JP2019142370A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2019142370A
JP2019142370A JP2018028986A JP2018028986A JP2019142370A JP 2019142370 A JP2019142370 A JP 2019142370A JP 2018028986 A JP2018028986 A JP 2018028986A JP 2018028986 A JP2018028986 A JP 2018028986A JP 2019142370 A JP2019142370 A JP 2019142370A
Authority
JP
Japan
Prior art keywords
groove
tire
convex portion
lug groove
center lug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018028986A
Other languages
Japanese (ja)
Inventor
洋佑 坂本
Yosuke Sakamoto
洋佑 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2018028986A priority Critical patent/JP2019142370A/en
Publication of JP2019142370A publication Critical patent/JP2019142370A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

To provide a pneumatic tire of which the stone-biting prevention performance and travel performance on an unpaved road are improved.SOLUTION: A tread portion 1 is formed with: a pair of main grooves 10 extending in a zigzag shape along the tire circumferential direction on both sides of a tire equator CL; a shoulder lug groove 20; and a center lug groove 30, and the groove depth d3 of at least the center lug groove 30 is made smaller than the groove depth d1 of the main grooves 10, and a groove bottom of each of the grooves is formed with a projection part 40 extending along the groove by protruding from the groove bottom of the groove, and a projection part 41 formed in the main groove 10 is constituted of a plurality of divided pieces 41a and 41b arranged at an interval in the longitudinal direction of the main grooves 10, and the respective divided pieces 41a and 41b are bent by extending while straddling a bending part bending in a zigzag shape in the main grooves 10.SELECTED DRAWING: Figure 2

Description

本発明は、未舗装路走行用タイヤとして好適な空気入りタイヤに関し、更に詳しくは、石噛み防止性能と未舗装路での走行性能とを改善した空気入りタイヤに関する。   The present invention relates to a pneumatic tire suitable as a tire for traveling on an unpaved road, and more particularly to a pneumatic tire having improved stone biting prevention performance and traveling performance on an unpaved road.

不整地、泥濘地、雪道、砂地、岩場等の未舗装路の走行を意図した空気入りタイヤでは、一般的に、エッジ成分の多いラグ溝やブロックを主体とするトレッドパターンであって、溝面積が大きいものが採用される。このようなタイヤでは、路面上の泥、雪、砂、石、岩等(以下、これらを総称して「泥等」と言う)を噛み込んでトラクション性能を得ると共に、溝内に泥等が詰まることを防いで、未舗装路での走行性能を向上している(例えば、特許文献1,2を参照)。   Pneumatic tires intended for running on unpaved roads such as rough terrain, muddy ground, snowy roads, sandy terrain, and rocky terrain are generally tread patterns mainly composed of lug grooves and blocks with many edge components. A thing with a large area is adopted. In such tires, mud, snow, sand, stones, rocks, etc. on the road surface (hereinafter collectively referred to as “mud etc.”) get traction performance, and mud etc. The clogging is prevented and the running performance on an unpaved road is improved (see, for example, Patent Documents 1 and 2).

これら特許文献1,2のタイヤを対比すると、特許文献1のタイヤは、溝面積が比較的小さく、舗装路における走行性能も考慮したタイプのタイヤであると言える。一方、特許文献2のタイヤは、溝面積が大きく、個々のブロックも大きく、未舗装路での走行性能に特化したタイプのタイヤであると言える。そのため、前者は後者に比べて未舗装路での走行性能が低く、後者は前者に比べて通常走行時の性能が低くなる傾向がある。近年、タイヤに対する要求性能の多様化が進み、これら2タイプのタイヤの中間レベルの性能を有する未舗装路走行用タイヤも求められており、適度な溝形状で未舗装路での走行性能を効率的に高めるための対策が求められている。また、上述のように、未舗装路走行用タイヤは、基本的にブロックを主体として溝面積が大きいため、未舗装路走行中に溝に対して石噛みを生じ易い傾向があるため、石噛み防止性能についても良好に維持または改善することが求められている。   When these tires of Patent Documents 1 and 2 are compared, it can be said that the tire of Patent Document 1 is a tire of a type that has a relatively small groove area and that takes into consideration the running performance on a paved road. On the other hand, it can be said that the tire of Patent Document 2 is a type of tire specialized in traveling performance on an unpaved road with a large groove area and large individual blocks. For this reason, the former has lower running performance on an unpaved road than the latter, and the latter tends to have lower performance during normal running than the former. In recent years, the demand performance for tires has been diversified, and there is also a demand for tires for running on unpaved roads that have an intermediate level of performance between these two types of tires. Measures to improve it are needed. In addition, as described above, since the tire for an unpaved road basically has a large groove area mainly composed of blocks, there is a tendency that the stone bite easily occurs on the unpaved road. The prevention performance is also required to be maintained or improved satisfactorily.

特開2016‐007861号公報Japanese Patent Laid-Open No. 2016-007861 特開2013‐119277号公報JP 2013-119277 A

本発明の目的は、石噛み防止性能と未舗装路での走行性能とを改善した空気入りタイヤを提供することにある。   An object of the present invention is to provide a pneumatic tire with improved stone biting prevention performance and running performance on an unpaved road.

上記目的を達成するための本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えた空気入りタイヤにおいて、前記トレッド部に、タイヤ赤道の両側でタイヤ周方向に沿ってジグザグ状に折れ曲がりながら延在する一対の主溝と、前記一対の主溝によって区画されてタイヤ赤道上に位置するセンター陸部と、前記一対の主溝のタイヤ幅方向外側に区画されたショルダー陸部と、前記ショルダー陸部上でタイヤ幅方向に沿って延在するショルダーラグ溝と、前記センター陸部上でタイヤ幅方向に対して傾斜して延在するセンターラグ溝とが形成され、少なくとも前記センターラグ溝の溝深さは前記主溝の溝深さよりも小さく、前記主溝と前記ショルダーラグ溝と前記センターラグ溝とのそれぞれの溝底に各溝の溝底から隆起して各溝に沿って延在する凸部が形成され、前記主溝に形成された凸部は前記主溝の長手方向に間隔をおいて配置された複数の分割片からなり、各分割片は前記主溝がジグザグ状に折れ曲がる屈曲部を跨いで延在して屈曲していることを特徴とする。   In order to achieve the above object, a pneumatic tire according to the present invention includes a tread portion that extends in the tire circumferential direction to form an annular shape, a pair of sidewall portions disposed on both sides of the tread portion, and the sidewall portions. A pair of main grooves extending in a zigzag manner along the tire circumferential direction on both sides of the tire equator, in the pneumatic tire including a pair of bead portions disposed on the inner side in the tire radial direction of the tire A center land portion defined by the pair of main grooves and positioned on the tire equator, a shoulder land portion defined on the outer side in the tire width direction of the pair of main grooves, and a tire width direction on the shoulder land portions A shoulder lug groove extending along the center land portion and a center lug groove extending obliquely with respect to the tire width direction on the center land portion, and at least the center The groove depth of the groove is smaller than the groove depth of the main groove, and rises from the groove bottom of each of the main groove, the shoulder lug groove, and the center lug groove along the grooves. The convex portion formed in the main groove is composed of a plurality of divided pieces arranged at intervals in the longitudinal direction of the main groove, and each divided piece has a zigzag in the main groove. It extends over the bending part bent in the shape, and is bent, It is characterized by the above-mentioned.

本発明では、上述のように、ジグザグ状に延在する主溝とショルダーラグ溝とセンターラグ溝とからなる溝主体のトレッドパターンを構成して未舗装路での走行性能を高めるにあたって、少なくともセンターラグ溝を主溝よりも浅くして、溝深さが複数水準含まれるようにしているので、溝容積と陸部剛性とのバランスを良好にして、未舗装路での走行性能を効率的に向上することができる。また、各溝の溝底に凸部を有するので、この凸部によって石噛みを防止することができる。更に、この凸部はエッジ成分として機能するので、未舗装路における走行性能をより向上することもできる。このとき、前述のように凸部が形成される溝深さが複数水準存在するので、接地した際に路面から異なる距離に複数の凸部が存在することになり、立体的にエッジ効果を発揮することができ、未舗装路における走行性能を効率的に高めることができる。   In the present invention, as described above, a tread pattern mainly composed of a main groove, a shoulder lug groove, and a center lug groove extending in a zigzag shape is formed to improve the running performance on an unpaved road, at least in the center. Since the lug groove is shallower than the main groove so that multiple levels of groove depth are included, the balance between groove volume and land rigidity is improved, and the running performance on unpaved roads is efficiently performed Can be improved. Moreover, since the groove bottom of each groove has a convex portion, it is possible to prevent stone biting by this convex portion. Furthermore, since this convex part functions as an edge component, the traveling performance on an unpaved road can be further improved. At this time, as described above, there are a plurality of groove depths at which the convex portions are formed, so that when the ground is touched, there are a plurality of convex portions at different distances from the road surface, and the three-dimensional edge effect is exhibited. It is possible to improve the running performance on an unpaved road.

本発明では、主溝の溝深さとセンターラグ溝の溝深さとの差が1.6mm以上であることが好ましい。これにより、主溝とセンターラグ溝とで接地時の路面から凸部までの距離を充分に異ならせることができ、立体的なエッジ効果を効率的に発揮することができ、未舗装路における走行性能を高めるには有利になる。   In the present invention, the difference between the groove depth of the main groove and the groove depth of the center lug groove is preferably 1.6 mm or more. As a result, the distance from the road surface to the convex part at the time of ground contact can be made sufficiently different between the main groove and the center lug groove, and the three-dimensional edge effect can be efficiently exhibited, and traveling on an unpaved road It is advantageous to increase performance.

本発明では、凸部が形成された溝の溝底からの凸部の隆起高さが0.8mm以上であり、且つ、凸部が形成された溝の溝深さの1/3以下であることが好ましい。これにより、凸部の大きさが良好になり、凸部によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。   In the present invention, the protruding height of the convex portion from the groove bottom of the groove in which the convex portion is formed is 0.8 mm or more and is not more than 1/3 of the groove depth of the groove in which the convex portion is formed. It is preferable. Thereby, the magnitude | size of a convex part becomes favorable and the edge effect by a convex part and the stone biting prevention effect can be exhibited with sufficient balance.

本発明では、凸部の幅が0.8mm以上であり、且つ、凸部が形成された溝の踏面における溝幅の1/2以下であることが好ましい。これにより、凸部の大きさが良好になり、凸部によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。   In the present invention, it is preferable that the width of the convex portion is 0.8 mm or more and not more than ½ of the groove width on the tread surface of the groove where the convex portion is formed. Thereby, the magnitude | size of a convex part becomes favorable and the edge effect by a convex part and the stone biting prevention effect can be exhibited with sufficient balance.

本発明では、センターラグ溝は、タイヤ赤道に到達して終端する第一センターラグ溝と、タイヤ赤道に到達せずに終端する第二センターラグ溝とを含み、第一センターラグ溝と第二センターラグ溝とはタイヤ周方向に交互に配置され、凸部は第一センターラグ溝のみに形成されることが好ましい。これにより、センター陸部における溝形状が良好になり、且つ、凸部の分布が未舗装路における走行性能を効果的に高めることができる。また、その溝形状において凸部が適正に配置されるようになり、未舗装路での走行性能と石噛み防止効果とをバランスよく発揮することができる。   In the present invention, the center lug groove includes a first center lug groove that terminates after reaching the tire equator, and a second center lug groove that terminates without reaching the tire equator, It is preferable that the center lug grooves are alternately arranged in the tire circumferential direction, and the convex portions are formed only in the first center lug grooves. Thereby, the groove shape in a center land part becomes favorable, and the distribution of a convex part can improve the traveling performance in an unpaved road effectively. Further, the convex portions are appropriately arranged in the groove shape, and the running performance on the unpaved road and the stone biting prevention effect can be exhibited with a good balance.

本発明では、分割片は屈曲部の一方側と他方側とで長さ比率が異なる複数種類を含み、タイヤ周方向に隣り合う分割片どうしの離間距離がショルダーラグ溝の溝幅の40%〜60%であることが好ましい。これにより、主溝に形成される凸部を構成する分割片の形状や配置が良好になり、主溝における凸部によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。   In the present invention, the divided pieces include a plurality of types having different length ratios on one side and the other side of the bent portion, and the separation distance between the divided pieces adjacent in the tire circumferential direction is 40% to the groove width of the shoulder lug groove. 60% is preferable. Thereby, the shape and arrangement | positioning of the division | segmentation piece which comprises the convex part formed in a main groove become favorable, and the edge effect by the convex part in a main groove and the stone biting prevention effect can be exhibited with sufficient balance.

本発明では、凸部が形成されたセンターラグ溝の長さに対する当該センターラグ溝に形成された凸部の当該センターラグ溝の長手方向に沿った長さの割合が60%〜80%であることが好ましい。これにより、センターラグ溝に占める凸部の大きさの割合が良好になり、凸部によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。   In this invention, the ratio of the length along the longitudinal direction of the said center lug groove of the said convex part formed in the said center lug groove with respect to the length of the center lug groove in which the convex part was formed is 60%-80%. It is preferable. Thereby, the ratio of the magnitude | size of the convex part which occupies for a center lug groove | channel becomes favorable, and the edge effect by a convex part and the stone biting prevention effect can be exhibited with sufficient balance.

本発明では、凸部をトレッド踏面側から見たとき、凸部の長手方向端部の輪郭線は凸部が形成された溝の溝幅方向に対して傾斜した斜辺であり、この斜辺の一端側で凸部の側面の輪郭線と斜辺とが鋭角を成し、この斜辺の他端側で凸部の側面の輪郭線が斜辺と円弧を介して滑らかに接続することが好ましい。このように凸部の端部形状を設定することで、凸部によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。また、凸部自体の耐久性を高めることもできる。   In the present invention, when the convex portion is viewed from the tread surface side, the contour line of the longitudinal end portion of the convex portion is a hypotenuse inclined with respect to the groove width direction of the groove in which the convex portion is formed, and one end of the hypotenuse It is preferable that the contour line on the side surface of the convex portion and the hypotenuse form an acute angle on the side, and the contour line on the side surface of the convex portion on the other end side of the hypotenuse side is smoothly connected via the hypotenuse and the arc. Thus, by setting the end shape of the convex portion, the edge effect by the convex portion and the stone biting prevention effect can be exhibited in a balanced manner. Further, the durability of the convex portion itself can be enhanced.

本発明において、「接地端」とは、タイヤを正規リムにリム組みして正規内圧を充填した状態で平面上に垂直に置いて正規荷重を加えたときに形成される接地領域のタイヤ軸方向の両端部である。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE ROAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車用である場合には180kPaとする。「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE ROAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車用である場合には前記荷重の88%に相当する荷重とする。   In the present invention, the term “contacting end” refers to the tire axial direction of the contact region formed when a normal load is applied by placing the tire on a normal rim and filling the normal internal pressure in a vertical state on a plane. It is the both ends of. The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set. “Regular internal pressure” is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. The maximum air pressure is JATMA, and the table “TIRE ROAD LIMITS AT VARIOUS” is TRA. The maximum value described in “COLD INFRATION PRESURES”, “INFLATION PRESSURE” in the case of ETRTO, is 180 kPa when the tire is for passenger cars. “Regular load” is a load determined by each standard for each tire in the standard system including the standard on which the tire is based. The maximum load capacity is JATMA, and the table “TIRE ROAD LIMITS AT VARIOUS” is TRA. The maximum value described in “COLD INFORMATION PRESURES”, “LOAD CAPACITY” if it is ETRTO, but if the tire is for a passenger car, the load is equivalent to 88% of the load.

本発明の実施形態からなる空気入りタイヤの子午線断面図である。1 is a meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention. 本発明の実施形態からなる空気入りタイヤのトレッド面を示す正面図である。It is a front view which shows the tread surface of the pneumatic tire which consists of embodiment of this invention. 本発明の要部を拡大して示す説明図である。It is explanatory drawing which expands and shows the principal part of this invention. 図2のX−X矢視断面図である。It is XX arrow sectional drawing of FIG. 本発明の凸部の形状を説明するための模式図である。It is a schematic diagram for demonstrating the shape of the convex part of this invention.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

図1に示すように、本発明の空気入りタイヤは、トレッド部1と、このトレッド部1の両側に配置された一対のサイドウォール部2と、サイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とを備えている。図1において、符号CLはタイヤ赤道を示し、符号Eは接地端を示す。尚、図1は子午線断面図であるため描写されないが、トレッド部1、サイドウォール部2、ビード部3は、それぞれタイヤ周方向に延在して環状を成しており、これにより空気入りタイヤのトロイダル状の基本構造が構成される。以下、図1を用いた説明は基本的に図示の子午線断面形状に基づくが、各タイヤ構成部材はいずれもタイヤ周方向に延在して環状を成すものである。   As shown in FIG. 1, the pneumatic tire of the present invention is disposed on a tread portion 1, a pair of sidewall portions 2 disposed on both sides of the tread portion 1, and on the tire radial direction inner side of the sidewall portion 2. And a pair of bead portions 3. In FIG. 1, reference sign CL indicates a tire equator, and reference sign E indicates a ground contact end. Although FIG. 1 is a meridian cross-sectional view and is not depicted, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction to form an annular shape. The toroidal basic structure is constructed. Hereinafter, the description using FIG. 1 is basically based on the meridian cross-sectional shape shown in the figure, but each tire component extends in the tire circumferential direction to form an annular shape.

左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では2層)のベルト層7が埋設されている。各ベルト層7は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°〜40°の範囲に設定されている。更に、ベルト層7の外周側にはベルト補強層8が設けられている。ベルト補強層8は、タイヤ周方向に配向する有機繊維コードを含む。ベルト補強層8において、有機繊維コードはタイヤ周方向に対する角度が例えば0°〜5°に設定されている。   A carcass layer 4 is mounted between the pair of left and right bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back around the bead core 5 disposed in each bead portion 3 from the vehicle inner side to the outer side. A bead filler 6 is disposed on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the main body portion and the folded portion of the carcass layer 4. On the other hand, a plurality of layers (two layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. Each belt layer 7 includes a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and is disposed so that the reinforcing cords cross each other between the layers. In these belt layers 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in a range of, for example, 10 ° to 40 °. Further, a belt reinforcing layer 8 is provided on the outer peripheral side of the belt layer 7. The belt reinforcing layer 8 includes an organic fiber cord oriented in the tire circumferential direction. In the belt reinforcing layer 8, the organic fiber cord has an angle with respect to the tire circumferential direction set to, for example, 0 ° to 5 °.

本発明は、このような一般的な断面構造の空気入りタイヤに適用されるが、その基本構造は上述のものに限定されない。   The present invention is applied to a pneumatic tire having such a general cross-sectional structure, but its basic structure is not limited to the above.

本発明の空気入りタイヤのトレッド部1の表面には、図2,3に示すように、タイヤ赤道CLの両側でタイヤ周方向にそってジグザグ状に延在する一対の主溝10が形成される。ジグザグ状に延在するとは、図示の例のように、所定の方向に直進する部分と、この部分と異なる方向に直進する部分とが交互に繰り返して、タイヤ周方向に沿って繰り返し折れ曲がった形状である。この主溝10は、図3,4に示すように、溝幅w1が例えば8mm〜18mm、溝深さd1が10mm〜20mmである。尚、主溝10の溝幅w1および溝深さd1は、前述の直進する部分において測定した値とする。   On the surface of the tread portion 1 of the pneumatic tire of the present invention, as shown in FIGS. 2 and 3, a pair of main grooves 10 extending in a zigzag shape along the tire circumferential direction is formed on both sides of the tire equator CL. The A zigzag shape means that the part that goes straight in a predetermined direction and the part that goes straight in a different direction from this part are alternately repeated and bent along the tire circumferential direction, as shown in the example in the figure. It is. As shown in FIGS. 3 and 4, the main groove 10 has a groove width w1 of, for example, 8 mm to 18 mm, and a groove depth d1 of 10 mm to 20 mm. In addition, the groove width w1 and the groove depth d1 of the main groove 10 are values measured in the above-described straight traveling portion.

一対の主溝10によって、トレッド部1には、主溝10のタイヤ幅方向外側に区画されたショルダー陸部11と、一対の主溝10の間に区画されたセンター陸部12とが形成される。図2に示す例では、ショルダー陸部11にはタイヤ幅方向に沿って延在するショルダーラグ溝20が形成され、センター陸部12にはタイヤ幅方向に対して傾斜して延在するセンターラグ溝30が形成される。以下、図2の実施形態に基づいて説明を行うが、本発明は主として、これら主溝10、ショルダーラグ溝20、センターラグ溝30の溝底に形成される後述の凸部40に関するものであるので、具体的なトレッドパターンは必ずしも図示の例に限定されるものではない。   By the pair of main grooves 10, a shoulder land portion 11 that is partitioned outside the main groove 10 in the tire width direction and a center land portion 12 that is partitioned between the pair of main grooves 10 are formed in the tread portion 1. The In the example shown in FIG. 2, a shoulder lug groove 20 extending along the tire width direction is formed in the shoulder land portion 11, and a center lug extending obliquely with respect to the tire width direction is formed in the center land portion 12. A groove 30 is formed. Hereinafter, the description will be made based on the embodiment of FIG. 2, but the present invention mainly relates to a convex portion 40 described later formed on the groove bottoms of the main groove 10, the shoulder lug groove 20, and the center lug groove 30. Therefore, the specific tread pattern is not necessarily limited to the illustrated example.

ショルダーラグ溝20は、一端が主溝10に連通し、他端が接地端Eを超えて延在して、ショルダー陸部11をショルダーブロック11′に区画する。ショルダーラグ溝20の溝幅および溝深さは主溝10と同等以下にすることができる。具体的には、主溝10に対する開口位置におけるショルダーラグ溝20の溝幅w2は主溝10の溝幅w1の好ましくは50%〜100%、ショルダーラグ溝20の溝深さd2は主溝10の溝深さd1の好ましくは75%〜100%に設定することができる。ショルダーブロック11′には、未舗装路での走行性能の更なる向上のために、図示の例のようにサイプSや、スタッドピン植込み用の穴Pを設けることもできる。   One end of the shoulder lug groove 20 communicates with the main groove 10 and the other end extends beyond the grounding end E to partition the shoulder land portion 11 into a shoulder block 11 ′. The width and depth of the shoulder lug groove 20 can be equal to or less than those of the main groove 10. Specifically, the groove width w2 of the shoulder lug groove 20 at the opening position with respect to the main groove 10 is preferably 50% to 100% of the groove width w1 of the main groove 10, and the groove depth d2 of the shoulder lug groove 20 is the main groove 10. Preferably, the groove depth d1 can be set to 75% to 100%. In the shoulder block 11 ', a sipe S and a stud pin implantation hole P can be provided as in the illustrated example in order to further improve the running performance on an unpaved road.

センターラグ溝30は、一端が主溝10に連通し、他端がセンター陸部12内で終端する。図示の例では、センターラグ溝30は、センター陸部12内での終端位置の異なる第一センターラグ溝31および第二センターラグ溝32の2種類を含む。具体的には、第一センターラグ溝31は、タイヤ赤道CLに到達して終端し、第二センターラグ溝32はタイヤ赤道CLに到達せずに終端する。これら第一センターラグ溝31および第二センターラグ溝32は、タイヤ周方向に交互に配置される。いずれのセンターラグ溝30(第一センターラグ31,第二センターラグ溝32)も、タイヤ幅方向に対して例えば45°以上70°以下の角度で傾斜している。センターラグ溝30の溝幅w3は主溝10の溝幅w1と同等以下にすることができる。例えば、センターラグ溝30の長手方向中心位置におけるセンターラグ溝30の溝幅w3は主溝10の溝幅w1の50%〜100%に設定することができる。一方、センターラグ溝30の溝深さd3は主溝10の溝深さd1よりも小さく設定される。即ち、本発明においては、センターラグ溝30の溝深さd3と主溝10の溝深さd1とは必ずd1>d3の関係を満たす。尚、センターラグ溝30の溝深さd3とショルダーラグ溝20の溝深さd2との大小関係は特に限定されないが、d2>d3の関係を満たすことが好ましい。   The center lug groove 30 has one end communicating with the main groove 10 and the other end terminating in the center land portion 12. In the illustrated example, the center lug groove 30 includes two types of a first center lug groove 31 and a second center lug groove 32 having different terminal positions in the center land portion 12. Specifically, the first center lug groove 31 reaches the tire equator CL and terminates, and the second center lug groove 32 terminates without reaching the tire equator CL. These first center lug grooves 31 and second center lug grooves 32 are alternately arranged in the tire circumferential direction. Any of the center lug grooves 30 (the first center lug 31 and the second center lug groove 32) are inclined at an angle of, for example, 45 ° to 70 ° with respect to the tire width direction. The groove width w3 of the center lug groove 30 can be made equal to or less than the groove width w1 of the main groove 10. For example, the groove width w 3 of the center lug groove 30 at the center position in the longitudinal direction of the center lug groove 30 can be set to 50% to 100% of the groove width w 1 of the main groove 10. On the other hand, the groove depth d3 of the center lug groove 30 is set smaller than the groove depth d1 of the main groove 10. That is, in the present invention, the groove depth d3 of the center lug groove 30 and the groove depth d1 of the main groove 10 always satisfy the relationship d1> d3. The magnitude relationship between the groove depth d3 of the center lug groove 30 and the groove depth d2 of the shoulder lug groove 20 is not particularly limited, but preferably satisfies the relationship of d2> d3.

ショルダーラグ溝20とセンターラグ溝30との位置関係は特に限定されないが、例えば図示の例のように、ジグザグ状に延在する主溝10の一部がセンターラグ溝30と同方向に傾斜して直進し、この部分がショルダーラグ溝20とセンターラグ溝30との間を中継し、ショルダーラグ溝20と主溝10の一部とセンターラグ溝30とが滑らかに連続していることが排土性やエッジ効果の点から好ましい。   Although the positional relationship between the shoulder lug groove 20 and the center lug groove 30 is not particularly limited, for example, a part of the main groove 10 extending in a zigzag shape is inclined in the same direction as the center lug groove 30 as in the illustrated example. This part relays between the shoulder lug groove 20 and the center lug groove 30, and the shoulder lug groove 20, a part of the main groove 10 and the center lug groove 30 are smoothly continuous. It is preferable in terms of soil properties and edge effect.

センター陸部12には、未舗装路での走行性能の更なる向上のために、前述のセンターラグ溝30の他に、センターラグ溝30どうしを接続する接続溝50を設けることもできる。接続溝50の溝幅はセンターラグ溝30の溝幅よりも小さいとよく、接続溝50の溝深さd5はセンターラグ溝30の溝深さd3よりも小さいとよい。接続溝50には後述の凸部40は形成されない。センター陸部12には、未舗装路での走行性能の更なる向上のために、図示の例のようにサイプSを設けることもできる。   In addition to the above-described center lug groove 30, a connection groove 50 that connects the center lug grooves 30 can also be provided in the center land portion 12 in order to further improve traveling performance on an unpaved road. The groove width of the connection groove 50 is preferably smaller than the groove width of the center lug groove 30, and the groove depth d5 of the connection groove 50 is preferably smaller than the groove depth d3 of the center lug groove 30. The connecting groove 50 is not formed with a protrusion 40 described later. The center land portion 12 may be provided with a sipe S as in the illustrated example in order to further improve the running performance on an unpaved road.

本発明では、上述の主溝10とショルダーラグ溝20とセンターラグ溝30とのそれぞれの溝底に、各溝の溝底から隆起して各溝に沿って延在する凸部40が形成される。以下の説明では、これら凸部40のうち、主溝に形成されたもの第一凸部41、ショルダーラグ溝20に形成されたものを第二凸部42、センターラグ溝30に形成されたものを第三凸部43という場合がある。各凸部40は、各溝の溝底から隆起するにあたって、当該部位の溝全幅を占めるものではなく、図示のように各溝の中央部に各溝の溝壁から離間して設けられるものである。   In the present invention, convex portions 40 are formed on the respective groove bottoms of the main groove 10, the shoulder lug groove 20, and the center lug groove 30 so as to protrude from the groove bottom of each groove and extend along each groove. The In the following description, among these convex portions 40, those formed in the main groove, those formed in the first convex portion 41, and the shoulder lug groove 20 are formed in the second convex portion 42 and the center lug groove 30. May be referred to as a third convex portion 43. Each raised portion 40 does not occupy the entire width of the groove at the site when it rises from the groove bottom of each groove, but is provided at the center of each groove apart from the groove wall of each groove as shown in the figure. is there.

主溝10に形成された第一凸部41は、タイヤ全周に亘って延在する主溝10に沿って全周に亘って連続的に延在するものではなく、主溝10の延長方向に沿って間隔をおいて配置された複数の分割片41a,41bで構成される。各分割片41a,41bは主溝10がジグザグ状に折れ曲がる屈曲部を跨いで延在しており、各分割片41a,41b自体も屈曲している。個々の分割片41a,41bは、同一形状を有していてもよいが、エッジ成分を効率的に発揮する観点から、分割片41a,41bとして、分割片41a,41bが屈曲する屈曲点の一方側と他方側とで長さ比率が異なる複数種類を設けることが好ましい。例えば、図示の例では、分割片41aと分割片41bとで、屈曲点の一方側と他方側とで長さ比率が異なっている。   The 1st convex part 41 formed in the main groove 10 does not extend continuously over the perimeter along the main groove 10 extended over the tire perimeter, but the extension direction of the main groove 10 Are formed of a plurality of divided pieces 41a and 41b spaced apart from each other. Each divided piece 41a, 41b extends across a bent portion where the main groove 10 is bent in a zigzag shape, and each divided piece 41a, 41b itself is also bent. Each of the divided pieces 41a and 41b may have the same shape, but from the viewpoint of efficiently exhibiting the edge component, one of the bending points where the divided pieces 41a and 41b bend as the divided pieces 41a and 41b. It is preferable to provide a plurality of types having different length ratios on the side and the other side. For example, in the illustrated example, the length ratio is different between one side and the other side of the bending point between the divided piece 41a and the divided piece 41b.

本発明では、上述のように、ジグザグ状に延在する主溝10とショルダーラグ溝20とセンターラグ溝30とからなる溝主体のトレッドパターンを構成して未舗装路での走行性能を高めるにあたって、少なくともセンターラグ溝20を主溝10よりも浅くして、溝深さが複数水準含まれるようにしているので、溝容積と陸部剛性とのバランスを良好にして、未舗装路での走行性能を効率的に向上することができる。また、各溝の溝底に凸部40を有するので、この凸部40によって石噛みを防止することができる。更に、この凸部40はエッジ成分として機能するので、未舗装路における走行性能をより向上することもできる。このとき、前述のように凸部40が形成される溝深さが複数水準存在するので、接地した際に路面から異なる距離に複数の凸部40が存在することになり、立体的にエッジ効果を発揮することができ、未舗装路における走行性能を効率的に高めることができる。   In the present invention, as described above, a tread pattern mainly composed of the main groove 10, the shoulder lug groove 20, and the center lug groove 30 extending in a zigzag shape is formed to enhance the running performance on an unpaved road. Since at least the center lug groove 20 is shallower than the main groove 10 so that a plurality of groove depths are included, the balance between the groove volume and the land portion rigidity is improved, and the vehicle runs on an unpaved road. The performance can be improved efficiently. Moreover, since the convex part 40 is provided in the groove bottom of each groove | channel, the stone biting can be prevented by this convex part 40. Furthermore, since this convex part 40 functions as an edge component, the running performance on an unpaved road can be further improved. At this time, as described above, there are a plurality of levels of groove depths at which the protrusions 40 are formed. Therefore, the plurality of protrusions 40 are present at different distances from the road surface when grounded, resulting in a three-dimensional edge effect. Can be exhibited, and the running performance on an unpaved road can be improved efficiently.

このとき、主溝10とショルダーラグ溝20とセンターラグ溝30とが同じ溝深さであると、溝容積が大きくなり過ぎて陸部剛性が低下し、未舗装路における良好な走行性能を確保することが難しくなる。また、前述の立体的なエッジ効果を得ることもできない。
前述の立体的なエッジ効果を有効に発揮させるためには、主溝10の溝深さd1とショルダーラグ溝20の溝深さd2とセンターラグ溝30の溝深さd3とをd1=d2>d3の関係に設定して溝深さを2水準にするか、或いは、主溝10の溝深さd1とショルダーラグ溝20の溝深さd2とセンターラグ溝30の溝深さd3とをd1>d2>d3の関係に設定して溝深さを3水準にするとよい。このほかの溝深さの関係では、トレッド部1の幅方向の位置と溝深さ(ブロック剛性、接地時の凸部40の路面からの位置)との関係が必ずしも適正でなくなり、未舗装路における走行性能の向上効果が限定的になる。
At this time, if the main groove 10, the shoulder lug groove 20 and the center lug groove 30 have the same groove depth, the groove volume becomes too large, the rigidity of the land portion decreases, and good running performance on an unpaved road is ensured. It becomes difficult to do. In addition, the above-described three-dimensional edge effect cannot be obtained.
In order to effectively exhibit the above-described three-dimensional edge effect, the groove depth d1 of the main groove 10, the groove depth d2 of the shoulder lug groove 20, and the groove depth d3 of the center lug groove 30 are d1 = d2>. d3 is set to the relationship of d3, or the groove depth d1 of the main groove 10, the groove depth d2 of the shoulder lug groove 20, and the groove depth d3 of the center lug groove 30 are set to d1. It is preferable to set the relationship of>d2> d3 and set the groove depth to three levels. With other groove depth relationships, the relationship between the position in the width direction of the tread portion 1 and the groove depth (block rigidity, position from the road surface of the convex portion 40 at the time of ground contact) is not necessarily appropriate, and the unpaved road The effect of improving the running performance is limited.

タイヤ周方向に間隔をおいて配列されるショルダーラグ溝20とセンターラグ溝30については、必ずしもすべての溝に凸部40を設ける必要はない。例えば、接地面内に含まれるラグ溝の半数以上に凸部40が形成されていれば本発明の効果を充分に発揮することができる。図示の例では、ショルダーラグ溝20に関しては、すべてのショルダーラグ溝20に凸部40(第二凸部42)が形成され、センターラグ溝30に関しては、終端位置の異なる2種類のセンターラグ溝30(第一センターラグ溝31および第二センターラグ溝32)のうち、第一センターラグ溝31のみに凸部40(第三凸部43)が形成されている。特に、図示の例のように終端位置の異なる2種類のセンターラグ溝30(第一センターラグ溝31および第二センターラグ溝32)を含む場合には、第一センターラグ溝31のみに凸部40(第三凸部43)を設けることで、センター陸部12の剛性とセンターラグ溝30の溝容積と凸部40の量とのバランスを良好にすることができ、未舗装路における走行性能を向上するには有利になる。   With respect to the shoulder lug groove 20 and the center lug groove 30 arranged at intervals in the tire circumferential direction, it is not always necessary to provide the convex portions 40 in all the grooves. For example, the effect of the present invention can be sufficiently exerted if the convex portions 40 are formed in more than half of the lug grooves included in the ground plane. In the illustrated example, with respect to the shoulder lug grooves 20, convex portions 40 (second convex portions 42) are formed in all the shoulder lug grooves 20, and with respect to the center lug grooves 30, two types of center lug grooves having different end positions are formed. Of the 30 (first center lug groove 31 and second center lug groove 32), the convex part 40 (third convex part 43) is formed only in the first center lug groove 31. In particular, when two types of center lug grooves 30 (first center lug groove 31 and second center lug groove 32) having different end positions are included as in the illustrated example, only the first center lug groove 31 has a convex portion. By providing 40 (third convex portion 43), the balance between the rigidity of the center land portion 12, the groove volume of the center lug groove 30, and the amount of the convex portion 40 can be improved, and the running performance on an unpaved road. It will be advantageous to improve.

本発明では、前述のように、センターラグ溝30が主溝10よりも浅く構成されるが、その際に、主溝10の溝深さd1とセンターラグ溝30の溝深さd3との差Δd(=d1−d3)を好ましくは1.6mm以上、より好ましくは2mm〜8mmに設定するとよい。このように溝深さの差Δdを設定することで、主溝10とセンターラグ溝30とで接地時の路面から凸部40までの距離を充分に異ならせることができ、立体的なエッジ効果を効率的に発揮することができ、未舗装路における走行性能を高めるには有利になる。このとき、溝深さの差Δdが1.6mm未満であると、主溝10とセンターラグ溝30との深さの差を小さくなり、立体的なエッジ効果を充分に確保することが難しくなる。   In the present invention, as described above, the center lug groove 30 is configured to be shallower than the main groove 10, but at this time, the difference between the groove depth d 1 of the main groove 10 and the groove depth d 3 of the center lug groove 30. Δd (= d1−d3) is preferably set to 1.6 mm or more, more preferably 2 mm to 8 mm. By setting the groove depth difference Δd in this way, the distance from the road surface to the convex portion 40 at the time of ground contact can be made sufficiently different between the main groove 10 and the center lug groove 30, and the three-dimensional edge effect It is advantageous for improving the running performance on an unpaved road. At this time, if the difference Δd in the groove depth is less than 1.6 mm, the difference in depth between the main groove 10 and the center lug groove 30 is reduced, and it becomes difficult to sufficiently secure the three-dimensional edge effect. .

尚、ショルダーラグ溝20の溝深さd2は上述のように特に限定されないが、例えば各溝の溝深さがd1>d2>d3の関係を満たしているときには、主溝10の溝深さd1とショルダーラグ溝20の溝深さd2との差を例えば2mm〜8mm、ショルダーラグ溝20の溝深さd2とセンターラグ溝30の溝深さd3との差を例えば2mm〜6mmに設定するとよい。   Although the groove depth d2 of the shoulder lug groove 20 is not particularly limited as described above, for example, when the groove depth of each groove satisfies the relationship d1> d2> d3, the groove depth d1 of the main groove 10 And the groove depth d2 of the shoulder lug groove 20 may be set to 2 mm to 8 mm, for example, and the difference between the groove depth d2 of the shoulder lug groove 20 and the groove depth d3 of the center lug groove 30 may be set to 2 mm to 6 mm, for example. .

各凸部40は、図5に模式的に示すように、凸部40(第一凸部41、第二凸部42、第三凸部43)が形成された溝G(主溝10、ショルダーラグ溝20、センターラグ溝30)の溝底からの隆起高さhが0.8mm以上であり、且つ、凸部40(第一凸部41、第二凸部42、第三凸部43)が形成された溝G(主溝10、ショルダーラグ溝20、センターラグ溝30)の溝深さD(d1、d2,d3)の1/3以下であることが好ましい。また、凸部40(第一凸部41、第二凸部42、第三凸部43)の幅w4が0.8mm以上であり、且つ、凸部40(第一凸部41、第二凸部42、第三凸部43)が形成された溝G(主溝10、ショルダーラグ溝20、センターラグ溝30)のトレッド踏面における溝幅W(w1,w2,w3)の1/2以下であることが好ましい。このように各凸部40(第一凸部41、第二凸部42、第三凸部43)の寸法を設定することで、各凸部40の大きさが良好になり、凸部40によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。尚、図5の溝Gは、凸部40の形状を説明するために主溝10、ショルダーラグ溝20、センターラグ溝30の形状を簡略化して共通図面として示したものである。   As schematically shown in FIG. 5, each convex portion 40 has a groove G (main groove 10, shoulder) in which convex portions 40 (first convex portion 41, second convex portion 42, third convex portion 43) are formed. The raised height h from the groove bottom of the lug groove 20 and the center lug groove 30) is 0.8 mm or more, and the convex portion 40 (first convex portion 41, second convex portion 42, third convex portion 43). It is preferable that it is 1/3 or less of the groove depth D (d1, d2, d3) of the groove G (the main groove 10, the shoulder lug groove 20, the center lug groove 30) in which is formed. Further, the width w4 of the convex portion 40 (first convex portion 41, second convex portion 42, third convex portion 43) is 0.8 mm or more, and the convex portion 40 (first convex portion 41, second convex portion). The groove 42 (the main groove 10, the shoulder lug groove 20, and the center lug groove 30) in which the portion 42 and the third convex portion 43) are formed is ½ or less of the groove width W (w1, w2, w3) on the tread surface. Preferably there is. Thus, by setting the dimension of each convex part 40 (the 1st convex part 41, the 2nd convex part 42, the 3rd convex part 43), the magnitude | size of each convex part 40 becomes favorable and it depends on the convex part 40. The edge effect and the stone biting prevention effect can be exhibited with a good balance. In addition, the groove | channel G of FIG. 5 simplified the shape of the main groove 10, the shoulder lug groove 20, and the center lug groove 30 in order to demonstrate the shape of the convex part 40, and was shown as a common drawing.

凸部40の隆起高さhが0.8mm未満であると、凸部40が充分に隆起せず、凸部40によるエッジ効果や石噛み防止効果を充分に確保することが難しくなる。凸部40の隆起高さhが溝Gの溝深さDの1/3を超えると、凸部40が溝Gに占める割合が過大になり、排土性に影響が出る虞がある。凸部40の幅w4が0.8mm未満であると、凸部40が過少になり、凸部40によるエッジ効果や石噛み防止効果を充分に確保することが難しくなる。また、凸部40自体の耐久性を確保することが難しくなる。凸部40の幅w4が溝幅Wの1/2を超えると、凸部40が溝Gに占める割合が過大になり、排土性に影響が出る虞がある。この寸法を満たすにあたって、溝G内に占める凸部40の割合を更に良好にするために、凸部40の断面積を溝Gの断面積の例えば15%〜30%に設定することが好ましい。   If the raised height h of the convex portion 40 is less than 0.8 mm, the convex portion 40 does not sufficiently rise, and it becomes difficult to sufficiently secure the edge effect and the stone biting prevention effect by the convex portion 40. When the protruding height h of the convex portion 40 exceeds 1/3 of the groove depth D of the groove G, the ratio of the convex portion 40 to the groove G becomes excessive, and there is a possibility that the soil removal property may be affected. When the width w4 of the convex portion 40 is less than 0.8 mm, the convex portion 40 becomes too small, and it becomes difficult to sufficiently secure the edge effect and the stone biting prevention effect by the convex portion 40. Moreover, it becomes difficult to ensure the durability of the convex portion 40 itself. When the width w4 of the convex portion 40 exceeds 1/2 of the groove width W, the proportion of the convex portion 40 in the groove G becomes excessive, and there is a possibility that the soil removal property may be affected. In order to satisfy this dimension, in order to further improve the proportion of the convex portion 40 in the groove G, the cross-sectional area of the convex portion 40 is preferably set to, for example, 15% to 30% of the cross-sectional area of the groove G.

主溝10に形成される第一凸部41は、上述のように複数の分割片41a,41bで構成されるが、タイヤ周方向に隣り合う分割片41a、41bどうしの離間距離はショルダーラグ溝42の溝幅w2の40%〜60%であることが好ましい。このように分割片41a,41bを適度に離間させることで、主溝10内における第一凸部41(分割片41a,41b)の配置や分布が良好になり、主溝10における第一凸部41によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。分割片41a、41bの離間距離がショルダーラグ溝42の溝幅w2の40%未満であると、分割片41a,41bどうしが接近し過ぎて、第一凸部41がタイヤ全周に亘って連続的に延在する場合と実質的に同等になり、ショルダーラグ溝20やセンターラグ溝30から主溝10への水や泥等の流れが阻害されやすくなり、主溝10の機能が低下する虞がある。分割片41a、41bの離間距離がショルダーラグ溝42の溝幅w2の60%を超えると、主溝10内に第一凸部41(分割片41a,41b)が存在しない領域が大きくなり、第一凸部41による効果を充分に確保することが難しくなる。   The first convex portion 41 formed in the main groove 10 is composed of the plurality of divided pieces 41a and 41b as described above, but the separation distance between the divided pieces 41a and 41b adjacent in the tire circumferential direction is the shoulder lug groove. It is preferably 40% to 60% of the groove width w2 of 42. Thus, by appropriately separating the divided pieces 41a and 41b, the arrangement and distribution of the first convex portions 41 (divided pieces 41a and 41b) in the main groove 10 are improved, and the first convex portions in the main groove 10 are obtained. The edge effect by 41 and the stone biting prevention effect can be exhibited with good balance. If the separation distance between the divided pieces 41a and 41b is less than 40% of the groove width w2 of the shoulder lug groove 42, the divided pieces 41a and 41b are too close to each other, and the first convex portion 41 continues over the entire circumference of the tire. Substantially the same as the case where it extends, the flow of water, mud, etc. from the shoulder lug groove 20 or the center lug groove 30 to the main groove 10 is likely to be obstructed, and the function of the main groove 10 may be reduced. There is. When the separation distance between the divided pieces 41a and 41b exceeds 60% of the groove width w2 of the shoulder lug groove 42, the area where the first convex portion 41 (the divided pieces 41a and 41b) does not exist in the main groove 10 becomes large, It becomes difficult to sufficiently secure the effect of the one convex portion 41.

ショルダーラグ溝20に形成される第二凸部42は、図示の例のように、第二凸部42が形成されたショルダーラグ溝20の全長に亘って延在することが好ましい。即ち、第二凸部42の長手方向の一端が接地端Eを超えて延在して、ショルダーブロック11′のサイドウォール2側の端部まで達する一方で、第二凸部42の長手方向の他端がショルダーラグ溝20の開口部に到達していることが好ましい。特に、ショルダーラグ溝20の接地端Eから開口部までの溝長手方向に沿った長さをLsとしたとき、第二凸部42の長さL2は長さLsの100%〜115%であることが好ましい。   It is preferable that the 2nd convex part 42 formed in the shoulder lug groove 20 extends over the full length of the shoulder lug groove 20 in which the 2nd convex part 42 was formed like the example of illustration. That is, one end in the longitudinal direction of the second convex portion 42 extends beyond the ground contact end E and reaches the end on the side wall 2 side of the shoulder block 11 ′, while the longitudinal direction of the second convex portion 42 is reached. It is preferable that the other end reaches the opening of the shoulder lug groove 20. In particular, when the length along the longitudinal direction of the shoulder lug groove 20 from the ground contact E to the opening is Ls, the length L2 of the second protrusion 42 is 100% to 115% of the length Ls. It is preferable.

一方、センターラグ溝30に形成される第三凸部43は、第三凸部43が形成されたセンターラグ溝30の全長に亘って延在する必要はない。寧ろ、第三凸部43がセンターラグ溝に対して適度に短いとよく、具体的には、センターラグ溝30の開口端から終端までの溝長手方向に沿った長さをLcとしたとき、第三凸部43の長さL3は長さLcの60%〜80%であることが好ましい。これにより、センターラグ溝30に占める凸部の大きさの割合が良好になり、第三凸部43によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。第三凸部43の長さL3がセンターラグ溝30の長さLcの60%未満であると、第三凸部43が過小になり、第三凸部43によるエッジ効果や石噛み防止効果を充分に発揮することが難しくなる。第三凸部43の長さL3がセンターラグ溝30の長さLcの80%を超えると、センターラグ溝30に占める第三凸部43の割合が大きくなり、センターラグ溝30の溝容積を充分に確保することが難しくなる。   On the other hand, the third protrusion 43 formed in the center lug groove 30 does not need to extend over the entire length of the center lug groove 30 in which the third protrusion 43 is formed. Rather, the third convex portion 43 should be reasonably short with respect to the center lug groove. Specifically, when the length along the groove longitudinal direction from the opening end to the end of the center lug groove 30 is Lc, The length L3 of the third convex portion 43 is preferably 60% to 80% of the length Lc. Thereby, the ratio of the magnitude | size of the convex part which occupies for the center lug groove | channel 30 becomes favorable, and the edge effect and the stone biting prevention effect by the 3rd convex part 43 can be exhibited with sufficient balance. If the length L3 of the third convex portion 43 is less than 60% of the length Lc of the center lug groove 30, the third convex portion 43 becomes excessively small, and the edge effect and the stone biting prevention effect by the third convex portion 43 are obtained. It becomes difficult to fully demonstrate. When the length L3 of the third convex portion 43 exceeds 80% of the length Lc of the center lug groove 30, the ratio of the third convex portion 43 to the center lug groove 30 increases, and the groove volume of the center lug groove 30 is reduced. It becomes difficult to secure enough.

各凸部40の端部は、凸部40をトレッド踏面側から見たとき、凸部40の長手方向端部の輪郭線は凸部40が形成された溝の溝幅方向に対して傾斜した斜辺であり、この斜辺の一端側で凸部40の側面の輪郭線と斜辺とが鋭角を成し、この斜辺の他端側で凸部40の側面の輪郭線が斜辺と円弧を介して滑らかに接続することが好ましい。特に、図2,3に示す例の場合、第一凸部41の斜辺は、センターラグ溝30に対向する端部では、対向する溝壁面と略平行に傾斜しているとよく、センター陸部12に対向する端部では、対向する溝壁面と交差する方向に傾斜しているとよい。第二凸部42の斜辺は、その第二凸部42の延長線上に位置する第一凸部41の端部の斜辺と同方向に傾斜しているとよい。第三凸部43の斜辺は、センターラグ溝30の端部の溝壁面や開口部における陸部の壁面と略平行であるとよい。このように凸部40の端部形状を構成得ることで、凸部40によるエッジ効果と石噛み防止効果とをバランスよく発揮することができる。また、凸部自体40の耐久性を高めることもできる。   When the convex portion 40 is viewed from the tread surface side, the end line of each convex portion 40 is inclined with respect to the groove width direction of the groove in which the convex portion 40 is formed. It is a hypotenuse, and the contour of the side surface of the convex portion 40 and the hypotenuse form an acute angle at one end of the hypotenuse, and the contour of the side of the convex portion 40 is smooth through the hypotenuse and the arc at the other end of the hypotenuse. It is preferable to connect to. In particular, in the case of the example shown in FIGS. 2 and 3, the hypotenuse of the first convex portion 41 may be inclined substantially parallel to the facing groove wall surface at the end facing the center lug groove 30. 12 is preferably inclined in a direction intersecting the opposing groove wall surface. The oblique side of the second convex portion 42 may be inclined in the same direction as the oblique side of the end portion of the first convex portion 41 located on the extension line of the second convex portion 42. The oblique side of the third convex portion 43 is preferably substantially parallel to the groove wall surface at the end of the center lug groove 30 and the land wall surface at the opening. Thus, by obtaining the edge part shape of the convex part 40, the edge effect by the convex part 40 and the stone biting prevention effect can be exhibited with sufficient balance. Moreover, durability of the convex part 40 itself can also be improved.

タイヤサイズがLT265/70R17 121Qであり、図1に例示する基本構造を有し、図2のトレッドパターンを基調とし、主溝の溝深さd1、主溝の溝幅w1、第一凸部の幅、第一凸部の隆起高さ、分割片の種類、タイヤ周方向に隣り合う分割片どうしの離間距離、ショルダーラグ溝の溝深さd2、ショルダーラグ溝の溝幅w2、第二凸部の幅、第二凸部の隆起高さ、センターラグ溝の溝深さd3、センターラグ溝の溝幅w3、センターラグ溝の配置、第三凸部の幅、第三凸部の隆起高さ、第三凸部の長さ、溝深さd1〜d3の大小関係、溝深さd1と溝深さd3との差Δd、凸部の端部形状をそれぞれ表1〜3のように設定した比較例1、実施例1〜23の24種類の空気入りタイヤを作製した。   The tire size is LT265 / 70R17 121Q, and has the basic structure illustrated in FIG. 1, based on the tread pattern of FIG. 2, and the groove depth d1 of the main groove, the groove width w1 of the main groove, and the first convex portion Width, raised height of the first convex part, type of divided piece, separation distance between adjacent divided pieces in the tire circumferential direction, groove depth d2 of the shoulder lug groove, groove width w2 of the shoulder lug groove, second convex part Width, raised height of second convex portion, groove depth d3 of center lug groove, groove width w3 of center lug groove, arrangement of center lug groove, width of third convex portion, raised height of third convex portion The length of the third convex part, the size relationship between the groove depths d1 to d3, the difference Δd between the groove depth d1 and the groove depth d3, and the end part shape of the convex part were set as shown in Tables 1 to 3, respectively. 24 types of pneumatic tires of Comparative Example 1 and Examples 1 to 23 were produced.

表1〜3の「分割片の種類」の欄について、図示の例のように、分割片の屈曲点の一方側と他方側とで長さ比率が異なる2種類の分割片が含まれる場合を「2種類」、すべての分割片について分割片の屈曲点の一方側と他方側とで長さ比率が同じ場合を「1種類」と表示した。表1〜3の「分割片の離間距離」の欄は、ショルダーラグ溝の溝幅に対する割合(%)を表示した。表1〜3の「センターラグ溝の配置」の欄について、第一センターラグ溝および第二センターラグ溝の両方に凸部が形成された場合を「全溝」、第一センターラグ溝のみに凸部が形成された場合を「第一のみ」と表示した。表1〜3の「凸部の端部形状」の欄について、端部が図示の形状を有する場合を「図示形状」、トレッド踏面側から見たときの凸部の長手方向端部の輪郭線が溝幅方向と平行で凸部40の側面の輪郭線と直角を成す場合を「矩形」と表示した。   About the column of “type of divided piece” in Tables 1 to 3, when two types of divided pieces having different length ratios are included on one side and the other side of the bending point of the divided piece, as in the illustrated example. “Two types”, and “one type” when the length ratio is the same on one side and the other side of the bending point of the divided pieces for all the divided pieces. In the column of “Separation distance of divided pieces” in Tables 1 to 3, the ratio (%) to the groove width of the shoulder lug groove is displayed. About the column of "arrangement of center lug groove" of Tables 1-3, the case where a convex part is formed in both the first center lug groove and the second center lug groove is only "all grooves", only the first center lug groove The case where the convex portion was formed was indicated as “first only”. About the column of "end part shape of a convex part" of Tables 1-3, when the edge part has the shape shown in figure, it is "illustration shape", the outline of the longitudinal direction edge part of a convex part when it sees from the tread tread side The case where is parallel to the groove width direction and perpendicular to the contour line of the side surface of the convex portion 40 is indicated as “rectangular”.

これら空気入りタイヤについて、下記の評価方法により、石噛み防止性能と発進性能を評価し、その結果を表1〜3に併せて示した。   About these pneumatic tires, the stone biting prevention performance and the start performance were evaluated by the following evaluation methods, and the results are also shown in Tables 1 to 3.

石噛み防止性能
各試験タイヤをリムサイズ17×8Jのホイールに組み付けて、空気圧を350kPaとして試験車両(四輪駆動のSUV)に装着し、未舗装路(グラベル路面)からなる試験路にてテストドライバーによる走行試験を実施した後、石噛み個数を数えた。評価結果は、計数値の逆数を用い、比較例1の値を100とする指数にて示した。この指数値が大きいほど石噛み個数が少なく、石噛み防止性能が優れていることを意味する。
Stone biting prevention performance Each test tire is mounted on a wheel with a rim size of 17 x 8 J, mounted on a test vehicle (four-wheel drive SUV) with an air pressure of 350 kPa, and a test driver on a test road consisting of an unpaved road (gravel road surface). After carrying out a running test according to, the number of stone bites was counted. The evaluation results are shown as an index using the reciprocal of the count value and the value of Comparative Example 1 as 100. The larger the index value, the smaller the number of stone bites, which means that the stone biting prevention performance is excellent.

発進性
各試験タイヤをリムサイズ17×8Jのホイールに組み付けて、空気圧を350kPaとして試験車両(四輪駆動のSUV)に装着し、未舗装路(グラベル路面)からなる試験路にて発進性についてテストドライバーによる官能評価を行った。評価結果は、比較例1の値を100とする指数にて示した。この指数値が大きいほど未舗装路における発進性が優れることを意味する。
Startability Each test tire is assembled to a wheel with a rim size of 17 × 8J, mounted on a test vehicle (SUV with four-wheel drive) at an air pressure of 350 kPa, and the startability is tested on a test road consisting of an unpaved road (gravel road surface). Sensory evaluation by a driver was performed. The evaluation results are shown as an index with the value of Comparative Example 1 as 100. A larger index value means better startability on an unpaved road.

Figure 2019142370
Figure 2019142370

Figure 2019142370
Figure 2019142370

Figure 2019142370
Figure 2019142370

表1〜3から明らかなように、実施例1〜24はいずれも、比較例1と比較して、石噛み防止性能および発進性能を効果的に向上した。尚、グラベル路面における発進性のみを評価したが、他の未舗装路(泥濘路や岩場や雪道など)を走行した場合であっても、本発明のタイヤは、路面上の泥や岩や雪などに対して有効に作用するので、どのような未舗装路であっても優れた発進性能を発揮することができる。   As is apparent from Tables 1 to 3, all of Examples 1 to 24 improved the stone biting prevention performance and the start performance effectively as compared with Comparative Example 1. Although only the startability on the gravel road surface was evaluated, the tire of the present invention can be used for mud and rocks on the road surface even when traveling on other unpaved roads (such as muddy roads, rocky places, and snowy roads). Since it acts effectively on snow and the like, it can exhibit excellent starting performance on any unpaved road.

1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 ベルト補強層
10 主溝
11 ショルダー陸部
11′ ショルダーブロック
12 センター陸部
20 ショルダーラグ溝
30 センターラグ溝
31 第一センターラグ溝
32 第二センターラグ溝
40 凸部
41 第一凸部
41a,41b 分割片
42 第二凸部
43 第三凸部
CL タイヤ赤道
E 接地端
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass layer 5 Bead core 6 Bead filler 7 Belt layer 8 Belt reinforcement layer 10 Main groove 11 Shoulder land part 11 'Shoulder block 12 Center land part 20 Shoulder lug groove 30 Center lug groove 31st One center lug groove 32 Second center lug groove 40 Convex part 41 First convex part 41a, 41b Dividing piece 42 Second convex part 43 Third convex part CL Tire equator E Grounding end

Claims (8)

タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えた空気入りタイヤにおいて、
前記トレッド部に、タイヤ赤道の両側でタイヤ周方向に沿ってジグザグ状に折れ曲がりながら延在する一対の主溝と、前記一対の主溝によって区画されてタイヤ赤道上に位置するセンター陸部と、前記一対の主溝のタイヤ幅方向外側に区画されたショルダー陸部と、前記ショルダー陸部上でタイヤ幅方向に沿って延在するショルダーラグ溝と、前記センター陸部上でタイヤ幅方向に対して傾斜して延在するセンターラグ溝とが形成され、少なくとも前記センターラグ溝の溝深さは前記主溝の溝深さよりも小さく、
前記主溝と前記ショルダーラグ溝と前記センターラグ溝とのそれぞれの溝底に各溝の溝底から隆起して各溝に沿って延在する凸部が形成され、
前記主溝に形成された凸部は前記主溝の長手方向に間隔をおいて配置された複数の分割片からなり、各分割片は前記主溝がジグザグ状に折れ曲がる屈曲部を跨いで延在して屈曲していることを特徴とする空気入りタイヤ。
An annular tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and a pair of bead portions disposed on the inner side in the tire radial direction of the sidewall portions. In the provided pneumatic tire,
A pair of main grooves extending in a zigzag manner along the tire circumferential direction on both sides of the tire equator in the tread portion, a center land portion that is partitioned by the pair of main grooves and located on the tire equator; A shoulder land portion partitioned on the outer side in the tire width direction of the pair of main grooves, a shoulder lug groove extending along the tire width direction on the shoulder land portion, and a tire width direction on the center land portion And a center lug groove extending in an inclined manner, at least the groove depth of the center lug groove is smaller than the groove depth of the main groove,
The main groove, the shoulder lug groove, and the center lug groove are each formed with a convex portion that protrudes from the groove bottom of each groove and extends along each groove.
The convex portion formed in the main groove is composed of a plurality of divided pieces arranged at intervals in the longitudinal direction of the main groove, and each divided piece extends across the bent portion where the main groove is bent in a zigzag shape. A pneumatic tire characterized by being bent.
前記主溝の溝深さと前記センターラグ溝の溝深さとの差が1.6mm以上であることを特徴とする請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein a difference between a groove depth of the main groove and a groove depth of the center lug groove is 1.6 mm or more. 前記凸部が形成された溝の溝底からの前記凸部の隆起高さが0.8mm以上であり、且つ、前記凸部が形成された溝の溝深さの1/3以下であることを特徴とする請求項1または2に記載の空気入りタイヤ。   The protruding height of the convex part from the groove bottom of the groove in which the convex part is formed is 0.8 mm or more, and is not more than 1/3 of the groove depth of the groove in which the convex part is formed. The pneumatic tire according to claim 1 or 2, characterized in that. 前記凸部の幅が0.8mm以上であり、且つ、前記凸部が形成された溝の踏面における溝幅の1/2以下であることを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。   The width of the convex part is 0.8 mm or more, and is 1/2 or less of the groove width in the tread surface of the groove in which the convex part is formed. Pneumatic tires. 前記センターラグ溝は、タイヤ赤道に到達して終端する第一センターラグ溝と、タイヤ赤道に到達せずに終端する第二センターラグ溝とを含み、前記第一センターラグ溝と前記第二センターラグ溝とはタイヤ周方向に交互に配置され、前記凸部は前記第一センターラグ溝のみに形成されることを特徴とする請求項1〜4のいずかに記載の空気入りタイヤ。   The center lug groove includes a first center lug groove that reaches the tire equator and terminates, and a second center lug groove that terminates without reaching the tire equator, and the first center lug groove and the second center The pneumatic tire according to any one of claims 1 to 4, wherein the lug grooves are alternately arranged in a tire circumferential direction, and the convex portion is formed only in the first center lug groove. 前記分割片は屈曲部の一方側と他方側とで長さ比率が異なる複数種類を含み、タイヤ周方向に隣り合う前記分割片どうしの離間距離がショルダーラグ溝の溝幅の40%〜60%であることを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤ。   The divided pieces include a plurality of types having different length ratios on one side and the other side of the bent portion, and the separation distance between the divided pieces adjacent in the tire circumferential direction is 40% to 60% of the groove width of the shoulder lug groove. The pneumatic tire according to claim 1, wherein the pneumatic tire is a tire. 前記凸部が形成されたセンターラグ溝の長さに対する当該センターラグ溝に形成された前記凸部の当該センターラグ溝の長手方向に沿った長さの割合が60%〜80%であることを特徴とする請求項1〜6のいずれかに記載の空気入りタイヤ。   The ratio of the length along the longitudinal direction of the center lug groove of the convex portion formed in the center lug groove to the length of the center lug groove formed with the convex portion is 60% to 80%. The pneumatic tire according to any one of claims 1 to 6, characterized in that 前記凸部をトレッド踏面側から見たとき、前記凸部の長手方向端部の輪郭線は前記凸部が形成された溝の溝幅方向に対して傾斜した斜辺であり、前記斜辺の一端側で前記凸部の側面の輪郭線と前記斜辺とが鋭角を成し、前記斜辺の他端側で前記凸部の側面の輪郭線が前記斜辺と円弧を介して滑らかに接続することを特徴とする請求項1〜7のいずれかに記載の空気入りタイヤ。   When the convex portion is viewed from the tread tread side, the contour line of the longitudinal end portion of the convex portion is an oblique side inclined with respect to the groove width direction of the groove in which the convex portion is formed, and one end side of the oblique side The contour line of the side surface of the convex portion and the hypotenuse form an acute angle, and the contour line of the side surface of the convex portion is smoothly connected to the hypotenuse side via an arc on the other end side of the hypotenuse side. The pneumatic tire according to any one of claims 1 to 7.
JP2018028986A 2018-02-21 2018-02-21 Pneumatic tire Pending JP2019142370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028986A JP2019142370A (en) 2018-02-21 2018-02-21 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028986A JP2019142370A (en) 2018-02-21 2018-02-21 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2019142370A true JP2019142370A (en) 2019-08-29

Family

ID=67773556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028986A Pending JP2019142370A (en) 2018-02-21 2018-02-21 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2019142370A (en)

Similar Documents

Publication Publication Date Title
JP6540756B2 (en) Pneumatic tire
JP6194984B1 (en) Pneumatic tire
JP6142930B1 (en) Pneumatic tire
JP6443509B1 (en) Pneumatic tire
JP6296095B2 (en) Pneumatic tire
JP6644271B1 (en) Pneumatic tire
JP6443508B1 (en) Pneumatic tire
CN112384380B (en) Pneumatic tire
JP6644272B1 (en) Pneumatic tire
JP6521110B1 (en) Pneumatic tire
JP6720991B2 (en) Pneumatic tire
JP6604390B2 (en) Pneumatic tire
JP2018114809A (en) Pneumatic tire
JP6428872B1 (en) Pneumatic tire
JP6365720B1 (en) Pneumatic tire
JP6428799B2 (en) Pneumatic tire
JP6680328B2 (en) Pneumatic tire
JP2019142370A (en) Pneumatic tire
JP2019142369A (en) Pneumatic tire
JP2019137123A (en) Pneumatic tire
JP6680329B2 (en) Pneumatic tire
JP2019147462A (en) Pneumatic tire
JP2019142371A (en) Pneumatic tire