JP2019139256A - Development device - Google Patents

Development device Download PDF

Info

Publication number
JP2019139256A
JP2019139256A JP2019104140A JP2019104140A JP2019139256A JP 2019139256 A JP2019139256 A JP 2019139256A JP 2019104140 A JP2019104140 A JP 2019104140A JP 2019104140 A JP2019104140 A JP 2019104140A JP 2019139256 A JP2019139256 A JP 2019139256A
Authority
JP
Japan
Prior art keywords
developer
developing sleeve
magnetic flux
developing
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019104140A
Other languages
Japanese (ja)
Inventor
京佑 高橋
Kyosuke Takahashi
京佑 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019104140A priority Critical patent/JP2019139256A/en
Publication of JP2019139256A publication Critical patent/JP2019139256A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

To realize a configuration in which it is possible to suppress, at a low cost, change in distribution of magnetic flux density near a regulatory blade 9 of a developer regulatory pole facing the regulatory blade 9 while suppressing influences on degree of freedom of design of other magnetic poles.SOLUTION: Assuming that a position on an outer circumference of a development sleeve at which magnetic flux density in a normal direction relative to the outer circumference of the development sleeve becomes maximum is a maximum value position, and the position on the outer circumference of the development sleeve corresponding to a center position of a range equal to a half value of distribution of magnetic flux density of a development regulatory pole is a half-value center position. In this case, the development regulatory pole is formed so that the maximum value position shifts by 3 degrees or more in a circumferential direction of the development sleeve relative to the half-value center position, and that the position on the outer circumference of the development sleeve opposed to the regulatory blade 9 is closer to a side where the half-value center position exists than the maximum value position.SELECTED DRAWING: Figure 5

Description

本発明は、トナーとキャリアを含む現像剤を用いて、感光ドラムなどの像担持体上に形成された静電潜像を現像する現像装置に関する。   The present invention relates to a developing device that develops an electrostatic latent image formed on an image carrier such as a photosensitive drum using a developer containing toner and a carrier.

電子写真方式や静電記録方式を用いた複写機、プリンタ、ファクシミリ、これらのうちの複数の機能を有する複合機などの画像形成装置では、感光ドラムなどの像担持体上に形成された静電潜像に現像剤を付着させて可視像化(現像)する。このような現像に使用される現像装置では、従来から、非磁性粒子のトナーと磁性粒子のキャリアからなる2成分現像剤(以下、現像剤と称する)を用いるものが知られている。   In an image forming apparatus such as a copying machine, a printer, a facsimile machine, or a multi-function machine having a plurality of functions among these using an electrophotographic system or an electrostatic recording system, an electrostatic formed on an image carrier such as a photosensitive drum. A developer is attached to the latent image to visualize it (develop). 2. Description of the Related Art Conventionally, development apparatuses used for such development use a two-component developer (hereinafter referred to as a developer) composed of non-magnetic particle toner and magnetic particle carrier.

このような現像装置では、内側にマグネットを配置した現像スリーブの表面に現像剤を担持し、現像スリーブが回転することで現像剤が搬送される。現像剤は、現像スリーブに近接して配置された現像剤規制部材としての規制ブレードにより現像剤の量(層厚)が規制されて、感光ドラムと対向する現像領域に搬送される。そして、感光ドラム上に形成された静電潜像を現像剤中のトナーにより現像する。   In such a developing device, the developer is carried on the surface of the developing sleeve having a magnet disposed inside, and the developer is transported by the rotation of the developing sleeve. The amount of the developer (layer thickness) is regulated by a regulating blade as a developer regulating member arranged in the vicinity of the developing sleeve, and the developer is conveyed to a developing area facing the photosensitive drum. Then, the electrostatic latent image formed on the photosensitive drum is developed with toner in the developer.

このような構成の場合、マグネットの磁束密度の分布と規制ブレードとの位置関係がずれることで、規制ブレードに搬送される現像剤量が変化してしまう。このため、規制ブレードと対向する磁極が略対称な磁束密度の分布を有し、規制ブレードの位置を、この磁極の磁束密度分布のピーク位置からずらすと共に、磁束密度の半値幅の範囲内とした構成が提案されている(特許文献1)。   In the case of such a configuration, the amount of developer conveyed to the regulating blade changes due to the positional relationship between the magnetic flux density distribution of the magnet and the regulating blade being deviated. For this reason, the magnetic poles facing the regulating blade have a substantially symmetrical magnetic flux density distribution, and the position of the regulating blade is shifted from the peak position of the magnetic flux density distribution of the magnetic poles, and is within the range of the half width of the magnetic flux density. A configuration has been proposed (Patent Document 1).

なお、特許文献2には、規制ブレードよりも現像スリーブの回転方向上流で、現像剤を現像スリーブに向けて案内するガイド部材を設けた構成が記載されている。   Patent Document 2 describes a configuration in which a guide member that guides the developer toward the developing sleeve is provided upstream of the regulating blade in the rotation direction of the developing sleeve.

特開2003−140463号公報JP 2003-140463 A 特開2013−231853号公報JP2013-211853A

ところで、マグネットは、設計上の基準位置に対して所定の公差を有する。例えば、規制ブレードと対向する磁極の磁束密度のピーク位置が、設計上の基準位置に対して交差の範囲内でずれる。このように磁束密度のピーク位置がずれると、規制ブレード近傍の磁束密度分布も変化するため、現像剤の搬送量が変化して、規制ブレードによる現像剤の規制を安定して行いにくくなる。   Incidentally, the magnet has a predetermined tolerance with respect to a design reference position. For example, the peak position of the magnetic flux density of the magnetic pole facing the regulating blade is deviated within the range of intersection with the design reference position. If the peak position of the magnetic flux density deviates in this way, the magnetic flux density distribution in the vicinity of the regulating blade also changes, so that the developer conveyance amount changes and it becomes difficult to stably regulate the developer by the regulating blade.

ここで、上述の特許文献1に記載のように磁束密度の分布を略対称とした場合、半値幅を広げることで、このような公差に対応することが考えられる。即ち、半値幅を広げることで、磁束密度のピーク位置がずれても規制ブレード近傍の磁束密度の分布の変化を抑えて、現像剤の搬送量を安定させることができる。   Here, when the distribution of the magnetic flux density is substantially symmetric as described in the above-mentioned Patent Document 1, it can be considered that such a tolerance can be accommodated by widening the half width. That is, by widening the half-value width, even if the peak position of the magnetic flux density is shifted, the change in the magnetic flux density distribution in the vicinity of the regulating blade can be suppressed and the developer transport amount can be stabilized.

しかしながら、磁束密度の分布の半値幅を広げると、磁極の幅が広がることになる。マグネットは、周方向に複数の磁極を有するため、このように1個の磁極の幅が広がると他の磁極の設計の自由度が低下してしまう。例えば、マグネットの径方向に関しては、規制ブレードとの関係で制限があるため、他の磁極のマグネットの周方向の幅が制限されてしまう。   However, when the half width of the magnetic flux density distribution is increased, the width of the magnetic pole is increased. Since the magnet has a plurality of magnetic poles in the circumferential direction, when the width of one magnetic pole increases in this way, the degree of freedom in designing the other magnetic poles is reduced. For example, the radial direction of the magnet is limited by the relationship with the regulating blade, and therefore the width of the other magnetic pole in the circumferential direction is limited.

一方、現像剤の搬送量を安定させるために、マグネットの公差を小さくすることも考えられるが、マグネットの公差を小さくすると製造コストが高くなってしまう。なお、上述のような課題は、上述の特許文献2に記載の構成についても生じ得る。   On the other hand, in order to stabilize the developer transport amount, it is conceivable to reduce the tolerance of the magnet. However, if the tolerance of the magnet is reduced, the manufacturing cost increases. Note that the above-described problem can also occur in the configuration described in Patent Document 2 described above.

本発明は、このような事情に鑑み、他の磁極の設計の自由度に与える影響を抑えつつ、現像剤規制部材に対向する現像剤規制極の現像剤規制部材近傍での磁束密度の分布の変化を低コストで抑えられる構成を実現すべく発明したものである。   In view of such circumstances, the present invention suppresses the influence on the degree of freedom of design of other magnetic poles, and the distribution of the magnetic flux density in the vicinity of the developer regulating member of the developer regulating electrode facing the developer regulating member. This invention was invented to realize a configuration that can suppress changes at low cost.

本発明は、トナーとキャリアを含む現像剤を収容する現像容器と、前記現像容器内の現像剤を担持して回転搬送する円筒状の現像スリーブと、前記現像スリーブ内に配置され、周方向に複数の磁極を有するマグネットと、前記現像スリーブの外周面に所定の隙間を介して対向配置され、前記現像スリーブに担持された現像剤の層厚を規制する現像剤規制部材と、を備え、前記複数の磁極のうちの前記現像剤規制部材に対向配置される現像剤規制極は、前記現像スリーブの外周面に対する法線方向の磁束密度が最大となる前記外周面上の位置である最大値位置が、前記現像剤規制極の磁束密度の分布の半値となる範囲の中央位置に対応する前記外周面上の位置である半値中央位置に対して、前記現像スリーブの周方向に3度以上ずれるように、且つ、前記現像剤規制部材が対向する前記外周面上の位置が、前記最大値位置よりも前記半値中央位置が存在する側となるように形成されることを特徴とする現像装置にある。   The present invention relates to a developing container that contains a developer including toner and a carrier, a cylindrical developing sleeve that carries and rotates the developer in the developing container, and is disposed in the developing sleeve, and is arranged in the circumferential direction. A magnet having a plurality of magnetic poles, and a developer regulating member disposed opposite to the outer peripheral surface of the developing sleeve via a predetermined gap and regulating the layer thickness of the developer carried on the developing sleeve, The developer regulating pole disposed opposite to the developer regulating member among the plurality of magnetic poles is a maximum value position that is a position on the outer circumferential surface where the magnetic flux density in the normal direction relative to the outer circumferential surface of the developing sleeve is maximized. Is shifted by 3 degrees or more in the circumferential direction of the developing sleeve with respect to the half-value center position which is a position on the outer peripheral surface corresponding to the center position of the half-value range of the magnetic flux density distribution of the developer regulating pole. In addition, One position on the outer peripheral surface of said developer regulating member is opposed, in the developing device, wherein said that the half-value central position is formed such that the side where there than the maximum value position.

本発明の場合、最大値位置が半値中央位置に対して3度以上ずれ、且つ、現像剤規制部材が対向する現像スリーブの外周面上の位置が最大値位置よりも半値中央位置が存在する側としている。このため、他の磁極の設計の自由度に与える影響を抑えつつ、現像剤規制部材近傍での磁束密度の分布の変化を低コストで抑えられる。   In the case of the present invention, the maximum value position is shifted by 3 degrees or more with respect to the half-value center position, and the position on the outer peripheral surface of the developing sleeve facing the developer regulating member is the side where the half-value center position exists from the maximum value position. It is said. For this reason, the change in the magnetic flux density distribution in the vicinity of the developer regulating member can be suppressed at a low cost while suppressing the influence on the degree of freedom in designing the other magnetic poles.

本発明の第1の実施形態に係る画像形成装置の概略構成図。1 is a schematic configuration diagram of an image forming apparatus according to a first embodiment of the present invention. 第1の実施形態に係る現像装置の横断面模式図。FIG. 2 is a schematic cross-sectional view of the developing device according to the first embodiment. 第1の実施形態に係る現像装置の縦断面模式図。1 is a schematic vertical sectional view of a developing device according to a first embodiment. 第1の実施形態に係る規制ブレードに対向する磁極近傍の磁力線の向きを表した模式図。The schematic diagram showing the direction of the magnetic force line of the magnetic pole vicinity which opposes the control blade which concerns on 1st Embodiment. 第1の実施形態に係る規制ブレードに対向する磁極近傍の磁束密度の分布を表した模式図。The schematic diagram showing distribution of the magnetic flux density of the magnetic pole vicinity which opposes the control blade which concerns on 1st Embodiment. 実施例1に係るマグネットの現像スリーブの外周面に対する法線方向の磁束密度の分布を表した図。FIG. 6 is a diagram illustrating a distribution of magnetic flux density in a normal direction with respect to the outer peripheral surface of the developing sleeve of the magnet according to the first embodiment. 比較例1に係るマグネットの現像スリーブの外周面に対する法線方向の磁束密度の分布を表した図。The figure showing distribution of the magnetic flux density of the normal line direction to the peripheral surface of the development sleeve of the magnet concerning comparative example 1. 本発明の第2の実施形態に係る現像装置の横断面模式図。FIG. 10 is a schematic cross-sectional view of a developing device according to a second embodiment of the present invention. 実施例2に係るマグネットの現像スリーブの外周面に対する法線方向の磁束密度の分布を表した図。FIG. 6 is a diagram illustrating a distribution of magnetic flux density in a normal direction with respect to an outer peripheral surface of a developing sleeve of a magnet according to a second embodiment. 実施例2に係るマグネットの現像スリーブの外周面に対する法線方向の磁気力の分布を表した図。FIG. 6 is a diagram illustrating a distribution of magnetic force in a normal direction with respect to an outer peripheral surface of a developing sleeve of a magnet according to a second embodiment. 比較例2に係るマグネットの現像スリーブの外周面に対する法線方向の磁気力の分布を表した図。The figure showing distribution of the magnetic force of the normal line direction to the peripheral surface of the development sleeve of the magnet concerning comparative example 2. 比較例3に係るマグネットの現像スリーブの外周面に対する法線方向の磁気力の分布を表した図。The figure showing distribution of the magnetic force of the normal line direction to the peripheral surface of the development sleeve of the magnet concerning comparative example 3.

<第1の実施形態>
本発明の第1の実施形態について、図1ないし図7を用いて説明する。まず、本実施形態の現像装置を有する画像形成装置の概略構成について、図1を用いて説明する。
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of an image forming apparatus having the developing device of the present embodiment will be described with reference to FIG.

[画像形成装置]
画像形成装置100は、イエロー、マゼンタ、シアン、ブラックの4色に対応して設けられ4つの画像形成部Y、M、C、Kを有する電子写真方式のフルカラープリンタである。画像形成装置100は、画像形成装置本体に接続された原稿読み取り装置(図示せず)又は画像形成装置本体に対し通信可能に接続されたパーソナルコンピュータ等のホスト機器からの画像信号に応じてトナー像(画像)を記録材Pに形成する。記録材としては、用紙、プラスチックフィルム、布などのシート材が挙げられる。このような画像形成プロセスの概略を説明すると、まず、各画像形成部Y、M、C、Kでは、それぞれ、像担持体としての感光ドラム(電子写真感光体)10Y、10M、10C、10K上に各色のトナー像を形成する。このように形成された各色のトナー像は、記録材P上に転写される。トナー像が転写された記録材は、定着装置25に搬送されて、トナー像が記録材に定着される。以下、詳しく説明する。
[Image forming apparatus]
The image forming apparatus 100 is an electrophotographic full-color printer that is provided corresponding to four colors of yellow, magenta, cyan, and black and has four image forming units Y, M, C, and K. The image forming apparatus 100 is a toner image according to an image signal from a document reading device (not shown) connected to the image forming apparatus main body or a host device such as a personal computer connected to the image forming apparatus main body so as to be communicable. (Image) is formed on the recording material P. Examples of the recording material include sheet materials such as paper, plastic film, and cloth. The outline of such an image forming process will be described. First, in each of the image forming units Y, M, C, and K, photosensitive drums (electrophotographic photosensitive members) 10Y, 10M, 10C, and 10K as image carriers are respectively provided. Each color toner image is formed. The toner images of the respective colors formed in this way are transferred onto the recording material P. The recording material to which the toner image has been transferred is conveyed to the fixing device 25 and the toner image is fixed to the recording material. This will be described in detail below.

なお、画像形成装置100が備える4つの画像形成部Y、M、C、Kは、現像色が異なることを除いて実質的に同一の構成を有する。したがって、以下、特に区別を要しない場合は、いずれかの画像形成部に属する要素であることを表すために符号に付した添え字Y、M、C、Kは省略し、総括的に説明する。   The four image forming units Y, M, C, and K included in the image forming apparatus 100 have substantially the same configuration except that the development colors are different. Accordingly, in the following, unless there is a particular need for distinction, the subscripts Y, M, C, and K attached to the reference numerals to indicate that the element belongs to any one of the image forming units will be omitted, and a general description will be given. .

画像形成部には、像担持体として円筒型の感光体、即ち、感光ドラム10が配設されている。感光ドラム10は、図中矢印方向に回転駆動される。感光ドラム10の周囲には帯電手段としての帯電器21と、現像手段としての現像装置1、転写手段としての一次転写帯電器23、クリーニング手段としてのクリーニング装置26が配置されている。感光ドラム10の図中上方には露光手段としてのレーザースキャナ(露光装置)22が配置されている。   In the image forming portion, a cylindrical photosensitive member, that is, a photosensitive drum 10 is disposed as an image carrier. The photosensitive drum 10 is rotationally driven in the arrow direction in the figure. Around the photosensitive drum 10, a charger 21 as a charging unit, a developing device 1 as a developing unit, a primary transfer charger 23 as a transfer unit, and a cleaning device 26 as a cleaning unit are arranged. A laser scanner (exposure device) 22 as an exposure unit is disposed above the photosensitive drum 10 in the drawing.

また、各画像形成部の感光ドラム10と対向して記録材搬送ベルト24が配置されている。記録材搬送ベルト24は、複数のローラにより張架され、図中矢印方向に周回移動する。記録材搬送ベルト24の記録材搬送方向下流には定着装置25が配置される。   Further, a recording material conveyance belt 24 is disposed to face the photosensitive drum 10 of each image forming unit. The recording material conveyance belt 24 is stretched by a plurality of rollers and moves around in the direction of the arrow in the figure. A fixing device 25 is disposed downstream of the recording material conveyance belt 24 in the recording material conveyance direction.

上述のように構成される画像形成装置100により、例えば4色フルカラーの画像を形成するプロセスについて説明する。まず、画像形成動作が開始すると、回転する感光ドラム10の表面が帯電器21によって一様に帯電される。次いで、感光ドラム10は、露光装置22から発せられる画像信号に対応したレーザ光により露光される。これにより、感光ドラム10上に画像信号に応じた静電潜像が形成される。感光ドラム10上の静電潜像は、現像装置1内に収容されたトナーによって顕像化され、可視像となる。画像形成で消費された現像剤中のトナーはトナー補給槽としてのホッパー20から補給される。   A process for forming, for example, four full-color images by the image forming apparatus 100 configured as described above will be described. First, when the image forming operation starts, the surface of the rotating photosensitive drum 10 is uniformly charged by the charger 21. Next, the photosensitive drum 10 is exposed with a laser beam corresponding to an image signal emitted from the exposure device 22. As a result, an electrostatic latent image corresponding to the image signal is formed on the photosensitive drum 10. The electrostatic latent image on the photosensitive drum 10 is visualized by toner stored in the developing device 1 and becomes a visible image. The toner in the developer consumed in the image formation is supplied from a hopper 20 as a toner supply tank.

感光ドラム10上に形成されたトナー像は、記録材搬送ベルト24を挟んで配置される一次転写帯電器23との間で構成される転写部にて、記録材搬送ベルト24により搬送される記録材Pに転写される。転写後に感光ドラム10表面に残ったトナー(転写残トナー)は、クリーニング装置26によって除去される。   The toner image formed on the photosensitive drum 10 is recorded on the recording material transport belt 24 by a transfer unit configured with the primary transfer charger 23 disposed with the recording material transport belt 24 interposed therebetween. Transferred to the material P. The toner remaining on the surface of the photosensitive drum 10 after transfer (transfer residual toner) is removed by the cleaning device 26.

このような動作をイエロー、マゼンタ、シアン、ブラックの各画像形成部で順次行い、記録材搬送ベルト24により搬送される記録材P上で4色のトナー像を重ね合わせる。次いで、記録材Pは定着手段としての定着装置25に搬送される。そして、この定着装置25によって、加熱、加圧されることで、記録材P上のトナーは溶融、混合されて、フルカラーの画像として記録材Pに定着される。その後、記録材Pは機外に排出される。これにより、一連の画像形成プロセスが終了する。なお、所望の画像形成部のみを用いて、所望の色の単色又は複数色の画像を形成することも可能である。   Such an operation is sequentially performed in each of the yellow, magenta, cyan, and black image forming units, and the four color toner images are superimposed on the recording material P conveyed by the recording material conveyance belt 24. Next, the recording material P is conveyed to a fixing device 25 as a fixing unit. Then, the toner on the recording material P is melted and mixed by being heated and pressurized by the fixing device 25, and is fixed on the recording material P as a full-color image. Thereafter, the recording material P is discharged out of the apparatus. This completes a series of image forming processes. Note that it is also possible to form a single color or a plurality of colors of a desired color using only a desired image forming unit.

[現像装置]
次に、現像装置1の詳しい構成について、図2ないし図5を用いて説明する。現像装置1は、トナーとキャリアを含む現像剤を収容する現像容器2と、現像容器内の現像剤を担持して回転搬送する現像剤担持体としての現像スリーブ8とを有する。現像容器2内には、現像容器内の現像剤を攪拌・搬送しつつ現像容器内を循環させる現像剤搬送部材としての搬送スクリュー5、6が配置されている。また、現像スリーブ8内には、周方向に複数の磁極を有するマグネット8aが、回転不能に配置されている。
[Developer]
Next, a detailed configuration of the developing device 1 will be described with reference to FIGS. The developing device 1 includes a developing container 2 that stores a developer containing toner and a carrier, and a developing sleeve 8 that serves as a developer carrying member that carries and rotates and conveys the developer in the developing container. In the developing container 2, conveying screws 5 and 6 are arranged as developer conveying members that circulate the developing container while stirring and conveying the developer in the developing container. In the developing sleeve 8, a magnet 8a having a plurality of magnetic poles in the circumferential direction is disposed so as not to rotate.

現像剤は、非磁性トナーと磁性キャリアを含む二成分現像剤である。トナーは、着色剤を有した結着樹脂からなる母体と、母体に添加される添加剤とを有している。トナーの樹脂として、本実施形態では負帯電性ポリエステル系樹脂を用いた。体積平均粒径は4μm以上、10μm以下が好ましく、本実施形態では体積平均粒径が7μmのトナーを用いた。トナーの粒径は小さすぎるとキャリアと摩擦し難くなるため帯電量を制御しづらくなり、大きすぎると精細なトナー像を形成できなくなる。   The developer is a two-component developer containing a nonmagnetic toner and a magnetic carrier. The toner includes a base material made of a binder resin having a colorant and an additive added to the base material. In this embodiment, a negatively chargeable polyester resin is used as the toner resin. The volume average particle diameter is preferably 4 μm or more and 10 μm or less. In this embodiment, a toner having a volume average particle diameter of 7 μm was used. If the toner particle size is too small, it will be difficult to rub against the carrier and it will be difficult to control the charge amount. If it is too large, a fine toner image cannot be formed.

キャリアは、表面酸化或は未酸化の鉄、ニッケル、コバルト、マンガン、クロム、希土類などの金属、及びそれらの合金、或は酸化物フェライトなどが使用可能であり、本実施形態では、平均体積粒径が50μmのフェライトキャリアを用いた。キャリアの粒径は小さすぎると現像時にキャリアが潜像担持体に付着する問題が起き、大きすぎると現像時にキャリアがトナー像を乱す問題が起こる。また、本実施形態において現像容器内には300gの現像剤を収容し、設置時の現像剤はトナーとキャリアの重量比を1:9とした。   As the carrier, metals such as surface oxidized or unoxidized iron, nickel, cobalt, manganese, chromium, rare earth, and alloys thereof, or oxide ferrite can be used. A ferrite carrier having a diameter of 50 μm was used. If the particle size of the carrier is too small, there will be a problem that the carrier adheres to the latent image carrier during development. If it is too large, the carrier will disturb the toner image during development. In this embodiment, 300 g of developer is accommodated in the developer container, and the weight ratio of the toner and the carrier of the developer at the time of installation is 1: 9.

このような現像剤は、現像スリーブ8に内包するマグネット8aの磁力により現像スリーブ8の表面に担持され、現像スリーブ8が回転することで現像剤を現像剤搬送方向bに搬送する。そして、感光ドラム10上に形成された静電潜像に対し現像剤が供給される。また、搬送スクリュー5、6は、回転軸上に螺旋状のスクリュー翼を有し、回転することで軸方向に現像剤を搬送する。   Such a developer is carried on the surface of the developing sleeve 8 by the magnetic force of the magnet 8a included in the developing sleeve 8, and the developing sleeve 8 rotates to convey the developer in the developer conveying direction b. Then, a developer is supplied to the electrostatic latent image formed on the photosensitive drum 10. The conveying screws 5 and 6 have spiral screw blades on the rotating shaft, and convey the developer in the axial direction by rotating.

図2及び図3を参照してより詳しく説明する。まず、現像容器2の内部は、その略中央部が紙面に垂直方向に延在する隔壁7によって現像室3と攪拌室4に垂直方向の上下に区画されており、現像剤は現像室3及び攪拌室4に収容されている。   This will be described in more detail with reference to FIGS. First, the inside of the developing container 2 is partitioned vertically into the developing chamber 3 and the stirring chamber 4 by a partition wall 7 whose substantially central portion extends in a direction perpendicular to the paper surface. It is accommodated in the stirring chamber 4.

現像室3及び攪拌室4には、搬送スクリュー5、6がそれぞれ配置されている。搬送スクリュー5は、現像室3の底部に現像スリーブ8の軸方向に沿って配置されており、不図示のモータによって回転軸を回すことで現像室3内の現像剤を軸線方向cに沿って搬送しつつ、現像スリーブ8に現像剤を供給する。また、搬送スクリュー6は、攪拌室4内の底部に現像スリーブ8の軸方向に沿って配置され、攪拌室4内の現像剤を搬送スクリュー5とは反対の軸方向dに搬送する。本実施形態においては、回転軸は900rpmで回転することにより現像剤の循環を行っている。   Conveying screws 5 and 6 are disposed in the developing chamber 3 and the stirring chamber 4, respectively. The conveying screw 5 is disposed along the axial direction of the developing sleeve 8 at the bottom of the developing chamber 3, and the developer in the developing chamber 3 is moved along the axial direction c by rotating a rotating shaft by a motor (not shown). The developer is supplied to the developing sleeve 8 while being conveyed. The conveying screw 6 is disposed at the bottom of the stirring chamber 4 along the axial direction of the developing sleeve 8 and conveys the developer in the stirring chamber 4 in the axial direction d opposite to the conveying screw 5. In this embodiment, the rotating shaft rotates at 900 rpm to circulate the developer.

現像室3と攪拌室4は、連通部71、72で連通している。連通部71では、攪拌室4で現像スリーブ8から回収した現像剤と現像室3から搬送された現像剤を現像室3に組み上げる。連通部72では、現像室3から現像スリーブ8に供給されずに現像室3を通過した現像剤を攪拌室4に搬送する。このように、搬送スクリュー5、6の回転による搬送によって、現像剤が隔壁7の両端部の連通部71、72を通じて現像室3と攪拌室4との間で循環される。ここで、現像剤の攪拌・搬送される経路としては、次の2つの経路がある。第1の経路は、現像室3→現像スリーブ8→攪拌室4→連通部71→現像室3の順で現像剤を搬送する経路(現像に寄与する循環経路)である。第2の経路は、現像室3→連通部72→攪拌室4→連通部71→現像室3の順で現像剤を搬送する経路(現像に寄与しない現像容器内の循環経路)である。   The developing chamber 3 and the stirring chamber 4 are communicated with each other through communication portions 71 and 72. In the communication portion 71, the developer collected from the developing sleeve 8 in the stirring chamber 4 and the developer conveyed from the developing chamber 3 are assembled in the developing chamber 3. In the communication portion 72, the developer that has passed through the developing chamber 3 without being supplied from the developing chamber 3 to the developing sleeve 8 is conveyed to the stirring chamber 4. As described above, the developer is circulated between the developing chamber 3 and the agitating chamber 4 through the communication portions 71 and 72 at both ends of the partition wall 7 by the conveyance by the rotation of the conveyance screws 5 and 6. Here, there are the following two paths as the path for stirring and transporting the developer. The first path is a path for conveying the developer in the order of the developing chamber 3 → the developing sleeve 8 → the stirring chamber 4 → the communication portion 71 → the developing chamber 3 (circulation path contributing to development). The second path is a path for transporting the developer in the order of the developing chamber 3 → the communicating portion 72 → the stirring chamber 4 → the communicating portion 71 → the developing chamber 3 (circulation path in the developing container that does not contribute to development).

次に、現像スリーブ8により現像剤を搬送する構成について、図2により詳しく説明する。現像容器2には感光ドラム10に対向した現像領域Aに相当する位置に開口部があり、この開口部において現像スリーブ8が感光ドラム10方向に一部露出するように回転自在に配設されている。一方、現像スリーブ8に内包されたマグネット8aは非回転に固定されている。   Next, the configuration in which the developer is conveyed by the developing sleeve 8 will be described in detail with reference to FIG. The developing container 2 has an opening at a position corresponding to the developing area A facing the photosensitive drum 10, and the developing sleeve 8 is rotatably disposed in the opening so that a part of the developing sleeve 8 is exposed in the direction of the photosensitive drum 10. Yes. On the other hand, the magnet 8a included in the developing sleeve 8 is fixed to be non-rotating.

現像スリーブ8まわりの現像剤の流れを説明する。まず、搬送スクリュー5の現像剤搬送に伴って、現像剤が跳ね上がり、現像スリーブ8に供給される。現像剤は磁性キャリアが混合しているため現像スリーブ8内のマグネット8aが発生している磁力に拘束され、現像スリーブ8の回転に伴って、現像スリーブ8上の現像剤は、現像剤規制部材としての規制ブレード9を通過し、所定量に規制される。所定量に規制された現像剤は、感光ドラム10に対向する現像領域Aへ搬送され、トナーが静電潜像に供給される。現像領域Aを通過した現像剤は現像容器内の第2の搬送スクリュー6に回収される。   The flow of the developer around the developing sleeve 8 will be described. First, as the developer is transported by the transport screw 5, the developer jumps up and is supplied to the developing sleeve 8. Since the developer is mixed with the magnetic carrier, the developer is constrained by the magnetic force generated by the magnet 8a in the developing sleeve 8, and as the developing sleeve 8 rotates, the developer on the developing sleeve 8 becomes the developer regulating member. It passes through the regulating blade 9 and is regulated to a predetermined amount. The developer regulated to a predetermined amount is conveyed to the development area A facing the photosensitive drum 10 and toner is supplied to the electrostatic latent image. The developer that has passed through the development area A is collected by the second conveying screw 6 in the developing container.

[現像スリーブ]
このような現像スリーブ8は、不図示のモータにより回転させられて、現像剤を感光ドラム10に搬送する。本実施形態では、現像スリーブ8はアルミニウムで円筒状に形成され、ドラム対向部での断面において直径が20mmとした。現像スリーブ8の表面性と現像剤の搬送性について説明する。まず、現像スリーブ8の表面が鏡面のような平滑な場合は、現像剤と現像スリーブ表面との摩擦が極端に少ない為に、現像スリーブ8が回転しても現像剤は殆ど搬送されない。現像スリーブ表面に適度な凹凸を設け、現像スリーブ表面と現像剤との間に摩擦力を作ることで、現像剤が現像スリーブの回転に追従するようになる。本実施形態では、現像スリーブ8表面にブラスト処理を行い表面粗さ15μ程度の凹凸を設けた。
[Development sleeve]
Such a developing sleeve 8 is rotated by a motor (not shown) to convey the developer to the photosensitive drum 10. In the present embodiment, the developing sleeve 8 is formed of aluminum in a cylindrical shape, and has a diameter of 20 mm in the cross section at the drum facing portion. The surface property of the developing sleeve 8 and the developer transportability will be described. First, when the surface of the developing sleeve 8 is smooth such as a mirror surface, the friction between the developer and the developing sleeve surface is extremely small, so that even when the developing sleeve 8 rotates, the developer is hardly conveyed. By providing appropriate irregularities on the surface of the developing sleeve and creating a frictional force between the developing sleeve surface and the developer, the developer follows the rotation of the developing sleeve. In this embodiment, the surface of the developing sleeve 8 is blasted to provide irregularities with a surface roughness of about 15 μm.

ブラスト処理とは、所定の粒度分布を有する砥粉やガラスビーズ等の粒子を高圧で吹き付ける加工法である。以下、ブラスト加工した部分をブラスト領域と呼び、ブラスト加工していない端部を非ブラスト領域と呼ぶ。現像スリーブはブラスト領域で現像剤を搬送するので、ブラスト領域は画像形成可能領域よりもやや広い範囲に設ける必要がある。   Blasting is a processing method in which particles such as abrasive powder and glass beads having a predetermined particle size distribution are sprayed at high pressure. Hereinafter, the blasted portion is referred to as a blast region, and the end portion that is not blasted is referred to as a non-blast region. Since the developing sleeve conveys the developer in the blast area, the blast area needs to be provided in a slightly wider range than the image formable area.

[マグネット]
現像スリーブ8内には、ローラ状の磁界発生手段であるマグネット8aが現像容器2に固定配置されている。このマグネット8aは、図2に示すように、周方向に複数の磁極N1、N2、N3、S1、S2極の合計5極を有している。なお、図2では、各極の現像スリーブ8の外周面に対する法線方向の磁束密度の最大値位置を示している。現像領域Aに対向する位置には、現像磁極N2を配置し、現像領域Aで形成するN2極の磁界により現像剤が磁気ブラシを形成する。そして、この磁気ブラシが、現像領域Aで矢印a方向に回転する感光ドラム10に接触しつつ、帯電したトナーを静電気的な力によって静電潜像をトナー像として現像する。
[magnet]
In the developing sleeve 8, a magnet 8 a that is a roller-shaped magnetic field generating means is fixedly disposed on the developing container 2. As shown in FIG. 2, the magnet 8a has a total of five poles including a plurality of magnetic poles N1, N2, N3, S1, and S2 in the circumferential direction. FIG. 2 shows the maximum value position of the magnetic flux density in the normal direction relative to the outer peripheral surface of the developing sleeve 8 of each pole. A developing magnetic pole N2 is disposed at a position facing the developing area A, and the developer forms a magnetic brush by the magnetic field of the N2 pole formed in the developing area A. The magnetic brush develops the electrostatic latent image as a toner image by electrostatic force while contacting the photosensitive drum 10 rotating in the direction of arrow a in the developing area A.

マグネット8aの各磁極の役割と現像剤の流れを説明する。まず、搬送スクリュー5の現像剤搬送に伴って、現像剤が跳ね上がり、現像スリーブ8に供給されると、現像剤は磁性キャリアが混合しているためN1極(現像剤規制極)が形成する磁気力に拘束される。次に、現像スリーブ8の回転に伴って、規制ブレード9に対向する位置を通過し、現像剤が所定量に規制される。規制された現像剤はS1極を通過し、感光ドラム10に対向するN2極へ供給される。現像領域Aを通過し、静電潜像に対してトナーを消費した現像剤はS2極によって現像容器内に取り込まれて、N3極とN1極の極間において、磁極による磁気拘束力から解放され、搬送スクリュー6に回収される。   The role of each magnetic pole of the magnet 8a and the developer flow will be described. First, as the developer is transported by the transport screw 5, the developer jumps up and is supplied to the developing sleeve 8. Since the magnetic carrier is mixed in the developer, the N1 pole (developer regulating pole) is formed. Restrained by force. Next, as the developing sleeve 8 rotates, the developer passes through a position facing the regulating blade 9 and the developer is regulated to a predetermined amount. The regulated developer passes through the S1 pole and is supplied to the N2 pole facing the photosensitive drum 10. The developer that has passed through the development area A and consumed toner with respect to the electrostatic latent image is taken into the developing container by the S2 pole, and is released from the magnetic restraint force by the magnetic pole between the N3 pole and the N1 pole. Then, it is recovered by the conveying screw 6.

[規制ブレード]
ここで、規制ブレード9は、現像スリーブ8の外周面に所定の隙間を介して対向配置され、現像スリーブ8に担持された現像剤の層厚を規制する。このために規制ブレード9は、現像スリーブ8の回転方向の現像領域Aの上流に配置される。本実施形態では規制ブレード9は、現像スリーブ8の回転軸線方向(長手方向)に沿って延在した板状の部材である。また、規制ブレード9の材質としては、アルミニウムを用いた。また、規制ブレード9は、感光ドラム10よりも現像スリーブ8の回転方向上流においてブレード先端がスリーブ中心を向くように現像容器側に配設している。現像スリーブ8が回転することで、現像スリーブ8上の現像剤は、規制ブレード9の先端部と現像スリーブ8の間を通過して現像領域Aへと送られる。従って、規制ブレード9と現像スリーブ8の表面との間隙を調整することによって、現像スリーブ8上に担持され現像領域へ搬送される現像剤量が調整できる。
[Regulating blade]
Here, the regulating blade 9 is disposed so as to face the outer peripheral surface of the developing sleeve 8 with a predetermined gap, and regulates the layer thickness of the developer carried on the developing sleeve 8. For this purpose, the regulating blade 9 is arranged upstream of the developing area A in the rotational direction of the developing sleeve 8. In the present embodiment, the regulating blade 9 is a plate-like member extending along the rotation axis direction (longitudinal direction) of the developing sleeve 8. Moreover, aluminum was used as the material of the regulating blade 9. The regulating blade 9 is arranged on the developing container side so that the tip of the blade faces the center of the sleeve upstream of the photosensitive drum 10 in the rotation direction of the developing sleeve 8. As the developing sleeve 8 rotates, the developer on the developing sleeve 8 passes between the tip of the regulating blade 9 and the developing sleeve 8 and is sent to the developing region A. Therefore, by adjusting the gap between the regulating blade 9 and the surface of the developing sleeve 8, the amount of developer carried on the developing sleeve 8 and conveyed to the developing region can be adjusted.

なお、規制ブレード9と現像スリーブ8の間隙が狭すぎると現像剤内の異物やトナーの凝集塊が詰まりやすいので好ましくない。また、現像スリーブ8上を搬送される現像剤の単位面積当たりの質量が多過ぎると、感光ドラム10との対向位置近傍で現像剤が詰まったり、感光ドラム10にキャリアが付着したりする等の問題が生じる。一方、現像スリーブ8上を搬送される現像剤の単位面積当たりの質量が少なすぎると、所望のトナー像を現像できず、画像濃度が低下する問題が生じる。本実施形態においては、規制ブレード9により規制される現像剤搬送量が30mg/cmとなるように、規制ブレード9と現像スリーブ8の間隔を400μmに設定した。 If the gap between the regulating blade 9 and the developing sleeve 8 is too narrow, it is not preferable because foreign substances in the developer and toner agglomerates are easily clogged. In addition, if the mass per unit area of the developer conveyed on the developing sleeve 8 is too large, the developer is clogged in the vicinity of the position facing the photosensitive drum 10 or the carrier adheres to the photosensitive drum 10. Problems arise. On the other hand, if the mass per unit area of the developer conveyed on the developing sleeve 8 is too small, a desired toner image cannot be developed, causing a problem that the image density is lowered. In this embodiment, the interval between the regulating blade 9 and the developing sleeve 8 is set to 400 μm so that the developer conveyance amount regulated by the regulating blade 9 is 30 mg / cm 2 .

また、本実施形態では、現像スリーブ8の直径は20mm、感光ドラム10の直径は80mm、現像スリーブ8と感光ドラム10との最近接領域の距離を400μmに設定した。この構成によって、現像領域Aに搬送した現像剤を感光ドラム10と接触させた状態で、現像が行なえるように設定した。   In this embodiment, the diameter of the developing sleeve 8 is 20 mm, the diameter of the photosensitive drum 10 is 80 mm, and the distance between the closest areas of the developing sleeve 8 and the photosensitive drum 10 is set to 400 μm. With this configuration, the developer transported to the development area A is set so that development can be performed in a state where the developer is in contact with the photosensitive drum 10.

上記構成にて、現像スリーブ8は、現像時に図2に示したように矢印b方向に回転し、規制ブレード9によって適量に規制された現像剤を感光ドラム10と対向した現像領域Aに搬送する。現像領域において現像剤はマグネット8aの磁界によって磁気ブラシを形成し、感光ドラム10上に形成された静電潜像にトナーを供給し、トナー像を得る。この時、現像スリーブ8には不図示の電源から直流電圧と交流電圧を重畳した現像バイアス電圧が印加される。本実施形態では、−500Vの直流電圧と、矩形波でピーク・ツウ・ピーク電圧Vppが1800V、周波数fが12kHzの交流電圧とした。しかし、直流電圧値、交流電圧波形はこれに限られるものではない。また、現像領域において、感光ドラム10上の非画像領域は−600Vに帯電し、静電潜像が形成されている画像領域では、出力画像の濃度に応じて電位が上がるようにレーザによって静電潜像が形成されている。   With the above configuration, the developing sleeve 8 rotates in the direction of arrow b as shown in FIG. 2 during development, and conveys the developer regulated to an appropriate amount by the regulating blade 9 to the developing area A facing the photosensitive drum 10. . In the developing area, the developer forms a magnetic brush by the magnetic field of the magnet 8a, and supplies toner to the electrostatic latent image formed on the photosensitive drum 10, thereby obtaining a toner image. At this time, a developing bias voltage in which a DC voltage and an AC voltage are superimposed is applied to the developing sleeve 8 from a power source (not shown). In this embodiment, a DC voltage of −500 V, a square wave peak-to-peak voltage Vpp of 1800 V, and a frequency f of 12 kHz are used. However, the DC voltage value and the AC voltage waveform are not limited to this. In the development area, the non-image area on the photosensitive drum 10 is charged to −600 V, and in the image area where the electrostatic latent image is formed, the electrostatic potential is increased by the laser so that the potential increases according to the density of the output image. A latent image is formed.

また、現像領域Aにおいては、現像スリーブ8は、感光ドラム10の移動方向と順方向で移動し、感光ドラム10の周速は300mm/s、現像スリーブ8の周速は450mm/sとしている。現像スリーブ8と感光ドラム10の周速比に関しては、通常1〜2倍の間で設定される。周速比は、大きくなればなるほどトナー供給量多くなるが、大きすぎると、トナー飛散等の問題点が発生する。また、最大濃度でのトナー消費量は0.5mg/cmであり、A4サイズに最大限にトナーを消費した場合には0.31g使用する。 In the developing area A, the developing sleeve 8 moves in the forward direction and the moving direction of the photosensitive drum 10, the peripheral speed of the photosensitive drum 10 is 300 mm / s, and the peripheral speed of the developing sleeve 8 is 450 mm / s. The peripheral speed ratio between the developing sleeve 8 and the photosensitive drum 10 is usually set between 1 and 2 times. As the peripheral speed ratio increases, the toner supply amount increases. However, when the peripheral speed ratio is too large, problems such as toner scattering occur. The toner consumption at the maximum density is 0.5 mg / cm 2 , and 0.31 g is used when the maximum amount of toner is consumed for the A4 size.

[現像剤の補給]
次に、図3を用いて現像容器2への現像剤の補給について説明する。本実施形態において、ホッパー20(図1参照)から補給剤として、消費した量とほぼ同量のトナーを補給する。図3は現像容器内の現像剤循環経路を見るための長手方向を水平に見た断面図である。但し、ホッパー20は補給剤Sの経路が分かるよう現像容器2に接続されている。現像装置1の上部には、補給剤Sを収容するホッパー20が配置されている。補給手段を構成するホッパー20は現像装置の補給口30と接続している。
[Developer supply]
Next, replenishment of the developer to the developing container 2 will be described with reference to FIG. In the present embodiment, as the replenisher from the hopper 20 (see FIG. 1), approximately the same amount of consumed toner is replenished. FIG. 3 is a cross-sectional view in which the longitudinal direction for viewing the developer circulation path in the developer container is viewed horizontally. However, the hopper 20 is connected to the developing container 2 so that the path of the replenisher S can be understood. A hopper 20 that stores the replenisher S is disposed on the upper portion of the developing device 1. A hopper 20 constituting the replenishing means is connected to a replenishing port 30 of the developing device.

画像形成によって消費された分とほぼ同量のトナーが、ホッパー20から補給口30を通過して、現像容器2内に補給される。補給剤は補給口30から補給スクリュー30aによって矢印g方向へ搬送され、現像剤の循環経路に入る。なお、補給口30は現像室3より下流に設けられる。これは、循環経路に入った補給剤が攪拌される前に現像スリーブ8に供給されるのを防ぐためである。現像装置1の連通部71近傍には、センサ面近傍の一定体積で現像剤の透磁率を検知して、トナーとキャリアの比率を算出する、不図示のトナー濃度センサが設けられていて、トナー濃度を重量比で10%近傍になるように補給量を調整している。   The amount of toner substantially the same as that consumed by image formation passes through the supply port 30 from the hopper 20 and is supplied into the developing container 2. The replenishment agent is conveyed from the replenishment port 30 by the replenishment screw 30a in the direction of the arrow g and enters the developer circulation path. The replenishing port 30 is provided downstream from the developing chamber 3. This is to prevent the replenisher that has entered the circulation path from being supplied to the developing sleeve 8 before being stirred. Near the communicating portion 71 of the developing device 1 is provided a toner concentration sensor (not shown) that detects the magnetic permeability of the developer at a constant volume near the sensor surface and calculates the ratio of the toner and the carrier. The replenishment amount is adjusted so that the concentration is approximately 10% by weight.

ここで、画像形成に伴い現像容器内のトナーは負荷を受け、形状や表面性が変化してトナー特性が変化する。このようなトナー特性の変化は、現像装置内でトナーが負荷を受ける時間によるため、トナー消費が少ない画像の通紙を続けると顕著になる。現像装置が複数あるカラー画像形成装置の場合はトナーを消費しない現像装置もありうる。通常、ある範囲内のトナー特性を維持するように、所定の枚数や現像スリーブの回転数毎に最低のトナー消費量を決めて、それを下回った場合、画像形成領域外や画像形成間にトナーを現像し、新しいトナーに入れ替える制御を行う。本実施形態については最低のトナー消費量はA4サイズ基準で全面最大濃度画像を出力した場合を100%とした場合に全面消費の1%とした。即ち、所定枚数毎の平均トナー消費量が全面消費の1%を下回った場合には平均トナー消費量が1%となるようにトナーを消費する制御を行う。従って、トナー特性の変化はトナー消費1%画像を連続通紙した場合が最大となる。ただし、現像装置内のトナーが負荷を受ける平均時間が定常値(以下トナー消費1%画像形成時)になるまでには約1万枚通紙する必要がある。これは、トナー消費量と現像剤内のトナー量から計算できる。   Here, as the image is formed, the toner in the developing container is subjected to a load, and its shape and surface properties change to change the toner characteristics. Such a change in toner characteristics depends on the time during which the toner is subjected to a load in the developing device, and thus becomes prominent when the image passing with less toner consumption is continued. In the case of a color image forming apparatus having a plurality of developing devices, there may be a developing device that does not consume toner. Usually, if the minimum toner consumption is determined for each predetermined number of sheets and the number of rotations of the developing sleeve so as to maintain the toner characteristics within a certain range and falls below that, the toner is out of the image forming area or between the image forming areas. Is developed and replaced with new toner. In the present embodiment, the minimum toner consumption is 1% of the total consumption when the entire maximum density image is output based on the A4 size standard and 100%. That is, when the average toner consumption for each predetermined number of sheets is less than 1% of the overall consumption, control is performed so that the average toner consumption is 1%. Therefore, the change in the toner characteristics becomes the maximum when the 1% toner consumption image is continuously fed. However, it is necessary to pass about 10,000 sheets until the average time that the toner in the developing device receives a load reaches a steady value (hereinafter, when 1% of toner is consumed). This can be calculated from the toner consumption amount and the toner amount in the developer.

次に、現像スリーブ8による現像剤の搬送性について説明する。現像スリーブ8は、内包するマグネット8aが形成する磁束分布によって磁化されるキャリアを含む現像剤を磁気拘束し、表面に凹凸がある現像スリーブ8が回転することで回転方向にかかる摩擦力によって現像剤を搬送する。感光ドラム10近傍に搬送される現像剤は、現像スリーブ8と規制ブレード9の間隔を通過できる現像剤量で決まるため、現像スリーブ8と規制ブレード9の間隔の他に規制ブレード9対向部を通過する現像剤が形成する磁気穂の通過角度が重要になる。現像剤の通過角度はマグネットが形成するブレード対向部の磁束分布によって決まる。このため、マグネット8aの工程能力(マグネット製造時のマグネット単品での公差)や取り付け精度によっても、形成される磁束分布がブレード近傍で極力変わらないことが望ましい。   Next, the developer transportability by the developing sleeve 8 will be described. The developing sleeve 8 magnetically restrains the developer containing the carrier magnetized by the magnetic flux distribution formed by the enclosing magnet 8a, and the developer by the frictional force applied in the rotation direction by the rotation of the developing sleeve 8 having irregularities on the surface. Transport. Since the developer transported to the vicinity of the photosensitive drum 10 is determined by the amount of developer that can pass through the gap between the developing sleeve 8 and the regulating blade 9, the developer passes through the opposing portion of the regulating blade 9 in addition to the gap between the developing sleeve 8 and the regulating blade 9. The passing angle of the magnetic spike formed by the developing developer becomes important. The passing angle of the developer is determined by the magnetic flux distribution of the blade facing portion formed by the magnet. For this reason, it is desirable that the magnetic flux distribution formed be as small as possible in the vicinity of the blade, depending on the process capability of the magnet 8a (tolerance of a single magnet at the time of magnet manufacture) and mounting accuracy.

[マグネットが形成する磁束分布とキャリアに係る磁気力]
次に、マグネット8aが作り出す磁束密度及び磁力について説明する。尚、本実施形態の説明に際して、Br、Bθ、Fr、Fθを以下のように定義する。
Br:ある点における現像スリーブ8の外周面(表面)に対する法線方向(垂直方向)の磁束密度
Bθ:ある点における現像スリーブ8の外周面に対する接線方向の磁束密度
Fr:ある点における現像スリーブ8の外周面に対する法線方向に働く磁気力(但し、吸引方向(現像スリーブ8に向かう方向)を負とする)
Fθ:ある点における現像スリーブ8の外周面に対する接線方向に働く磁気力(但し、現像スリーブ8の回転方向を正とする)
[Magnetic flux distribution formed by magnet and magnetic force related to carrier]
Next, the magnetic flux density and magnetic force created by the magnet 8a will be described. In the description of this embodiment, Br, Bθ, Fr, and Fθ are defined as follows.
Br: Magnetic flux density in the normal direction (vertical direction) to the outer peripheral surface (surface) of the developing sleeve 8 at a certain point Bθ: Magnetic flux density in the tangential direction to the outer peripheral surface of the developing sleeve 8 at a certain point Fr: Developing sleeve 8 at a certain point Magnetic force acting in the normal direction with respect to the outer peripheral surface (however, the suction direction (the direction toward the developing sleeve 8) is negative)
Fθ: Magnetic force acting in a tangential direction with respect to the outer peripheral surface of the developing sleeve 8 at a certain point (however, the rotating direction of the developing sleeve 8 is positive)

なお、特に断らないかぎり、Br、Bθ、Fr、Fθといえば、現像スリーブ8上のある点における磁束密度又は磁気力のことを指す。   Unless otherwise specified, Br, Bθ, Fr, and Fθ refer to the magnetic flux density or magnetic force at a certain point on the developing sleeve 8.

[磁気力又は磁束密度の測定方法]
ここで、本実施形態における磁気力の測定方法について説明する。本実施形態で述べた磁気力は以下説明する計算方法によって算出できる。キャリアに作用する磁気力は、下記の(1)式で求められる。ここで、μが真空の透磁率、μがキャリアの透磁率、bがキャリアの半径、Bが磁束密度である。
[Measurement method of magnetic force or magnetic flux density]
Here, a method for measuring magnetic force in the present embodiment will be described. The magnetic force described in the present embodiment can be calculated by a calculation method described below. The magnetic force acting on the carrier is obtained by the following equation (1). Here, μ 0 is the vacuum magnetic permeability, μ is the carrier permeability, b is the carrier radius, and B is the magnetic flux density.

Figure 2019139256
したがって、
Figure 2019139256
Therefore,

Figure 2019139256
Figure 2019139256

この(2)式から、Br及びBθが分かれば、Fr及びFθを求めることができる。ここで、磁束密度Brは、測定器としてF.W.BELL社製磁場測定器「MS−9902」(商品名)を用いて、測定器の部材であるプローブと現像スリーブの表面との距離を約100μmに設定して測定したものである。   From this equation (2), if Br and Bθ are known, Fr and Fθ can be obtained. Here, the magnetic flux density Br is F. W. Using a magnetic field measuring instrument “MS-9902” (trade name) manufactured by BELL, the distance between the probe, which is a member of the measuring instrument, and the surface of the developing sleeve is set to about 100 μm.

さらに、Bθは以下のように求めることが出来る。磁束密度Brの測定位置でのベクトルポテンシャルA(R,θ)は測定された磁束密度Brを用いて、 Furthermore, Bθ can be obtained as follows. The vector potential A Z (R, θ) at the measurement position of the magnetic flux density Br is obtained by using the measured magnetic flux density Br.

Figure 2019139256
で求められる。境界条件をA(R,θ)とし、方程式
(R,θ)=0
を解くことでA(r,θ)を求める。そして、
Figure 2019139256
Is required. The boundary condition is A Z (R, θ), and the equation ▽ 2 A Z (R, θ) = 0
To obtain A Z (r, θ). And

Figure 2019139256
Figure 2019139256

Figure 2019139256
より、Br、Bθを求めることができる。
Figure 2019139256
Thus, Br and Bθ can be obtained.

以上より測定及び計算されたBr及びBθを(1)式に当てはめることで、Fr及びFθを導き出すことができる。また上記式に従えば、本実施形態で必要なFr分布を形成する磁束密度の分布が得られる。   Fr and Fθ can be derived by applying the measured and calculated Br and Bθ to the equation (1). Further, according to the above formula, a magnetic flux density distribution that forms the Fr distribution required in this embodiment can be obtained.

[現像剤搬送量の安定性について]
次に、現像スリーブ8により規制ブレード9に搬送される現像剤の搬送量の安定性について説明する。規制ブレード9近傍において、現像剤は現像スリーブ8による搬送方向と逆方向に力を受ける。このため、現像スリーブ8の規制ブレード9と対向するブレード対向部において形成される磁気穂が、現像スリーブ8の外周面に対する法線方向から上流方向に傾いている場合は、ブレード対向部近傍で受ける力によって磁気穂が途切れ易くなる。そして、規制ブレード9を通過する現像剤量が不安定になり、搬送量のばらつきが大きくなる。
[Stability of developer transport amount]
Next, the stability of the transport amount of the developer transported to the regulating blade 9 by the developing sleeve 8 will be described. In the vicinity of the regulating blade 9, the developer receives a force in the direction opposite to the conveying direction by the developing sleeve 8. For this reason, when the magnetic spike formed in the blade facing portion facing the regulating blade 9 of the developing sleeve 8 is inclined upstream from the normal direction to the outer peripheral surface of the developing sleeve 8, it is received in the vicinity of the blade facing portion. Magnetic ears are easily broken by force. Then, the amount of developer passing through the regulating blade 9 becomes unstable, and the variation in the transport amount increases.

したがって、規制ブレード9を通過する現像剤量を安定させるためには、ブレード対向部近傍に形成される磁気穂の向きを下流に向けることが好ましい。このためには、ブレード対向部近傍において磁力線が現像スリーブ8の外周面に対する法線方向に伸びている位置をブレード対向部上流とする。即ち、現像スリーブ8の外周面に対する接線方向の磁束密度(Bθ)が0となる現像スリーブ8の外周面上の位置が、規制ブレード9が対向する現像スリーブ8の外周面上の位置よりも現像スリーブ8の回転方向上流にずれるようにする。   Therefore, in order to stabilize the amount of developer passing through the regulating blade 9, it is preferable to direct the direction of the magnetic spike formed in the vicinity of the blade facing portion downstream. For this purpose, the position where the lines of magnetic force extend in the direction normal to the outer peripheral surface of the developing sleeve 8 in the vicinity of the blade facing portion is defined as the upstream of the blade facing portion. That is, the position on the outer peripheral surface of the developing sleeve 8 where the magnetic flux density (Bθ) in the tangential direction with respect to the outer peripheral surface of the developing sleeve 8 becomes 0 is developed more than the position on the outer peripheral surface of the developing sleeve 8 that the regulating blade 9 faces. The sleeve 8 is shifted in the upstream in the rotation direction.

ここで、ブレード対向領域で磁力によりキャリアを担持させるため、現像剤規制極としてのN1極が規制ブレード9に対向配置されるため、ブレード近傍のBrの値は反転しない。このため、ブレード近傍のBθ=0の位置で磁力線の向きが判断できる。図4に示すように、ブレード近傍のBθ=0の位置が、規制ブレード9に対向する位置よりも上流にあれば、磁力線(破線)は下流方向に向かっている。規制ブレード9と対向する磁極の位置を変更して検討した結果、ブレード近傍のBθ=0の位置が上流にある場合、搬送量の測定毎のばらつきが1mg/cmであったのに対して、下流にある場合は2mg/cmであった。 Here, since the carrier is supported by the magnetic force in the blade facing region, the N1 pole as the developer regulating pole is disposed to face the regulating blade 9, so the value of Br in the vicinity of the blade is not reversed. For this reason, the direction of the lines of magnetic force can be determined at the position of Bθ = 0 in the vicinity of the blade. As shown in FIG. 4, if the position of Bθ = 0 in the vicinity of the blade is upstream of the position facing the regulating blade 9, the lines of magnetic force (broken lines) are directed in the downstream direction. As a result of changing and studying the position of the magnetic pole facing the regulating blade 9, when the position of Bθ = 0 in the vicinity of the blade is upstream, the variation for each measurement of the transport amount was 1 mg / cm 2 . When it was downstream, it was 2 mg / cm 2 .

前述のように、規制ブレードと対向する現像剤規制極の磁束密度の分布を略対称とした場合、マグネットの公差によりブレード対向部の磁束密度の分布の変化を抑えるためには、現像剤規制極の磁束密度分布の半値幅を大きくすることが考えられる。マグネットの公差としては、前述したように、マグネットの工程能力とマグネットの取り付け精度がある。マグネットの工程能力とは、前述のようにマグネットの製造時の公差であり、例えば、マグネットメーカは、この公差でマグネットを製造する。即ち、公差(工程能力)を2度とした場合、マグネットメーカから納品されるマグネットは、公差2度となる。一方、取り付け精度は、このマグネットを現像装置に対して取り付ける際の公差であり、機種によって異なるが、例えば1度の公差がある。したがって、この例によると、マグネットを現像装置に取り付けた状態での公差は3度となり、例えば、現像剤規制極の磁束密度が最大となるピーク位置は、3度の範囲でずれることになる。   As described above, when the distribution of the magnetic flux density of the developer regulating electrode facing the regulating blade is substantially symmetrical, in order to suppress the change in the distribution of the magnetic flux density at the blade facing portion due to the tolerance of the magnet, It is conceivable to increase the half width of the magnetic flux density distribution. As described above, the magnet tolerance includes the magnet process capability and the magnet mounting accuracy. The process capability of a magnet is a tolerance at the time of manufacturing a magnet as described above. For example, a magnet manufacturer manufactures a magnet with this tolerance. That is, when the tolerance (process capability) is 2 degrees, the magnet delivered from the magnet manufacturer has a tolerance of 2 degrees. On the other hand, the mounting accuracy is a tolerance when the magnet is attached to the developing device, and varies depending on the model, but has a tolerance of 1 degree, for example. Therefore, according to this example, the tolerance when the magnet is attached to the developing device is 3 degrees. For example, the peak position where the magnetic flux density of the developer regulating pole is maximum is shifted within a range of 3 degrees.

したがって、このような公差を半値幅で対応する場合、磁束密度が最大となるピーク位置が、設計上の位置に対して交差分ずれたとしても、ブレード対向位置で磁束密度の分布が極力変化しないように半値幅を広げる必要がある。但し、このようにブレードに対向する磁極の半値幅を大きくすると、前述のように他の磁極の設計に制約が出てくる。特に、本実施形態のように、現像室と攪拌室とを上下に配置した縦攪拌型の現像装置の構成では、攪拌室下流の現像剤面が高くなる。このため、磁極の設計に制約により現像室と攪拌室とを区画する隔壁近傍に磁気力が発生してしまうと、以下のような問題が生じる。即ち、現像スリーブ8に担持搬送されて現像によりトナーを消費したトナー濃度が低い現像剤が、攪拌室に回収されずに隔壁を越えて、現像スリーブ8に現像剤が供給される剤だまり部に到達し易くなる。そして、再度、現像スリーブ8により感光ドラム10に搬送されてしまう。   Therefore, when dealing with such a tolerance with a half width, even if the peak position where the magnetic flux density is maximum is shifted from the design position by the intersection, the distribution of the magnetic flux density does not change as much as possible at the blade facing position. It is necessary to widen the half width. However, when the half-value width of the magnetic pole facing the blade is increased in this way, the design of other magnetic poles is restricted as described above. In particular, in the configuration of the vertical stirring type developing device in which the developing chamber and the stirring chamber are arranged vertically as in the present embodiment, the developer surface downstream of the stirring chamber becomes high. For this reason, if a magnetic force is generated in the vicinity of the partition partitioning the developing chamber and the stirring chamber due to restrictions on the design of the magnetic pole, the following problems occur. That is, the developer having a low toner concentration, which is carried and conveyed by the developing sleeve 8 and consumes the toner by the development, passes through the partition wall without being collected in the stirring chamber, and enters the reservoir portion where the developer is supplied to the developing sleeve 8. It becomes easy to reach. Then, it is conveyed again to the photosensitive drum 10 by the developing sleeve 8.

したがって、本実施形態では、隔壁と対向する部分には磁気力が発生しないようにすることが好ましいが、上述のように半値幅を大きくすると、隔壁対向部近傍に生じる磁気力も大きくなり易い。また、マグネットは周方向に他の磁極があるため一つの磁極の幅を大きくすると他の磁極の幅を削る必要が生じることもある。以上より、磁極の幅は、なるべく小さくすることが望ましい。   Therefore, in the present embodiment, it is preferable that no magnetic force is generated in the portion facing the partition, but if the half-value width is increased as described above, the magnetic force generated in the vicinity of the partition facing portion is likely to increase. In addition, since the magnet has other magnetic poles in the circumferential direction, if the width of one magnetic pole is increased, it may be necessary to cut the width of the other magnetic pole. From the above, it is desirable to make the width of the magnetic pole as small as possible.

[現像剤規制極]
そこで、本実施形態では、マグネット8aの複数の磁極のうちの規制ブレード9に対向配置される現像剤規制極(N1極)を以下のように形成している。まず、現像スリーブ8の外周面に対する法線方向の磁束密度が最大となる現像スリーブ8の外周面上の位置を最大値位置(ピーク位置)とする。また、現像剤規制極の磁束密度の分布の半値となる範囲の中央位置に対応する現像スリーブ8の外周面上の位置を半値中央位置とする。この場合に、現像剤規制極を、最大値位置が半値中央位置に対して、現像スリーブ8の周方向に3度以上ずれるように形成する。且つ、規制ブレード9が対向する現像スリーブ8の外周面上の位置(ブレード対向位置)が、最大値位置よりも半値中央位置が存在する側となるように、現像剤規制極を形成する。
[Developer regulation pole]
Therefore, in the present embodiment, the developer regulating pole (N1 pole) arranged to face the regulating blade 9 among the plurality of magnetic poles of the magnet 8a is formed as follows. First, the position on the outer peripheral surface of the developing sleeve 8 at which the magnetic flux density in the normal direction with respect to the outer peripheral surface of the developing sleeve 8 is maximized is defined as the maximum value position (peak position). Further, the position on the outer peripheral surface of the developing sleeve 8 corresponding to the center position of the range where the distribution of the magnetic flux density of the developer regulating pole becomes a half value is set as the half value center position. In this case, the developer regulating electrode is formed such that the maximum value position is shifted by 3 degrees or more in the circumferential direction of the developing sleeve 8 with respect to the half-value center position. Further, the developer regulating electrode is formed so that the position on the outer peripheral surface of the developing sleeve 8 facing the regulating blade 9 (blade facing position) is on the side where the half-value center position is present from the maximum value position.

即ち、現像スリーブ8の外周面に対する法線方向の磁束密度分布において、規制ブレード9に対向する現像剤規制極の最大値位置を半値中央位置に対してずらして、現像剤規制極の磁束密度の分布を非対称とする。本実施形態では、マグネット8aの公差として磁極の位置が3度変動する場合、即ち、公差3度の構成である。このため、現像剤規制極の最大値位置を半値中央位置に対して3度以上ずらすようにしている。これにより、磁極の位置3度変動した場合でも、規制ブレード9に対向する位置での磁束密度分布の変化を抑えられる。   That is, in the magnetic flux density distribution in the normal direction with respect to the outer peripheral surface of the developing sleeve 8, the maximum value position of the developer regulating pole facing the regulating blade 9 is shifted from the half-value center position, and the magnetic flux density of the developer regulating pole is changed. The distribution is asymmetric. In the present embodiment, the magnetic pole position varies by 3 degrees as the tolerance of the magnet 8a, that is, the tolerance is 3 degrees. For this reason, the maximum value position of the developer regulating pole is shifted by 3 degrees or more with respect to the half-value center position. Thereby, even when the position of the magnetic pole fluctuates by 3 degrees, the change in the magnetic flux density distribution at the position facing the regulating blade 9 can be suppressed.

また、本実施形態では、このように現像剤規制極の磁束密度の分布を非対称とすることに加えて、磁束密度の分布が緩やかとなる側に、規制ブレード9を対向させるようにしている。即ち、現像剤規制極の最大値位置を半値中央位置に対してずらすことで、磁束密度の分布は、図5に示すように、傾斜が緩やかな部分と急な部分とが存在することになる。図5からも明らかなように、最大値位置よりも半値中央位置が存在する側で磁束密度の分布の傾斜が緩やかになり、逆側で傾斜が急となる。本実施形態では、傾斜が緩やかな方に規制ブレード9を対向させるようにすることで、公差により磁極の位置がずれたとしても、規制ブレード9が磁束密度の分布の傾斜が緩やかな領域に対向する。このため、磁極の位置がずれたとしても磁束密度の変化も緩やかであり、現像剤の搬送量の変化を抑制できる。   In this embodiment, in addition to making the distribution of the magnetic flux density of the developer regulating pole asymmetric as described above, the regulating blade 9 is made to face the side where the distribution of the magnetic flux density becomes gentle. In other words, by shifting the maximum value position of the developer regulating pole from the half-value center position, the distribution of the magnetic flux density has a portion with a gentle slope and a steep portion as shown in FIG. . As is clear from FIG. 5, the gradient of the magnetic flux density distribution becomes gentler on the side where the half-value center position exists than the maximum value position, and the gradient becomes steeper on the opposite side. In the present embodiment, the regulation blade 9 is opposed to the gentler slope so that the regulation blade 9 faces the region where the gradient of the magnetic flux density distribution is gentle even if the magnetic pole position is shifted due to tolerance. To do. For this reason, even if the position of the magnetic pole is shifted, the change in the magnetic flux density is gentle, and the change in the developer transport amount can be suppressed.

但し、現像剤規制極の磁束密度の分布の半値となる範囲の幅である半値幅を70度以下、好ましくは60度以下、より好ましくは50度以下とする。これは、半値幅が70度よりも大きいと現像剤規制極の幅が大きくなり過ぎて、他の磁極の設計の自由度に影響を与えるためである。   However, the full width at half maximum, which is the width of the range of the magnetic flux density distribution at the developer regulating electrode, is 70 degrees or less, preferably 60 degrees or less, and more preferably 50 degrees or less. This is because if the half-value width is larger than 70 degrees, the width of the developer regulating pole becomes too large, which affects the degree of freedom in designing other magnetic poles.

なお、より確実に規制ブレード9を磁束密度の分布の傾斜が緩やかな領域に対向させるためには、現像剤規制極の最大値位置を半値中央位置に対して4度以上ずらすことが好ましく、より好ましくは5度以上ずらすことが好ましい。また、公差が4度や5度などより大きい場合には、最大値位置の半値中央位置に対するずれ量をより大きくする、例えば、8度以上などとすることが好ましい。但し、最大値位置の半値中央位置に対するずれは、20度以下とすることが好ましい。   In order to make the regulating blade 9 face the area where the gradient of the magnetic flux density distribution is gentler, it is preferable to shift the maximum value position of the developer regulating pole by 4 degrees or more with respect to the half-value center position. It is preferable to shift by 5 degrees or more. Further, when the tolerance is larger than 4 degrees or 5 degrees, it is preferable to increase the deviation amount of the maximum value position with respect to the half-value center position, for example, 8 degrees or more. However, the deviation of the maximum value position from the half-value center position is preferably 20 degrees or less.

また、現像剤規制極は、最大値位置が、規制ブレード9が対向する現像スリーブ8の外周面上のブレード対向位置及び半値中央位置よりも現像スリーブ8の回転方向下流にずれるように形成されていることが好ましい。これは、ブレード対向位置よりも上流に磁束密度の分布が緩やかな領域がある方が、現像剤の劣化を抑制できるためである。即ち、ブレード対向位置よりも上流では、現像剤が規制ブレード9により規制される前であるため、現像スリーブ8上に多くの現像剤が担持されている。このとき、ブレード対向位置よりも上流で、磁束密度の変化が急な領域が存在すると、現像スリーブ8に担持されている現像剤にかかる磁力が大きくなる。この結果、現像剤に対する負荷が高くなり、現像剤が劣化し易くなる。但し、規制ブレード9を通過する現像剤の搬送性を安定させるためには、規制ブレード9に対向する位置で磁束密度の変化が緩やかであれば良いため、最大値位置がブレード対向位置よりも上流にあっても良い。   The developer regulating pole is formed such that the maximum value position is shifted downstream in the rotation direction of the developing sleeve 8 from the blade facing position and the half-value center position on the outer peripheral surface of the developing sleeve 8 facing the regulating blade 9. Preferably it is. This is because the deterioration of the developer can be suppressed when there is a region where the magnetic flux density distribution is gentler upstream than the blade facing position. That is, upstream of the blade facing position, before the developer is regulated by the regulating blade 9, a large amount of developer is carried on the developing sleeve 8. At this time, if there is a region where the change in magnetic flux density is abruptly upstream from the blade facing position, the magnetic force applied to the developer carried on the developing sleeve 8 increases. As a result, the load on the developer increases and the developer is likely to deteriorate. However, in order to stabilize the transportability of the developer passing through the regulating blade 9, it is sufficient that the change in magnetic flux density is moderate at the position facing the regulating blade 9, so the maximum value position is upstream of the blade facing position. It may be.

また、本実施形態のように磁束密度の分布が非対称の磁極は、非対称性が隣接する磁極に影響される。即ち、隣接する磁極が離れていて磁極が小さい場合には磁束密度の変化が緩慢になり、隣接する極が近く磁力が大きい場合はこの変化が急峻になる。したがって、本実施形態では、現像剤規制極のマグネット上流には、磁力が小さい磁極を離して配置し、下流には上流の磁極よりも磁力が大きい磁極を、上流の磁極よりも近づけて配置することが好ましい。なお、磁極の位置関係は、磁束密度の最大値位置で設定する。   Further, a magnetic pole with an asymmetric magnetic flux density distribution as in the present embodiment is affected by the adjacent magnetic poles. That is, when the adjacent magnetic poles are separated and the magnetic poles are small, the change in the magnetic flux density becomes slow, and when the adjacent poles are close and the magnetic force is large, the change becomes steep. Therefore, in the present embodiment, a magnetic pole having a small magnetic force is arranged upstream from the developer regulating pole, and a magnetic pole having a larger magnetic force than the upstream magnetic pole is arranged downstream from the upstream magnetic pole. It is preferable. The positional relationship between the magnetic poles is set at the maximum value position of the magnetic flux density.

本実施形態の場合、上述のように、最大値位置が半値中央位置に対して3度以上ずれ、且つ、規制ブレード9が対向する現像スリーブの外周面上の位置が最大値位置よりも半値中央位置が存在する側としている。このため、他の磁極の設計の自由度に与える影響を抑えつつ、規制ブレード9近傍での磁束密度の分布の変化を低コストで抑えられる。   In the case of the present embodiment, as described above, the maximum value position is shifted by 3 degrees or more with respect to the half value center position, and the position on the outer peripheral surface of the developing sleeve facing the regulating blade 9 is the half value center from the maximum value position. The side where the position exists. For this reason, the change in the distribution of the magnetic flux density in the vicinity of the regulating blade 9 can be suppressed at a low cost while suppressing the influence on the degree of freedom in designing other magnetic poles.

即ち、最大値位置が半値中央位置に対して3度以上ずれるように形成されることで、現像剤規制極の磁束密度の分布が非対称となる。このため、現像剤規制極の磁束密度の分布は、最大値位置よりも半値中央位置が存在する側で変化が緩やかになる。そして、この変化が緩やかな側に規制ブレード9が対向するため、公差などにより現像剤規制極の最大値位置と規制ブレード9との位置関係がずれたとしても、規制ブレード9材近傍での磁束密度の分布の変化を抑えられる。この結果、公差により磁束密度の分布が規制ブレード9に対してずれても、現像スリーブ8により搬送する現像剤量の変化を抑制できる。そして、搬送される現像剤量の変化で生じる画像弊害を抑制できる。   That is, by forming the maximum value position so as to deviate by 3 degrees or more from the half-value center position, the magnetic flux density distribution of the developer regulating pole becomes asymmetric. For this reason, the distribution of the magnetic flux density of the developer regulating electrode changes more slowly on the side where the half-value center position exists than the maximum value position. Since the regulation blade 9 faces the gradual side of this change, even if the positional relationship between the maximum position of the developer regulation pole and the regulation blade 9 is shifted due to tolerances, the magnetic flux in the vicinity of the material of the regulation blade 9 Changes in density distribution can be suppressed. As a result, even if the distribution of the magnetic flux density deviates with respect to the regulation blade 9 due to tolerance, it is possible to suppress a change in the amount of developer conveyed by the developing sleeve 8. Further, it is possible to suppress image defects caused by changes in the amount of developer conveyed.

また、公差などのずれに対応するため、磁束密度の分布を非対称とすることで、現像剤規制極の幅が抑えられ、他の磁極の設計の自由度に与える影響を抑えられる。また、最大値位置が半値中央位置に対して3度以上としているため、公差を必要以上に小さくしなくて済み、低コスト化を図れる。   In addition, in order to cope with deviations such as tolerances, by making the magnetic flux density distribution asymmetric, the width of the developer regulating pole can be suppressed, and the influence on the degree of freedom of design of other magnetic poles can be suppressed. Further, since the maximum value position is 3 degrees or more with respect to the half-value center position, it is not necessary to reduce the tolerance more than necessary, and the cost can be reduced.

<実施例1>
上述のように、本実施形態では、マグネット8aを現像剤規制極の磁束密度の最大値位置の上流において緩やかに、下流で急峻に変化する非対称としている。そして、規制ブレード9を最大値位置(Brピーク位置)の上流に配置している。これにより、規制ブレード9の上流で緩やかに磁束密度の分布を変化させて、ブレード対向位置での磁束密度の分布の変化を小さくして、マグネットの工程能力や取り付け精度による搬送性の変化を抑制しつつ、極幅の増加を抑えている。このような効果を確認するために、以下のような条件で実験を行った。
<Example 1>
As described above, in the present embodiment, the magnet 8a has an asymmetrical shape that changes gently upstream of the position of the maximum value of the magnetic flux density of the developer regulating pole and changes sharply downstream. The regulating blade 9 is arranged upstream of the maximum value position (Br peak position). As a result, the magnetic flux density distribution is gently changed upstream of the regulating blade 9 to reduce the change in the magnetic flux density distribution at the blade facing position, thereby suppressing the change in transportability due to the magnet process capability and mounting accuracy. However, the increase in extreme width is suppressed. In order to confirm such an effect, an experiment was performed under the following conditions.

実施例1で使用したマグネットにおける現像剤規制極(ブレード対向極)の工程能力と取り付け精度の公差は合計3度とした。このため、設計上の基準位置に対してブレード対向極の最大値は最大で上下流3度ずれることになる。したがって、実施例1では、現像スリーブ8の外周面近傍においてブレード対向極の磁束密度の最大値位置を半値中央位置に対して8度下流に設定した。また、規制ブレード9が現像スリーブ8に対向するブレード対向位置を磁束密度の最大値位置の4度上流に配置した。   The tolerance of the process capability and attachment accuracy of the developer regulating electrode (blade counter electrode) in the magnet used in Example 1 was 3 degrees in total. For this reason, the maximum value of the blade facing pole is shifted by 3 degrees upstream and downstream with respect to the design reference position. Therefore, in Example 1, the maximum value position of the magnetic flux density of the blade facing pole in the vicinity of the outer peripheral surface of the developing sleeve 8 is set 8 degrees downstream of the half-value center position. Further, the blade facing position where the regulating blade 9 faces the developing sleeve 8 is arranged 4 degrees upstream of the maximum value position of the magnetic flux density.

図6に、このような構成を有する実施例1のマグネット8a(マグ1)の現像スリーブ8の外周面(スリーブ表面)におけるBrの分布を示す。角度の基準は、ドラム側の水平位置を0度とし、スリーブ回転方向と逆方向を回転方向とする。図6の縦の破線は規制ブレード9が現像スリーブ8の外周面に対向する位置(ブレード対向位置)を示しており、86°である。この破線の両隣の点線は、ブレード対向位置が上下流3度の範囲を示している。また、ブレード対向極(N1極)の磁束密度の最大値は40mT、磁束密度の分布の半値幅は60度とした。また、最大値位置と半値中央位置のずれは、上述のように8度とした。実施例1でマグネットの公差による現像剤の搬送量の変化は、3mg/cmであった。 FIG. 6 shows the distribution of Br on the outer peripheral surface (sleeve surface) of the developing sleeve 8 of the magnet 8a (mag 1) of Example 1 having such a configuration. The reference for the angle is that the horizontal position on the drum side is 0 degree, and the direction opposite to the sleeve rotation direction is the rotation direction. A vertical broken line in FIG. 6 indicates a position where the regulating blade 9 faces the outer peripheral surface of the developing sleeve 8 (blade facing position), which is 86 °. The dotted lines on both sides of this broken line indicate the range where the blade facing position is 3 degrees upstream and downstream. The maximum magnetic flux density of the blade counter pole (N1 pole) was 40 mT, and the half-value width of the magnetic flux density distribution was 60 degrees. The deviation between the maximum value position and the half-value center position was set to 8 degrees as described above. In Example 1, the change in the developer conveyance amount due to the tolerance of the magnet was 3 mg / cm 2 .

一方、比較例1として、磁束密度の分布の最大値位置と半値中央位置とを揃えた対称なマグネット(マグ2)を用意した。図7に、図6と同様に、比較例1のマグネットの現像スリーブ8の外周面(スリーブ表面)におけるBrの分布を示す。比較例1でも、実施例1同様に、規制ブレード9が現像スリーブ8に対向するブレード対向位置を磁束密度の最大値位置の4度上流に配置した。そして、この比較例1では、磁束密度の分布の半値幅を76度として、マグネットの公差による現像剤の搬送量の変化を、実施例1と同様に3mg/cmとした。その他の条件は、実施例1と同じである。このような実施例1と比較例1とを比較した結果を表1に示す。 On the other hand, as Comparative Example 1, a symmetrical magnet (mag 2) in which the maximum value position and the half-value center position of the magnetic flux density distribution were aligned was prepared. FIG. 7 shows the distribution of Br on the outer peripheral surface (sleeve surface) of the developing sleeve 8 of the magnet of Comparative Example 1, as in FIG. In Comparative Example 1, similarly to Example 1, the blade facing position where the regulating blade 9 faces the developing sleeve 8 is arranged 4 degrees upstream of the maximum value position of the magnetic flux density. In Comparative Example 1, the half-value width of the magnetic flux density distribution was 76 degrees, and the change in developer transport amount due to magnet tolerance was 3 mg / cm 2 as in Example 1. Other conditions are the same as those in the first embodiment. Table 1 shows the result of comparison between Example 1 and Comparative Example 1.

Figure 2019139256
Figure 2019139256

表1から明らかなように、実施例1では、マグネットの公差による現像剤の搬送量の変化を比較例1と同等の3mg/cmに抑えつつ、比較例1に対して半値幅を16度狭めることができた。 As is clear from Table 1, in Example 1, the change in the developer conveyance amount due to the tolerance of the magnet is suppressed to 3 mg / cm 2 which is the same as that in Comparative Example 1, and the half width is 16 degrees compared to Comparative Example 1. I was able to narrow it.

即ち、実施例1では、ブレード対向極の磁束密度の最大値位置を半値中央位置に対して8度下流に設定し、ブレード対向位置を磁束密度の最大値位置の4度上流に配置した。このため、ブレード対向極の最大値位置が4度上下流に振れた場合であっても、規制ブレード9近傍における磁束分布の変化は緩やかであった。この結果、磁束密度の分布が公差により変化した場合においても、現像剤の搬送量の変化を抑制できた。具体的には、マグネットの公差により、磁極が上下流に3度すれることがあるが、ブレード対向位置の上下流3度(縦の点線部)の範囲で、磁束分布の変化が緩慢になっているため、現像剤の搬送量の変化を抑制できた。このとき、実施例1のブレード対向極の半値幅は60度であった。   That is, in Example 1, the maximum value position of the magnetic flux density of the blade facing pole was set 8 degrees downstream of the half-value center position, and the blade facing position was arranged 4 degrees upstream of the maximum value position of the magnetic flux density. For this reason, even when the maximum value position of the blade facing pole swings up and down by 4 degrees, the change in the magnetic flux distribution in the vicinity of the regulating blade 9 was gradual. As a result, even when the distribution of the magnetic flux density is changed due to tolerance, the change in the developer transport amount can be suppressed. Specifically, the magnetic pole may be shifted 3 degrees upstream and downstream due to the tolerance of the magnet, but the change in the magnetic flux distribution becomes slow in the range of 3 degrees upstream and downstream (vertical dotted line) of the blade facing position. Therefore, the change in the developer transport amount can be suppressed. At this time, the full width at half maximum of the blade counter electrode of Example 1 was 60 degrees.

一方、比較例1では、現像剤の搬送量の変化を実施例1と同様にするためには、半値幅を76度とする必要があった。以上より、本実施形態の具体例である実施例1では、ブレード対向極の磁束密度の分布が対称となる比較例1に対して、半値幅を16度小さくできた。これにより、規制ブレード9近傍での現像剤の搬送性を安定させつつ、ブレード対向極の幅を狭くでき、他の磁極の設計の自由度を高められた。   On the other hand, in Comparative Example 1, in order to make the change in the developer transport amount the same as in Example 1, it was necessary to set the full width at half maximum to 76 degrees. As described above, in Example 1, which is a specific example of the present embodiment, the half width can be reduced by 16 degrees compared to Comparative Example 1 in which the distribution of the magnetic flux density of the blade facing pole is symmetric. As a result, the width of the blade facing pole can be narrowed while stabilizing the developer transportability in the vicinity of the regulating blade 9, and the degree of freedom in designing other magnetic poles can be increased.

<第2の実施形態>
本発明の第2の実施形態について、図8ないし図12を用いて説明する。本実施形態は、上述の第1の実施形態の現像装置1と異なり、現像容器内の現像剤を現像スリーブ8に向けて案内するガイド部材11を備えた現像装置1Aに本発明を適用した例である。その他の構成は、上述の第1の実施形態と同様であるため、第1の実施形態と重複する説明及び図示を省略又は簡略にし、第1の実施形態と同様の構成には同じ符号を付し、以下、第1の実施形態と異なる部分を中心に説明する。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIGS. Unlike the developing device 1 of the first embodiment described above, this embodiment is an example in which the present invention is applied to a developing device 1A including a guide member 11 that guides the developer in the developing container toward the developing sleeve 8. It is. Since other configurations are the same as those in the first embodiment described above, descriptions and illustrations overlapping with those in the first embodiment are omitted or simplified, and the same reference numerals are given to the configurations similar to those in the first embodiment. In the following, description will be made centering on differences from the first embodiment.

まず、トナーとキャリアを含む二成分現像剤を使用した現像装置では、以下のような問題が発生する可能性がある。即ち、規制ブレードの現像スリーブの回転方向上流では、規制ブレードにより現像剤の流れが堰き止められる部分(不動層)と、現像スリーブの回転に追従して現像剤が搬送される部分との境界部でせん断面が生じる。そして、このせん断面で現像剤が摺擦されることでトナーがキャリアから遊離し、遊離したトナー同士が固着してトナー層を形成する場合がある。このようなトナー層が発生すると、現像スリーブにより感光ドラムとの対向部に搬送される現像剤が、トナー層の影響により部分的に減少し、現像するのに十分なトナー量を供給できず出力画像濃度が低下してしまう。   First, in a developing device using a two-component developer containing toner and carrier, the following problems may occur. That is, at the upstream in the rotation direction of the developing sleeve of the regulating blade, the boundary between the portion where the flow of developer is blocked by the regulating blade (non-moving layer) and the portion where the developer is conveyed following the rotation of the developing sleeve Causes a shear plane. In some cases, the developer is rubbed on the shearing surface to release the toner from the carrier, and the released toners are fixed to form a toner layer. When such a toner layer is generated, the developer conveyed to the portion facing the photosensitive drum by the developing sleeve is partially reduced due to the influence of the toner layer, and a sufficient amount of toner for developing cannot be supplied and output. The image density is lowered.

このような問題に対して、前述の特許文献2では、現像スリーブに沿った現像剤搬送力の総和を減少させつつ、規制ブレード付近の現像剤に加わる磁気吸引力の総和を増加させるようにしている。これにより、規制ブレード近傍の現像剤が現像スリーブ中心方向へと移動し、トナー層の発生を抑制できる。   With respect to such a problem, in the above-mentioned Patent Document 2, the total of the magnetic attractive force applied to the developer near the regulating blade is increased while the total of the developer conveying force along the developing sleeve is decreased. Yes. As a result, the developer in the vicinity of the regulating blade moves toward the center of the developing sleeve, and the generation of the toner layer can be suppressed.

本実施形態では、このような特許文献2に記載の構成と同様に、トナー層による現像剤の搬送不良を抑制しつつ、第1の実施形態と同様に、マグネット公差による搬送量変化を抑制する。以下、具体的に説明する。   In the present embodiment, similarly to the configuration described in Patent Document 2, the developer conveyance failure due to the toner layer is suppressed, and the change in the conveyance amount due to the magnet tolerance is suppressed as in the first embodiment. . This will be specifically described below.

図8に示すように、現像室3と攪拌室4とを区画する隔壁7Aは、規制ブレード9近傍まで延長した形状を有し、現像室3に収容されている現像剤を重力方向上方から現像スリーブ8に案内するガイド部材11を有する。ガイド部材11は、規制ブレード9よりも現像スリーブ8の回転方向上流側に対向して設けられている。ガイド部材11の規制ブレード9に対向する面(ガイド面)は、搬送スクリュー5の駆動によって規制ブレード9とガイド部材11の間隙から現像剤を適正に供給するためのガイド機能を兼ねている。   As shown in FIG. 8, the partition wall 7A that partitions the developing chamber 3 and the stirring chamber 4 has a shape extending to the vicinity of the regulating blade 9, and develops the developer contained in the developing chamber 3 from above in the direction of gravity. A guide member 11 for guiding the sleeve 8 is provided. The guide member 11 is provided opposite to the regulating blade 9 on the upstream side in the rotation direction of the developing sleeve 8. A surface (guide surface) of the guide member 11 facing the regulation blade 9 also serves as a guide function for properly supplying the developer from the gap between the regulation blade 9 and the guide member 11 by driving the conveying screw 5.

更に、ガイド部材11は、現像スリーブ8の周方向に対向配置することで、現像室3から現像スリーブ8に対する現像剤の供給開始位置P1を規制する規制部として機能している。ガイド部材11のガイド面の角度は、現像スリーブ8の表面の法線方向に設定している。またガイド部材11の現像スリーブ8の最近接距離は1mmとしている。またガイド部材11の供給開始位置P1は、現像スリーブ8と感光ドラム10側の水平位置から、現像スリーブ8の回転方向とは逆方向に115度となる位置に設定している。また隔壁7Aの現像スリーブ8最近接位置で、且つ現像スリーブ8回転方向上流側の位置P3は、本実施形態においては、水平位置から、現像スリーブ8の回転方向とは逆方向に180度となる位置に設定している。   Further, the guide member 11 functions as a restricting portion that restricts the developer supply start position P <b> 1 from the developing chamber 3 to the developing sleeve 8 by being opposed to the developing sleeve 8 in the circumferential direction. The angle of the guide surface of the guide member 11 is set in the normal direction of the surface of the developing sleeve 8. The closest distance of the developing sleeve 8 of the guide member 11 is 1 mm. The supply start position P1 of the guide member 11 is set to a position that is 115 degrees in the direction opposite to the rotation direction of the developing sleeve 8 from the horizontal position on the developing sleeve 8 and the photosensitive drum 10 side. The position P3 closest to the developing sleeve 8 of the partition wall 7A and upstream of the developing sleeve 8 in the rotation direction is 180 degrees from the horizontal position in the direction opposite to the rotation direction of the developing sleeve 8 in this embodiment. The position is set.

次に本実施形態の現像剤の流れについて、図8を用いて説明する。まずガイド部材11の現像スリーブ8への最近接位置P3は、同極(N1極、N3極、図2参照)によって形成される斥力領域の下流であって、現像剤は斥力により現像スリーブ8から離れる方向に力を受けるために斥力領域ではぎとられる。したがって、現像剤は、現像スリーブ8と隔壁7Aのギャップを通過しない。言い換えれば、規制ブレード9への現像剤の供給は、搬送スクリュー5からガイド部材11を乗り越えた経路を通ることになり、乗り越えた現像剤は、規制ブレード9とガイド部材11との間に貯蔵される。   Next, the flow of the developer of this embodiment will be described with reference to FIG. First, the closest position P3 of the guide member 11 to the developing sleeve 8 is downstream of the repulsive region formed by the same polarity (N1 pole, N3 pole, see FIG. 2), and the developer is removed from the developing sleeve 8 by the repulsive force. In order to receive the force in the direction of leaving, it is removed in the repulsion area. Therefore, the developer does not pass through the gap between the developing sleeve 8 and the partition wall 7A. In other words, the supply of the developer to the regulation blade 9 passes through the path over the guide member 11 from the conveying screw 5, and the developer over the store is stored between the regulation blade 9 and the guide member 11. The

本実施形態においては、ガイド部材11の頂点位置P4と規制ブレード9の下点位置(現像スリーブ8との最近接位置)P2とは、互いの位置を結ぶ線が水平方向に対して仰角30°になるように設定している。即ち、ガイド部材11の頂点位置P4は、規制ブレード9と現像スリーブ8の最近接位置に対して、水平方向上側に位置する。この理由は、規制ブレード9とガイド部材11との間の空間に、現像スリーブ8に現像剤を安定してコートできうる量に貯蔵するためである。なお、ガイド部材11の長さは11mmである。また本実施形態においては、ガイド部材11は隔壁7Aと一体に構成されており、現像容器2と同じ材質を用いている。   In the present embodiment, the apex position P4 of the guide member 11 and the lower point position (closest position with the developing sleeve 8) P2 of the regulating blade 9 are such that the line connecting the positions is at an elevation angle of 30 ° with respect to the horizontal direction. It is set to become. That is, the apex position P4 of the guide member 11 is located on the upper side in the horizontal direction with respect to the closest position of the regulating blade 9 and the developing sleeve 8. This is because the developer sleeve 8 is stored in an amount capable of stably coating the developer in the space between the regulating blade 9 and the guide member 11. In addition, the length of the guide member 11 is 11 mm. In the present embodiment, the guide member 11 is formed integrally with the partition wall 7 </ b> A and uses the same material as that of the developing container 2.

また、規制ブレード9からガイド部材11の現像剤供給開始位置P1までの間隔(現像スリーブ8の周方向距離)の望ましい範囲は、2mm以上8mm以下であって、本実施例では約5mmに設定している。これは、規制ブレード9からガイド部材11までの間隔が2mm以下だと、現像剤が搬送される搬送路が狭くなり、詰まる虞があるためである。一方、間隔が広すぎる場合、現像スリーブ8と現像剤の接触距離が長くなるために、磁気力で摺擦される時間が長くなり、現像剤劣化が懸念されるため好ましくないためである。   Further, a desirable range of the distance from the regulating blade 9 to the developer supply start position P1 of the guide member 11 (distance in the circumferential direction of the developing sleeve 8) is 2 mm or more and 8 mm or less, and is set to about 5 mm in this embodiment. ing. This is because if the distance from the regulating blade 9 to the guide member 11 is 2 mm or less, the conveyance path through which the developer is conveyed becomes narrow and may be clogged. On the other hand, when the interval is too wide, the contact distance between the developing sleeve 8 and the developer becomes long, so that the time for rubbing with the magnetic force becomes long and the developer is liable to be deteriorated, which is not preferable.

なお、本実施形態のように、搬送スクリュー5が規制ブレード9の位置に対して略横方向にある場合、ガイド部材11は現像剤をガイドする機能及び現像剤を貯蔵する機能を有する。これと共に、搬送スクリュー5の駆動時の現像剤押圧を遮蔽する効果も有している。搬送スクリュー5の駆動に伴い、現像剤はスクリュー軸方向に押圧されて搬送されるが、スクリューの動径方向にも押圧が加わる。規制ブレード9と搬送スクリュー5の位置関係が略横方向の場合、動径方向の押圧によって規制ブレード9の面に対して略垂直方向の現像剤搬送力が加わることになり、搬送性ムラの観点で望ましくない。従って搬送スクリュー5の押圧の影響を遮蔽するためにもガイド部材11の特に頂点位置P4(図8記載)は高く配置することが好ましい。少なくとも規制ブレード下点位置P2と搬送スクリュー5の軸中心を結ぶ線に対して上方に、ガイド部材11の頂点位置P4を位置ささせることが好ましい。   Note that, as in the present embodiment, when the conveying screw 5 is substantially in the lateral direction with respect to the position of the regulating blade 9, the guide member 11 has a function of guiding the developer and a function of storing the developer. Along with this, it also has an effect of shielding developer pressing when the conveying screw 5 is driven. As the conveying screw 5 is driven, the developer is pressed and conveyed in the screw axial direction, but pressure is also applied in the radial direction of the screw. When the positional relationship between the regulating blade 9 and the conveying screw 5 is substantially lateral, a developer conveying force in a substantially vertical direction is applied to the surface of the regulating blade 9 by pressing in the radial direction, and the viewpoint of uneven conveyance performance It is not desirable. Therefore, it is preferable that the vertex position P4 (described in FIG. 8) of the guide member 11 is arranged high in order to shield the influence of the pressing of the conveying screw 5. It is preferable that the apex position P4 of the guide member 11 is positioned at least above the line connecting the lower limit position P2 of the regulating blade and the axis center of the conveying screw 5.

本実施形態においては、ガイド部材11の位置から規制ブレード9間のFrは常に引力方向であって、且つ規制ブレード9に近づくにつれてFrが急峻且つ単調増加するように構成している。即ち、本実施形態のマグネット8bの複数の磁極は、現像スリーブ8の法線方向の磁気力Frの絶対値が、現像スリーブ8の回転方向に関して、ガイド部材11の後端から規制ブレード9の位置に向かって単調的に増加するように形成されている。ここで、単調増加するとは、現像スリーブ8の周方向にFrを測定したときに、スリーブ周方向に関して角度2度以上10度以下の範囲でサンプリングした場合において、Frが単調増加していることを指す。   In this embodiment, the Fr between the regulating blades 9 from the position of the guide member 11 is always in the attractive direction, and the Fr is steep and monotonously increased as the regulating blade 9 is approached. That is, in the plurality of magnetic poles of the magnet 8 b of this embodiment, the absolute value of the magnetic force Fr in the normal direction of the developing sleeve 8 is the position of the regulating blade 9 from the rear end of the guide member 11 with respect to the rotation direction of the developing sleeve 8. It is formed so as to increase monotonously toward. Here, monotonically increasing means that when Fr is measured in the circumferential direction of the developing sleeve 8 and Fr is sampled within a range of 2 degrees to 10 degrees with respect to the sleeve circumferential direction, the Fr monotonously increases. Point to.

またガイド部材11の上流側(位置P3よりも上流側)にはFrが略0又は正の領域(斥力領域)になるよう構成している。なお、斥力領域は、現像スリーブ8の回転による遠心力により現像剤が現像スリーブ8の表面から離れる程度に絶対値が小さければ、Frが負の値であっても良い。本実施形態では約180°〜200°位置が斥力領域になっており、斥力領域から現像スリーブ8の回転方向下流側に向うにつれてFrが増加させる構成にしている。   Further, Fr is configured to be substantially 0 or a positive region (repulsive force region) on the upstream side of the guide member 11 (upstream side of the position P3). In the repulsive force region, Fr may be a negative value as long as the absolute value is small enough that the developer is separated from the surface of the developing sleeve 8 by the centrifugal force generated by the rotation of the developing sleeve 8. In this embodiment, the position of about 180 ° to 200 ° is a repulsive force region, and Fr is increased from the repulsive force region toward the downstream side in the rotation direction of the developing sleeve 8.

Frはスリーブ方向への磁気吸引力のため、Frが大きいとガイド部材11を乗り越えた現像剤が現像スリーブ8へ強く引き込まれる。従って、ガイド部材11と規制ブレード9間のFr分布を規制ブレード9に近づくにつれて単調的に増加傾向にする。こうすることで、図8で示す規制ブレード9近傍の現像剤は、規制ブレード9とガイド部材11間の他の箇所に比べて強いFrで現像スリーブ8近傍へ引き込まれていることになる。規制ブレード9近傍の現像剤を縦方向(規制ブレードに対して平行、現像スリーブ8の外周面の法線方向と略平行)の流れにしたいために、規制ブレード近傍のFrは大きい方が好ましい。本実施形態では、ガイド部材11と規制ブレード9との間においてFrの最大値は規制ブレード9対向部としている。即ち、マグネット8bの複数の磁極は、現像スリーブの回転方向に関してガイド部材11の後端から規制ブレード9の位置までの領域において、磁気力Frの絶対値が最大となる位置が規制ブレード9と対向する位置となるように形成されている。   Since Fr is a magnetic attractive force in the sleeve direction, if Fr is large, the developer that has passed over the guide member 11 is strongly drawn into the developing sleeve 8. Therefore, the Fr distribution between the guide member 11 and the regulating blade 9 is monotonously increased as the regulating blade 9 is approached. By doing so, the developer in the vicinity of the regulating blade 9 shown in FIG. 8 is drawn into the vicinity of the developing sleeve 8 with a stronger Fr than the other portions between the regulating blade 9 and the guide member 11. In order to make the developer in the vicinity of the regulating blade 9 flow in the vertical direction (parallel to the regulating blade and substantially parallel to the normal direction of the outer peripheral surface of the developing sleeve 8), it is preferable that Fr in the vicinity of the regulating blade is large. In the present embodiment, the maximum value of Fr between the guide member 11 and the regulating blade 9 is the portion facing the regulating blade 9. That is, the plurality of magnetic poles of the magnet 8b are opposed to the regulating blade 9 at the position where the absolute value of the magnetic force Fr is maximum in the region from the rear end of the guide member 11 to the position of the regulating blade 9 in the rotation direction of the developing sleeve. It is formed so that it will be a position to do.

一方、規制ブレード9との衝突による現像剤の滞留を弱めるべく、現像スリーブ8の回転に伴う現像スリーブ8に沿った現像剤搬送力は弱めるためには、規制ブレード9とガイド部材11間のFrの総和は小さいほうが好ましい。現像スリーブ8の回転に伴う現像剤搬送は現像剤と現像スリーブ8間の摩擦力によって為されるため、垂直抗力=磁気吸引力Frと現像剤搬送力とは比例関係にある。従って規制ブレード9に衝突して不動層の起源になる現像スリーブ8に平行な現像剤搬送力を弱めるためには、規制ブレード9とガイド部材11との間のFrの総和は小さい方が望ましいことになる。   On the other hand, in order to weaken the developer staying force due to the rotation of the developing sleeve 8 in order to weaken the retention of the developer due to the collision with the regulating blade 9, the Fr between the regulating blade 9 and the guide member 11 is reduced. It is preferable that the sum of is smaller. Since the developer conveyance accompanying the rotation of the developing sleeve 8 is performed by the frictional force between the developer and the developing sleeve 8, the perpendicular drag = magnetic attraction force Fr and the developer conveying force are in a proportional relationship. Accordingly, in order to weaken the developer conveying force parallel to the developing sleeve 8 that collides with the regulating blade 9 and causes the immobile layer, it is desirable that the total Fr between the regulating blade 9 and the guide member 11 is small. become.

なお規制ブレード9近傍の現像剤の流れは、規制ブレード近傍の現像剤の縦方向の力と横方向(規制ブレードに直交する方向、現像スリーブ8の外周面の接線方向と略平行)の力の大小関係によって決定される。従って、規制ブレード近傍の現像剤の流れを縦方向にするには、規制ブレード近傍のFrを強めることで縦方向の力を強めて、且つ、規制ブレードから搬送ガイド間のFrの総和を小さくすることで横方向の力を弱めることが必要十分条件になる。上記二事象を両立するためには、規制ブレード9とガイド部材11間のFr分布は規制ブレード近傍のみFrが大きくなる分布が好ましい。換言すると規制ブレード9とガイド部材11間のFr分布は、規制ブレード9に近づくにつれて急峻に且つ単調に増加する傾向を取ることが定性的に望ましいといえる。   The developer flow in the vicinity of the regulating blade 9 has a force in the vertical direction and a lateral direction (direction perpendicular to the regulating blade, substantially parallel to the tangential direction of the outer peripheral surface of the developing sleeve 8) of the developer in the vicinity of the regulating blade. Determined by the magnitude relationship. Therefore, in order to make the developer flow in the vicinity of the regulating blade in the vertical direction, the longitudinal force is increased by increasing Fr in the vicinity of the regulating blade, and the sum of Fr between the regulating blade and the conveyance guide is reduced. Therefore, it is necessary and sufficient to weaken the lateral force. In order to make the two events compatible, the Fr distribution between the regulating blade 9 and the guide member 11 is preferably a distribution in which Fr increases only in the vicinity of the regulating blade. In other words, it can be qualitatively desirable that the Fr distribution between the regulation blade 9 and the guide member 11 has a tendency to increase steeply and monotonously as the regulation blade 9 is approached.

ここで、規制ブレード9から規制ブレード9よりも現像スリーブ8の回転方向に関して2mm上流の位置までFrを積分した値をFrNearと定義する。また、現像スリーブ8の回転方向に関して、ガイド部材11の後端から規制ブレード9までのFrを積分したFrの総和をFrAllと定義する。このとき、特許文献2に記載されているように、定量的には、積分値FrAllに対するFrNearの割合が、60%以上でコート不良の発生がなくなる。したがって、本実施形態では、FrAllに対するFrNearが、少なくとも60%以上となるように、マグネット8bの複数の磁極を形成している。   Here, a value obtained by integrating Fr from the regulating blade 9 to a position 2 mm upstream from the regulating blade 9 in the rotation direction of the developing sleeve 8 is defined as FrNear. Further, with respect to the rotation direction of the developing sleeve 8, the total Fr obtained by integrating Fr from the rear end of the guide member 11 to the regulating blade 9 is defined as FrAll. At this time, as described in Patent Document 2, quantitatively, when the ratio of FrNear to the integrated value FrAll is 60% or more, the occurrence of defective coating is eliminated. Therefore, in the present embodiment, the plurality of magnetic poles of the magnet 8b are formed so that FrNear with respect to FrAll is at least 60% or more.

なお、規制ブレードから上流2mm間は、現像剤が圧縮され不動層が形成されやすい領域であり、この付近の現像剤の流れがスリーブ垂直方向に向かうことが重要である。   Note that the area 2 mm upstream from the regulating blade is an area where the developer is easily compressed and a non-moving layer is easily formed, and it is important that the flow of the developer in the vicinity is directed in the direction perpendicular to the sleeve.

ここで、FrAllに対するFrNearの割合を高めようとすると、規制ブレード9近傍のFrが、ガイド部材11との間の他の領域と比べて大きい必要がある。そのためには、前述の式(1)から分かるように、規制ブレード9近傍の磁気分布の変化を大きくする必要がある。仮に、規制ブレード9と対向する現像剤規制極(ブレード対向極)の磁束密度の分布が略対称なマグネットを用いて、FrAllに対するFrNearの割合を高めようとすると半値幅を狭めることになる。半値幅を狭めると、規制ブレード近傍の磁束密度の分布の変化が大きくなって、マグネットの公差による現像剤搬送量の変化が大きくなる。   Here, in order to increase the ratio of FrNear to FrAll, Fr in the vicinity of the regulating blade 9 needs to be larger than the other area between the guide member 11. For this purpose, as can be seen from the above-described equation (1), it is necessary to increase the change in magnetic distribution in the vicinity of the regulating blade 9. If the ratio of FrNear to FrAll is increased by using a magnet whose distribution of magnetic flux density of the developer regulating pole (blade facing pole) opposed to the regulating blade 9 is substantially symmetric, the half width is narrowed. When the half width is narrowed, the change in the distribution of magnetic flux density in the vicinity of the regulating blade increases, and the change in the developer conveyance amount due to the tolerance of the magnet increases.

そこで本実施形態では、マグネット8bの現像剤規制極を第1の実施形態と同様に、磁束密度の分布を非対称としている。即ち、本実施形態では、現像剤規制極の磁束密度の分布が、最大値位置の現像スリーブ8の回転方向上流において緩やかに、下流において急峻に変化するようにしている。そして、規制ブレード9を最大値位置の現像スリーブの回転方向上流に配置する。上述したように、最大値位置は、現像スリーブ8の外周面に対する法線方向の磁束密度(Br)が最大となる現像スリーブ8の外周面上の位置である。また、ブレード対向位置は、規制ブレード9が対向する現像スリーブ8の外周面上の位置であり、半値中央位置は、磁束密度の分布の半値となる範囲の中央位置に対応する現像スリーブ8の外周面上の位置である。   Therefore, in the present embodiment, the developer regulating pole of the magnet 8b is asymmetrical in the magnetic flux density distribution as in the first embodiment. That is, in the present embodiment, the distribution of the magnetic flux density of the developer regulating pole is changed gently at the upstream of the rotation direction of the developing sleeve 8 at the maximum value position and abruptly at the downstream. Then, the regulating blade 9 is arranged upstream in the rotation direction of the developing sleeve at the maximum value position. As described above, the maximum value position is a position on the outer peripheral surface of the developing sleeve 8 where the magnetic flux density (Br) in the normal direction relative to the outer peripheral surface of the developing sleeve 8 is maximum. The blade facing position is a position on the outer peripheral surface of the developing sleeve 8 that the regulating blade 9 faces, and the half-value center position is the outer periphery of the developing sleeve 8 corresponding to the center position of the range where the distribution of magnetic flux density is half value. The position on the surface.

このように、規制ブレード9の下流においてBrのピークを急峻に立ち下げることで規制ブレード近傍のFrを急峻に立ち上げることができる。そして、FrAllに対するFrNearの割合を高めつつ、規制ブレード9の上流の磁束密度の分布の変化を小さくしてマグネットの工程能力や取り付け精度による搬送性の変化を抑制する。   In this manner, by rapidly decreasing the Br peak downstream of the regulating blade 9, it is possible to rapidly raise Fr in the vicinity of the regulating blade. Then, while increasing the ratio of FrNear to FrAll, the change in the distribution of magnetic flux density upstream of the regulating blade 9 is reduced to suppress the change in transportability due to the process capability and mounting accuracy of the magnet.

<実施例2>
このような本実施形態の効果を確認するために、以下のような実験を行った。実施例2で使用したマグネットにおける現像剤規制極(ブレード対向極)の工程能力と取り付け精度の公差は合計3度とした。このため、設計上の基準位置に対してブレード対向極の最大値は最大で上下流3度ずれることになる。したがって、実施例2では、現像スリーブ8の外周面近傍においてブレード対向極の磁束密度の最大値位置を半値中央位置に対して20度下流に設定した。また、規制ブレード9が現像スリーブ8に対向するブレード対向位置を磁束密度の最大値位置の3度上流に配置した。
<Example 2>
In order to confirm the effect of this embodiment, the following experiment was conducted. The tolerance of the process capability and attachment accuracy of the developer regulating electrode (blade counter electrode) in the magnet used in Example 2 was 3 degrees in total. For this reason, the maximum value of the blade facing pole is shifted by 3 degrees upstream and downstream with respect to the design reference position. Therefore, in Example 2, the maximum value position of the magnetic flux density of the blade facing pole in the vicinity of the outer peripheral surface of the developing sleeve 8 was set 20 degrees downstream of the half-value center position. Further, the blade facing position where the regulating blade 9 faces the developing sleeve 8 is arranged 3 degrees upstream of the maximum value position of the magnetic flux density.

図9に、このような構成を有する実施例2のマグネット8b(マグ3)の現像スリーブ8の外周面(スリーブ表面)におけるBrの分布を示す。角度の基準は、ドラム側の水平位置を0度とし、スリーブ回転方向と逆方向を回転方向とする。図9の縦の破線は規制ブレード9が現像スリーブ8の外周面に対向する位置(ブレード対向位置)を示しており、86°である。この破線の両隣の点線は、ブレード対向位置が上下流3度の範囲を示している。また、長破線はガイド部材11が現像スリーブ8の外周面に対向する位置を示している。また、ブレード対向極(現像剤規制極)の磁束密度の最大値は40mT、磁束密度の分布の半値幅は45度とした。また、最大値位置と半値中央位置のずれは、上述のように20度とした。実施例2でマグネットの公差による現像剤の搬送量の変化は、3mg/cmであった。 FIG. 9 shows the distribution of Br on the outer peripheral surface (sleeve surface) of the developing sleeve 8 of the magnet 8b (mag 3) of Example 2 having such a configuration. The reference for the angle is that the horizontal position on the drum side is 0 degree, and the direction opposite to the sleeve rotation direction is the rotation direction. A vertical broken line in FIG. 9 indicates a position where the regulating blade 9 faces the outer peripheral surface of the developing sleeve 8 (blade facing position), which is 86 °. The dotted lines on both sides of this broken line indicate the range where the blade facing position is 3 degrees upstream and downstream. A long broken line indicates a position where the guide member 11 faces the outer peripheral surface of the developing sleeve 8. The maximum magnetic flux density of the blade counter pole (developer regulating pole) was 40 mT, and the half-value width of the magnetic flux density distribution was 45 degrees. Further, the deviation between the maximum value position and the half-value center position was set to 20 degrees as described above. In Example 2, the change in the developer conveyance amount due to the tolerance of the magnet was 3 mg / cm 2 .

また、上述の実施例2のマグネット8b(マグ3)を用いることで、FrAllに対するFrNearの割合を高めて、規制ブレード下流の磁束密度の分布の変化をより急峻に変化させた。図10に、マグ3を用いた場合のスリーブ表面におけるキャリアにかかるスリーブ中心方向の磁気力(Fr)の分布を示す。実施例2では、規制ブレード近傍のFrが相対的に大きく、FrAllに対するFrNearの割合が65%であった。   Further, by using the magnet 8b (mag 3) of Example 2 described above, the ratio of FrNear to FrAll was increased, and the change in the distribution of magnetic flux density downstream of the regulating blade was changed more steeply. FIG. 10 shows the distribution of the magnetic force (Fr) in the sleeve center direction applied to the carrier on the sleeve surface when the mug 3 is used. In Example 2, Fr near the regulating blade was relatively large, and the ratio of FrNear to FrAll was 65%.

一方、比較例2として、実施例1で使用した現像剤規制極の磁束密度の分布が非対称であるマグ1を、比較例3として、比較例1で使用した現像剤規制極の磁束密度の分布が対称なマグ2を用意した。そして、これらマグ2、3を図8に示したような現像装置に組み込んだ。このとき、マグネットの公差による現像剤の搬送量の変化は、実施例2と同様に3mg/cmであった。 On the other hand, as Comparative Example 2, the magnetic flux density distribution of the developer regulating electrode used in Example 1 is asymmetrical, and as Comparative Example 3, the magnetic flux density distribution of the developer regulating electrode used in Comparative Example 1 is used. A symmetric mag 2 was prepared. These mugs 2 and 3 were incorporated into a developing device as shown in FIG. At this time, the change in the developer conveyance amount due to the tolerance of the magnet was 3 mg / cm 2 as in Example 2.

また、図11にマグ1を用いた場合の、図12にマグ2を用いた場合の、スリーブ表面におけるキャリアにかかるスリーブ中心方向の磁気力(Fr)の分布をそれぞれ示す。比較例2では、FrAllに対するFrNearの割合が55%、比較例3では、FrAllに対するFrNearの割合が50%であった。その他の条件は、実施例2と同じである。このような実施例2と比較例2、3とを比較した結果を表2に示す。   FIG. 11 shows the distribution of the magnetic force (Fr) in the sleeve center direction applied to the carrier on the sleeve surface when the mug 1 is used and FIG. 12 shows the case where the mug 2 is used. In Comparative Example 2, the ratio of FrNear to FrAll was 55%, and in Comparative Example 3, the ratio of FrNear to FrAll was 50%. Other conditions are the same as in the second embodiment. Table 2 shows the result of comparison between Example 2 and Comparative Examples 2 and 3.

Figure 2019139256
Figure 2019139256

表2から明らかなように、実施例2では、マグネットの公差による現像剤の搬送量の変化を比較例2、3と同等の3mg/cmに抑えつつ、比較例2、3に対して半値幅を狭めることができた。即ち、実施例2では、ブレード対向極の磁束密度の最大値位置を半値中央位置に対して20度下流に設定し、ブレード対向位置を磁束密度の最大値位置の3度上流に配置した。このため、ブレード対向極の最大値が3度上流に振れた場合であっても、規制ブレード近傍における磁束分布の変化は緩やかであった。この結果、磁束密度の分布が公差により変化した場合においても、現像剤の搬送量の変化を抑制できた。また、実施例2では、FrAllに対するFrNearの割合が65%であったため、規制ブレード上流における前述のトナー層の形成が抑制され、現像剤の搬送不良を発生しなかった。即ち、規制ブレードの下流で磁束密度の分布が急峻に変化するため、規制ブレード近傍の磁力が、ガイド部材11との間の他の領域と比べて大きくなり、結果としてFrNear/FrAllが大きくできた。このため、現像剤の搬送不良を防止できた。 As is clear from Table 2, in Example 2, the change in developer transport amount due to the tolerance of the magnet is suppressed to 3 mg / cm 2 which is equivalent to Comparative Examples 2 and 3, and half compared to Comparative Examples 2 and 3. The price range could be narrowed. That is, in Example 2, the maximum value position of the magnetic flux density of the blade facing pole was set 20 degrees downstream of the half-value center position, and the blade facing position was arranged 3 degrees upstream of the maximum value position of the magnetic flux density. For this reason, even when the maximum value of the blade facing pole swings 3 degrees upstream, the change in the magnetic flux distribution in the vicinity of the regulating blade was gradual. As a result, even when the distribution of the magnetic flux density is changed due to tolerance, the change in the developer transport amount can be suppressed. Further, in Example 2, since the ratio of FrNear to FrAll was 65%, the formation of the toner layer on the upstream side of the regulation blade was suppressed, and developer conveyance failure did not occur. That is, since the magnetic flux density distribution changes sharply downstream of the regulating blade, the magnetic force in the vicinity of the regulating blade is larger than that in other areas between the guide member 11 and, as a result, FrNear / FrAll can be increased. . For this reason, the conveyance failure of the developer could be prevented.

一方、比較例2、3では、FrNear/FrAllが60%未満で小さかったため、トナー層の形成を十分に抑制できず、耐久時や低印字率の画像を連続して形成する場合に現像剤の搬送不良が発生する場合があった。以上より、本実施形態の具体例である実施例2では、半値幅を小さくでき、規制ブレード9近傍での現像剤の搬送性を安定させつつ、ブレード対向極の幅を狭くでき、他の磁極の設計の自由度を高められた。また、FrNear/FrAllを65%としたため、現像剤の搬送不良を防止できた。但し、比較例2の構成は、現像剤規制極の磁束密度の分布が非対称としているため、本発明の効果を得ることができる。そして、本実施例では、実施例1の効果に加えて、FrNear/FrAllが60%以上とすることで、不動層の発生を簡易な構成で抑制する効果を付与することができる。尚、上記不動層に関しては、所定のタイミングの非画像形成時において、現像器内の現像剤を感光ドラムに吐き出す動作等を行うことで、対応することができる。   On the other hand, in Comparative Examples 2 and 3, since the FrNear / FrAll was less than 60% and was small, the toner layer formation could not be sufficiently suppressed. In some cases, conveyance failure occurred. As described above, in Example 2, which is a specific example of the present embodiment, the half-value width can be reduced, the developer transportability in the vicinity of the regulating blade 9 can be stabilized, and the width of the blade facing pole can be reduced. Increased design freedom. Further, since FrNear / FrAll was 65%, it was possible to prevent a developer conveyance failure. However, since the configuration of Comparative Example 2 has an asymmetric distribution of magnetic flux density at the developer regulating electrode, the effect of the present invention can be obtained. In the present embodiment, in addition to the effects of the first embodiment, by setting FrNear / FrAll to 60% or more, it is possible to provide an effect of suppressing the generation of a non-moving layer with a simple configuration. The non-moving layer can be dealt with by discharging the developer in the developing device to the photosensitive drum during non-image formation at a predetermined timing.

<他の実施形態>
上述の各実施形態では、図1に示すように、画像形成装置として、感光ドラム10Y、10M、10C、10Kから記録材搬送ベルト24により搬送された記録材Pに直接転写する構成を適用した。但し、本発明は、これ以外の構成にも適用可能である。例えば、記録材搬送ベルト24の代わりに中間転写ベルトなどの中間転写体を設けた構成にも適用可能である。即ち、感光ドラム10Y、10M、10C、10Kから中間転写体に各色のトナー像を一次転写した後、記録材Pに各色の複合トナー像を一括して二次転写する構成の画像形成装置においても本発明は適用できる。また、帯電方式、転写方式、クリーニング方式、定着方式に関しても、上記方式に限られるものではない。
<Other embodiments>
In each of the above-described embodiments, as illustrated in FIG. 1, the image forming apparatus is configured to transfer directly from the photosensitive drums 10 </ b> Y, 10 </ b> M, 10 </ b> C, and 10 </ b> K to the recording material P conveyed by the recording material conveyance belt 24. However, the present invention can be applied to other configurations. For example, the present invention can be applied to a configuration in which an intermediate transfer member such as an intermediate transfer belt is provided instead of the recording material conveyance belt 24. That is, in an image forming apparatus having a configuration in which the toner images of each color are primarily transferred from the photosensitive drums 10Y, 10M, 10C, and 10K to the intermediate transfer member, and then the composite toner images of each color are collectively transferred to the recording material P. The present invention is applicable. Further, the charging method, transfer method, cleaning method, and fixing method are not limited to the above methods.

また、上述の各実施形態では、現像容器の上側に現像室を下側に攪拌室を配置した縦攪拌型の現像装置に本発明を適用した例について説明した。但し、本発明は、現像スリーブ内にマグネットを配置して現像剤を担持搬送し、規制ブレードで担持された現像剤の層厚を規制する構成であれば、他の構成にも適用可能である。例えば、上述の現像室と攪拌室とを水平方向に配置した構成にも適用可能である。また、上述の実施形態のように、現像スリーブに現像剤を供給する現像室と、現像スリーブから現像剤を回収する攪拌室とを別々に備えた構成以外にも本発明を適用可能である。例えば、現像室により現像スリーブに対する現像の供給及び回収を行い、攪拌室では現像室との間で現像剤を循環させる構成にも適用可能である。   Further, in each of the above-described embodiments, the example in which the present invention is applied to the vertical stirring type developing device in which the developing chamber is disposed above the developing container and the stirring chamber is disposed below is described. However, the present invention can be applied to other configurations as long as the magnet is arranged in the developing sleeve to carry and carry the developer and the layer thickness of the developer carried by the regulating blade is regulated. . For example, the present invention can be applied to a configuration in which the developing chamber and the stirring chamber described above are arranged in the horizontal direction. Further, as in the above-described embodiment, the present invention can be applied to a configuration other than a configuration in which a developing chamber for supplying a developer to the developing sleeve and a stirring chamber for collecting the developer from the developing sleeve are separately provided. For example, the present invention can also be applied to a configuration in which development is supplied to and recovered from the developing sleeve by the developing chamber and the developer is circulated between the developing chamber and the developing chamber.

1、1A・・・現像装置/2・・・現像容器/8・・・現像スリーブ/8a、8b・・・マグネット/9・・・規制ブレード(現像剤規制部材)/11・・・ガイド部材   DESCRIPTION OF SYMBOLS 1, 1A ... developing apparatus / 2 ... developing container / 8 ... developing sleeve / 8a, 8b ... magnet / 9 ... regulating blade (developer regulating member) / 11 ... guide member

Claims (1)

トナーとキャリアを含む現像剤を収容する現像容器と、
前記現像容器内の現像剤を担持して回転搬送する円筒状の現像スリーブと、
前記現像スリーブ内に配置され、周方向に複数の磁極を有するマグネットと、
前記現像スリーブの外周面に所定の隙間を介して対向配置され、前記現像スリーブに担持された現像剤の層厚を規制する現像剤規制部材と、を備え、
前記複数の磁極のうちの前記現像剤規制部材に対向配置される現像剤規制極は、前記現像スリーブの外周面に対する法線方向の磁束密度が最大となる前記外周面上の位置である最大値位置が、前記現像剤規制極の磁束密度の分布の半値となる範囲の中央位置に対応する前記外周面上の位置である半値中央位置に対して、前記現像スリーブの周方向に3度以上ずれるように、且つ、前記現像剤規制部材が対向する前記外周面上の位置が、前記最大値位置よりも前記半値中央位置が存在する側となるように形成される、
ことを特徴とする現像装置。
A developer container containing a developer including toner and carrier;
A cylindrical developing sleeve that carries and rotates the developer in the developer container; and
A magnet disposed in the developing sleeve and having a plurality of magnetic poles in the circumferential direction;
A developer regulating member disposed opposite to the outer circumferential surface of the developing sleeve via a predetermined gap and regulating the layer thickness of the developer carried on the developing sleeve;
The developer regulating pole disposed opposite to the developer regulating member among the plurality of magnetic poles is a maximum value that is a position on the outer circumferential surface where the magnetic flux density in the normal direction with respect to the outer circumferential surface of the developing sleeve is maximized. The position deviates by 3 degrees or more in the circumferential direction of the developing sleeve with respect to the half-value center position that is a position on the outer peripheral surface corresponding to the center position of the range where the magnetic flux density distribution of the developer regulating pole is half value. In addition, the position on the outer peripheral surface where the developer restricting member faces is formed such that the half-value center position is located on the side where the half-value center position exists with respect to the maximum value position.
A developing device.
JP2019104140A 2019-06-04 2019-06-04 Development device Pending JP2019139256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104140A JP2019139256A (en) 2019-06-04 2019-06-04 Development device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104140A JP2019139256A (en) 2019-06-04 2019-06-04 Development device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018108565A Division JP6537676B2 (en) 2018-06-06 2018-06-06 Development device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020140905A Division JP6992136B2 (en) 2020-08-24 2020-08-24 Developer

Publications (1)

Publication Number Publication Date
JP2019139256A true JP2019139256A (en) 2019-08-22

Family

ID=67695317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104140A Pending JP2019139256A (en) 2019-06-04 2019-06-04 Development device

Country Status (1)

Country Link
JP (1) JP2019139256A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219510A (en) * 2003-01-10 2004-08-05 Ricoh Co Ltd Developing device, process cartridge, and image forming apparatus
JP2008145968A (en) * 2006-12-13 2008-06-26 Ricoh Co Ltd Developing device, process cartridge, and image forming apparatus
JP2012053154A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Development device, process cartridge provided therewith, and image forming device
JP2013231853A (en) * 2012-04-27 2013-11-14 Canon Inc Developing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219510A (en) * 2003-01-10 2004-08-05 Ricoh Co Ltd Developing device, process cartridge, and image forming apparatus
JP2008145968A (en) * 2006-12-13 2008-06-26 Ricoh Co Ltd Developing device, process cartridge, and image forming apparatus
JP2012053154A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Development device, process cartridge provided therewith, and image forming device
JP2013231853A (en) * 2012-04-27 2013-11-14 Canon Inc Developing device

Similar Documents

Publication Publication Date Title
JP6049296B2 (en) Development device
JP6351375B2 (en) Development device
US9599926B2 (en) Developing unit
US8548361B2 (en) Developing device
JP6025383B2 (en) Development device
US9235158B2 (en) Developing device
JP6598596B2 (en) Development device
JP4758212B2 (en) Developing device and image forming apparatus having the same
JP6003427B2 (en) Developing device and image forming apparatus
JP6537676B2 (en) Development device
JP7147036B2 (en) developing device
JP6992136B2 (en) Developer
JP7379625B2 (en) developing device
JP2019139256A (en) Development device
JP2018077339A (en) Development device
JP2018025608A (en) Developing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105