JP2019136925A - Three dimensional modeling method and three dimensional modeling apparatus - Google Patents

Three dimensional modeling method and three dimensional modeling apparatus Download PDF

Info

Publication number
JP2019136925A
JP2019136925A JP2018021573A JP2018021573A JP2019136925A JP 2019136925 A JP2019136925 A JP 2019136925A JP 2018021573 A JP2018021573 A JP 2018021573A JP 2018021573 A JP2018021573 A JP 2018021573A JP 2019136925 A JP2019136925 A JP 2019136925A
Authority
JP
Japan
Prior art keywords
modeling
shell
dimensional
core material
dimensional modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018021573A
Other languages
Japanese (ja)
Inventor
岩出 卓
Taku Iwade
卓 岩出
潤 稲垣
Jun Inagaki
潤 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2018021573A priority Critical patent/JP2019136925A/en
Priority to PCT/JP2019/002264 priority patent/WO2019155898A1/en
Publication of JP2019136925A publication Critical patent/JP2019136925A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

To minimize a use amount of an expensive core material while satisfying material characteristics and mechanical properties required for a three-dimensional modeled products.SOLUTION: According to a three-dimensional modeling method and a three-dimensional modeling apparatus of the present invention, a three-dimensional modeled product having a desired shape is obtained by the following process: a molded shell having a cavity inside and/or a recess on an outer surface is molded using a first molding material (shell material) and subsequently the cavity and/or the recess of the molded shell are filled using a second molding material (core material).SELECTED DRAWING: Figure 1

Description

本発明は、近年その性能を著しく向上させてきているいわゆる3Dプリンタ、或いは、それ以前より実用化されている光造形技術を用いた造形装置など、立体造形方法および装置に関するもので、特に強化材を含有した複合材の立体造形技術に関わるものである。   The present invention relates to a three-dimensional modeling method and apparatus such as a so-called 3D printer whose performance has been remarkably improved in recent years, or a modeling apparatus using an optical modeling technique that has been put into practical use before that. It is related to the three-dimensional modeling technology of the composite material containing.

いわゆる3Dプリンタは、3次元のCADデータをもとにコンピューターで造形物の断面形状を計算し、造形物を薄い輪切り状の断面構成要素に分割して、その断面構成要素を種々の方法で形成し、それを積層させて目的とする形状を得る立体造形方法である。一般的には3Dプリンタの名称が広く用いられているが、国際的にはAdditive Manufacturing Technology、直訳すれば付加製造技術と呼ぶことが多い。本明細書に於いては主として3Dプリンタの用語を用いるが、使用意図に応じて適宜表現を使い分けることとする。   A so-called 3D printer calculates the cross-sectional shape of a modeled object with a computer based on three-dimensional CAD data, divides the modeled object into thin, round-shaped cross-sectional components, and forms the cross-sectional components using various methods. Then, it is a three-dimensional modeling method for obtaining the desired shape by laminating them. In general, the name of the 3D printer is widely used. However, internationally, it is often referred to as additive manufacturing technology, or directly translated as additive manufacturing technology. In this specification, the term “3D printer” is mainly used, but expressions are appropriately used according to the intended use.

付加製造技術は、造形材料の種類やその積層方法によって、図2に示すように大きく7つの方式に分類される。   The additive manufacturing technology is roughly classified into seven methods as shown in FIG. 2 depending on the type of modeling material and the lamination method.

(1)液槽重合法(Vat Photopolymerization)
(2)材料押出法(Material extrusion)
(3)粉末床溶融結合法(Powder bed fusion)
(4)結合材噴射法(Binder Jetting)
(5)シート積層法(Sheet lamination)
(6)材料噴射法(Material Jetting)
(7)指向性エネルギー堆積法(Directed Energy Deposition)
(1)液槽重合法はこれらの中でも最も古い時期に実用化されたもので、3Dプリンタの名称が一般化する以前から、光造形法などの名称でラピッドプロトタイピング用途として用いられてきている。多くは紫外線硬化(重合)樹脂を用い、図4に示すように紫外線硬化樹脂41を槽3内に保持し、その液面に紫外線7を選択的に照射して、第1層目の硬化領域42を形成する(図4(a)〜(c))。該第1層目の硬化領域41は適当なサポート部材4でサポートされる。次に該サポート部材4ごと第1層目の硬化領域41を液中に沈める(図4(d))、或いは、液面を上昇させることにより、第1層目の硬化領域41を一定深さだけ液中に沈める。次いで再び紫外線7を液面に選択的に照射して、第1層目の硬化領域41の上方に第2層目の硬化領域42を第1層目の硬化領域41と連続するように形成する(図4)。これを繰り返すことによって、立体造形物を得る方式である。
(1) Vat photopolymerization
(2) Material extrusion method
(3) Powder bed fusion method
(4) Binder Jetting
(5) Sheet lamination method
(6) Material jetting method (Material Jetting)
(7) Directed Energy Deposition (Directed Energy Deposition)
(1) The liquid tank polymerization method was put into practical use at the earliest time among these, and has been used for rapid prototyping under the name of stereolithography before the name of 3D printers became common. . In many cases, an ultraviolet curable (polymerized) resin is used, and an ultraviolet curable resin 41 is held in the tank 3 as shown in FIG. 42 is formed (FIGS. 4A to 4C). The cured region 41 of the first layer is supported by a suitable support member 4. Next, the cured region 41 of the first layer together with the support member 4 is submerged in the liquid (FIG. 4D), or the cured region 41 of the first layer is fixed to a certain depth by raising the liquid level. Just submerge in the liquid. Next, the ultraviolet ray 7 is selectively irradiated again on the liquid surface to form a second layer cured region 42 continuous with the first layer cured region 41 above the first layer cured region 41. (FIG. 4). By repeating this, a three-dimensional model is obtained.

近年パーソナルユーズとして市販されている3Dプリンタとしては、(2)材料押出法と(6)材料噴射法のものが一般的である。   In recent years, as a 3D printer marketed as a personal use, (2) material extrusion method and (6) material injection method are generally used.

(2)材料押し出し法は、多くの場合熱可塑性樹脂からなる造形材料を加熱して溶融流動状態とし、それをノズルから押し出しながら積層して造形する方法である(図10参照)。   (2) In many cases, the material extrusion method is a method in which a modeling material made of a thermoplastic resin is heated to be in a melt-flow state and laminated while being extruded from a nozzle (see FIG. 10).

(6)材料噴射法は造形材料の粘度が(2)材料押し出し法のそれよりやや低めのものが多く、いわばインクジェットプリンタのインクの代わりに造形材料を吐出させて積層させながら造形していく方法である。   (6) In the material injection method, the viscosity of the modeling material is often slightly lower than that of the (2) material extrusion method, so to speak, it is a method of modeling while discharging the modeling material instead of the ink of the ink jet printer It is.

(3)粉末床溶融結合法と(4)結合材噴射法は造形材料として粉体状、粒状のものを用いるところが特徴である。   (3) The powder bed fusion bonding method and (4) the binder injection method are characterized by using powdery and granular materials as modeling materials.

(3)粉末床溶融結合法は。図11に示すように、適当な槽60内に造形材料粉61を静置する。これを材料床62と呼ぶことが多い。造形材料としては金属、樹脂、セラミックなどの無機材料などエネルギー線によって溶融可能なものであれば、幅広く造形材料が選択できることが特長である。材料床62の表面を多くの場合レーザー光66を選択的に照射してその造形材料粉61を溶融合体させて、1層目の造形層67を形成する。図11ではエネルギー線源として赤外線レーザー63を用い、ガルバノ光学系64、65を用いて材料床82表面を任意にスキャンできるようにしている。次いで、図11(b)に示すように、造形材料粉62を一定量継ぎ足したのち、テーブル69を一定量降下させ、スキージ68を図中矢印A方向に移動させることで、造形材料分を均して平らにする。これで再び材料省62が形成される。次いでレーザー光66をスキャンさせで2層目の造形層を形成する。これを繰り返しすとにより所望の立体造形物を得る方式である。   (3) What is the powder bed melt bonding method? As shown in FIG. 11, the modeling material powder 61 is placed in a suitable tank 60. This is often called the material bed 62. As a modeling material, it is a feature that a wide range of modeling materials can be selected as long as it can be melted by an energy ray, such as an inorganic material such as a metal, a resin, or a ceramic. In many cases, the surface of the material floor 62 is selectively irradiated with a laser beam 66 to melt and combine the modeling material powder 61 to form a first modeling layer 67. In FIG. 11, an infrared laser 63 is used as an energy beam source, and the surface of the material bed 82 can be arbitrarily scanned using galvano optical systems 64 and 65. Next, as shown in FIG. 11 (b), after a certain amount of modeling material powder 62 is added, the table 69 is lowered by a certain amount, and the squeegee 68 is moved in the direction of arrow A in the figure to equalize the modeling material content. And flatten. Thus, the material saving 62 is formed again. Next, a laser beam 66 is scanned to form a second modeling layer. By repeating this, a desired three-dimensional model is obtained.

(4)結合材噴射法も(3)粉末床溶融結合法と同様、造形材料粉から成る材料床を用いる、が、材料床に対し造形材料粉を結着するいわば接着剤の機能を有する結着材料をインクジェットヘッド等から選択的に噴射することで、造形材料粉同士を結着させ造形する方式である。   (4) The binding material injection method uses a material bed made of modeling material powder as in the case of (3) powder bed fusion bonding method, but it has a function of an adhesive that binds the modeling material powder to the material bed. This is a method in which modeling material powders are bound to each other by selectively ejecting a dressing material from an inkjet head or the like.

(5)シート積層法はその名の通り、紙、プラスチックフィルム等のシート状材料を積層断面形状に切断しそれを順次積層、接着することにより立体造形する方式である。   (5) As the name suggests, the sheet lamination method is a method of three-dimensional modeling by cutting a sheet-like material such as paper or plastic film into a laminated cross-sectional shape, and sequentially laminating and bonding them.

最後の、(7)指向性エネルギー堆積法は、図12に代表的な構成を示すが、造形材料を供給しながら且つエネルギーも同時に選択的に付与しながら、造形材料を積層する方式である。二重菅ノズル72の内側ノズル73はその内部をレーザー光71が透過し、レーザー光71は集光レンズ74によって、ベース75表面に集光される。外側ノズル76からは、シールドガスと造形材料粉末(図中矢印78で示す)がレーザー光71の集光点目指して吹き付けられる。レーザー光71の集光点において、吹き付けられた造形材料粉末78がレーザー光71によって加熱溶融され、ベース75表面に造形材料粉末78が溶融凝集した溶融池77が形成される。ベース75と二重菅ノズル72の相対位置を移動させ、溶融池72をベース材上をいわば泳がせながら、ベース上に造形材料を載置、積層していく方法である。この方式は金属材料を用いる3Dプリンタの代表例である。なお、この方式は見方を変えれば、古くから知られているアーク溶接法を精細化、自動化し造形方法として発展させたとも言える。   The last (7) directional energy deposition method has a typical configuration shown in FIG. 12, and is a method of laminating modeling materials while supplying modeling materials and selectively applying energy simultaneously. The inner nozzle 73 of the double rod nozzle 72 transmits laser light 71 therein, and the laser light 71 is condensed on the surface of the base 75 by a condenser lens 74. From the outer nozzle 76, a shielding gas and modeling material powder (indicated by an arrow 78 in the figure) are sprayed toward the condensing point of the laser beam 71. The sprayed modeling material powder 78 is heated and melted by the laser beam 71 at the condensing point of the laser beam 71, and a molten pool 77 in which the modeling material powder 78 is melted and aggregated is formed on the surface of the base 75. This is a method in which the modeling material is placed and stacked on the base while the relative position of the base 75 and the double rod nozzle 72 is moved and the molten pool 72 is swallowed on the base material. This method is a typical example of a 3D printer using a metal material. From a different point of view, it can be said that this method has been developed as a modeling method by refining and automating the arc welding method that has been known for a long time.

平成25年度特許出願技術動向調査報告書(概要) 3Dプリンター、平成26年3月、特許庁2013 Patent Application Technology Trend Survey Report (Outline) 3D Printer, March 2014, Japan Patent Office 福島雅夫 「非線形最適化の基礎」朝倉出版 2001.4.20Masao Fukushima “Basics of Nonlinear Optimization” Asakura Publishing 2001.20 Gernard A.Holzaphel「Nonliniear Solid Mechanics:A Continuum Approach for Engineering」Wiley,2000.3.23Gernard A. Holzaphel “Nonlinear Solid Mechanicals: A Continuous Approach for Engineering” Wiley, 2003.23.23.

本願発明者らは先に、特願2016−229964(公開前出願、以下「先願」とする)において複合材料を用いた造形に適した立体造形方法にかかわる発明の特許出願を行っている。先願明細書においては、立体造形物の外殻層(スキン層)のみをスキン材によって先に造形し、ついで造形済みの該外殻層の内部(コア部)をコア材によって造形することを特長とする立体造形方法を開示している。なお本願明細書においては先願明細書におけるスキン層、スキン材なる文言の代わりにシェル層、シェル材の文言を用いるが、これらは表現が異なるのみで実質的に同じものである。   The inventors of the present application have previously filed a patent application for an invention related to a three-dimensional modeling method suitable for modeling using a composite material in Japanese Patent Application No. 2006-229964 (pre-publication application, hereinafter referred to as “prior application”). In the specification of the prior application, only the outer shell layer (skin layer) of the three-dimensional model is first modeled with the skin material, and then the inside (core part) of the modeled outer shell layer is modeled with the core material. The featured 3D modeling method is disclosed. In the present specification, the terms “shell layer” and “shell material” are used in place of the terms “skin layer” and “skin material” in the specification of the previous application, but these are substantially the same except for the expression.

先願においては、付加製造技術で立体造形を行う場合、造形物が大きくなるにつれ、高価な造形材料の使用量が多くなり、結果造形物のコストが大きくなるという課題を提示し、その解決策として、立体造形物の外殻層(スキン層又はシェル層)のみを付加製造技術で造形して高価な造形材料の使用量を抑制し、内部(コア部)は比較的安価な従来技術による造形材料で造形することで、トータルの造形コストを低減させるという作用効果を得ている。   In the prior application, when three-dimensional modeling is performed by additive manufacturing technology, the amount of expensive modeling material used increases as the modeled product increases, and the resulting problem is that the cost of the modeled product increases. As a result, only the outer shell layer (skin layer or shell layer) of a three-dimensional model is modeled by additional manufacturing technology to suppress the amount of expensive modeling material used, and the interior (core part) is modeled by a relatively inexpensive conventional technology. By modeling with materials, the effect of reducing the total modeling cost is obtained.

しかしながら、立体造形物に要求される材料特性、機械特性によっては、コア材にもシェル材並みの、或いはそれ以上に高価な材料が要求される場合も存在する。例えば強度、剛性といった機械特性の向上の為に、高価な炭素繊維、アラミド繊維などを含有した複合材樹脂がコア材として要求される場合などである。すなわち、このような場合には、立体造形物に要求される材料特性、機械特性を満たしつつ、かつ、極力高価なコア材の使用量を低減させるという課題が発生する。   However, depending on the material characteristics and mechanical characteristics required for the three-dimensional modeled object, there are cases where the core material is required to have a material as high as or more expensive than the shell material. For example, there is a case where a composite material resin containing expensive carbon fiber, aramid fiber or the like is required as a core material in order to improve mechanical properties such as strength and rigidity. That is, in such a case, there arises a problem of reducing the amount of the core material used as much as possible while satisfying the material characteristics and mechanical characteristics required for the three-dimensional model.

上記課題を解決するために本願発明に於いては、立体造形方法であって、第1の造形材料(シェル材)を用いて、内部に空洞及び/又は外面に凹部を有する造形殻を造形し、次いで第2の造形材料(コア材)を用いて、前記造形殻の前記空洞及び/又は前記凹部を充填することで、所望形状の立体造形物を得ることを特長とする立体造形方法が提供される。   In order to solve the above-described problems, the present invention is a three-dimensional modeling method, in which a modeling shell having a cavity inside and / or a concave portion on the outer surface is modeled using a first modeling material (shell material). Then, using a second modeling material (core material), a three-dimensional modeling method is provided, in which a three-dimensional modeling object having a desired shape is obtained by filling the cavity and / or the concave portion of the modeling shell. Is done.

本願発明の好ましい態様においては、前記造形殻の包絡面形状は、前記所望形状と一致することを特長とする立体造形方法が提供される。   In a preferred aspect of the present invention, there is provided a three-dimensional modeling method characterized in that an envelope surface shape of the modeling shell matches the desired shape.

本願発明のさらに好ましい態様においては、前記空洞及び/又は前記凹部の形状が、構造最適化手法を用いて決定されるものであることを特長とする立体造形方法が提供される。   In a further preferred aspect of the present invention, there is provided a three-dimensional modeling method characterized in that the shape of the cavity and / or the recess is determined using a structure optimization method.

本願発明のさらに好ましい態様においては、前記造形殻が付加製造技術による造形装置で造形されるものであることを特長とする立体造形方法が提供される。   In a further preferred aspect of the present invention, there is provided a three-dimensional modeling method characterized in that the modeling shell is modeled by a modeling apparatus using an additional manufacturing technique.

本願発明のさらに好ましい態様においては、前記コア材は、活性エネルギー線の照射又は熱エネルギーの付与により、流動状態から非流動状態に硬化するものであり、前記コア材を前記流動状態において前記空洞及び/又は前記凹部に充填し、その後、活性エネルギー線の照射又は熱エネルギーの付与により前記空洞及び/又は前記凹部に充填された前記コア材を硬化させることを特長とする立体造形方法が提供される。   In a further preferred aspect of the present invention, the core material is cured from a fluid state to a non-fluid state by irradiation of active energy rays or application of thermal energy, and the core material is in the fluid state in the cavity and There is provided a three-dimensional modeling method characterized by filling the recess and / or curing the core material filled in the cavity and / or the recess by irradiation of active energy rays or application of thermal energy. .

本願発明の別の態様においては、前記造形殻が、前記付加製造技術による造形装置の積層造形方向に複数回に分割して造形されるものであり、該複数回の前記造形殻の造形毎に前記コア材が前記空洞及び/又は前記凹部に充填され、すべての前記造形殻の造形及び前記コア材の充填の完了後、前記コア材を一括して硬化することを特長とする立体造形方法が提供される。   In another aspect of the invention of the present application, the modeling shell is modeled by being divided into a plurality of times in the layered modeling direction of the modeling apparatus according to the additional manufacturing technique, and each modeling of the modeling shell is performed a plurality of times. A three-dimensional modeling method characterized in that the core material is filled in the cavity and / or the concave portion, and after the modeling of all the modeling shells and the filling of the core material is completed, the core material is cured collectively. Provided.

本願発明の別の好ましい態様においては、前記シェル材及び前記コア材の少なくとも一方が、炭素繊維、ガラス繊維、アラミド繊維のいずれか又はそれらの組み合わせからなる強化材を含むものであることを特長とする立体造形方法が提供される。   In another preferred aspect of the present invention, at least one of the shell material and the core material includes a reinforcing material made of carbon fiber, glass fiber, aramid fiber, or a combination thereof. A modeling method is provided.

本願発明の別の好ましい態様においては、前記いずれかの立体造形方法による立体造形装置が提供される。   In another preferable aspect of the present invention, a three-dimensional modeling apparatus according to any one of the three-dimensional modeling methods is provided.

本願の発明の主旨は、種々の制約条件のもと、立体造形物に要求される特性、機能を実現するための最適形状にコア部形状を最適化し、当該最適形状のコア部にコア材を充填することで当該立体造形物に要求される特性、機能を実現しつつかつ、コア材の使用量を低減させた立体造形方法を提供する、にある。   The gist of the invention of the present application is to optimize the core part shape to the optimum shape for realizing the characteristics and functions required for the three-dimensional model under various constraints, and to apply the core material to the core part of the optimum shape. The object is to provide a three-dimensional modeling method that achieves the characteristics and functions required for the three-dimensional model by filling and reduces the amount of core material used.

立体造形物に要求される特性、機能が強度、剛性といった機械特性である場合、当該立体像系物の外形形状、大きさ、寸法といった制約条件のもと、要求される強度、剛性を実現しつつ、かつ、コア材の使用量すなわちコア部の全内容積を最小にするコア部形状を構造最適化手法を用いて算出し、当該コア部形状にコア材を充填することで立体造形物を造形する方法を提供することにある。   When the properties and functions required for a 3D object are mechanical properties such as strength and rigidity, the required strength and rigidity are realized under the constraints such as the external shape, size, and dimensions of the 3D object. While calculating the core part shape that minimizes the amount of core material used, i.e., the total internal volume of the core part, using a structure optimization method, and filling the core part into the core part shape, The object is to provide a method of modeling.

構造最適化手法とは非特許文献1,2等専門書も多数もあるように、広く実際の設計業務に用いられている設計手法、設計最適化手法であり、当該最適化計算のアルゴリズムも複数公開され、また設計支援、設計最適化ソフトウェアとして各種商用のソフトウェアも販売されている。   The structure optimization method is a design method and design optimization method widely used in actual design work, as there are many non-patent literature 1 and 2 specialized books, and there are multiple algorithms for the optimization calculation. Various commercial software is also sold as design support and design optimization software.

構造最適化には大別して3種類の方法が知られている。   Three types of methods are known for structural optimization.

図1はその3種類の方法の違いを概念的に示すものである。図1に示すように片持ち梁の一端に、所定の荷重が加わった場合の梁の撓み量を、各種の制約条件のもと最小化或いは、所定の臨界値以内に収めたいとする。この問題は、前述の制約条件のもと梁の剛性を最大化する、すなわちコンプライアンスの最小化(極小化)の問題と等価である。   FIG. 1 conceptually shows the difference between the three methods. As shown in FIG. 1, it is assumed that the amount of bending of a beam when a predetermined load is applied to one end of the cantilever is minimized or within a predetermined critical value under various constraints. This problem is equivalent to the problem of maximizing the rigidity of the beam under the above-mentioned constraints, that is, minimizing (minimizing) compliance.

この時、図1(a)に示すように、全体構造を規定し、例えば梁全体の体積、重量(すなわち材料の使用量)などの制約条件を与え、全体構造中の各部の寸法(図中のL1、L2、t1、t2など)を設計パラメータとして、前述のコンプライアンスを最小化(極小化)する各設計パラメータ値を求める、すなわち最適化するのが寸法最適化手法である。   At this time, as shown in FIG. 1 (a), the entire structure is defined, constraints such as the volume and weight of the entire beam (ie, the amount of material used) are given, and the dimensions of each part in the entire structure (in the figure) (L1, L2, t1, t2, etc.) are the design parameters, and the design parameter values for minimizing (minimizing) the aforementioned compliance are obtained, that is, optimized, is a dimension optimization method.

一方、図1(b)に示すのは形状最適化と呼ばれ、全体構造は規定せず、同様の制約条件のもと、外形形状(外形境界を表す式)を設計パラメータとしてその最適化を行う手法である。この方法では最適化後の外形形状として自由曲線(曲面)のものが得られる場合が多い。   On the other hand, the shape optimization shown in FIG. 1B is called shape optimization, and the overall structure is not defined. Under the same constraints, the optimization is performed using the outer shape (formula representing the outer boundary) as a design parameter. It is a technique to do. In this method, a free curve (curved surface) is often obtained as an optimized outer shape.

最後の図1(c)に示すのが、トポロジー最適化と呼ばれ、梁を微小要素に分割し、その微小要素中の材料の存在密度を設計パラメータとして最適化を行う手法である。材料の存在密度とは、好ましくは、1(その微小要素が材料で埋まっている)か0(その微小要素は材料で埋まっていない)の2値パラメータで、このような2値パラメータで各要素に材料が存在するか否かの最適化を行うため、図1(c)に示すように、最適化の結果として、形状最適化同様外形形状は自由曲線となり、さらに内部に空洞のある形状が得られることが多いのが特徴である。   Lastly, FIG. 1C shows a technique called topology optimization, in which a beam is divided into minute elements, and the material density in the minute elements is optimized as a design parameter. The material density is preferably a binary parameter of 1 (the microelements are filled with material) or 0 (the microelements are not filled with material). As shown in FIG. 1 (c), as a result of optimization, the outer shape becomes a free curve as shown in FIG. 1C, and a shape having a cavity inside is also obtained. It is characteristic that it is often obtained.

形状最適化やトポロジー最適化の手法を用いてコア部の最適化を行うと、自由局面を有する最適化結果が得られることが多く、このような自由局面を有するコア部(を有するシェル層)の造形を行うには付加製造技術、すなわち、いわゆる3Dプリンターを用いるのが特に好適となる。   Optimization of the core using shape optimization and topology optimization techniques often yields optimization results with free aspects, and the core with such free aspects (having a shell layer) It is particularly preferable to use an additive manufacturing technique, that is, a so-called 3D printer, to perform the modeling.

本発明によれば、立体造形物に要求される材料特性、機械特性を満たしつつ、かつ、極力高価なコア材の使用量を低減させるという効果を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the effect of reducing the usage-amount of an expensive core material as much as possible can be acquired, satisfy | filling the material characteristic and mechanical characteristic which are requested | required of a three-dimensional molded item.

構造最適化の各手法を表す図である。It is a figure showing each method of structure optimization. 曲げ試験の概略図である。It is the schematic of a bending test. 試験片の斜視図である。It is a perspective view of a test piece. 内部にコア部を有する試験片の図である。It is a figure of the test piece which has a core part inside. 外部にコア部を有する試験片の図である。It is a figure of the test piece which has a core part outside. 最適化の途中過程における試験片を示す図である。It is a figure which shows the test piece in the middle process of optimization. 本発明を適用した架台の図である。It is a figure of the mount to which this invention is applied. 液相重合法による立体造形装置を示す図である。It is a figure which shows the three-dimensional modeling apparatus by a liquid phase polymerization method. 材料押出法による立体造形装置を示す図である。It is a figure which shows the three-dimensional modeling apparatus by a material extrusion method. 粉末床溶融結合法による立体造形装置を示す図である。It is a figure which shows the three-dimensional modeling apparatus by a powder bed fusion | bonding method. 指向性エネルギー堆積法の原理図である。It is a principle diagram of the directional energy deposition method. 従来技術により、複合材料を材料押出法による3Dプリンタに適用した場合の概念図である。It is a conceptual diagram at the time of applying a composite material to the 3D printer by a material extrusion method by a prior art. 従来技術により、複合材料を液相重合法による立体造形装置に適用した場合の概念図である。It is a conceptual diagram at the time of applying a composite material to the three-dimensional modeling apparatus by a liquid phase polymerization method by a prior art.

以下本発明の実施態様を図2以下を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIG.

本発明を適用した付加製造技術による造形方法やその造形手順をわかりやすく説明するために、いわゆる3点曲げの試験片を最適化した例を挙げる。   An example of optimizing a so-called three-point bending test piece will be described in order to easily explain the modeling method and the modeling procedure using the additive manufacturing technology to which the present invention is applied.

3点曲げとは、JIS7171等で規定された材料の試験方法で、図2に示すように、両端近傍をサポート2で支持した直方体上の試験片1の中央付近に加圧子3で荷重をかけ、その荷重と撓み量の関係を求め、試験片の剛性、強度等を求める試験方法である。   Three-point bending is a material testing method defined in JIS7171, etc., and as shown in FIG. 2, a load is applied to the center of a test piece 1 on a rectangular parallelepiped supported at both ends by a support 2 with a pressurizer 3. In this test method, the relationship between the load and the amount of deflection is obtained, and the rigidity and strength of the test piece are obtained.

この試験片1を、複合材であるコア材で補強することを考える。すなわち相対的に剛性の低いシェル材からなる試験片を相対的に剛性の高いコア材で補強し、試験片全体の剛性を上げること考える。   Consider reinforcing the test piece 1 with a core material which is a composite material. That is, a test piece made of a shell material having a relatively low rigidity is reinforced with a core material having a relatively high rigidity to increase the rigidity of the entire test piece.

ここで、所定の荷重での撓み量を所定範囲(臨界値)内に収めることのでき、かつ、コア材の使用量が最小となるコア材の形状、配置を求めるとする。これは、所定荷重での撓み量を前記の臨界値とすることができる、最小のコア部容積を有するコア形状を求めるに等しい。もちろんシェル材、コア材ともやヤング率、ポアソン比などの力学特性値は既知である。   Here, it is assumed that the shape and arrangement of the core material that can keep the amount of deflection under a predetermined load within a predetermined range (critical value) and that minimizes the amount of core material used are obtained. This is equivalent to obtaining a core shape having a minimum core volume that can set the deflection amount at a predetermined load to the critical value. Of course, both the shell material and the core material have known mechanical characteristic values such as Young's modulus and Poisson's ratio.

まず、試験片外形形状をシェル材で造形し、その内部にコア部を配置しコア材で充填する方法が考えられる。この場合のコア部の形状をトポロジー最適化手法を用いて最適化した一例を図4に示す。内部に複雑な外形形状を持ち、かつ3分割されたコア部4を有する試験片5が得られている。なお、試験片5の外形すなわち包絡線形状は図3に示す元の試験片1の直方体形状を維持するという制約条件を与えている。   First, a method of shaping the outer shape of the test piece with a shell material, arranging a core portion therein, and filling with the core material is conceivable. An example in which the shape of the core portion in this case is optimized using the topology optimization method is shown in FIG. A test piece 5 having a complicated outer shape and having a core portion 4 divided into three is obtained. Note that the outer shape of the test piece 5, that is, the envelope shape, gives a constraint that the original rectangular parallelepiped shape of the test piece 1 shown in FIG. 3 is maintained.

コア部を内部に配置する方法でも最適化は可能であるが、この場合コア材をシェル層内部に形成されたコア部に充填する必要があり、シェル材の造形を分割して都度コア材を充填するか、シェル層にコア材の充填用や充填時の空気抜きのための小孔を形成しておくといった対策が必要となる。   Optimization is also possible by the method of arranging the core part inside, but in this case the core material needs to be filled into the core part formed inside the shell layer. It is necessary to take measures such as filling or forming a small hole in the shell layer for filling the core material or removing air during filling.

よって、逆に剛性を負担させるコア材を試験片の外側に置いた最適化も求められる、この結果を図5に示す。図5の導出課程としてまず、図6に示すように元の試験片1の直方体形状の上下面全体にコア部8を凹部として適当に造形した形状を作成する。この上下面に設けられたコア部8の形状をトポロジー最適化手法により最適化する。その結果が図5に示す試験片6である。上下面ともコア部7は凹部として3部分に分割されており、トータルのコア部7の体積すなわちコア材の使用量が低減できることがわかる。なおこの最適化でもコア部7は元の直方体形状(包絡線形状)からは逸脱しない制約条件を設けている。このように本明細書でいうコア部を立体造形物の外形形状の外側に配置してその形状を最適化し、凹部としてのコア部を作成することも可能である。この場合、コア材の充填が容易となる効果も得られ好適である。   Therefore, conversely, optimization is also required in which a core material that bears rigidity is placed outside the test piece. This result is shown in FIG. As a derivation process of FIG. 5, first, as shown in FIG. 6, a shape that is appropriately shaped with the core portion 8 as a recess is formed on the entire upper and lower surfaces of the rectangular parallelepiped shape of the original test piece 1. The shape of the core portion 8 provided on the upper and lower surfaces is optimized by a topology optimization method. The result is the test piece 6 shown in FIG. The core portion 7 is divided into three portions as concave portions on both the upper and lower surfaces, and it can be seen that the total volume of the core portion 7, that is, the amount of core material used can be reduced. Even in this optimization, the core portion 7 is provided with a constraint that does not deviate from the original rectangular parallelepiped shape (envelope shape). As described above, the core portion referred to in the present specification can be arranged outside the outer shape of the three-dimensional structure to optimize the shape, and the core portion as a concave portion can be created. In this case, the effect of facilitating filling of the core material is also obtained, which is preferable.

図7はさらに複雑な形状のコア部の最適化を行った例である。図7(a)に示すような架台状の立体造形物11を造形するにあたり、内部のコア部の形状をトポロジー最適化手法ににより最適化した結果である。複雑なコア部(b)形状となっている。このようなコア部(b)を有するシェル層の造形には3Dプリンターでの造形が適しており、本願発明の効果が発揮される。   FIG. 7 shows an example in which the core portion having a more complicated shape is optimized. This is the result of optimizing the shape of the internal core portion by the topology optimization method when modeling the gantry-shaped three-dimensional model 11 as shown in FIG. It has a complex core (b) shape. For modeling of the shell layer having such a core part (b), modeling with a 3D printer is suitable, and the effect of the present invention is exhibited.

1 試験片
2 サポート
3 加圧子
4 コア部
5 試験片
6 試験片
7 コア部
8 コア部
9 試験片
10 コア部
11 架台
60 槽
61 造形材料粉
62 材料床
63 赤外線レーザー
64,65 ガルバノ光学系
66 レーザー光
67 1層目の造形層
68 スキージ
69 テーブル
71 レーザー光
72 二重菅ノズル
73 内側ノズル
74 集光レンズ
75 ベース
76 外側ノズル
77 溶融池
90 強化材
91 母材
92 強化材分散液
93 槽
94 寝た強化材
DESCRIPTION OF SYMBOLS 1 Test piece 2 Support 3 Pressurizer 4 Core part 5 Test piece 6 Test piece 7 Core part 8 Core part 9 Test piece 10 Core part 11 Base 60 Tank 61 Modeling material powder 62 Material floor 63 Infrared laser 64, 65 Galvano optical system 66 Laser beam 67 First modeling layer 68 Squeegee 69 Table 71 Laser beam 72 Double trap nozzle 73 Inner nozzle 74 Condensing lens 75 Base 76 Outer nozzle 77 Molten pool 90 Reinforcement material 91 Base material 92 Reinforcement material dispersion 93 Tank 94 Sleeping reinforcement

Claims (8)

立体造形方法であって、第1の造形材料(シェル材)を用いて、内部に空洞及び/又は外面に凹部を有する造形殻を造形し、次いで第2の造形材料(コア材)を用いて、前記造形殻の前記空洞及び/又は前記凹部を充填することで、所望形状の立体造形物を得ることを特長とする立体造形方法。   A three-dimensional modeling method, in which a first modeling material (shell material) is used to model a modeling shell having a cavity and / or a concave portion on the outer surface, and then a second modeling material (core material) is used. A three-dimensional modeling method characterized by obtaining a three-dimensional molded object having a desired shape by filling the cavity and / or the concave portion of the modeling shell. 前記造形殻の包絡面形状は、前記所望形状と一致することを特長とする請求項1に記載の立体造形方法。   2. The three-dimensional modeling method according to claim 1, wherein an envelope surface shape of the modeling shell coincides with the desired shape. 前記空洞及び/又は前記凹部の形状が、構造最適化手法を用いて決定されるものであることを特長とする請求項1又は2に記載の立体造形方法。   The three-dimensional modeling method according to claim 1, wherein the shape of the cavity and / or the concave portion is determined using a structure optimization method. 前記造形殻が付加製造技術による造形装置で造形されるものであることを特長とする請求項1乃至3のいずれかに記載の立体造形方法。   The three-dimensional modeling method according to any one of claims 1 to 3, wherein the modeling shell is modeled by a modeling apparatus using an additive manufacturing technique. 前記コア材は、活性エネルギー線の照射又は熱エネルギーの付与により、流動状態から非流動状態に硬化するものであり、前記コア材を前記流動状態において前記空洞及び/又は前記凹部に充填し、その後、活性エネルギー線の照射又は熱エネルギーの付与により前記空洞及び/又は前記凹部に充填された前記コア材を硬化させることを特長とする請求項1乃至4のいずれかに記載の立体造形方法。   The core material is cured from a fluidized state to a non-fluidized state by irradiation with active energy rays or application of thermal energy, and the core material is filled in the cavity and / or the recess in the fluidized state, and thereafter 5. The three-dimensional modeling method according to claim 1, wherein the core material filled in the cavity and / or the concave portion is cured by irradiation with active energy rays or application of thermal energy. 前記造形殻が、前記付加製造技術による造形装置の積層造形方向に複数回に分割して造形されるものであり、該複数回の前記造形殻の造形毎に前記コア材が前記空洞及び/又は前記凹部に充填され、すべての前記造形殻の造形及び前記コア材の充填の完了後、前記コア材を一括して硬化することを特長とする請求項5に記載の立体造形方法。   The modeling shell is modeled by being divided into a plurality of times in the layered modeling direction of the modeling apparatus by the additive manufacturing technique, and the core material is formed by the cavity and / or for each modeling of the modeling shell for the plurality of times. 6. The three-dimensional modeling method according to claim 5, wherein the core material is hardened in a lump after filling of the concave portions and completion of modeling of all the modeling shells and filling of the core material. 前記シェル材及び前記コア材の少なくとも一方が、炭素繊維、ガラス繊維、アラミド繊維のいずれか又はそれらの組み合わせからなる強化材を含むものであることを特長とする請求項1乃至5のいずれかに記載の立体造形方法。   6. At least one of the shell material and the core material includes a reinforcing material made of any one of carbon fiber, glass fiber, and aramid fiber, or a combination thereof. Solid modeling method. 請求1乃至7のいずれかに記載の立体造形方法による立体造形装置。   The three-dimensional modeling apparatus by the three-dimensional modeling method in any one of Claims 1 thru | or 7.
JP2018021573A 2018-02-09 2018-02-09 Three dimensional modeling method and three dimensional modeling apparatus Pending JP2019136925A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018021573A JP2019136925A (en) 2018-02-09 2018-02-09 Three dimensional modeling method and three dimensional modeling apparatus
PCT/JP2019/002264 WO2019155898A1 (en) 2018-02-09 2019-01-24 Three-dimensional forming method and three-dimensional forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021573A JP2019136925A (en) 2018-02-09 2018-02-09 Three dimensional modeling method and three dimensional modeling apparatus

Publications (1)

Publication Number Publication Date
JP2019136925A true JP2019136925A (en) 2019-08-22

Family

ID=67549530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021573A Pending JP2019136925A (en) 2018-02-09 2018-02-09 Three dimensional modeling method and three dimensional modeling apparatus

Country Status (2)

Country Link
JP (1) JP2019136925A (en)
WO (1) WO2019155898A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557926B2 (en) * 1998-12-22 2004-08-25 松下電工株式会社 Method for producing three-dimensional shaped object and mold
US20050087897A1 (en) * 2003-10-23 2005-04-28 Nielsen Jeffrey A. Systems and methods for reducing waste in solid freeform fabrication
JP2006078604A (en) * 2004-09-07 2006-03-23 Toin Gakuen Human body affected part entity model and manufacturing method thereof
EP3230051B1 (en) * 2015-04-30 2021-09-22 Hewlett-Packard Development Company, L.P. Printing a multi-structured 3d object
JPWO2017038985A1 (en) * 2015-09-04 2018-06-21 Jsr株式会社 Manufacturing method of three-dimensional modeled object, data generation method of nozzle movement path used therein, manufacturing apparatus of three-dimensional modeled object, and data generation program of nozzle movement path used therefor
JP6955510B2 (en) * 2016-11-28 2021-10-27 東レエンジニアリング株式会社 Three-dimensional modeling method

Also Published As

Publication number Publication date
WO2019155898A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
US10500640B2 (en) Systems and methods of volumetric 3D printing
US5238639A (en) Method and apparatus for stereolithographic curl balancing
US6574523B1 (en) Selective control of mechanical properties in stereolithographic build style configuration
WO2019155897A1 (en) Three-dimensional forming method
US11155005B2 (en) 3D-printed tooling and methods for producing same
JP3699359B2 (en) Variable lamination high-speed modeling method and high-speed modeling apparatus using linear thermal cutting system
US11247367B2 (en) 3D-printed tooling shells
Kudelski et al. Comparison of cost, material and time usage in FDM and SLS 3D printing methods
JP2005171299A (en) Method for manufacturing three-dimensionally formed article
JP6955510B2 (en) Three-dimensional modeling method
TWI584941B (en) System of rapid prototyping and method thereof
JP6888259B2 (en) Laminated modeling structure, laminated modeling method and laminated modeling equipment
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
CN107263863A (en) DLP three-dimensional printers and its Method of printing
CN107155316B (en) Honeycomb structure and manufacturing method thereof
Teja et al. 3D Printing of complex structures: Case study of Eiffel Tower
WO2019155898A1 (en) Three-dimensional forming method and three-dimensional forming device
Raza et al. Introducing a multimaterial printer for the deposition of low melting point alloys, elastomer, and ultraviolet curable resin
Fateri et al. Introduction to additive manufacturing
Choong Additive manufacturing for digital transformation
JP2023018936A (en) Stereo lithography method, method for manufacturing stereoscopic objects, program, and stereoscopic modeling device
WO2024172041A1 (en) Three-dimensional modeling method, method for manufacturing three-dimensional model, and three-dimensional model
JP7523328B2 (en) Method for manufacturing hollow molded body
JP2024101200A (en) Three-dimensional modeling method, and method of manufacturing three-dimensional modeled object
JP2024104679A (en) Three-dimensional modeling method and manufacturing method of three-dimensional model