に係る剥離防止デバイスの側面図である。It is a side view of the peeling prevention device which concerns on another form. 図3に示した吹き出しデバイスの立体図である。FIG. 4 is a three-dimensional view of the balloon device shown in FIG. 3. 図3に示した吹き出しデバイスの側面図である。FIG. 4 is a side view of the blowing device shown in FIG. 3. 本発明の一実施形態に係る剥離防止プロセスを説明するための図である。It is a figure for demonstrating the peeling prevention process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る剥離防止プロセスを説明するための図である。It is a figure for demonstrating the peeling prevention process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る剥離防止プロセスを説明するための図である。It is a figure for demonstrating the peeling prevention process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る剥離防止プロセスを説明するための図である。It is a figure for demonstrating the peeling prevention process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る剥離防止プロセスを説明するための図である。It is a figure for demonstrating the peeling prevention process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る剥離防止プロセスを説明するための図である。It is a figure for demonstrating the peeling prevention process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乱流摩擦抵抗低減プロセスを説明するための図である。It is a figure for demonstrating the turbulent frictional resistance reduction process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乱流摩擦抵抗低減プロセスを説明するための図である。It is a figure for demonstrating the turbulent frictional resistance reduction process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乱流摩擦抵抗低減プロセスを説明するための図である。It is a figure for demonstrating the turbulent frictional resistance reduction process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乱流摩擦抵抗低減プロセスを説明するための図である。It is a figure for demonstrating the turbulent frictional resistance reduction process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乱流摩擦抵抗低減プロセスを説明するための図である。It is a figure for demonstrating the turbulent frictional resistance reduction process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乱流摩擦抵抗低減プロセスを説明するための図である。It is a figure for demonstrating the turbulent frictional resistance reduction process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る制御例を説明するタイミングチャートである。It is a timing chart explaining the example of control concerning one embodiment of the present invention. 本発明に係る剥離防止の効果を確認するために行った実験結果を示すグラフである。It is a graph which shows the experimental result performed in order to confirm the effect of peeling prevention which concerns on this invention. 本発明に係る乱流摩擦抵抗低減の効果を確認するために行った実験結果を示すグラフである。It is a graph which shows the experimental result done in order to confirm the effect of the turbulent frictional resistance reduction which concerns on this invention. 本発明に係る乱流摩擦抵抗低減の効果を確認するために参考として行った実験結果を示すグラフである。It is a graph which shows the experimental result done as a reference in order to confirm the effect of turbulent frictional resistance reduction which concerns on this invention.

以下、図面を参照しながら、本発明の実施形態を説明する。
図1は、本発明の一実施形態に係る航空機を示す概略的な斜視図である。
航空機1は、胴体2に翼3などを有する。
図2は、航空機1の翼3の各部を説明するための図であり、翼3の縦断面の表面だけを示している。図3は、本発明の一実施形態に係る航空機1の翼3の概略的な縦断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view showing an aircraft according to an embodiment of the present invention.
The aircraft 1 has a wing 3 and the like on a fuselage 2.
FIG. 2 is a view for explaining each part of the wing 3 of the aircraft 1, and shows only the surface of the longitudinal section of the wing 3. FIG. 3 is a schematic longitudinal sectional view of the wing 3 of the aircraft 1 according to the embodiment of the present invention.

図2において、符号11は前縁、12は後縁を示している。前縁11と後縁12とを結ぶ線分が翼弦線13であり、これより上側がこの翼3の上面14、下側が下面15である。翼弦線13の長さが翼弦長16であり、また気流の方向に対して翼弦線13がなす角度が迎角17である。符号18はよどみ点、19は上面クレスト、20は下面クレストである。よどみ点18は気流のおかれた二次元要素の表面で流速がゼロとなる位置であり、粘性のある実際の流れにおいては前縁11の近傍に位置する。クレストとは、翼3上でz座標が最大或いは最小となる位置であり、最大位置を上面クレスト19、最小位置を下面クレスト20と呼ぶ。   In FIG. 2, reference numeral 11 denotes a leading edge, and 12 denotes a trailing edge. A line segment connecting the leading edge 11 and the trailing edge 12 is a chord line 13, the upper side is an upper surface 14 of the wing 3, and the lower side is a lower surface 15. The length of the chord line 13 is the chord length 16, and the angle formed by the chord line 13 with respect to the direction of the airflow is the angle of attack 17. Reference numeral 18 denotes a stagnation point, 19 denotes an upper surface crest, and 20 denotes a lower surface crest. The stagnation point 18 is a position where the flow velocity becomes zero on the surface of the two-dimensional element on which the airflow is placed, and is located in the vicinity of the leading edge 11 in a viscous actual flow. The crest is a position where the z coordinate is maximum or minimum on the wing 3, and the maximum position is called an upper surface crest 19 and the minimum position is called a lower surface crest 20.

図3に示すように、航空機1は、気流制御装置4を有する。
気流制御装置4は、センサ5と、吸い込みデバイス6と、剥離防止デバイス7と、吹き出しデバイス8と、コントロールシステム9とを有し、これらは主として翼3に配置される。
As shown in FIG. 3, the aircraft 1 has an airflow control device 4.
The airflow control device 4 includes a sensor 5, a suction device 6, a peeling prevention device 7, a blowing device 8, and a control system 9, which are mainly disposed on the wing 3.

センサ5は、航空機1の翼3表面上の境界層の状態、典型的には剥離しそうであるか否か、つまり剥がれそうなのか、あるいは剥がれる心配がないのか、及び層流か乱流かを検知する。センサ5は、典型的には、翼3の上面14にロバストに配置される。センサ5は、例えば、機体の表面形状を変え付加抵抗とならない、ホットフィルムセンサー、プレストン管、スタントン管、フローティングエレメント等、あるいは既存失速警報装置がそれにあたる。機体形状(例えば翼型)、すなわち圧力勾配、及び大きさ、また剥離防止デバイス7、もしくは吹き出しデバイス8の位置に依って、センサ5は1つだけでなく2つ以上設置してもよい。   The sensor 5 determines the state of the boundary layer on the surface of the wing 3 of the aircraft 1, typically whether it is likely to delaminate, that is, whether it is likely to delaminate or not to be delaminated, and whether it is laminar or turbulent Detect. The sensor 5 is typically arranged robustly on the upper surface 14 of the wing 3. The sensor 5 may be, for example, a hot film sensor, a Preston tube, a Stanton tube, a floating element, or an existing stall alarm device that changes the surface shape of the body and does not become an additional resistance. Depending on the airframe shape (for example, airfoil), that is, the pressure gradient and size, and the position of the peeling prevention device 7 or the blowing device 8, not only one sensor 5 but two or more sensors 5 may be installed.

吸い込みデバイス6は、高圧の気体を翼3表面より境界層を一様に吸い込む。吸い込みデバイス6は、典型的には、機体表面上の高圧部、翼3であれば前縁11から下面15にかけての領域、例えば翼3のよどみ点18ではなくよどみ点18の近くに配置される。このような位置に吸い込みデバイス6を配置することにより、機体表面上の高圧部の境界層遷移が遅延し、下面15の摩擦抵抗低減が期待される。つまり、吸い込みデバイス6とは、剥離防止デバイス7及び吹き出しデバイス8を駆動する高圧の気体を捕捉することを目的とすると共に、境界層を吸込むことによりその発達を抑制し境界層遷移を遅延させ摩擦抵抗を低減するものである。   The suction device 6 uniformly sucks high-pressure gas from the surface of the blade 3 into the boundary layer. The suction device 6 is typically arranged in the high pressure part on the airframe surface, in the case of the wing 3, the region from the leading edge 11 to the lower surface 15, for example near the stagnation point 18 instead of the stagnation point 18 of the wing 3. . By arranging the suction device 6 at such a position, the boundary layer transition of the high-pressure portion on the body surface is delayed, and a reduction in the frictional resistance of the lower surface 15 is expected. That is, the suction device 6 is intended to capture the high-pressure gas that drives the delamination prevention device 7 and the blowing device 8, and suppresses its development by sucking the boundary layer, thereby delaying the boundary layer transition and causing friction. The resistance is reduced.

剥離防止デバイス7は、機体表面に配置され、吸い込みデバイス6により吸い込まれた高圧の気体によって動作によって動作し、境界層に運動量を与えることによって剥離を制御する。すなわち、剥離防止デバイス7とは、境界層流れの剥離を防止することを目的として、壁面近くの運動量を増加させるデバイスであり、典型的には、機体表面上の気体の加速領域あるいは減速開始位置、翼3であれば上面14上に配置される。   The delamination prevention device 7 is arranged on the surface of the airframe, operates by the high-pressure gas sucked by the suction device 6, and controls the delamination by giving momentum to the boundary layer. That is, the delamination prevention device 7 is a device that increases the momentum near the wall surface for the purpose of preventing separation of the boundary layer flow. Typically, the gas acceleration region or the deceleration start position on the airframe surface is used. In the case of the wing 3, it is disposed on the upper surface 14.

吹き出しデバイス8は、機体表面の乱流が通過する領域に配置され、吸い込みデバイス6により吸い込まれた高圧の気体を一様に吹き出すことによって乱流摩擦抵抗を低減する。すなわち、吹き出しデバイス8とは、機体表面上に発達する乱流境界層の摩擦抵抗を低減することを目的とするデバイスであり、典型的には、機体表面上の低圧かつ境界層が発達した部分、翼3であれば上面14の後縁12近傍の領域に位置するように配置される。   The blowing device 8 is disposed in a region where turbulent flow on the airframe surface passes, and reduces the turbulent frictional resistance by blowing out the high-pressure gas sucked in by the sucking device 6 uniformly. In other words, the blowing device 8 is a device intended to reduce the frictional resistance of the turbulent boundary layer that develops on the airframe surface. Typically, the low pressure and the boundary layer developed portion on the airframe surface. In the case of the wing 3, the wing 3 is disposed so as to be positioned in the vicinity of the rear edge 12 of the upper surface 14.

コントロールシステム9は、センサ5による検知結果に応じて、吸い込みデバイス6により吸い込まれた高圧の気体を剥離防止デバイス7に供給するか、吹き出しデバイス8に供給するかを切り替える。コントロールシステム9は、典型的には、電磁弁91と、センサ5による検知結果を入力し、検知結果に応じて電磁弁91の切り替えをコントロールするコントローラ92とを有する。   The control system 9 switches between supplying the high-pressure gas sucked by the suction device 6 to the peeling prevention device 7 or supplying the blowing device 8 according to the detection result by the sensor 5. The control system 9 typically includes an electromagnetic valve 91 and a controller 92 that inputs a detection result from the sensor 5 and controls switching of the electromagnetic valve 91 according to the detection result.

電磁弁91は、制御流体の整流を行うことを目的とし、典型的には、翼3内に配置される。なお、吸い込みデバイス6、剥離防止デバイス7及び吹き出しデバイス8のいずれか1つ以上のデバイスが1つ以上設置されている場合、電磁弁91も2つ以上設置すればよい。   The electromagnetic valve 91 is intended to rectify the control fluid, and is typically disposed in the blade 3. In addition, when one or more of any one of the suction device 6, the peeling prevention device 7, and the blowing device 8 are installed, two or more electromagnetic valves 91 may be installed.

コントローラ92は、翼3内であってもよく、また胴体2内などに配置されてもよい。コントローラ92は、例えば航空機1の他のコントロールシステムによって併用してもよい。   The controller 92 may be in the wing 3 or in the fuselage 2 or the like. The controller 92 may be used in combination by another control system of the aircraft 1, for example.

吸い込みデバイス6と電磁弁91の入力側91aとは、第1の高圧気体流路である配管93を介して接続されている。電磁弁91の第1の出力側91bと剥離防止デバイス7とは、第2の高圧気体流路である配管94を介して接続されている。電磁弁91の第2の出力側91cと吹き出しデバイス8とは、第3の高圧気体流路である配管95を介して接続されている。配管93、94、95は圧力損失を最小限に低減させるため、可能な限り太くすると共に、曲がりや径の変化を最小限にすることが好ましい。また、吸い込みデバイス6、剥離防止デバイス7及び吹き出しデバイス8のいずれか1つ以上のデバイスが1つ以上設置されている場合、電磁弁91も2つ以上設置されることから、配管をチャンバの位置や種類によって、最適な接続方法を選定し接続すればよい。   The suction device 6 and the input side 91a of the electromagnetic valve 91 are connected via a pipe 93 that is a first high-pressure gas flow path. The first output side 91b of the electromagnetic valve 91 and the separation preventing device 7 are connected via a pipe 94 that is a second high-pressure gas flow path. The second output side 91c of the electromagnetic valve 91 and the blowing device 8 are connected via a pipe 95 that is a third high-pressure gas flow path. In order to reduce the pressure loss to the minimum, the pipes 93, 94, and 95 are preferably made as thick as possible and bend and change in diameter to a minimum. In addition, when one or more of any one of the suction device 6, the peeling prevention device 7, and the blowing device 8 are installed, two or more electromagnetic valves 91 are also installed. Select the optimal connection method depending on the type and connection.

コントローラ92は、センサ5が剥離しそうであることを検知したとき、剥離防止デバイス7に高圧の気体を送るように電磁弁91を切り替え、センサ5が乱流を検知したとき、吹き出しデバイス8に高圧の気体を送るように電磁弁91を切り替える。   When the controller 92 detects that the sensor 5 is about to peel off, the controller 92 switches the electromagnetic valve 91 so as to send a high-pressure gas to the peeling prevention device 7, and when the sensor 5 detects turbulent flow, the controller 92 applies a high pressure to the blowing device 8. The solenoid valve 91 is switched so as to send the gas.

〈吸い込みデバイス6の具体例〉
図4Aは吸い込みデバイス6の立体図であり、図4Bはその吸い込みデバイス6の側面図である。
吸い込みデバイス6は、例えば機体表面側101に多孔壁61を有し、機体内側に電磁弁91へ続く配管93を有する以外は密閉されたチャンバ62を有する。吸い込みデバイス6は、機体表面側101の高圧の気体の流れを取り込み、電磁弁91を介して剥離防止デバイス7又は吹き出しデバイス8へ高圧の気体を供給する役割を果たす。
<Specific example of suction device 6>
FIG. 4A is a three-dimensional view of the suction device 6, and FIG. 4B is a side view of the suction device 6.
The suction device 6 has, for example, a chamber 62 that is sealed except that it has a porous wall 61 on the airframe surface side 101 and a pipe 93 that leads to the electromagnetic valve 91 inside the airframe. The suction device 6 plays a role of taking in a flow of high-pressure gas on the body surface side 101 and supplying high-pressure gas to the separation preventing device 7 or the blowing device 8 through the electromagnetic valve 91.

なお、機体形状(例えば翼型)、すなわち圧力勾配、及び大きさに依って、吸い込みチャンバは1つだけでなく2つ以上設置してもよい。
また、多孔壁61は、流れをできる限り乱さないよう孔径を小さくすることが好ましい。また、圧力損失を最小限にするため、少なくとも孔近傍の壁厚をできるだけ薄くすることが好ましい。
Depending on the shape of the fuselage (for example, airfoil), that is, the pressure gradient and size, not only one suction chamber but two or more suction chambers may be installed.
Moreover, it is preferable that the porous wall 61 has a small pore diameter so as not to disturb the flow as much as possible. In order to minimize the pressure loss, it is preferable to make at least the wall thickness near the hole as thin as possible.

〈剥離防止デバイス7の具体例〉
図5Aは剥離防止デバイス7の側面図である。
剥離防止デバイス7は、例えば図5Aに示す接線方向吹き出しデバイスを用いることができる。この剥離防止デバイス7は、配管94が接続された密閉チャンバ71を有する。密閉チャンバ71は、翼3内部から機体表面側101に対して接線方向に高圧の気体の流れを吹き出す吹き出し口72を有する。
<Specific example of peeling prevention device 7>
FIG. 5A is a side view of the peeling prevention device 7.
As the peeling prevention device 7, for example, a tangential direction blowing device shown in FIG. 5A can be used. This peeling prevention device 7 has a sealed chamber 71 to which a pipe 94 is connected. The sealed chamber 71 has a blowout port 72 that blows out a high-pressure gas flow in a tangential direction from the inside of the blade 3 to the body surface side 101.

図5Bは剥離防止デバイス7の他の形態を示す側面図である。
図5Bに示すように、剥離防止デバイス7は、vortex generator状突起型デバイスを用いることもできる。この剥離防止デバイス7は、配管94が接続された密閉チャンバ73を有する。密閉チャンバ73の先端は多孔壁74が設けられ、その多孔壁74には機体表面側101に突起可能で十分強い強度と復元力を有する弾性体膜75が取り付けられている。配管94から密閉チャンバ73に高圧の気体が供給されると、弾性体膜75が機体表面側101から突出する。この弾性体膜75による突起が境界層中に突出することにより境界層を強制的に乱流に遷移させて壁面近傍の低運動量流と壁面から離れた高運動量流を混合させる。
FIG. 5B is a side view showing another form of the peeling preventing device 7.
As shown in FIG. 5B, the peeling prevention device 7 may be a vortex generator-like protruding device. This peeling prevention device 7 has a sealed chamber 73 to which a pipe 94 is connected. A porous wall 74 is provided at the tip of the sealed chamber 73, and an elastic film 75 that can protrude from the body surface side 101 and has a sufficiently strong strength and restoring force is attached to the porous wall 74. When high-pressure gas is supplied from the pipe 94 to the sealed chamber 73, the elastic film 75 protrudes from the body surface side 101. The protrusion by the elastic film 75 protrudes into the boundary layer, so that the boundary layer is forced to transition to turbulent flow, and the low momentum flow near the wall surface and the high momentum flow away from the wall surface are mixed.

なお、機体形状(例えば翼型)、すなわち圧力勾配、及び大きさに依って、剥離防止デバイス7は1つだけでなく2つ以上設置してもよい。   Depending on the shape of the fuselage (for example, the wing shape), that is, the pressure gradient and the size, not only one peeling prevention device 7 but also two or more may be installed.

〈吹き出しデバイス8の具体例〉
図6Aは吹き出しデバイス8の立体図であり、図6Bはその吹き出しデバイス8の側面図である。
吹き出しデバイス8は、例えば機体表面側101に多孔壁81を有し、翼3内部に機体表面部及び電磁弁91から続く配管95以外は密閉されたチャンバ82を有する。
<Specific example of the balloon device 8>
6A is a three-dimensional view of the balloon device 8, and FIG. 6B is a side view of the balloon device 8.
The blowing device 8 has, for example, a porous wall 81 on the airframe surface side 101, and a sealed chamber 82 other than the airframe surface portion and the pipe 95 continuing from the electromagnetic valve 91 inside the wing 3.

吹き出しデバイス8は、電磁弁91を介して流入する吸い込みデバイス6からの高圧の気体の流れをチャンバ82の外側の低圧な流れに向かって一様に、かつ機体表面側101に対して法線方向に吹出す役割を果たす。   The blowing device 8 is configured so that the flow of high-pressure gas from the suction device 6 flowing in via the electromagnetic valve 91 is uniform toward the low-pressure flow outside the chamber 82 and is normal to the body surface side 101. Play a role to blow out.

なお、吹き出しデバイス8は、機体形状(例えば翼型)、すなわち圧力勾配、及び大きさに依って、1つだけでなく2つ以上設置してもよい。
また、多孔壁81については、多孔壁61と同様に、流れをできる限り乱さないよう孔径を小さくすることが好ましい。また、圧力損失を最小限にするため、少なくとも孔近傍の壁厚をできるだけ薄くすることが好ましい。
Depending on the shape of the fuselage (for example, a wing shape), that is, the pressure gradient and the size, one or more blowing devices 8 may be installed.
Further, as with the porous wall 61, it is preferable that the pore diameter of the porous wall 81 is made small so as not to disturb the flow as much as possible. In order to minimize the pressure loss, it is preferable to make at least the wall thickness near the hole as thin as possible.

〈コントロールシステム9の具体例〉
図7A〜Fは剥離防止プロセスを説明するための図であり、図8A〜Fは乱流摩擦抵抗低減プロセスを説明するための図である。図9は制御例を説明するタイミングチャートである。
コントローラ92は周期的にセンサ5からの検知信号を受けている(図9(a))。
<Specific example of control system 9>
7A to 7F are diagrams for explaining a separation preventing process, and FIGS. 8A to 8F are diagrams for explaining a turbulent frictional resistance reduction process. FIG. 9 is a timing chart for explaining a control example.
The controller 92 periodically receives a detection signal from the sensor 5 (FIG. 9A).

コントローラ92はセンサ5からの検知信号が第1のレベルL1を超えた場合には(例えば図9(a)(i))、境界層が剥離している、あるいは剥離の危険性があるとみなす。図7Aは境界層が剥離している、あるいは剥離の危険性がある状態を示している(図7A(i)で示す領域)。   When the detection signal from the sensor 5 exceeds the first level L1 (for example, FIGS. 9A and 9I), the controller 92 considers that the boundary layer is peeled or there is a risk of peeling. . FIG. 7A shows a state where the boundary layer is peeled off or there is a risk of peeling (region shown in FIG. 7A (i)).

この場合には、コントローラ92は、電磁弁91に対して剥離防止デバイス7を動作させる制御信号を送る(図9(b)(ii)及び図7B(ii))。   In this case, the controller 92 sends a control signal for operating the peeling prevention device 7 to the electromagnetic valve 91 (FIGS. 9B and 9B).

これにより、電磁弁91を介して剥離防止デバイス7に高圧の気体が送られ(図7C(iii))、剥離防止デバイス7は動作する(図9(c)(iii)及び図7D(iv))。   Thereby, a high-pressure gas is sent to the peeling prevention device 7 through the electromagnetic valve 91 (FIG. 7C (iii)), and the peeling prevention device 7 operates (FIGS. 9C, iii) and 7D (iv). ).

剥離防止デバイス7が動作することで、境界層は乱流となり、剥離が抑えられる(図7E(v))。   When the peeling preventing device 7 operates, the boundary layer becomes a turbulent flow, and peeling is suppressed (FIG. 7E (v)).

図7Fは剥離防止デバイス7の停止後に再び境界層が剥離している、あるいは剥離の危険性がある状態を示しており、以下、上記と同様の動作がされる。   FIG. 7F shows a state in which the boundary layer is peeled again after the stop of the peeling preventing device 7 or there is a risk of peeling. Hereinafter, the same operation as described above is performed.

一方、コントローラ92はセンサ5からの検知信号が第2のレベルL2を超えた場合には(例えば図9(a)(iv))、境界層に乱流が発生しているとみなす。図8Aは境界層に乱流が発生し、摩擦抵抗が大きい状態を示している(図8A(i)で示す領域)。   On the other hand, when the detection signal from the sensor 5 exceeds the second level L2 (for example, FIGS. 9 (a) and (iv)), the controller 92 considers that turbulent flow has occurred in the boundary layer. FIG. 8A shows a state where turbulent flow is generated in the boundary layer and the frictional resistance is large (region shown in FIG. 8A (i)).

この場合には、コントローラ92は、電磁弁91に対して吹き出しデバイス8を動作させる制御信号を送る(図9(d)(v)及び図8B(ii))。   In this case, the controller 92 sends a control signal for operating the blowing device 8 to the electromagnetic valve 91 (FIGS. 9 (d) (v) and 8B (ii)).

これにより、電磁弁91を介して吹き出しデバイス8に高圧の気体が送られ(図8C(iii))、吹き出しデバイス8は動作する(図9(e)(vi)及び図8D(iv))。   Thereby, a high-pressure gas is sent to the blowing device 8 via the electromagnetic valve 91 (FIG. 8C (iii)), and the blowing device 8 operates (FIGS. 9E, VI, and 8D, iv).

吹き出しデバイス8が動作することで、境界層の乱流は減る(図8E(v))。   The operation of the blowing device 8 reduces the turbulent flow in the boundary layer (FIG. 8E (v)).

図8Fは吹き出しデバイス8の停止後に再び境界層に乱流が発生している状態を示しており、以下、上記と同様の動作がされる。   FIG. 8F shows a state where turbulent flow is again generated in the boundary layer after the blowing device 8 is stopped, and the same operation as described above is performed thereafter.

なお、境界層の状態を検知するセンサ5が、境界層が剥離している、あるいは剥離の危険性がある場合のみを検知し、剥離の危険性を検知した場合は、高圧の気体を剥離防止デバイス7に流して剥離防止デバイス7を動作させ、それ以外の場合には常に吹き出しデバイス8に高圧の気体を流して動作させるようにしてもよい。これにより構成及び制御を簡略化できる。   The sensor 5 that detects the state of the boundary layer detects only when the boundary layer is peeled off or there is a risk of peeling, and when the danger of peeling is detected, the high pressure gas is prevented from peeling. The separation preventing device 7 may be operated by flowing it through the device 7, and in other cases, it may be operated by always flowing high pressure gas through the blowing device 8. This simplifies the configuration and control.

このように航空機の機体表面に上に発達する境界層の剥離制御、層流−乱流境界層遷移を遅延させる層流制御、及び乱流境界層の摩擦抵抗を低減させる乱流制御を組み合わせることにより、境界層の状態を検知するセンサ5の駆動及びそれに基づく制御信号の発信、電磁弁91の開閉に必要な動力を必要とするが、それ以外にそれらを行うための新たな動力、すなわちペナルティを不要とするペナルティレス制御が可能となる。   In this way, combining boundary layer separation control that develops on the aircraft body surface, laminar flow control that delays laminar-turbulent boundary layer transition, and turbulent flow control that reduces frictional resistance of the turbulent boundary layer Therefore, it is necessary to drive the sensor 5 for detecting the state of the boundary layer, to transmit a control signal based on the driving force, and to open / close the electromagnetic valve 91, but in addition to this, new power to perform them, that is, a penalty It is possible to perform penaltyless control that eliminates the need for.

また、本発明を用いた摩擦抵抗低減効果は、吹き出し速度及び吹き出し領域の面積により全抵抗への寄与は異なる。局所的には、吹き出しデバイス8より巡航速度の1%に対応する速度で一様に高圧の気体を吹き出すことにより、吹き出し領域における摩擦抵抗を75%程度低減できる(非特許文献10参照)。一方、剥離防止効果を最大揚力係数として比較すると、剥離防止デバイス7の有無で、最大0.12程度増加すると期待される(非特許文献12参照)。   Further, the frictional resistance reduction effect using the present invention differs in contribution to the total resistance depending on the blowing speed and the area of the blowing area. Locally, by blowing out high-pressure gas uniformly at a speed corresponding to 1% of the cruising speed from the blowing device 8, the frictional resistance in the blowing area can be reduced by about 75% (see Non-Patent Document 10). On the other hand, when the anti-peeling effect is compared as the maximum lift coefficient, it is expected to increase by about 0.12 at maximum with or without the anti-peeling device 7 (see Non-Patent Document 12).

〈実験結果〉
後退角を持たない翼弦長400mm、翼幅548mmのClark−Y翼を風洞内に設置し、剥離防止及び摩擦抵抗低減効果を検証した。
なお、吸い込みデバイス及び吹き出しデバイスは、それぞれ−0.072≦X/C≦0.072、及び0.58≦X/C≦0.82の−70mm≦Y≦70mmに内蔵した。
<Experimental result>
A Clark-Y blade having a chord length of 400 mm and a blade width of 548 mm without a receding angle was installed in the wind tunnel, and the effect of preventing separation and reducing frictional resistance was verified.
In addition, the suction device and the blowing device were incorporated in −70 mm ≦ Y ≦ 70 mm where −0.072 ≦ X / C ≦ 0.072 and 0.58 ≦ X / C ≦ 0.82, respectively.

また、vortex generator状突起型の剥離防止デバイスを、X/C=0.6、−20mm≦Y≦20mmの表面に設置した。ここで、Xは前縁からの翼弦線に沿った距離、Cは翼弦長を示す。   Further, a vortex generator-like protrusion type peeling prevention device was installed on the surface of X / C = 0.6 and −20 mm ≦ Y ≦ 20 mm. Here, X is the distance along the chord line from the leading edge, and C is the chord length.

吸い込みデバイス及び吹き出しデバイス、それぞれを動作させた場合の境界層分布の変化を図10及び図11に示す。   FIGS. 10 and 11 show changes in the boundary layer distribution when the suction device and the blowing device are operated.

図10は、翼を一様流速U=24m/s(翼弦長を基準とするレイノルズ数0.64×10)中に迎角11.4°となるように設置し、剥離防止デバイスを動作させた場合のX/C=0.9における境界層分布の変化を示している。
図10に示すとおり、剥離防止デバイスが非動作時には剥離型であった境界層分布が、剥離防止デバイスの動作により壁面近くの流速が増加し乱流型の分布に近づいていることがわかる。従って、この結果から、本試作剥離防止デバイスにより、剥離が防止されることがわかる。更に、剥離防止デバイスを装着していないクリーン状態では、大きく剥離していることがわかる。この結果は、本試作剥離防止デバイスは、非動作時にも翼表面に粗度を生じさせ、クリーン状態に比べ剥離が防止されていることがわかる。従って、剥離防止デバイスを改良し、非動作時にはクリーン状態と同等な滑面を実現できれば、剥離防止デバイスによる制御効果はより大きなものとなり、最も大きい効果が獲得できれば最大揚力係数が剥離防止デバイスの駆動で、0.12程度増加すると期待される。
FIG. 10 shows an anti-separation device in which a blade is installed at a uniform flow velocity U = 24 m / s (Reynolds number 0.64 × 10 6 with reference to the blade chord length) at an angle of attack of 11.4 °. 6 shows a change in the boundary layer distribution at X / C = 0.9 when the operation is performed.
As shown in FIG. 10, it can be seen that the boundary layer distribution, which was a separation type when the separation preventing device was not in operation, was approaching a turbulent distribution due to an increase in the flow velocity near the wall surface due to the operation of the separation preventing device. Therefore, it can be seen from this result that peeling is prevented by this prototype peeling prevention device. Furthermore, it can be seen that the film is largely peeled in a clean state in which no peeling prevention device is attached. This result shows that this prototype peeling prevention device causes roughness on the blade surface even when not operating, and peeling is prevented compared to the clean state. Therefore, if the peeling prevention device is improved and a smooth surface equivalent to the clean state can be realized when not operating, the control effect by the peeling prevention device will be greater, and if the greatest effect can be obtained, the maximum lift coefficient will drive the peeling prevention device Therefore, it is expected to increase by about 0.12.

一方、図11は、翼を一様流速U=60m/s(翼弦長を基準とするレイノルズ数1.54×10)中に迎角0°となるように設置し、剥離防止デバイスを動作させた場合のX/C=0.8における境界層分布の変化を示している。ここでXは前縁からの翼弦線に沿った距離、Cは翼弦長を示す。吹き出し速度Ublowは、一様流の0.04%程度(Ublow/U=0.04×10−2)である。図から明らかなように、吹き出しによる制御を行った場合(図中wbと表記)は、制御を行ってない場合(図中nbと表記)に比べ、平均速度分布(u( ̄が付く)/U∞)及び速度変動分布(u'/U)が上方にシフトしており、壁面における摩擦が低減していることがわかる。 On the other hand, FIG. 11 shows that the blade is installed so that the angle of attack is 0 ° in a uniform flow velocity U = 60 m / s (Reynolds number 1.54 × 10 6 based on the chord length), and the separation preventing device 6 shows the change in the boundary layer distribution at X / C = 0.8 when the is operated. Here, X represents the distance along the chord line from the leading edge, and C represents the chord length. The blowing speed U blow is about 0.04% of the uniform flow (U blow / U = 0.04 × 10 −2 ). As is apparent from the figure, the average velocity distribution (u (has a wrinkle)) / when the control by the balloon (indicated as wb in the figure) is compared to the case where the control is not performed (indicated as nb in the figure). U∞) and velocity fluctuation distribution (u ′ / U∞ ) are shifted upward, and it can be seen that the friction on the wall surface is reduced.

参考として、同じ試験条件(一様流速U=60m/s、翼弦長を基準とするレイノルズ数1.54×10、迎角6°)であるが、吸い込みチャンバからではなく、コンプレッサーを用いてペナルティありの制御を行った場合のX/C=0.75における速度分布の変化を図12に示す(K. Eto、 Y. Kondo、 K. Fukagata and N. Tokugawa、 "Wind-Tunnel Experiment of a Friction Drag Reduction on a Clark-Y Airfoil Using Uniform Blowing"、 Proceedings of 9th JSME-KSME Thermal and Fluids Engineering Conference、 (2017)、 TFEC9-1345.参照)。コンプレッサーを用いているために吹き出し速度を一様流の0.15%(Ublow/U=0.15×10−2)と大きく取れており、それに応じて制御効果(速度分布のシフト量)が大きい。またこの場合、壁指標でのフィッティングによる定量評価から、その位置における局所的な摩擦抵抗が26%程度低減された効果確認された。図11に示す試作制御装置では吹き出し速度がコンプレッサーを用いた場合(図12)よりも少ないため制御効果も小さいが、翼型、吸い込み/吹き出しの位置、配管の取り回し等を最適化することで、コンプレッサーを用いた場合に近い制御効果が獲得可能である。一様流速の1%(Ublow/U=1.0×10−2)に対応する速度で一様に吹き出せれば、吹き出し領域における摩擦抵抗を75%程度低減できると期待される。 For reference, the same test conditions (uniform flow rate U = 60 m / s, Reynolds number 1.54 × 10 6 , angle of attack 6 ° based on chord length), but not from the suction chamber, Fig. 12 shows the change in velocity distribution at X / C = 0.75 when penalized control is used (K. Eto, Y. Kondo, K. Fukagata and N. Tokugawa, "Wind-Tunnel Experiment of a Friction Drag Reduction on a Clark-Y Airfoil Using Uniform Blowing ", Proceedings of 9th JSME-KSME Thermal and Fluids Engineering Conference, (2017), TFEC9-1345.). Due to the use of a compressor, the blowing speed is as large as 0.15% (U blow / U = 0.15 × 10 −2 ) of the uniform flow, and the control effect (speed distribution shift amount) accordingly ) Is large. In this case, the quantitative evaluation by fitting with the wall index confirmed the effect that the local frictional resistance at the position was reduced by about 26%. In the prototype control device shown in FIG. 11, the control speed is small because the blowing speed is lower than when the compressor is used (FIG. 12), but by optimizing the airfoil shape, the position of the suction / blowing, the piping handling, A control effect close to that when a compressor is used can be obtained. It is expected that the frictional resistance in the blowing region can be reduced by about 75% if it can be blown uniformly at a speed corresponding to 1% of the uniform flow velocity (U blow / U = 1.0 × 10 −2 ).

〈その他〉
本発明の最良の形態は、航空機機体表面、特に主翼及び尾翼への適用である。更には、現在運航している大型旅客機である、遷音速機の主翼及び尾翼への適用が最適である。そして、本発明の狙いである失速(剥離)抑制、すなわち圧力抵抗低減と、摩擦抵抗低減の両方を行うことができ、かつ制御に必要な動力を必要としない航空機機体表面上境界層のペナルティレス制御は、国内に限らず、海外の航空関係の研究所・大学における大きな研究テーマであるだけでなく、航空機メーカ、エアラインに対する産業上の利用価値は極めて高い。
<Others>
The best mode of the invention is the application to aircraft fuselage surfaces, especially the main and tail wings. Furthermore, application to the main wing and tail wing of a transonic aircraft, which is a large passenger aircraft currently in operation, is optimal. Further, the present invention aims to suppress stall (peeling), that is, to reduce both pressure resistance and frictional resistance, and to reduce the penalty on the aircraft body surface boundary layer that does not require the power required for control. Control is not only a major research theme not only in Japan but also in overseas aviation research laboratories and universities, and the industrial utility value for aircraft manufacturers and airlines is extremely high.

本発明は、上記の実施形態には限定されず、その技術思想の範囲内で様々な変形及び応用が可能である。そのような変形及び応用の範囲も本発明の技術的範囲に属する。   The present invention is not limited to the above-described embodiment, and various modifications and applications are possible within the scope of the technical idea. The scope of such modifications and applications also belongs to the technical scope of the present invention.

例えば、本発明は、航空機の翼以外の他の機体表面にも適用できる。勿論、航空機が無人機であっても本発明を適用できる。   For example, the present invention can be applied to other body surfaces other than aircraft wings. Of course, the present invention can be applied even if the aircraft is an unmanned aircraft.

また、上記の実施形態では、高圧の気体を吸い込みデバイスから得ていたが、高圧の気体は航空機の例えばジェットエンジン側より得てもよい。   In the above embodiment, the high pressure gas is obtained from the suction device. However, the high pressure gas may be obtained from, for example, the jet engine side of the aircraft.

1 :航空機
4 :気流制御装置
5 :センサ
6 :吸い込みデバイス
7 :剥離防止デバイス
8 :吹き出しデバイス
9 :コントロールシステム
91 :電磁弁
91a :入力側
91b :第1の出力側
91c :第2の出力側
92 :コントローラ
93 :配管
94 :配管
95 :配管
1: Aircraft 4: Airflow control device 5: Sensor 6: Suction device 7: Peeling prevention device 8: Blowing device 9: Control system 91: Electromagnetic valve 91a: Input side 91b: First output side 91c: Second output side 92: Controller 93: Piping 94: Piping 95: Piping

Claims (7)

機体表面上の境界層の状態を検知するセンサと、
前記機体表面に配置され、高圧の気体によって動作し、境界層に運動量を与えることによって剥離を制御する剥離防止デバイスと、
前記機体表面に配置され、前記高圧の気体を一様に吹き出すことによって乱流摩擦抵抗を低減する吹き出しデバイスと、
前記センサによる検知結果に応じて、前記高圧の気体を前記剥離防止デバイスに供給するか、前記吹き出しデバイスに供給するかを切り替えるコントロールシステムと
を具備する気流制御装置。
A sensor that detects the state of the boundary layer on the aircraft surface;
An anti-peeling device disposed on the surface of the fuselage, operating with high pressure gas and controlling the delamination by imparting momentum to the boundary layer;
A blowing device that is disposed on the surface of the airframe and reduces turbulent frictional resistance by blowing out the high-pressure gas uniformly;
An airflow control apparatus comprising: a control system that switches whether to supply the high-pressure gas to the peeling prevention device or to the blowing device according to a detection result by the sensor.
請求項1に記載の気流制御装置であって、
前記高圧の気体を前記機体表面より吸い込む吸い込みデバイス
を更に具備する気流制御装置。
The airflow control device according to claim 1,
An airflow control device further comprising a suction device for sucking the high-pressure gas from the surface of the machine body.
請求項2に記載の気流制御装置であって、
前記吸い込みデバイスは、前記機体表面上の気体の高圧領域に位置するように配置され、
前記剥離防止デバイスは、前記機体表面上の気体の加速領域に位置するように、又は前記機体表面上の気体の減速開始領域に位置するように配置され、
前記吹き出しデバイスは、前記機体表面上の気体の低圧かつ境界層が発達する領域に位置するように配置されている
気流制御装置。
The airflow control device according to claim 2,
The suction device is positioned to be in a high pressure region of gas on the airframe surface;
The delamination prevention device is disposed so as to be located in a gas acceleration region on the airframe surface or in a gas deceleration start region on the airframe surface,
The blowout device is disposed so as to be located in a region where a low pressure gas and a boundary layer develop on the surface of the airframe.
請求項3に記載の気流制御装置であって、
前記コントロールシステムは、電磁弁と、前記センサによる検知結果を入力し、前記検知結果に応じて前記電磁弁の切り替えをコントロールするコントローラとを有し、
前記吸い込みデバイスと前記電磁弁の入力側とを接続する第1の高圧気体流路と、
前記電磁弁の第1の出力側と前記剥離防止デバイスとを接続する第2の高圧気体流路と、
前記電磁弁の第2の出力側と前記吹き出しデバイスとを接続する第3の高圧気体流路と
を更に具備する気流制御装置。
The airflow control device according to claim 3,
The control system includes a solenoid valve and a controller that inputs a detection result by the sensor and controls switching of the solenoid valve according to the detection result;
A first high pressure gas flow path connecting the suction device and the input side of the solenoid valve;
A second high-pressure gas flow path connecting the first output side of the solenoid valve and the delamination prevention device;
An airflow control device further comprising: a third high-pressure gas flow path connecting the second output side of the electromagnetic valve and the blowing device.
請求項4に記載の気流制御装置であって、
前記センサは、剥離しそうであるか否か及び層流か乱流かを検知可能であり、
前記コントローラは、前記センサが剥離しそうであることを検知したとき、前記剥離防止デバイスに前記高圧の気体を送るように前記電磁弁を切り替え、前記センサが乱流を検知したとき、前記吹き出しデバイスに前記高圧の気体を送るように前記電磁弁を切り替える
気流制御装置。
The airflow control device according to claim 4,
The sensor can detect whether it is likely to peel and whether it is laminar or turbulent,
When the controller detects that the sensor is about to peel off, the controller switches the solenoid valve to send the high-pressure gas to the peeling prevention device, and when the sensor detects turbulence, An airflow control device that switches the solenoid valve to send the high-pressure gas.
請求項1から5のうちいずれか1項に記載の気流制御装置を備える航空機。   An aircraft comprising the airflow control device according to any one of claims 1 to 5. 機体表面上の境界層の状態を検知し、
前記検知結果に応じて、高圧の気体に由来する運動量を境界層に与えることによって前記機体表面の剥離を制御するか、前記高圧の気体を一様に吹き出すことによって乱流摩擦抵抗を低減するかを切り替える
気流制御方法。
Detect the boundary layer condition on the aircraft surface,
Depending on the detection result, whether the surface of the airframe is controlled by applying momentum derived from high-pressure gas to the boundary layer, or whether turbulent frictional resistance is reduced by blowing out the high-pressure gas uniformly Switch airflow control method.
JP2018029486A 2018-02-22 2018-02-22 Airflow control device, aircraft and airflow control method Active JP7012226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018029486A JP7012226B2 (en) 2018-02-22 2018-02-22 Airflow control device, aircraft and airflow control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018029486A JP7012226B2 (en) 2018-02-22 2018-02-22 Airflow control device, aircraft and airflow control method

Publications (2)

Publication Number Publication Date
JP2019142385A true JP2019142385A (en) 2019-08-29
JP7012226B2 JP7012226B2 (en) 2022-01-28

Family

ID=67771754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029486A Active JP7012226B2 (en) 2018-02-22 2018-02-22 Airflow control device, aircraft and airflow control method

Country Status (1)

Country Link
JP (1) JP7012226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112395694A (en) * 2020-12-03 2021-02-23 中国人民解放军国防科技大学 Drag reduction control method for ultrahigh-speed turbulent boundary layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE407609C (en) * 1922-10-29 1926-10-15 Ernst Carl Alexander Baumann Wing for aircraft
JPH10281115A (en) * 1997-04-08 1998-10-20 Hitachi Ltd Fluid control method
JP2007317656A (en) * 2006-04-28 2007-12-06 Toshiba Corp Airflow generation device, airflow generating unit, wing, heat exchanger, micro machine, gas treatment device, airflow generating method and airflow controlling method
CN101348170A (en) * 2008-09-01 2009-01-21 北京航空航天大学 Wing structure having lamellar flow flowing control and separation control
CN106314760A (en) * 2016-09-23 2017-01-11 南昌航空大学 Internal cavity through flow type high aerodynamic efficiency airfoil profile
US9834301B1 (en) * 2006-05-02 2017-12-05 Orbital Research Inc. Method of increasing the performance of aircraft, missiles, munitions and ground vehicles with plasma actuators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE407609C (en) * 1922-10-29 1926-10-15 Ernst Carl Alexander Baumann Wing for aircraft
JPH10281115A (en) * 1997-04-08 1998-10-20 Hitachi Ltd Fluid control method
JP2007317656A (en) * 2006-04-28 2007-12-06 Toshiba Corp Airflow generation device, airflow generating unit, wing, heat exchanger, micro machine, gas treatment device, airflow generating method and airflow controlling method
US9834301B1 (en) * 2006-05-02 2017-12-05 Orbital Research Inc. Method of increasing the performance of aircraft, missiles, munitions and ground vehicles with plasma actuators
CN101348170A (en) * 2008-09-01 2009-01-21 北京航空航天大学 Wing structure having lamellar flow flowing control and separation control
CN106314760A (en) * 2016-09-23 2017-01-11 南昌航空大学 Internal cavity through flow type high aerodynamic efficiency airfoil profile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112395694A (en) * 2020-12-03 2021-02-23 中国人民解放军国防科技大学 Drag reduction control method for ultrahigh-speed turbulent boundary layer
CN112395694B (en) * 2020-12-03 2023-05-02 中国人民解放军国防科技大学 Drag reduction control method for ultra-high-speed turbulence boundary layer

Also Published As

Publication number Publication date
JP7012226B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
Glezer Some aspects of aerodynamic flow control using synthetic-jet actuation
Taylor et al. An investigation of vortex flows over low sweep delta wings
US7510149B2 (en) System and method to control flowfield vortices with micro-jet arrays
US8894019B2 (en) Method of using microjet actuators for the control of flow separation and distortion
US10358208B2 (en) Hybrid flow control method for simple hinged flap high-lift system
US20060202082A1 (en) Microjet actuators for the control of flow separation and distortion
Arnal et al. Overview of laminar-turbulent transition investigations at ONERA Toulouse
Saric et al. Toward practical laminar flow control-remaining challenges
US11933334B2 (en) In-plane transverse momentum injection to disrupt large-scale eddies in a turbulent boundary layer
Lin et al. Testing of high-lift common research model with integrated active flow control
Agrawal et al. Numerical investigation of vortex breakdown on a delta wing
Malik et al. Application of drag reduction techniques to transport aircraft
Arnal et al. Compressibility effects on laminar-turbulent boundary layer transition
EP0679572A2 (en) Laminar flow skin
JP7012226B2 (en) Airflow control device, aircraft and airflow control method
Jiang et al. Effects of unsteady trailing-edge blowing on delta wing aerodynamics
Tebbiche et al. Active flow control by micro-blowing and effects on aerodynamic performances. Ahmed body and NACA 0015 airfoil
US6668638B2 (en) Active vortex control with moveable jet
Jensch et al. Numerical investigation of leading edge blowing and optimization of the slot geometry for a circulation control airfoil
Parekh et al. AVIA-Adaptive virtual aerosurface
Lee et al. Pitching airfoil with combined Gurney flap and unsteady trailing-edge flap deflection
Luckring Transonic Reynolds Number and Leading-Edge Bluntness Effects on a 65 deg Delta Wing
Casper et al. Active flow control on a two element high-lift airfoil with drooped spoiler
Vatsa et al. CFD Simulations of Landing and Takeoff CRM High-Lift Configurations
Tilmann Enhancement of transonic airfoil performance using pulsed jets for separation control

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211221

R150 Certificate of patent or registration of utility model

Ref document number: 7012226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150