JP2019138312A - Method for manufacturing high pressure hose - Google Patents

Method for manufacturing high pressure hose Download PDF

Info

Publication number
JP2019138312A
JP2019138312A JP2018019197A JP2018019197A JP2019138312A JP 2019138312 A JP2019138312 A JP 2019138312A JP 2018019197 A JP2018019197 A JP 2018019197A JP 2018019197 A JP2018019197 A JP 2018019197A JP 2019138312 A JP2019138312 A JP 2019138312A
Authority
JP
Japan
Prior art keywords
fiber
hose
layer
pressure hose
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018019197A
Other languages
Japanese (ja)
Other versions
JP7196397B2 (en
Inventor
郁真 遊佐
Ikuma Yusa
郁真 遊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2018019197A priority Critical patent/JP7196397B2/en
Publication of JP2019138312A publication Critical patent/JP2019138312A/en
Application granted granted Critical
Publication of JP7196397B2 publication Critical patent/JP7196397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a method for manufacturing high pressure hose capable of preventing damage even in a case where high hose inner pressure acts repeatedly, and excellent in durability.SOLUTION: Upon molding a hose molded body 1A in which a reinforcing layer 3 made of a fiber reinforcing material 4 is coaxially laminated between an unvulcanized rubber layer 2b and an unvulcanized outside rubber layer 5 that are coaxially laminated, a high-pressure hose 1 is manufactured by vulcanizing the molded hose molded body 1A using the fiber reinforcing material 4 that has been heat-treated in advance to reduce the dry heat shrinkage rate to a predetermined range.SELECTED DRAWING: Figure 4

Description

本発明は、高圧ホースの製造方法に関し、さらに詳しくは、高圧の内圧が繰り返し作用しても損傷し難く、耐久性に優れた高圧ホースの製造方法に関するものである。   The present invention relates to a method for manufacturing a high-pressure hose, and more particularly to a method for manufacturing a high-pressure hose that is not easily damaged even when a high internal pressure acts repeatedly and has excellent durability.

高圧ホースでは、高い内圧に耐えるために、例えば繊維補強材により形成されたスパイラル構造またはブレード構造の補強層が、内側ゴム層と外側ゴム層との間に介在している。この繊維補強材は、ホースを製造する際の加硫工程で加熱された後、収縮する。繊維補強材のいわゆる乾熱収縮率が大きい場合は、製造されたホースでの繊維補強材の乱れが大きくなる。繊維補強材が乱れて繊維補強材どうしの隙間が大きくなった領域では、過大な内圧が繰り返し作用すると、維補強材どうしの隙間に沿ってゴム層が損傷する不具合が発生し易くなる。   In a high-pressure hose, in order to withstand a high internal pressure, a reinforcing layer having a spiral structure or a blade structure formed of, for example, a fiber reinforcing material is interposed between the inner rubber layer and the outer rubber layer. This fiber reinforcing material shrinks after being heated in the vulcanization process when manufacturing the hose. When the so-called dry heat shrinkage rate of the fiber reinforcement is large, the disturbance of the fiber reinforcement in the manufactured hose becomes large. In a region where the fiber reinforcing material is disturbed and the gap between the fiber reinforcing materials becomes large, if an excessive internal pressure acts repeatedly, a problem that the rubber layer is damaged along the gap between the fiber reinforcing materials is likely to occur.

このような不具合を防止するホースが提案されている(特許文献1参照)。特許文献1では、あえて乾熱収縮率の大きな補強糸を使用しつつ、スパイラル巻きに不均衡な糸隙間を生じさせない工夫をすることが提案され、或いは、ホースの成形時に内側ゴム層の外周に凹凸を形成することで、内側ゴム層の膨張圧に対して、内側ゴム層自体に逃げ場を設けることが提案されている(特許請求の範囲、段落0008、0009等)。   A hose for preventing such a problem has been proposed (see Patent Document 1). In Patent Document 1, it is proposed to devise a technique that does not cause an unbalanced yarn gap in spiral winding while using a reinforcing yarn having a large dry heat shrinkage rate, or on the outer periphery of the inner rubber layer when forming a hose. It has been proposed to provide relief in the inner rubber layer itself against the expansion pressure of the inner rubber layer by forming irregularities (claims, paragraphs 0008, 0009, etc.).

乾熱収縮率の大きな補強糸を使用する場合は、使用できる材質の選択肢が少なくなる。内側ゴム層の外周の凹凸を形成する場合は、編組時の補強糸の乱れは発生し難いが凹凸があるため内側ゴム層の層厚が薄くなったり、寸法安定性に欠けるデメリットがある。このような凹凸を形成する作業や治具が必要になるため煩雑さが増大する。それ故、上述した不具合を防止するホースを得るには改善の余地がある。   When using a reinforcing yarn having a high dry heat shrinkage rate, there are fewer choices of materials that can be used. When the irregularities on the outer periphery of the inner rubber layer are formed, the reinforcing yarn is hardly disturbed during braiding, but there are irregularities, so there are disadvantages that the inner rubber layer is thin and lacks dimensional stability. Since the work and jig | tool which form such an unevenness | corrugation are needed, complexity will increase. Therefore, there is room for improvement in obtaining a hose that prevents the above-described problems.

特開平11−325331号公報JP 11-325331 A

本発明の目的は、高圧の内圧が繰り返し作用しても損傷し難く、耐久性に優れた高圧ホースの製造方法を提供することにある。   An object of the present invention is to provide a method for producing a high-pressure hose that is not easily damaged even when a high internal pressure acts repeatedly and that has excellent durability.

上記目的を達成するため本発明の高圧ホースの製造は、同軸状に積層されている未加硫の内側層と未加硫の外側ゴム層との間に繊維補強材からなる補強層が同軸状に積層されたホース成形体を加硫することにより、高圧ホースを製造する高圧ホースの製造方法において、前記繊維補強材を、予め熱処理することにより乾熱収縮率を所定範囲に低減させておき、この熱処理をした前記繊維補強材を用いて前記ホース成形体を成形することを特徴とする。   In order to achieve the above object, the high-pressure hose according to the present invention is manufactured by coaxially reinforcing a reinforcing layer made of fiber reinforcing material between an unvulcanized inner layer and an unvulcanized outer rubber layer that are laminated coaxially. In the high pressure hose manufacturing method for manufacturing a high pressure hose by vulcanizing the hose molded body laminated on, the fiber reinforcement is preheated to reduce the dry heat shrinkage rate to a predetermined range, The hose molded body is formed using the heat-treated fiber reinforcing material.

本発明によれば、ホース成形体を成形する際に、既に熱処理をして乾熱収縮率を所定範囲に低減させた繊維補強材を用いて補強層を形成する。そのため、ホース成形体を加硫して製造された高圧ホースでは、繊維補強材の収縮が抑制される。これに伴い、繊維補強材の乱れが少なくなるため、高圧の内圧が繰り返し作用してもゴム層が損傷する不具合が生じ難くなる。また、繊維補強材の乾熱収縮率が小さいため、加硫前後のホース(補強層)の寸法安定性が向上する。   According to the present invention, when forming a hose molded body, the reinforcing layer is formed using the fiber reinforcing material that has already been heat-treated to reduce the dry heat shrinkage rate to a predetermined range. Therefore, in the high-pressure hose manufactured by vulcanizing the hose molded body, the shrinkage of the fiber reinforcing material is suppressed. Along with this, the disturbance of the fiber reinforcing material is reduced, so that a problem that the rubber layer is damaged is less likely to occur even when a high internal pressure is repeatedly applied. Moreover, since the dry heat shrinkage rate of the fiber reinforcing material is small, the dimensional stability of the hose (reinforcing layer) before and after vulcanization is improved.

本発明により製造される高圧ホースを一部切開して模式的に例示する側面図である。It is a side view which illustrates typically the high-pressure hose manufactured by this invention partially cut. 図1の高圧ホースを横断面視で模式的に例示する説明図である。It is explanatory drawing which illustrates typically the high pressure hose of FIG. 1 by a cross-sectional view. 図1の高圧ホースの一部を縦断視で拡大して模式的に例示する説明図である。FIG. 2 is an explanatory diagram schematically illustrating a part of the high-pressure hose in FIG. 図1の高圧ホースの製造工程を例示する説明図である。It is explanatory drawing which illustrates the manufacturing process of the high pressure hose of FIG. 本発明により製造される別の高圧ホースを一部切開して模式的に例示する側面図である。FIG. 6 is a side view schematically illustrating another high-pressure hose manufactured according to the present invention with a part thereof cut.

以下、本発明の高圧ホースを図に示した実施形態に基づいて説明する。   Hereinafter, the high-pressure hose of the present invention will be described based on the embodiments shown in the drawings.

図1〜図3に例示する本発明により製造される高圧ホース1は、内周側から順に、内側層2(2a、2b)、補強層3(3a、3b)、外側ゴム層5が同軸状に積層されている。さらに、ホース1の半径方向に隣り合って積層されている補強層3a、3bの間には、層間ゴム層6が介在した構造になっている。図面の一点鎖線CLは、ホース軸心を示している。この実施形態では、内面層2が、樹脂層2aと、この樹脂層2aの外周面に同軸状に積層されたゴム層2bとで形成されている。樹脂層2aとゴム層2bとは強固に接合されている。内面層2はゴム層2bのみで形成されることもある。   In the high-pressure hose 1 manufactured by the present invention illustrated in FIGS. 1 to 3, the inner layer 2 (2a, 2b), the reinforcing layer 3 (3a, 3b), and the outer rubber layer 5 are coaxial in order from the inner peripheral side. Are stacked. Further, an interlayer rubber layer 6 is interposed between the reinforcing layers 3a and 3b stacked adjacent to each other in the radial direction of the hose 1. A one-dot chain line CL in the drawing indicates a hose axis. In this embodiment, the inner surface layer 2 is formed of a resin layer 2a and a rubber layer 2b that is coaxially laminated on the outer peripheral surface of the resin layer 2a. The resin layer 2a and the rubber layer 2b are firmly joined. The inner surface layer 2 may be formed of only the rubber layer 2b.

この高圧ホース1は、使用内圧が例えば3.5MPa以上の高圧、或いは、さらに高圧の5.3MPa以上に設定されている。使用内圧の上限値は例えば10.0MPaである。ホース外径は例えば13mm以上20mm以下である。高圧ホース1を流れる流体は、作動油、冷媒、冷凍機油などを例示できる。   In the high-pressure hose 1, the use internal pressure is set to a high pressure of, for example, 3.5 MPa or more, or a higher pressure of 5.3 MPa or more. The upper limit of the use internal pressure is, for example, 10.0 MPa. The hose outer diameter is, for example, 13 mm or more and 20 mm or less. Examples of the fluid flowing through the high-pressure hose 1 include hydraulic oil, refrigerant, and refrigeration oil.

内側層2および外側ゴム層5には、高圧ホース1に対する要求性能に応じて適切な材料が選択され、適切な層厚が設定される。使用する材質は特に限定されないが、樹脂層2aには例えばナイロン11、ナイロン6、ナイロン6−66、EVOH等が用いられる。ナイロンには可塑剤等が混合される。ゴム層2bには例えばブチルゴム、ニトリルゴム、フッ素ゴム、塩素化ポリエチレン等、外側ゴム層5には例えばEPDM、シリコーンゴム、天然ゴム、ブチルゴム、エチレンアクリルゴム等が用いられる。   For the inner layer 2 and the outer rubber layer 5, an appropriate material is selected according to the required performance for the high-pressure hose 1, and an appropriate layer thickness is set. Although the material to be used is not particularly limited, for example, nylon 11, nylon 6, nylon 6-66, EVOH, or the like is used for the resin layer 2a. Nylon is mixed with a plasticizer. For example, butyl rubber, nitrile rubber, fluorine rubber, chlorinated polyethylene or the like is used for the rubber layer 2b, and EPDM, silicone rubber, natural rubber, butyl rubber, ethylene acrylic rubber or the like is used for the outer rubber layer 5, for example.

補強層3は繊維補強材4により形成されていて、ホース1に要求される耐圧性能、曲げ性能等に基づいて、適切な材料や構造等が選択される。繊維補強材4としては例えば、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維、アラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、66ナイロン繊維、レーヨン繊維、ビニロン繊維、綿繊維を使用する。これら繊維を単独で、または、複数種類を混合して繊維補強材4とすることができる。繊維補強材4の外径(厚さ)は、例えば0.2mm以上1.2mm以下である。   The reinforcing layer 3 is formed of a fiber reinforcing material 4, and an appropriate material, structure, or the like is selected based on pressure resistance performance, bending performance, and the like required for the hose 1. Examples of the fiber reinforcing material 4 include polyethylene terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, aramid fiber, polyparaphenylene benzoxazole (PBO) fiber, 66 nylon fiber, rayon fiber, vinylon fiber, and cotton fiber. To do. These fibers can be used alone or in combination of a plurality of types to form the fiber reinforcement 4. The outer diameter (thickness) of the fiber reinforcement 4 is, for example, not less than 0.2 mm and not more than 1.2 mm.

この実施形態では補強層3が2層であるが、例えば、1層或いは3層、4層などの複数に設定される。また、この実施形態では補強層3は、繊維補強材4をホース軸心CLに対して所定の編組角度でスパイラルに巻き付けたスパイラル構造になっている。補強層3は、積層順に繊維補強材4の巻き付け方向が反対にされる。   In this embodiment, the reinforcing layer 3 has two layers, but may be set to a plurality of layers such as one layer, three layers, and four layers. In this embodiment, the reinforcing layer 3 has a spiral structure in which the fiber reinforcing material 4 is wound around the spiral at a predetermined braiding angle with respect to the hose axis CL. In the reinforcing layer 3, the winding direction of the fiber reinforcing material 4 is reversed in the stacking order.

図3に例示するように、それぞれの補強層3a、3bでは、繊維補強材4がホース長手方向(ホース軸心CLの延在方向)に実質的に等間隔で配列されるとともに、ホース半径方向に実質的に同じレベルで配列された状態になっていて、乱れが抑制された配列になっている。また、層間ゴム層6の層厚がホース長手方向で実質的に均一になっている。尚、実際の繊維補強材4の横断面は、ホース半径方向に若干潰れた楕円形状になるが、図3では便宜的に円形断面として記載している。   As illustrated in FIG. 3, in each of the reinforcing layers 3a and 3b, the fiber reinforcements 4 are arranged at substantially equal intervals in the longitudinal direction of the hose (the extending direction of the hose axis CL), and the radial direction of the hose. Are arranged at substantially the same level, and the arrangement is such that the disturbance is suppressed. Further, the layer thickness of the interlayer rubber layer 6 is substantially uniform in the hose longitudinal direction. In addition, although the cross section of the actual fiber reinforcing material 4 becomes an elliptical shape slightly crushed in the hose radial direction, it is described as a circular cross section for convenience in FIG.

層間ゴム層6の層厚はホース外径等によって異なるが、例えば0.1mm以上0.5mm以下である。層間ゴム層6は半径方向に隣り合って積層されている補強層3a、3b層どうしを接合させるとともに、それぞれの補強層3a、3bを形成している繊維補強材4どうしの緩衝材になっている。補強層3どうしの間に層間ゴム層6が介在してない場合も本発明の対象になる。   The layer thickness of the interlayer rubber layer 6 varies depending on the hose outer diameter and the like, but is, for example, 0.1 mm or more and 0.5 mm or less. The interlayer rubber layer 6 joins the reinforcing layers 3a and 3b stacked adjacent to each other in the radial direction, and becomes a cushioning material for the fiber reinforcing materials 4 forming the reinforcing layers 3a and 3b. Yes. The case where the interlayer rubber layer 6 is not interposed between the reinforcing layers 3 is also an object of the present invention.

本発明は、補強層3を構成する繊維補強材4の乾熱収縮に着目して創作されたものである。高圧ホース1は、成形したホース成形体1Aを加硫することで製造されるが、本発明では、繊維補強材4を、予め熱処理することにより乾熱収縮率を所定範囲に低減させておいた繊維補強材4を使用してホース成形体1Aを成形する。尚、本明細書では、ホース成形体1Aの加硫前と加硫後で、同じホース構成部材には同じ符号を付している。   The present invention was created by paying attention to the dry heat shrinkage of the fiber reinforcing material 4 constituting the reinforcing layer 3. The high-pressure hose 1 is manufactured by vulcanizing the molded hose molded body 1A. In the present invention, the dry heat shrinkage rate is reduced to a predetermined range by heat-treating the fiber reinforcement 4 in advance. The hose molded body 1 </ b> A is molded using the fiber reinforcement 4. In addition, in this specification, the same code | symbol is attached | subjected to the same hose structural member before vulcanization of 1A of hose molded objects.

乾熱収縮率は、JIS L 1017:2002に規定された加熱後乾熱収縮率(B法)により測定される。熱収縮率の上記の所定範囲は、例えば1.2%以下にする。   The dry heat shrinkage rate is measured by the dry heat shrinkage rate (Method B) after heating specified in JIS L 1017: 2002. The predetermined range of the heat shrinkage rate is, for example, 1.2% or less.

上記の熱処理は、例えば、繊維補強材4に実質的にテンションを負荷しない条件下で、所定温度に加熱した状態を所定時間維持した後、常温に冷却する。この熱処理において加熱する上記の所定温度は、例えば、ホース成形体1Aの加硫温度(加硫最高温度)以上にするとよい。   In the above heat treatment, for example, under a condition in which a tension is not substantially applied to the fiber reinforcement 4, the state heated to a predetermined temperature is maintained for a predetermined time, and then cooled to room temperature. The predetermined temperature to be heated in this heat treatment is preferably, for example, equal to or higher than the vulcanization temperature (the highest vulcanization temperature) of the hose molded body 1A.

この熱処理において加熱した状態を維持する上記の所定時間は、上記の所定範囲の乾熱収縮率に低減させるために必要な時間の範囲内で設定すればよい。尚、加熱した繊維補強材4を常温に冷却するには、自然冷却でもよく、冷却機等を使用して強制冷却することもできる。強制冷却する場合は、自然冷却する場合の冷却時間の50%以下にするとよい。   The predetermined time for maintaining the heated state in this heat treatment may be set within a time range necessary for reducing the dry heat shrinkage rate within the predetermined range. In addition, in order to cool the heated fiber reinforcement 4 to normal temperature, natural cooling may be sufficient and it can also be forcedly cooled using a cooler etc. In the case of forced cooling, the cooling time is preferably 50% or less of the natural cooling.

本発明では、このように予め熱処理をした繊維補強材4を準備しておき、例えば、下記のように高圧ホース1を製造する。   In the present invention, the fiber reinforcing material 4 that has been previously heat-treated in this way is prepared, and for example, the high-pressure hose 1 is manufactured as follows.

図4に例示するように、前方移動するマンドレル7の外周側に順次、ホース構成部材を積層してホース成形体1Aを成形する。具体的には、まず、マンドレル7の外周面に樹脂層2a、未加硫のゴム層2bを積層する。次いで、内側層2(ゴム層2b)の外周面に補強層3aを積層する。補強層3aは、補強層成形機8から繊維補強材4を繰り出しつつ,マンドレル7を中心にして補強層成形機8を回転させて成形して積層する。   As illustrated in FIG. 4, the hose forming body 1 </ b> A is formed by sequentially stacking hose constituent members on the outer peripheral side of the mandrel 7 that moves forward. Specifically, first, the resin layer 2 a and the unvulcanized rubber layer 2 b are laminated on the outer peripheral surface of the mandrel 7. Next, the reinforcing layer 3a is laminated on the outer peripheral surface of the inner layer 2 (rubber layer 2b). The reinforcing layer 3a is formed by laminating the fiber reinforcing material 4 from the reinforcing layer molding machine 8 while rotating the reinforcing layer molding machine 8 around the mandrel 7, and laminating.

次いで、補強層3aの外周面に未加硫の層間ゴム層6を積層する。次いで、層間ゴム層6の外周面に、補強層成形機8から繊維補強材4を繰り出しつつ,マンドレル7を中心にして補強層成形機8を回転させて補強層3bを成形して積層する。この時、補強層成形機8は、補強層3aを成形する場合とは反対方向に回転させる。次いで、補強層3bの外周面に未加硫の外側ゴム層5を積層することにより、ホース成形体1Aを成形する。尚、繊維補強材4を積層する(巻き付ける)際のテンションは、従来方法と同じでよい。   Next, an unvulcanized interlayer rubber layer 6 is laminated on the outer peripheral surface of the reinforcing layer 3a. Next, the reinforcing layer forming machine 8 is rotated around the mandrel 7 while the fiber reinforcing material 4 is fed out from the reinforcing layer forming machine 8 on the outer peripheral surface of the interlayer rubber layer 6, and the reinforcing layer 3 b is formed and laminated. At this time, the reinforcing layer forming machine 8 rotates in the opposite direction to the case of forming the reinforcing layer 3a. Next, the hose formed body 1A is formed by laminating the unvulcanized outer rubber layer 5 on the outer peripheral surface of the reinforcing layer 3b. In addition, the tension at the time of laminating | stacking (winding) the fiber reinforcement 4 may be the same as the conventional method.

次いで、ホース成形体1Aの外周面に被覆部材9を積層した状態にする。被覆部材9には従来方法と同様、ポリメチルペンテン樹脂等を用いる。被覆部材9により被覆されたホース成形体1Aを、加硫缶または加硫槽の中で所定時間、所定の加硫温度で加熱してホース成形体1Aをスチーム加硫する。この加硫工程により、未加硫のゴム層2b(内側層2)、層間ゴム層6および外側ゴム層5が加硫ゴムとなって、樹脂層2aおよび補強層3とともに一体化する。その後、被覆部材9およびマンドレル7を除去することで、図1〜3に例示する高圧ホース1が完成する。   Next, the covering member 9 is laminated on the outer peripheral surface of the hose molded body 1A. The covering member 9 is made of polymethylpentene resin or the like as in the conventional method. The hose molded body 1A covered with the covering member 9 is heated at a predetermined vulcanization temperature for a predetermined time in a vulcanizing can or a vulcanizing tank to steam vulcanize the hose molded body 1A. By this vulcanization step, the unvulcanized rubber layer 2b (inner layer 2), the interlayer rubber layer 6 and the outer rubber layer 5 become vulcanized rubber and are integrated with the resin layer 2a and the reinforcing layer 3. Then, the high pressure hose 1 illustrated in FIGS. 1 to 3 is completed by removing the covering member 9 and the mandrel 7.

本発明によれば、上述した熱処理を施して熱収縮率を所定範囲に低減させた繊維補強材4を用いてホース成形体1Aの補強層3を形成する。即ち、繊維補強材4に対してホース成形体1Aの加硫前と加硫後との間での熱収縮を予め抑制する熱処理を施している。そのため、ホース成形体1Aの加硫工程で加熱された繊維補強材4が、完成した高圧ホース1において過度に収縮することがない。そのため、加硫工程を経た高圧ホース1では、繊維補強材4の配列の乱れが生じるような収縮が抑制されて、図3に例示するように繊維補強材4の乱れが少ない状態にすることが可能になる。   According to the present invention, the reinforcing layer 3 of the hose molded body 1A is formed using the fiber reinforcing material 4 that has been subjected to the above-described heat treatment to reduce the thermal shrinkage rate within a predetermined range. That is, the fiber reinforcement 4 is subjected to heat treatment that suppresses in advance heat shrinkage between the hose molded body 1A before vulcanization and after vulcanization. Therefore, the fiber reinforcement 4 heated in the vulcanization process of the hose molded body 1A does not shrink excessively in the completed high-pressure hose 1. Therefore, in the high-pressure hose 1 that has undergone the vulcanization process, the shrinkage that causes the disorder of the arrangement of the fiber reinforcements 4 is suppressed, and the disorder of the fiber reinforcements 4 is reduced as illustrated in FIG. It becomes possible.

この高圧ホース1では、それぞれの補強層3a、3bにおいて、隣り合って配列されている繊維補強材4どうしの隙間が必要以上に大きくなることもない。それ故、高圧ホース1に高圧の内圧が繰り返し作用しても、繊維補強材4どうしの隙間に亀裂が発生してゴム層2b、6、5が損傷する不具合を防止するには有利になる。これに伴い、高圧ホース1の耐久性が向上する。   In the high-pressure hose 1, the gap between the fiber reinforcements 4 arranged adjacent to each other in the reinforcing layers 3 a and 3 b does not become larger than necessary. Therefore, even if a high internal pressure is repeatedly applied to the high-pressure hose 1, it is advantageous for preventing a problem that the rubber layers 2 b, 6, and 5 are damaged due to cracks generated in the gaps between the fiber reinforcements 4. As a result, the durability of the high-pressure hose 1 is improved.

加硫後の繊維補強材4の収縮が抑制されているので、加硫前後の寸法安定性が向上する(ホース成形体1Aと高圧ホース1との間の寸法変化が小さくなる)。繊維補強材4の収縮に伴う、内側層2(ゴム層2b)の層厚減少を抑制できるので、内側層2とホース金具との間のシール性確保、ホース流通流体の漏出防止、内側層2の耐久性向上にもメリットがある。   Since the shrinkage of the fiber reinforcement 4 after vulcanization is suppressed, the dimensional stability before and after vulcanization is improved (the dimensional change between the hose molded body 1A and the high-pressure hose 1 is reduced). Since the reduction of the layer thickness of the inner layer 2 (rubber layer 2b) accompanying the shrinkage of the fiber reinforcement 4 can be suppressed, the sealing property between the inner layer 2 and the hose fitting is ensured, the leakage of the hose circulation fluid is prevented, and the inner layer 2 There is also an advantage in improving durability.

本発明では、本来的に乾熱収縮率が大きな材質であっても、予め熱処理をして熱収縮率を所定範囲に低減できれば繊維補強材4として使用することが可能になる。そのため、繊維補強材4として使用可能な材質の選択肢が多くなるメリットがある。   In the present invention, even if the material has an essentially large dry heat shrinkage rate, it can be used as the fiber reinforcement 4 if the heat shrinkage rate can be reduced to a predetermined range by heat treatment in advance. Therefore, there is an advantage that there are many choices of materials that can be used as the fiber reinforcement 4.

また、ホース成形体1Aを成形する際に、繊維補強材4を凹凸のあるゴム層2a、6の外周面に積層する必要はない。それ故、ホース成形体1Aの成形段階で繊維補強材4の配列乱れが生じるリスクも低い。   Further, when the hose molded body 1A is molded, it is not necessary to laminate the fiber reinforcing material 4 on the outer peripheral surfaces of the rubber layers 2a and 6 having irregularities. Therefore, there is also a low risk that the fiber reinforcing material 4 is disturbed in the forming stage of the hose molded body 1A.

繊維補強材4の乾熱収縮率を小さくするに連れて、加硫後の繊維補強材4の収縮を抑制して乱れを抑制するには有利になる。そこで、上述した熱処理を施すことによって、繊維補強材4の乾熱収縮率を1.2%以下、より好ましくは0.9%以下、さらに好ましくは0.1%以下に低減させるとよい。   As the dry heat shrinkage rate of the fiber reinforcement 4 is reduced, it becomes advantageous to suppress the turbulence by suppressing the shrinkage of the fiber reinforcement 4 after vulcanization. Therefore, by performing the heat treatment described above, the dry heat shrinkage rate of the fiber reinforcing material 4 may be reduced to 1.2% or less, more preferably 0.9% or less, and even more preferably 0.1% or less.

また、繊維補強材4の編組密度を高くするに連れて、加硫後の繊維補強材4の収縮を抑制して乱れを抑制するには有利になる。そこで、繊維補強材4の編組密度は90%以上にすることが好ましく、95%以上がより好ましく、100%がさらに好ましい。編組密度とは、補強層3における繊維補強材4の面積割合を百分率で示すものであり、編組された(配列された)繊維補強材4どうしのすき間がゼロの場合は100%になる。   Further, as the braid density of the fiber reinforcement 4 is increased, it is advantageous to suppress the turbulence by suppressing the shrinkage of the fiber reinforcement 4 after vulcanization. Therefore, the braid density of the fiber reinforcement 4 is preferably 90% or more, more preferably 95% or more, and even more preferably 100%. The braided density indicates the area ratio of the fiber reinforcing material 4 in the reinforcing layer 3 as a percentage, and is 100% when the gap between the braided (arranged) fiber reinforcing materials 4 is zero.

本発明では内側層2の内周側に別の層(樹脂層など)を追加することもできるし、外側ゴム層5の外周側に別の層(樹脂層など)を追加することもできる。或いは、内側層2と外側ゴム層5との間に別の層(樹脂層など)を追加することもできる。   In the present invention, another layer (such as a resin layer) can be added to the inner peripheral side of the inner layer 2, and another layer (such as a resin layer) can be added to the outer peripheral side of the outer rubber layer 5. Alternatively, another layer (such as a resin layer) can be added between the inner layer 2 and the outer rubber layer 5.

図5に例示する本発明により製造される別の高圧ホース1では、補強層3は繊維補強材4が編み目状に織り込まれたブレード構造になっている。それぞれの補強層3a、3bを形成する繊維補強材4は、ホース軸心CLに対して所定の編組角度で編組されている。その他の構成は図1に例示した高圧ホース1と同様である。   In another high-pressure hose 1 manufactured according to the present invention illustrated in FIG. 5, the reinforcing layer 3 has a blade structure in which fiber reinforcing materials 4 are woven in a knitted pattern. The fiber reinforcing material 4 forming each of the reinforcing layers 3a and 3b is braided at a predetermined braiding angle with respect to the hose axis CL. Other configurations are the same as those of the high-pressure hose 1 illustrated in FIG.

したがって、この高圧ホース1を製造する場合においても、ホース成形体1Aを成形する際には、予め熱処理することにより乾熱収縮率を所定範囲に低減させた繊維補強材4が使用されている。また、この高圧ホース1においても、図1に例示した高圧ホース1と同様のアレンジをすることができる。   Therefore, even when manufacturing the high-pressure hose 1, when the hose molded body 1 </ b> A is molded, the fiber reinforcing material 4 in which the dry heat shrinkage rate is reduced to a predetermined range by heat treatment in advance is used. Moreover, also in this high pressure hose 1, the arrangement similar to the high pressure hose 1 illustrated in FIG. 1 can be performed.

表1に示すように、ホース成形体を成形する際に使用したPET(ポリエチレンテレフタレート)製の繊維補強材の事前の熱処理の有無のみを異ならせて、図1に例示した構造の高圧ホースの試験サンプルを3種類(比較例、実施例1、2)作製し、耐久性および加硫前後の内側層の層厚変化を確認した。内面層を構成する樹脂層はナイロン6からなり加硫前の層厚は0.12mm、内面層を構成するゴム層はブチルゴムからなり加硫前の層厚は1.0mmであった。試験結果を表1に示す。   As shown in Table 1, the test of the high-pressure hose having the structure illustrated in FIG. 1 is made by changing only the presence or absence of the prior heat treatment of the fiber reinforcement made of PET (polyethylene terephthalate) used when forming the hose molded body. Three types of samples (Comparative Examples, Examples 1 and 2) were prepared, and durability and changes in the thickness of the inner layer before and after vulcanization were confirmed. The resin layer constituting the inner surface layer was made of nylon 6 and the layer thickness before vulcanization was 0.12 mm, and the rubber layer constituting the inner surface layer was made of butyl rubber and the layer thickness before vulcanization was 1.0 mm. The test results are shown in Table 1.

耐久性試験は、それぞれの試験サンプルに対して、135℃の条件下で、5.3MPaの内圧を毎分30回のサイクルで35万回繰り返し付与した。ホースが破損するまでの内圧付与回数を測定し、この回数が多い程、耐久性が優れていることを示す。   In the durability test, an internal pressure of 5.3 MPa was repeatedly given 350,000 times at a cycle of 30 times per minute under the condition of 135 ° C. for each test sample. The number of times the internal pressure is applied until the hose is broken is measured, and the greater the number, the better the durability.

事前の熱処理は、繊維補強材に実質的にテンションを負荷しない条件下で160℃で30分加熱して自然冷却した。ホース成形体を、繊維補強材の事前の熱処理の温度以下の所定の加硫温度で所定時間加硫することにより、それぞれの試験サンプルを作製した。   In the preliminary heat treatment, the fiber reinforcement was naturally cooled by heating at 160 ° C. for 30 minutes under a condition in which no tension was applied to the fiber reinforcement. Each test sample was produced by vulcanizing the hose molded body for a predetermined time at a predetermined vulcanization temperature equal to or lower than the temperature of the prior heat treatment of the fiber reinforcement.

Figure 2019138312
Figure 2019138312

表1の結果から、実施例1、2は比較例に比して耐久性に優れ、内側層の層厚変化が小さいことが分かる。また、実施例1、2は比較例に比して、繊維補強材の配列の乱れが抑制されていることが確認できた。   From the results shown in Table 1, it can be seen that Examples 1 and 2 are superior in durability to the comparative example, and the change in the thickness of the inner layer is small. Moreover, it has confirmed that the disorder | damage | failure of the arrangement | sequence of a fiber reinforcement material was suppressed compared with the comparative example.

1 高圧ホース
1A ホース成形体
2 内側層
2a 樹脂層
2b ゴム層
3(3a、3b) 補強層
4 繊維補強材
5 外側ゴム層
6 層間ゴム層
7 マンドレル
8 補強層成形機
9 被覆部材
CL ホース軸心
DESCRIPTION OF SYMBOLS 1 High pressure hose 1A Hose molded object 2 Inner layer 2a Resin layer 2b Rubber layer 3 (3a, 3b) Reinforcement layer 4 Fiber reinforcement 5 Outer rubber layer 6 Interlayer rubber layer 7 Mandrel 8 Reinforcement layer molding machine 9 Cover member CL Hose axis

Claims (5)

同軸状に積層されている未加硫の内側層と未加硫の外側ゴム層との間に繊維補強材からなる補強層が同軸状に積層されたホース成形体を加硫することにより、高圧ホースを製造する高圧ホースの製造方法において、
前記繊維補強材を、予め熱処理することにより乾熱収縮率を所定範囲に低減させておき、この熱処理をした前記繊維補強材を用いて前記ホース成形体を成形することを特徴とする高圧ホースの製造方法。
High pressure is achieved by vulcanizing a hose molded body in which a reinforcing layer made of a fiber reinforcing material is coaxially laminated between an unvulcanized inner layer and an unvulcanized outer rubber layer laminated coaxially. In the manufacturing method of the high pressure hose for manufacturing the hose,
A high-pressure hose characterized by preliminarily reducing the dry heat shrinkage rate to a predetermined range by heat-treating the fiber reinforcement, and forming the hose molded body using the heat-treated fiber reinforcement. Production method.
前記所定範囲が1.2%以下である請求項1に記載の高圧ホースの製造方法。   The method for manufacturing a high-pressure hose according to claim 1, wherein the predetermined range is 1.2% or less. 前記熱処理において前記繊維補強材を、前記ホース成形体の加硫温度以上に加熱する請求項1または2に記載の高圧ホースの製造方法。   The manufacturing method of the high pressure hose of Claim 1 or 2 which heats the said fiber reinforcement in the said heat processing more than the vulcanization temperature of the said hose molded object. 前記繊維補強材が、ポリエチレンテレフタレート繊維、ポリエチレンナフタレート繊維、アラミド繊維、ポリパラフェニレンベンズオキサゾール繊維、66ナイロン繊維、レーヨン繊維、ビニロン繊維、綿繊維の少なくとも一種類である請求項1〜3のいずれかに記載の高圧ホースの製造方法。   The fiber reinforcing material is at least one of polyethylene terephthalate fiber, polyethylene naphthalate fiber, aramid fiber, polyparaphenylene benzoxazole fiber, 66 nylon fiber, rayon fiber, vinylon fiber, and cotton fiber. A method for producing a high-pressure hose according to claim 1. 前記ホース成形体を成形する際に、前記繊維補強材の編組密度を90%以上にして前記補強層を形成する請求項1〜4のいずれかに記載の高圧ホースの製造方法。   The method for producing a high-pressure hose according to any one of claims 1 to 4, wherein the reinforcing layer is formed by forming a braid density of the fiber reinforcing material to 90% or more when forming the hose formed body.
JP2018019197A 2018-02-06 2018-02-06 High pressure hose manufacturing method Active JP7196397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019197A JP7196397B2 (en) 2018-02-06 2018-02-06 High pressure hose manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019197A JP7196397B2 (en) 2018-02-06 2018-02-06 High pressure hose manufacturing method

Publications (2)

Publication Number Publication Date
JP2019138312A true JP2019138312A (en) 2019-08-22
JP7196397B2 JP7196397B2 (en) 2022-12-27

Family

ID=67695164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019197A Active JP7196397B2 (en) 2018-02-06 2018-02-06 High pressure hose manufacturing method

Country Status (1)

Country Link
JP (1) JP7196397B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020282A1 (en) 2019-07-26 2021-02-04 学校法人埼玉医科大学 Antibody recognizing extracellular region of alk2/acvr1
CN115476558A (en) * 2021-05-31 2022-12-16 康蒂泰克化学技术有限公司 Process for replacing wrapping tape of silicon hose and hose manufactured thereby
US12129937B2 (en) 2021-05-31 2024-10-29 Contitech Techno-Chemie Gmbh Alternative subprocess for taping wrapped silicon hoses and hose manufactured thereby

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988911A (en) * 1982-11-05 1984-05-23 Unitika Ltd Production of nylon 46 fiber having improved dimensional stability
JPH0251686A (en) * 1988-08-16 1990-02-21 Yokohama Rubber Co Ltd:The Hose
JPH02225893A (en) * 1989-02-27 1990-09-07 Yokohama Rubber Co Ltd:The Hose and its manufacture
JPH0473485A (en) * 1990-07-16 1992-03-09 Hitachi Cable Ltd Low permeability hose
JPH04113089A (en) * 1990-08-30 1992-04-14 Tokai Rubber Ind Ltd Fiber reinforced rubber hose and manufacture thereof
JPH04201323A (en) * 1990-11-30 1992-07-22 Yokohama Rubber Co Ltd:The Manufacture of molded hose
JPH04337186A (en) * 1991-05-10 1992-11-25 Toyoda Gosei Co Ltd Hose
JPH08170763A (en) * 1994-12-16 1996-07-02 Yokohama Rubber Co Ltd:The Hose for transporting refrigerant
JPH09132817A (en) * 1995-10-31 1997-05-20 Teijin Ltd Polyester fiber for rubber hose reinforcement and its production
JPH10185018A (en) * 1996-12-27 1998-07-14 Yokohama Rubber Co Ltd:The High pressure hose
JPH11279885A (en) * 1998-03-27 1999-10-12 Toray Ind Inc Code for reinforcing rubber hose and its production
JP2000027029A (en) * 1998-07-02 2000-01-25 Teijin Ltd Production of low shrinkage polyester yarn having high toughness
JP2000178848A (en) * 1998-12-18 2000-06-27 Yokohama Rubber Co Ltd:The Rubber hose reinforcing code
JP2000304165A (en) * 1999-04-16 2000-11-02 Yokohama Rubber Co Ltd:The High pressure rubber hose and manufacture thereof
JP2004176743A (en) * 2002-11-25 2004-06-24 Toyoda Gosei Co Ltd Manufacturing method for rubber hose and treatment method for reinforcing thread for rubber hose
JP2004293018A (en) * 2003-03-28 2004-10-21 Toyoda Gosei Co Ltd Method for producing rubber hose, and method for treating reinforcing thread for rubber hose
JP2006097716A (en) * 2004-09-28 2006-04-13 Tokai Rubber Ind Ltd High pressure withstanding vibration absorbing hose and its manufacturing method
JP2006307988A (en) * 2005-04-28 2006-11-09 Yokohama Rubber Co Ltd:The Hose
JP2008101681A (en) * 2006-10-18 2008-05-01 Yokohama Rubber Co Ltd:The High pressure hose
JP2009121545A (en) * 2007-11-13 2009-06-04 Yokohama Rubber Co Ltd:The Rubber hose and method for production thereof
JP2012167712A (en) * 2011-02-10 2012-09-06 Teijin Fibers Ltd Polyester slit yarn reinforced rubber hose
JP2014098222A (en) * 2012-11-15 2014-05-29 Teijin Ltd Method for producing reinforcing fiber and reinforcing fiber
JP2016089301A (en) * 2014-11-06 2016-05-23 横浜ゴム株式会社 Method for manufacturing reinforcement yarn for hose and hose

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988911A (en) * 1982-11-05 1984-05-23 Unitika Ltd Production of nylon 46 fiber having improved dimensional stability
JPH0251686A (en) * 1988-08-16 1990-02-21 Yokohama Rubber Co Ltd:The Hose
JPH02225893A (en) * 1989-02-27 1990-09-07 Yokohama Rubber Co Ltd:The Hose and its manufacture
JPH0473485A (en) * 1990-07-16 1992-03-09 Hitachi Cable Ltd Low permeability hose
JPH04113089A (en) * 1990-08-30 1992-04-14 Tokai Rubber Ind Ltd Fiber reinforced rubber hose and manufacture thereof
JPH04201323A (en) * 1990-11-30 1992-07-22 Yokohama Rubber Co Ltd:The Manufacture of molded hose
JPH04337186A (en) * 1991-05-10 1992-11-25 Toyoda Gosei Co Ltd Hose
JPH08170763A (en) * 1994-12-16 1996-07-02 Yokohama Rubber Co Ltd:The Hose for transporting refrigerant
JPH09132817A (en) * 1995-10-31 1997-05-20 Teijin Ltd Polyester fiber for rubber hose reinforcement and its production
JPH10185018A (en) * 1996-12-27 1998-07-14 Yokohama Rubber Co Ltd:The High pressure hose
JPH11279885A (en) * 1998-03-27 1999-10-12 Toray Ind Inc Code for reinforcing rubber hose and its production
JP2000027029A (en) * 1998-07-02 2000-01-25 Teijin Ltd Production of low shrinkage polyester yarn having high toughness
JP2000178848A (en) * 1998-12-18 2000-06-27 Yokohama Rubber Co Ltd:The Rubber hose reinforcing code
JP2000304165A (en) * 1999-04-16 2000-11-02 Yokohama Rubber Co Ltd:The High pressure rubber hose and manufacture thereof
JP2004176743A (en) * 2002-11-25 2004-06-24 Toyoda Gosei Co Ltd Manufacturing method for rubber hose and treatment method for reinforcing thread for rubber hose
JP2004293018A (en) * 2003-03-28 2004-10-21 Toyoda Gosei Co Ltd Method for producing rubber hose, and method for treating reinforcing thread for rubber hose
JP2006097716A (en) * 2004-09-28 2006-04-13 Tokai Rubber Ind Ltd High pressure withstanding vibration absorbing hose and its manufacturing method
JP2006307988A (en) * 2005-04-28 2006-11-09 Yokohama Rubber Co Ltd:The Hose
JP2008101681A (en) * 2006-10-18 2008-05-01 Yokohama Rubber Co Ltd:The High pressure hose
JP2009121545A (en) * 2007-11-13 2009-06-04 Yokohama Rubber Co Ltd:The Rubber hose and method for production thereof
JP2012167712A (en) * 2011-02-10 2012-09-06 Teijin Fibers Ltd Polyester slit yarn reinforced rubber hose
JP2014098222A (en) * 2012-11-15 2014-05-29 Teijin Ltd Method for producing reinforcing fiber and reinforcing fiber
JP2016089301A (en) * 2014-11-06 2016-05-23 横浜ゴム株式会社 Method for manufacturing reinforcement yarn for hose and hose

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020282A1 (en) 2019-07-26 2021-02-04 学校法人埼玉医科大学 Antibody recognizing extracellular region of alk2/acvr1
CN115476558A (en) * 2021-05-31 2022-12-16 康蒂泰克化学技术有限公司 Process for replacing wrapping tape of silicon hose and hose manufactured thereby
CN115476558B (en) * 2021-05-31 2024-09-17 康蒂泰克化学技术有限公司 Alternative sub-process for taping wrapped silicon hose and hose made thereby
US12129937B2 (en) 2021-05-31 2024-10-29 Contitech Techno-Chemie Gmbh Alternative subprocess for taping wrapped silicon hoses and hose manufactured thereby

Also Published As

Publication number Publication date
JP7196397B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
KR101342993B1 (en) V-ribbed belt and method for manufacturing same
JP6310447B2 (en) Manufacturing method of molded rubber hose
KR101897377B1 (en) A belt comprising an embedded two-component cord and method for molded power transmission belts
JP2019138312A (en) Method for manufacturing high pressure hose
JP6532416B2 (en) Transmission belt, method of manufacturing transmission belt, reinforcing cloth, and method of manufacturing reinforcing cloth
JP2019196816A (en) High pressure hose and manufacturing method thereof
JP6543915B2 (en) METHOD FOR PRODUCING REINFORCED YARN FOR HOSE AND METHOD FOR PRODUCING HOSE
JP3709710B2 (en) Refrigerant transport hose and manufacturing method thereof
KR101604531B1 (en) Method construction of Heat Resistance Flexible Silicone Hoses and Heat Resistance Flexible Silicone Hoses thereby
JP7393616B2 (en) Hose manufacturing method
JP5252774B2 (en) Acrylic rubber material and molded hose
JP2023081657A (en) Cylindrical unvulcanized rubber member, method for manufacturing the same, and method for manufacturing rubber hose
CN115476558B (en) Alternative sub-process for taping wrapped silicon hose and hose made thereby
JP2005076761A (en) Hose with non-woven fabric layer
JP4069141B2 (en) Method for manufacturing resin-rubber composite bent hose
JP2017177585A (en) Transmission belt manufacturing method
JPH1130362A (en) Hose for refrigerant transportation
JP4772518B2 (en) Manufacturing method of power transmission belt
JP3948706B2 (en) Disc-shaped fiber reinforced rubber molded body and method for producing the same
JP2013144416A (en) Method of manufacturing transmission belt
JP2013242000A (en) Method for manufacturing hose, and hose
JP2007055220A (en) Molded hose
JP2008156111A (en) Molded belt prevented from being warped and method of manufacturing the same
US20170292639A1 (en) Carbon Fiber Composite Reinforcement With Circumferential And Axial Interlocking
JP4069140B2 (en) Method for manufacturing resin-rubber composite bent hose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350