JP2019136011A - Method for producing decellularized carrier, decellularized carrier, cell filling method, cell sheet production method, and decellularized solution kit - Google Patents

Method for producing decellularized carrier, decellularized carrier, cell filling method, cell sheet production method, and decellularized solution kit Download PDF

Info

Publication number
JP2019136011A
JP2019136011A JP2018024965A JP2018024965A JP2019136011A JP 2019136011 A JP2019136011 A JP 2019136011A JP 2018024965 A JP2018024965 A JP 2018024965A JP 2018024965 A JP2018024965 A JP 2018024965A JP 2019136011 A JP2019136011 A JP 2019136011A
Authority
JP
Japan
Prior art keywords
decellularized
tissue
organ
solution
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018024965A
Other languages
Japanese (ja)
Other versions
JP7174984B2 (en
Inventor
工 寺谷
Takumi Teratani
工 寺谷
泰然 浦橋
Taizen Urahashi
泰然 浦橋
尚哉 笠原
Naoya Kasahara
尚哉 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jichi Medical University
Original Assignee
Jichi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jichi Medical University filed Critical Jichi Medical University
Priority to JP2018024965A priority Critical patent/JP7174984B2/en
Publication of JP2019136011A publication Critical patent/JP2019136011A/en
Application granted granted Critical
Publication of JP7174984B2 publication Critical patent/JP7174984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide decellularized carrier production methods capable of producing a decellularized carrier with high performance.SOLUTION: A decellularized carrier production method of the present invention comprises a cryopreservation step, a thawing step, and a decellularization step. The cryopreservation step cryopreserves a removed organ or tissue. The thawing step thaws the cryopreserved organ or tissue in the cryopreservation step. The decellularization step decellularizes the thawed organ or tissue in the thawing step. Here, the decellularization step comprises a poorly water soluble surfactant perfusion step and a hydrophilic water soluble surfactant perfusion step. The poorly water soluble surfactant perfusion step perfuses the thawed organ or tissue with a poorly water soluble surfactant-containing solution. The hydrophilic water soluble surfactant perfusion step perfuses the organ or tissue perfused with a poorly water soluble surfactant-containing solution, with a hydrophilic water soluble surfactant-containing solution.SELECTED DRAWING: Figure 10

Description

本発明は、特に脱細胞化担体製造方法、脱細胞化担体、細胞充填方法、細胞シート作製方法、及び脱細胞化溶液キットに関する。   The present invention particularly relates to a method for producing a decellularized carrier, a decellularized carrier, a cell filling method, a cell sheet preparation method, and a decellularized solution kit.

従来から、臓器や組織から細胞を取り除き、細胞外マトリクスからなる脱細胞化担体を製造するための脱細胞化に関する技術が開発されてきた。このような脱細胞化担体は、細胞が増殖するための足場(スキャフォールド、scaffold)として生体への移植用に用いられたり、研究用の生体材料として用いられたりしている。   Conventionally, techniques relating to decellularization have been developed to remove cells from organs and tissues and to produce decellularized carriers made of extracellular matrix. Such a decellularized carrier is used as a scaffold for growing cells (scaffold) for transplantation into a living body, or used as a biomaterial for research.

ここで、特許文献1を参照すると、従来の脱細胞化担体として、細胞外マトリックスが外表面を含み、血管樹を含む該細胞外マトリックスが、脱細胞化前の該細胞外マトリックスの形態を実質的に保持し、かつ該外表面が、実質的にインタクトである脱細胞化された哺乳類臓器が記載されている。
特許文献1の脱細胞化担体は、1か所もしくは複数の腔、血管、および/または管において、カニューレを該臓器に挿入することで、カニューレが挿入された臓器を作製する段階;ならびに、カニューレが挿入された該臓器に第1の細胞破壊媒体を、1か所もしくは複数のカニューレ挿入を介して灌流する段階を含む。この細胞破壊媒体は、少なくとも1種類の界面活性剤を含む。また、界面活性剤が、SDS、PEG、またはTriton Xからなる群より選択される。
Here, referring to Patent Document 1, as a conventional decellularization carrier, an extracellular matrix includes an outer surface, and the extracellular matrix including a vascular tree substantially forms the form of the extracellular matrix before decellularization. Decellularized mammalian organs are described that are retained and the outer surface is substantially intact.
The decellularized carrier of Patent Document 1 includes a step of creating a cannulated organ by inserting a cannula into the organ in one or a plurality of cavities, blood vessels, and / or tubes; and a cannula Perfusing a first cell disruption medium through one or more cannula insertions into the organ into which is inserted. The cell disruption medium includes at least one surfactant. The surfactant is selected from the group consisting of SDS, PEG, or Triton X.

特開2015−164549号公報JP2015-164549A

しかしながら、特許文献1に係る従来の脱細胞化担体は、細胞骨格及び細胞外マトリクスが脆弱になっており、筋肉による動きや腹圧等の生体内環境の影響により、脱細胞化担体は萎縮や破損していた。したがって、実際の医療への応用化が非常に困難であった。また、従来の脱細胞化担体は、臓器または組織内に走行している各脈管系、特に毛細血管など微小血管の構造が破綻しており、細胞充填後の臓器又は組織復元が困難であった。つまり、従来の脱細胞化担体は、性能が低かった。   However, the conventional decellularized carrier according to Patent Document 1 has a weak cytoskeleton and extracellular matrix, and the decellularized carrier is atrophic or deflated due to the influence of in vivo environment such as movement by muscle and abdominal pressure. It was damaged. Therefore, application to actual medical treatment has been very difficult. In addition, conventional decellularized carriers have broken structures of microvasculature such as capillaries that are running in organs or tissues, and it is difficult to restore organs or tissues after cell filling. It was. That is, the conventional decellularized carrier has low performance.

本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消し、硬度や柔軟性を保っている、高性能の脱細胞化担体の製造方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for producing a high-performance decellularized carrier that eliminates the above-described problems and maintains hardness and flexibility. To do.

本発明の脱細胞化担体製造方法は、摘出された臓器又は組織を凍結保存する凍結保存工程と、前記凍結保存工程にて凍結保存された前記臓器又は前記組織を解凍する解凍工程と、前記解凍工程にて解凍された前記臓器又は前記組織を脱細胞化する脱細胞化工程とを含み、前記脱細胞化工程は、解凍された前記臓器又は前記組織を難水溶性界面活性剤含有溶液で灌流する難水溶性界面活性剤灌流工程と、前記難水溶性界面活性剤含有溶液により灌流された前記臓器又は前記組織を親水溶性界面活性剤含有溶液で灌流する親水溶性界面活性剤灌流工程とを含むことを特徴とする。
本発明の脱細胞化担体製造方法は、前記凍結保存工程は、前記臓器又は前記組織を生理食塩水で灌流して脱血する凍結時脱血工程と、前記凍結時脱血工程にて脱血された前記臓器又は前記組織を、凍結保存溶液で灌流する凍結保存溶液灌流工程と、前記凍結保存溶液灌流工程にて灌流された前記臓器又は前記組織を、前記凍結保存溶液で満たして膨化させる膨化工程と、膨化された前記臓器又は前記組織に付着した余剰の前記凍結保存溶液を除去する余剰溶液除去工程と、前記余剰溶液除去工程にて余剰の前記凍結保存溶液を除去された前記臓器又は前記組織を−20℃以下で凍結する凍結工程とを含むことを特徴とする。
本発明の脱細胞化担体製造方法は、前記凍結保存工程は、前記凍結工程後、脱細胞化工程前の前記臓器又は前記組織を特定期間保存する期間保存工程を更に含むことを特徴とする。
本発明の脱細胞化担体製造方法は、前記凍結保存溶液は、0.01〜0.3%の過酸化水素水を含む生理食塩水であり、前記凍結時脱血工程の生理食塩水及び/又前記凍結保存溶液は、500〜4000Uヘパリンを含んでいてもよいことを特徴とする。
本発明の脱細胞化担体製造方法は、前記解凍工程は、凍結保存された前記臓器又は前記組織を低温冷蔵状態で解凍する低温冷蔵解凍工程と、前記低温冷蔵解凍工程にて解凍された前記臓器又は前記組織を、タンパク質分解抑制剤含有の生理食塩水で灌流して脱血する解凍時脱血工程と、前記解凍時脱血工程にて脱血された前記臓器又は前記組織の破損有無を確認する確認工程と、前記確認工程により確認された前記臓器又は前記組織を灌流用容器に接続する接続工程とを含むことを特徴とする。
本発明の脱細胞化担体製造方法は、前記解凍時脱血工程は、前記臓器又は前記組織に含まれる微小血栓を除去する血栓除去工程を含むことを特徴とする。
本発明の脱細胞化担体製造方法は、前記脱細胞化工程は、前記難水溶性界面活性剤含有溶液に含まれる難水溶性界面活性剤は、NP−40であり、前記親水溶性界面活性剤含有溶液に含まれる親水溶性界面活性剤は、SDSであることを特徴とする。
本発明の脱細胞化担体製造方法は、前記脱細胞化工程は、前記親水溶性界面活性剤灌流工程にて灌流された前記臓器又は前記組織を洗浄後、安定化する安定化工程を含むことを特徴とする。
本発明の脱細胞化担体製造方法は、前記安定化工程は、前記臓器又は前記組織を0.1〜3%ホルムアルデヒド溶液で灌流することを特徴とする。
本発明の脱細胞化担体製造方法は、前記臓器は、肝臓、腎臓、脾臓、心臓、肺、小腸、及び精巣を含み、前記組織は、皮膚、尿管、及び血管を含むことを特徴とする。
本発明の脱細胞化担体は、前記脱細胞化担体製造方法により製造されることを特徴とする。
本発明の脱細胞化担体は、30%ショ糖液が浸漬されて凍結保存されることを特徴とする。
本発明の細胞充填方法は、前記脱細胞化担体を生理食塩水で灌流する生理食塩水灌流工程と、前記生理食塩水灌流工程により灌流された前記脱細胞化担体を培養液で灌流して置き換える置換工程と、前記置換工程にて前記培養液が灌流された前記脱細胞化担体の動脈から培養細胞を注入する細胞注入工程と、前記細胞注入工程により前記培養細胞が注入された後に灌流を停止して細胞を前記脱細胞化担体に接着させる細胞接着工程と、前記細胞接着工程により前記細胞が接着された前記脱細胞化担体に前記培養液の灌流を再開させて培養する灌流培養工程とを含むことを特徴とする。
本発明の細胞充填方法は、前記臓器又は前記組織が小腸の場合、動脈と門脈とを接続して灌流を行うことを特徴とする。
本発明の細胞シート作製方法は、前記脱細胞化担体を脱細胞化組織断片に薄層切片化する薄層切片化工程と、前記薄層切片化工程により薄層切片化された前記脱細胞化組織断片を洗浄し、培養細胞を播種する播種工程と、前記播種工程により前記培養細胞が播種された前記脱細胞化組織断片を培養する培養工程とを含むことを特徴とする。
本発明の脱細胞化溶液キットは、臓器又は組織から脱細胞化担体を製造するための脱細胞化溶液キットであって、解凍された前記臓器又は前記組織を灌流する難水溶性界面活性剤含有溶液と、前記難水溶性界面活性剤含有溶液により灌流された前記臓器又は前記組織を灌流する親水溶性界面活性剤含有溶液とを含むことを特徴とする。
The method for producing a decellularized carrier of the present invention includes a cryopreservation step of cryopreserving an extracted organ or tissue, a thawing step of thawing the organ or tissue cryopreserved in the cryopreservation step, and the thawing A decellularization step of decellularizing the organ or tissue thawed in the step, wherein the decellularization step perfuses the thawed organ or tissue with a poorly water-soluble surfactant-containing solution. A poorly water-soluble surfactant perfusion step, and a hydrophilic water-soluble surfactant perfusion step of perfusing the organ or the tissue perfused with the poorly water-soluble surfactant-containing solution with the hydrophilic water-soluble surfactant-containing solution. It is characterized by that.
In the method for producing a decellularized carrier of the present invention, in the cryopreservation step, blood removal is performed in a freezing blood removal step in which the organ or the tissue is perfused with physiological saline to remove blood, and in the freezing blood removal step. A cryopreservation solution perfusion step of perfusing the organ or tissue that has been perfused with a cryopreservation solution, and a swelling that fills and expands the organ or tissue perfused in the cryopreservation solution perfusion step A step, a surplus solution removing step of removing surplus cryopreservation solution adhering to the swollen organ or tissue, and the organ having the surplus cryopreservation solution removed in the surplus solution removal step or the organ And a freezing step of freezing the tissue at −20 ° C. or lower.
The method for producing a decellularized carrier according to the present invention is characterized in that the cryopreservation step further includes a period storage step for storing the organ or the tissue before the decellularization step for a specific period after the freezing step.
In the method for producing a decellularized carrier of the present invention, the cryopreservation solution is a physiological saline containing 0.01 to 0.3% hydrogen peroxide solution, and the physiological saline and / or The cryopreservation solution may contain 500 to 4000 U heparin.
In the method for producing a decellularized carrier of the present invention, the thawing step includes the cryopreserved organ or the tissue in a low temperature refrigerated state in which the thawing step is thawed in a low temperature refrigerated state, and the thawed in the low temperature refrigerated thawing step. Or, the tissue is perfused with a physiological saline containing a proteolysis inhibitor, and the blood is removed by thawing, and the organ or the tissue that has been removed by the blood removal in the thawing is checked for damage. And a connection step of connecting the organ or the tissue confirmed in the confirmation step to a perfusion container.
The method for producing a decellularized carrier of the present invention is characterized in that the thawing blood removal step includes a thrombus removal step of removing a microthrombus contained in the organ or the tissue.
In the method for producing a decellularized carrier of the present invention, in the decellularization step, the poorly water-soluble surfactant contained in the poorly water-soluble surfactant-containing solution is NP-40, and the hydrophilic water-soluble surfactant The hydrophilic water-soluble surfactant contained in the containing solution is SDS.
In the method for producing a decellularized carrier of the present invention, the decellularization step includes a stabilization step of stabilizing after washing the organ or the tissue perfused in the hydrophilic water-soluble surfactant perfusion step. Features.
The method for producing a decellularized carrier of the present invention is characterized in that in the stabilization step, the organ or the tissue is perfused with a 0.1-3% formaldehyde solution.
In the method for producing a decellularized carrier according to the present invention, the organ includes a liver, a kidney, a spleen, a heart, a lung, a small intestine, and a testis, and the tissue includes a skin, a ureter, and a blood vessel. .
The decellularized carrier of the present invention is produced by the method for producing a decellularized carrier.
The decellularized carrier of the present invention is characterized in that 30% sucrose solution is immersed and cryopreserved.
The cell filling method of the present invention includes a physiological saline perfusion step in which the decellularized carrier is perfused with physiological saline, and the decellularized carrier perfused in the physiological saline perfusion step is perfused with a culture solution to replace it. A replacement step, a cell injection step of injecting cultured cells from the decellularized carrier artery perfused with the culture medium in the replacement step, and stopping the perfusion after the cultured cells are injected in the cell injection step A cell adhesion step for adhering the cells to the decellularized carrier, and a perfusion culture step for culturing by resuming the perfusion of the culture solution to the decellularized carrier to which the cells are adhered by the cell adhesion step. It is characterized by including.
The cell filling method of the present invention is characterized in that when the organ or the tissue is a small intestine, perfusion is performed by connecting an artery and a portal vein.
The cell sheet preparation method of the present invention includes a thin-layer sectioning step in which the decellularized carrier is thin-sectioned into decellularized tissue fragments, and the decellularization in which the thin-layer sectioning is performed by the thin-layer sectioning step. The method includes a seeding step of washing a tissue fragment and seeding a cultured cell, and a culture step of culturing the decellularized tissue fragment seeded with the cultured cell by the seeding step.
The decellularization solution kit of the present invention is a decellularization solution kit for producing a decellularization carrier from an organ or tissue, and contains a poorly water-soluble surfactant that perfuses the thawed organ or tissue. And a hydrophilic water-soluble surfactant-containing solution for perfusing the organ or the tissue perfused with the poorly water-soluble surfactant-containing solution.

本発明によれば、摘出された臓器又は組織を凍結保存し、凍結保存された臓器又は組織を解凍し、解凍された臓器又は組織を難水溶性界面活性剤含有溶液で灌流し、その後、親水溶性界面活性剤含有溶液で灌流することで、細胞骨格及び細胞外マトリクスの硬度や柔軟性を保つことが可能な、高性能の脱細胞化担体の製造方法を提供することができる。   According to the present invention, the extracted organ or tissue is cryopreserved, the cryopreserved organ or tissue is thawed, the thawed organ or tissue is perfused with a poorly water-soluble surfactant-containing solution, and then the hydrophilic By perfusing with a soluble surfactant-containing solution, a method for producing a high-performance decellularized carrier capable of maintaining the hardness and flexibility of the cytoskeleton and extracellular matrix can be provided.

本発明の実施例に係る肝臓の難水溶性界面活性剤灌流工程の写真である。It is a photograph of the poorly water-soluble surfactant perfusion process of the liver which concerns on the Example of this invention. 本発明の実施例に係る肝臓の親水溶性界面活性剤灌流工程の写真である。It is a photograph of the hydrophilic water-soluble surfactant perfusion process of the liver based on the Example of this invention. 本発明の実施例に係る腎臓の親水溶性界面活性剤灌流工程の写真である。It is a photograph of the hydrophilic water-soluble surfactant perfusion process of the kidney which concerns on the Example of this invention. 本発明の実施例に係る脾臓の解凍時脱血工程及び親水溶性界面活性剤灌流工程の写真である。It is a photograph of the blood removal process at the time of thawing | decompression and the hydrophilic water-soluble surfactant perfusion process which concern on the Example of this invention. 本発明の実施例に係る心臓の親水溶性界面活性剤灌流工程の写真である。It is a photograph of the hydrophilic water-soluble surfactant perfusion process of the heart based on the Example of this invention. 本発明の実施例に係る肺の親水溶性界面活性剤灌流工程の写真である。It is a photograph of the hydrophilic water-soluble surfactant perfusion process of the lung which concerns on the Example of this invention. 本発明の実施例に係る心臓の脱細胞化組織断片の細胞生着性を確認した写真である。It is the photograph which confirmed the cell engraftment property of the decellularized tissue fragment of the heart based on the Example of this invention. 本発明の実施例に係る腎臓の脱細胞化組織断片の細胞生着性を確認した写真である。It is the photograph which confirmed the cell viability of the decellularized tissue fragment of the kidney based on the Example of this invention. 本発明の実施例に係る肺の脱細胞化組織断片の細胞生着性を確認した写真である。It is the photograph which confirmed the cell engraftment property of the decellularized tissue fragment of the lung which concerns on the Example of this invention. 本発明の実施例に係る肝臓の脱細胞化組織断片について細胞生着性を確認した写真である。It is the photograph which confirmed cell engraftment about the decellularized tissue fragment of the liver concerning the example of the present invention. 本発明の実施例に係る腎臓及び脾臓の脱細胞化担体についての電子顕微鏡写真である。It is an electron micrograph about the decellularization support | carrier of the kidney which concerns on the Example of this invention. 本発明の実施例に係る心臓及び肺の脱細胞化担体についての電子顕微鏡写真である。It is an electron micrograph about the decellularization support | carrier of the heart which concerns on the Example of this invention, and a lung. 本発明の実施例に係る肝臓及び小腸の脱細胞化担体についての電子顕微鏡写真である。It is an electron micrograph about the decellularization support | carrier of the liver which concerns on the Example of this invention, and a small intestine. 本発明の実施例に係る細胞外基質に関した解析(免疫染色)の写真である。It is a photograph of the analysis (immunostaining) regarding the extracellular matrix which concerns on the Example of this invention. 本発明の実施例に係る脱細胞化担体(肝臓)の移植実験の写真である。It is a photograph of a transplantation experiment of a decellularized carrier (liver) according to an example of the present invention.

<実施の形態>
近年、脱細胞化担体に関する技術報開発が行われており、国内外で様々な技術が開発されている。しかしながら、従来の脱細胞化担体製造方法は、脱細胞化完了までの時間が、例えばラットで24〜72時間かかっていた。また、洗浄工程を含めると更に3日から7日間の日数を必要としていた。このため、脱細胞化の期間内に細胞外マトリクスの破綻や腐敗等が進行する可能性が高かった。つまり、従来の脱細胞化担体の製造方法では、細胞骨格及び細胞外マトリクスが脆弱になっていた。よって、移植時に行う血管吻合の工程が非常に困難になっていた。
これに対して、本発明者らは鋭意実験と試験を行い、摘出された臓器又は組織を凍結保存することで、高品質の脱細胞化担体を製造しやすくなることを見いだした。更に、試行錯誤を繰り返したところ、この凍結保存された臓器又は組織を解凍し、解凍された臓器又は組織を難水溶性界面活性剤含有溶液で灌流し、その後、親水溶性界面活性剤含有溶液で灌流するようすると良いことを見いだし、発明を完成するに至った。本実施形態の脱細胞化担体製造方法により、細胞骨格及び細胞外マトリクスの硬度や柔軟性を高度に保ちつつ、血管吻合が容易となる、高性能な脱細胞化担体を製造できる。
<Embodiment>
In recent years, technical reports on decellularized carriers have been developed, and various technologies have been developed at home and abroad. However, in the conventional method for producing a decellularized carrier, it took 24 to 72 hours to complete decellularization, for example, in rats. In addition, when the washing step is included, it takes 3 to 7 days. For this reason, there was a high possibility that the extracellular matrix was broken or rotted during the decellularization period. That is, in the conventional method for producing a decellularized carrier, the cytoskeleton and the extracellular matrix are fragile. Therefore, the blood vessel anastomosis process performed at the time of transplantation has become very difficult.
In contrast, the present inventors have conducted intensive experiments and tests, and found that it becomes easy to produce a high-quality decellularized carrier by cryopreserving the removed organ or tissue. Furthermore, when trial and error were repeated, the cryopreserved organ or tissue was thawed, and the thawed organ or tissue was perfused with a sparingly water-soluble surfactant-containing solution, and then the hydrophilic water-soluble surfactant-containing solution was used. We found that it would be better to perfuse, and came to complete the invention. By the method for producing a decellularized carrier of the present embodiment, a high-performance decellularized carrier that facilitates vascular anastomosis while maintaining high hardness and flexibility of the cytoskeleton and extracellular matrix can be produced.

以下、本発明の実施の形態に係る脱細胞化担体製造方法の構成及び効果について、具体的且つ詳細に説明する。   Hereinafter, the configuration and effects of the method for producing a decellularized carrier according to the embodiment of the present invention will be described specifically and in detail.

本発明の実施の形態に係る脱細胞化担体製造方法は、摘出された臓器又は組織を凍結保存する凍結保存工程と、凍結保存工程にて凍結保存された臓器又は組織を解凍する解凍工程と、解凍工程にて解凍された臓器又は組織を脱細胞化する脱細胞化工程とを含むことを特徴とする。
このように構成することで、脱細胞化担体を従来技術より短時間で製造することが可能となる。また、脱細胞化担体の細胞骨格及び細胞外マトリクスの硬度や柔軟性を高度に保つことが可能となる。よって、高品質の脱細胞化担体を製造することができる。製造された脱細胞化担体は、臓器構造を用いた高度な実験用に用いることが可能となる。また、製造された脱細胞化担体は、血管吻合が容易となり、皮膚、小腸、血管及び心臓弁等の医療用部材として、臨床応用することが可能となる。また、製造された脱細胞化担体が再生医療用材料、足場材料(scaffold)として用いることが可能となる。
さらに、本実施形態の脱細胞化担体の製造方法で製造された脱細胞化担体は、後述するように、iPS細胞、ES細胞等から分化誘導した機能細胞の生着及び機能発現した臓器作製を可能とすることができる。このため、再生医療分野での応用が期待できる。
A method for producing a decellularized carrier according to an embodiment of the present invention includes a cryopreservation step of cryopreserving an extracted organ or tissue, a thawing step of thawing an organ or tissue cryopreserved in the cryopreservation step, A decellularization step of decellularizing the organ or tissue thawed in the thawing step.
By comprising in this way, a decellularization support | carrier can be manufactured in a shorter time than a prior art. In addition, the hardness and flexibility of the cytoskeleton and extracellular matrix of the decellularized carrier can be maintained at a high level. Therefore, a high-quality decellularized carrier can be produced. The produced decellularized carrier can be used for advanced experiments using organ structures. In addition, the produced decellularized carrier can be easily subjected to vascular anastomosis, and can be clinically applied as a medical member such as skin, small intestine, blood vessel, and heart valve. In addition, the produced decellularized carrier can be used as a regenerative medical material and a scaffold material.
Furthermore, the decellularized carrier produced by the method for producing a decellularized carrier according to the present embodiment is capable of engrafting functional cells induced to differentiate from iPS cells, ES cells, etc. Can be possible. Therefore, application in the field of regenerative medicine can be expected.

また、本実施形態の脱細胞化担体製造方法にて製造された脱細胞化担体は細胞外マトリックスの消失が最小限となる。これにより、後述する実施例の免疫染色及び電子顕微鏡画像にて示すように、細部の構造を高度に維持した脱細胞化担体となる。
また、本発明で作製された脱細胞化担体は、Double stranded DNA(以下、「dsDNA」という。)及び糖鎖構造が消失するため、抗原性がほとんどなくなる。このため、生体応用が容易となる。
In addition, the decellularized carrier produced by the decellularized carrier producing method of the present embodiment minimizes the loss of the extracellular matrix. As a result, as shown in the immunostaining and electron microscopic images of Examples described later, a decellularized carrier having a highly maintained detailed structure is obtained.
In addition, the decellularized carrier prepared in the present invention has almost no antigenicity because the double-stranded DNA (hereinafter referred to as “dsDNA”) and the sugar chain structure disappear. For this reason, living body application becomes easy.

また、従来の脱細胞化担体製造方法は「臓器特異的」であるため、脱細胞化を行う臓器や組織にプロトコル及び脱細胞化溶液を合わせる必要があった。
これに対して、本発明の実施の形態に係る脱細胞化担体製造方法は、臓器は、肝臓、腎臓、脾臓、心臓、肺、小腸、及び精巣を含み、組織は、皮膚、尿管、及び血管を含むことを特徴とする。
つまり、本実施形態の脱細胞化担体製造方法においては、掃出した臓器である肝臓、腎臓、牌臓、心臓、肺、小腸、並びに精巣、及び組織である皮膚、尿管、並びに血管等を同一組成液及び同一プロトコルにて脱細胞化が可能であり、且つ、短時間に処理可能となる。
Further, since the conventional method for producing a decellularized carrier is “organ-specific”, it is necessary to match the protocol and decellularized solution to the organ or tissue to be decellularized.
In contrast, in the decellularized carrier manufacturing method according to the embodiment of the present invention, the organ includes the liver, kidney, spleen, heart, lung, small intestine, and testis, and the tissue includes the skin, ureter, and It includes blood vessels.
That is, in the decellularized carrier manufacturing method of this embodiment, the liver, kidney, spleen, heart, lung, small intestine, and testis, and tissues such as skin, ureter, and blood vessel, which are swept out, are the same. It can be decellularized with the composition solution and the same protocol, and can be processed in a short time.

また、本発明の実施の形態に係る脱細胞化担体製造方法において、凍結保存工程は、臓器又は組織を生理食塩水で灌流して脱血する凍結時脱血工程と、凍結時脱血工程にて脱血された臓器又は組織を、凍結保存溶液で灌流する凍結保存溶液灌流工程と、凍結保存溶液灌流工程にて灌流された臓器又は組織を、凍結保存溶液で満たして膨化させる膨化工程と、膨化された臓器又は組織に付着した余剰の凍結保存溶液を除去する余剰溶液除去工程と、余剰溶液除去工程にて余剰の凍結保存溶液を除去された臓器又は組織を−20℃以下で凍結する凍結工程とを含むことを特徴とする。
このように構成し、凍結保存溶液で灌流する凍結保存溶液灌流工程で、脱血し、凍結保存溶液で灌流し、膨化させた後に臓器又は組織の凍結を行い、後の解凍工程で融解を行うことで、臓器又は組織を構成している細胞膜に微細な穴を開口させることができる。このため、細胞質内への脱細胞化液の浸透性が高まり、脱細胞化の時間短縮が可能となる。
具体的には、本実施形態の脱細胞化担体製造方法では、特許文献1に記載の従来技術と比べて脱細胞化に必要な時間が約20%にまで短縮される。また、上述したように、対象臓器に依存せず、同一組成液で処理可能となる。
In the method for producing a decellularized carrier according to the embodiment of the present invention, the cryopreservation step includes a blood removal step during freezing by perfusion of an organ or tissue with physiological saline and a blood removal step during freezing. A cryopreservation solution perfusion step of perfusing an organ or tissue removed from the blood with a cryopreservation solution; and a swelling step of filling and swelling the organ or tissue perfused in the cryopreservation solution perfusion step with a cryopreservation solution; A surplus solution removing step for removing surplus cryopreservation solution adhering to the swollen organ or tissue, and freezing for freezing the organ or tissue from which the surplus cryopreservation solution has been removed in the surplus solution removing step at −20 ° C. or lower And a process.
Constructed in this way, in the cryopreservation solution perfusion step of perfusing with the cryopreservation solution, blood is removed, perfusion with the cryopreservation solution is expanded, and then the organ or tissue is frozen and then thawed in the subsequent thawing step Thus, a fine hole can be opened in a cell membrane constituting an organ or tissue. For this reason, the permeability of the decellularized solution into the cytoplasm is increased, and the decellularization time can be shortened.
Specifically, in the method for producing a decellularized carrier of the present embodiment, the time required for decellularization is shortened to about 20% as compared with the conventional technique described in Patent Document 1. Further, as described above, the treatment can be performed with the same composition liquid without depending on the target organ.

また、従来の脱細胞化担体製造方法では、臓器を摘出直後に脱細胞化を行っていた。つまり、摘出された臓器の保存期間に限界があった。
これに対して、本実施形態の脱細胞化担体製造方法では、凍結保存工程において、凍結工程後、脱細胞化工程前の臓器又は組織を特定期間保存する期間保存工程を更に含むことを特徴とする。
このように、脱細胞化用臓器を一旦凍結することから、臓器又は組織のストックが可能となる。この特定期間としては、数時間〜数年単位で任意に設定可能であり、霜取り加熱を行わない業務用医療用のフリーザーでは、ほぼ劣化させずに保存しておくことが可能である。つまり、脱細胞化用臓器を必要に応じて解凍し、脱細胞化担体を製造可能となる。
Further, in the conventional method for producing a decellularized carrier, decellularization is performed immediately after the organ is removed. In other words, there was a limit to the preservation period of the extracted organ.
In contrast, the method for producing a decellularized carrier of the present embodiment is characterized in that the cryopreservation step further includes a period storage step of storing the organ or tissue after the freezing step and before the decellularization step for a specific period. To do.
Thus, since the decellularization organ is once frozen, organ or tissue stock becomes possible. The specific period can be arbitrarily set in units of several hours to several years, and can be stored without substantial deterioration in a commercial medical freezer that does not perform defrosting heating. That is, a decellularization carrier can be produced by thawing the decellularization organ as necessary.

また、本発明の実施の形態に係る脱細胞化担体製造方法において、凍結保存溶液は、0.01〜0.3重量%の過酸化水素水、500〜4000Uヘパリンを含む生理食塩水であることを特徴とする。
このように構成し、凍結保存溶液として、0.01〜0.3重量%の過酸化水素水、500〜4000Uヘパリンを含む生理食塩水を用いることで、細胞骨格及び細胞外マトリクスに与えるダメージを最小限にしつつ、界面活性剤の浸透性を高め、細胞質除去に最適な微細穴を開口させることが可能になる。つまり、過酸化水素水を含む生理食塩水を脱細胞化工程で用い、細胞膜に微小な穴を開けることにより、各界面活性剤の流入性が向上し、核や各種構造物等の細胞質内物質の除去性が向上する。このため、上述のように、後の脱細胞化工程で、細胞骨格及び細胞外マトリクスが脱細胞化溶液に触れる時間が短くなる。よって、脱細胞化担体の製造時間の短縮が可能となる。また、アミノ酸の劣化や変性を抑制することが可能となる。
In the method for producing a decellularized carrier according to the embodiment of the present invention, the cryopreservation solution is a physiological saline containing 0.01 to 0.3% by weight of hydrogen peroxide and 500 to 4000 U heparin. It is characterized by.
Constructed in this way, as a cryopreservation solution, by using a physiological saline containing 0.01 to 0.3% by weight of hydrogen peroxide solution and 500 to 4000 U heparin, damage to the cytoskeleton and extracellular matrix is prevented. While minimizing the permeability, it is possible to increase the permeability of the surfactant and to open a fine hole optimal for cytoplasm removal. In other words, by using physiological saline containing hydrogen peroxide in the decellularization process and making minute holes in the cell membrane, the inflow of each surfactant is improved, and cytoplasmic substances such as nuclei and various structures Removability is improved. For this reason, as described above, in the subsequent decellularization step, the time during which the cytoskeleton and the extracellular matrix are in contact with the decellularized solution is shortened. Therefore, the production time of the decellularized carrier can be shortened. Moreover, it becomes possible to suppress degradation and denaturation of amino acids.

本発明の実施の形態に係る脱細胞化担体製造方法は、解凍工程は、凍結保存された臓器又は組織を低温冷蔵状態で解凍する低温冷蔵解凍工程と、低温冷蔵解凍工程にて解凍された臓器又は組織を、タンパク質分解抑制剤含有の生理食塩水で灌流して脱血する解凍時脱血工程と、解凍時脱血工程にて脱血された臓器又は組織の破損有無を確認する確認工程と、確認工程により確認された臓器又は組織を灌流用容器に接続する接続工程とを含むことを特徴とする。
ここで、低温冷蔵状態としては、2℃〜10℃程度であってもよい。
このような凍結保存工程後の解凍工程により、臓器又は組織を構成している細胞膜に微細な穴から、適宜、「ドリップ」を生じさせて、細胞質を容易に除去可能となる。これにより、細胞質内に脱細胞化液の浸透性が高まり、脱細胞化の時間短縮が可能となる。よって、上述のように、脱細胞化の時間短縮ができ、細胞骨格や細胞外マトリックスのアミノ酸の劣化や変性等の抑制を可能とすることができる。
In the method for producing a decellularized carrier according to the embodiment of the present invention, the thawing step includes a low-temperature refrigeration thawing step in which a cryopreserved organ or tissue is thawed in a low-temperature refrigerated state, and an organ thawed in the low-temperature refrigerated thawing step. Alternatively, a blood removal process at the time of thawing in which the tissue is perfused with a physiological saline containing a proteolysis inhibitor to remove blood, and a confirmation process for confirming whether or not the organ or tissue removed by the blood removal process at the time of thawing is damaged. And a connecting step of connecting the organ or tissue confirmed by the confirmation step to the perfusion container.
Here, the low temperature refrigerated state may be about 2 ° C to 10 ° C.
By such a thawing step after the cryopreservation step, a “drip” is appropriately generated from a minute hole in a cell membrane constituting an organ or tissue, and the cytoplasm can be easily removed. Thereby, the permeability of the decellularized solution into the cytoplasm is increased, and the decellularization time can be shortened. Therefore, as described above, the decellularization time can be shortened, and degradation of amino acids in the cytoskeleton or extracellular matrix, suppression of denaturation, etc. can be made possible.

また、従来の脱細胞化担体製造方法では、血栓除去をする手段がなかった。このため、血流がある拍動下の状態で臓器を摘出する必要があった。
これに対して、本発明の実施の形態に係る脱細胞化担体製造方法は、解凍時脱血工程において、臓器又は組織に含まれる微小血栓を除去する血栓除去工程を含むことを特徴とする。
このように構成することで、微小血栓が形成されていても脱細胞化が可能となる。つまり、本実施形態の脱細胞化担体製造方法では、凍結工程後に解凍工程を行う凍結融解の際に、十分な灌流による脱血を行うことで、微小血栓の存在下でも脱細胞が可能となる。より具体的には、本実施形態の脱細胞化担体製造方法は、対象臓器や組織が腐敗さえしていなければ、脱細胞化担体の製造が可能となる。
Further, in the conventional method for producing a decellularized carrier, there was no means for removing the thrombus. For this reason, it was necessary to remove the organ in a state of pulsation with blood flow.
In contrast, the method for producing a decellularized carrier according to the embodiment of the present invention is characterized by including a thrombus removal step of removing microthrombus contained in an organ or tissue in the blood removal step upon thawing.
With this configuration, decellularization is possible even if a microthrombus is formed. That is, in the method for producing a decellularized carrier of the present embodiment, decellularization is possible even in the presence of a microthrombus by performing blood removal by sufficient perfusion at the time of freeze-thawing in which the thawing step is performed after the freezing step. . More specifically, the method for producing a decellularized carrier according to the present embodiment makes it possible to produce a decellularized carrier as long as the target organ or tissue is not spoiled.

また、本実施形態の脱細胞化担体製造方法は、脱細胞化工程は、難水溶性界面活性剤含有溶液で解凍された臓器又は組織を灌流する難水溶性界面活性剤灌流工程と、難水溶性界面活性剤含有溶液により灌流された臓器又は組織を親水溶性界面活性剤含有用液で灌流する親水溶性界面活性剤灌流工程とを含む。
ここで、本実施形態の難水溶性界面活性剤含有溶液に含まれる難水溶性界面活性剤としては、水に溶けたときイオン化しない親水基を備える界面活性剤で、水の硬度や電解質の影響を受けにくい非イオン界面活性剤を用いることが好適である。この非イオン界面活性剤としては、トリトンX−100、NP−40等のポリオキシエチレンフェニルエーテル系の界面活性剤、DDM、ジギトニン、ツイン20、ツイン80等を用いることが可能である。本実施形態においては、特にNP−40を用いることが好適である。また、この際、NP−40は、必ずしもNP−40(octyl−phenoxy−polyethoxy−ethanol)そのものではなく、各種NP−40代替品、ノニデット(TM)P−40等を用いることが可能である。
このように構成することで、脱細胞化工程において、細胞質内の物質による濃度変化が起こりにくくなり、細胞外マトリクス等を残存させた上で、最初に細胞質内の物質を除去することが可能となる。
Further, in the method for producing a decellularized carrier of the present embodiment, the decellularization step includes a poorly water-soluble surfactant perfusion step of perfusing an organ or tissue thawed with a poorly water-soluble surfactant-containing solution, And a hydrophilic water-soluble surfactant perfusion step of perfusing an organ or tissue perfused with the hydrophilic surfactant-containing solution with a hydrophilic water-soluble surfactant-containing solution.
Here, as the poorly water-soluble surfactant contained in the poorly water-soluble surfactant-containing solution of the present embodiment, a surfactant having a hydrophilic group that does not ionize when dissolved in water, the influence of water hardness and electrolyte It is preferable to use a nonionic surfactant that is not easily affected. As this nonionic surfactant, polyoxyethylene phenyl ether surfactants such as Triton X-100 and NP-40, DDM, digitonin, Twin 20, Twin 80 and the like can be used. In the present embodiment, it is particularly preferable to use NP-40. At this time, the NP-40 is not necessarily NP-40 (octyl-phenoxy-polyethyl-ethanol) itself, but various NP-40 substitutes, Nonidet (TM) P-40, and the like can be used.
By configuring in this way, in the decellularization step, the concentration change due to the substance in the cytoplasm is less likely to occur, and it is possible to first remove the substance in the cytoplasm after leaving the extracellular matrix etc. Become.

また、本実施形態の親水溶性界面活性剤含有用液に含まれる親水溶性界面活性剤としては、水に溶けたときに、疎水基のついている部分がマイナス(陰)イオンに電離するアニオン界面活性剤(陰イオン界面活性剤)を好適に用いることが可能である。本実施形態においては、アルキル硫酸エステル塩類を用いてもよい。このアルキル硫酸エステル塩としては、特に、SDS(Sodium Dodecyl Sulfate)を用いることが好適である。
このように構成することで、脱細胞化工程において、難水性界面活性剤(NP−40)含有溶液での処理後、これを親水性界面活性剤(SDS)含有溶液で除去することで、その後の水洗浄時聞を従来の半分に短縮することができる。つまり、特許文献1に記載の従来技術等では界面活性剤の除去に水のみを使用しているが、本実施形態のように界面括性剤を除去するために、別の界面活性剤を用いることで、洗浄時間を少なくとも50%短縮することが可能となる。
In addition, the hydrophilic water-soluble surfactant contained in the liquid for containing a hydrophilic water-soluble surfactant of the present embodiment includes an anionic surface activity in which a portion having a hydrophobic group is ionized to a negative (anion) ion when dissolved in water. An agent (an anionic surfactant) can be preferably used. In this embodiment, alkyl sulfate ester salts may be used. As this alkyl sulfate ester salt, it is particularly preferable to use SDS (Sodium Dodecyl Sulfate).
By comprising in this way, in a decellularization process, after processing with a poorly water-soluble surfactant (NP-40) containing solution, after removing this with a hydrophilic surfactant (SDS) containing solution, The water washing time can be shortened to half of the conventional one. That is, in the prior art described in Patent Document 1, only water is used to remove the surfactant, but another surfactant is used to remove the surfactant as in this embodiment. As a result, the cleaning time can be reduced by at least 50%.

また、本発明の実施の形態に係る脱細胞化溶液キットは、臓器又は組織から脱細胞化担体を製造するための脱細胞化溶液であって、解凍された臓器又は組織を灌流する難水溶性界面活性剤含有溶液と、難水溶性界面活性剤含有溶液により灌流された臓器又は組織を灌流する親水溶性界面活性剤含有溶液とを含むことを特徴とする。
このように構成し、難水溶性界面活性剤と親水溶性界面活性剤含有溶液とは、脱細胞化溶液キットとして用意しておいてもよい。また、難水溶性界面活性剤と親水溶性界面活性剤含有溶液とは、用時調製してもよい。
The decellularization solution kit according to the embodiment of the present invention is a decellularization solution for producing a decellularization carrier from an organ or tissue, and is poorly water-soluble to perfuse a thawed organ or tissue. A surfactant-containing solution and a hydrophilic water-soluble surfactant-containing solution for perfusing an organ or tissue perfused with a poorly water-soluble surfactant-containing solution.
With such a configuration, the slightly water-soluble surfactant and the hydrophilic water-soluble surfactant-containing solution may be prepared as a decellularization solution kit. The slightly water-soluble surfactant and the hydrophilic water-soluble surfactant-containing solution may be prepared at the time of use.

本発明の実施の形態に係る脱細胞化担体製造方法は、脱細胞化工程は、親水溶性界面活性剤灌流工程にて灌流された臓器又は組織を洗浄後、安定化する安定化工程を含むことを特徴とする。
また、この安定化工程は、親水溶性界面活性剤灌流工程にて灌流された臓器又は組織を0.1〜3%ホルムアルデヒド溶液で灌流することを特徴とする。この際、本実施形態の安定化工程で用いるホルムアルデヒド溶液は、0.5〜1%であることが特に好適である。
このように構成し、親水溶性界面活性剤灌流工程の灌流後に0.1〜3%ホルムアルデヒド溶液を、0.5〜2時間灌流することにより、細胞骨格及び細胞外マトリクスの性質を維持しつつ、製造された脱細胞化担体の硬度を担保することができる。これにより、移植時における血管吻合の作業が容易になる。結果として、下記で説明するように、脱細胞化担体を細胞充填する足場材料として用いたり、再生医療用材料として用いたりするスキャフォールド治療への適用がしやすくなる。
なお、過酸化水素水を含む生理食塩水を、脱細胞化工程で用いてもよい。この場合も、細胞膜に微小な穴を開けることにより、各界面活性剤の流入性や細胞質内物の除去性が向上し、脱細胞化担体作製時間の短縮が可能となる。
In the method for producing a decellularized carrier according to the embodiment of the present invention, the decellularization step includes a stabilization step of stabilizing after washing the organ or tissue perfused in the hydrophilic water-soluble surfactant perfusion step. It is characterized by.
In addition, this stabilization step is characterized in that the organ or tissue perfused in the hydrophilic water-soluble surfactant perfusion step is perfused with a 0.1-3% formaldehyde solution. At this time, the formaldehyde solution used in the stabilization process of the present embodiment is particularly preferably 0.5 to 1%.
Constituting in this way and maintaining the properties of the cytoskeleton and extracellular matrix by perfusing a 0.1-3% formaldehyde solution after perfusion in the hydrophilic water-soluble surfactant perfusion step for 0.5-2 hours, The hardness of the produced decellularized carrier can be ensured. This facilitates blood vessel anastomosis during transplantation. As a result, as will be described below, it becomes easy to apply to a scaffold treatment in which a decellularized carrier is used as a scaffold material for filling cells or a regenerative medical material.
Note that physiological saline containing hydrogen peroxide may be used in the decellularization step. Also in this case, by making minute holes in the cell membrane, the inflow property of each surfactant and the removability of cytoplasmic substances are improved, and the decellularized carrier preparation time can be shortened.

また、本発明の実施の形態に係る細胞充填方法は、脱細胞化担体を生理食塩水で灌流後に培養液で灌流する生理食塩水灌流工程と、灌流工程により灌流された脱細胞化担体を置き換える置換工程と、置換工程にて培養液が灌流された脱細胞化担体の動脈から培養細胞を注入する細胞注入工程と、細胞注入工程により培養細胞が注入された後に灌流を停止して細胞を脱細胞化担体に接着させる細胞接着工程と、細胞接着工程により細胞が接着された脱細胞化担体に培養液の灌流を再開させて培養する灌流培養工程とを含むことを特徴とする。
このように構成することで、iPS細胞、ES細胞、又はその他の幹細胞(以下、「iPS細胞等」という。)から分化誘導された機能細胞、初代継体細胞等の培養細胞を脱細胞化担体に充填することができる。また、後述する実施例で示すように、細胞を充填した脱細胞化担体は、充填された培養細胞が移植後も生着可能となる。これは、上述したように、本実施形態の脱細胞化担体は抗原性が限りなく「0」であり、且つ、細胞外マトリックスの消失が少ないためであると考えられる。このため、本実施形態の細胞を充填した脱細胞化担体を、慢性的に問題視されている移植用臓器の不足を解決するために用いることが機体できる。
また、上述の安定化工程により脱細胞化担体の硬度が担保されることで、充填された培養細胞が生着した臓器としてより機能しやすくなる。
In addition, the cell filling method according to the embodiment of the present invention replaces the decellularized carrier perfused by the perfusion step with a physiological saline perfusion step in which the decellularized carrier is perfused with physiological saline and then perfused with a culture solution. A replacement step, a cell injection step of injecting cultured cells from the decellularized carrier artery perfused with the culture medium in the replacement step, and the perfusion is stopped after the cultured cells are injected in the cell injection step to remove the cells. A cell adhesion step for adhering to a cellized carrier; and a perfusion culture step for culturing by resuming the perfusion of the culture solution on the decellularized carrier to which cells are adhered by the cell adhesion step.
By configuring in this way, cultured cells such as functional cells and primary passage cells derived from iPS cells, ES cells, or other stem cells (hereinafter referred to as “iPS cells”) are used as a decellularization carrier. Can be filled. Moreover, as shown in the Example mentioned later, the cell-filled decellularized carrier can be engrafted even after transplanted cultured cells are transplanted. As described above, this is considered to be because the decellularized carrier of the present embodiment has an antigenicity of “0” as much as possible and there is little disappearance of the extracellular matrix. For this reason, the decellularization support | carrier filled with the cell of this embodiment can be used in order to solve the shortage of the organs for transplantation considered chronically a problem.
In addition, since the hardness of the decellularized carrier is ensured by the above-described stabilization step, it becomes easier to function as an organ in which the filled cultured cells are engrafted.

また、本発明の実施の形態に係る細胞充填方法は、主に脊椎動物を対象としている。この脊椎動物は特に限定されるものではなく、例えば、ヒト、家畜動物種、野生動物を含む。ここで、本実施形態の細胞充填方法は、実験的に、少なくともブタ、ラット、マウスの各臓器の脱細胞化に成功している。このため、本発明の実施の形態に係る脱細胞化担体製造方法は、ヒトの治療の他に、動物の治療、家畜の治療、異種間移植等の対象とすることができる。また、ペット産業においても適用可能となる。   Moreover, the cell filling method according to the embodiment of the present invention is mainly intended for vertebrates. This vertebrate is not particularly limited, and includes, for example, humans, domestic animal species, and wild animals. Here, the cell filling method of this embodiment has succeeded in decellularization of at least each organ of pig, rat, and mouse experimentally. For this reason, the decellularized carrier manufacturing method according to the embodiment of the present invention can be used for animal treatment, livestock treatment, xenotransplantation, etc. in addition to human treatment. It can also be applied in the pet industry.

また、本発明の実施の形態に係る細胞充填方法は、臓器又は組織が小腸の場合、動脈と門脈とを接続して灌流を行うことを特徴とする。
このように構成することで、細胞を充填した脱細胞化担体を機能する小腸として使用し、移植する可能性を高めることができる。これは、本実施形態の脱細胞化担体は、後述する実施例で示すように、小腸の絨毛部分及び筋層部分の構造を高度に残しているため、小腸の構造に合わせた配置で培養細胞が充填されるためである。
このため、iPS細胞等から分化誘導して各種器官を再生する技術により、絨毛部分及び筋層部分に分化された細胞の混合物を灌流して、絨毛部分及び筋層部分で別々に定着させることが期待できる。
In addition, the cell filling method according to the embodiment of the present invention is characterized in that when an organ or tissue is a small intestine, perfusion is performed by connecting an artery and a portal vein.
By comprising in this way, the decellularization support | carrier filled with the cell can be used as a functioning small intestine, and the possibility of transplanting can be increased. This is because the decellularized carrier of this embodiment, as shown in the examples described later, retains the structure of the villi portion and muscle layer portion of the small intestine at a high level. It is because is filled.
For this reason, it is possible to perfuse a mixture of cells differentiated into the villi portion and muscle layer portion by a technique that induces differentiation from iPS cells and the like to regenerate various organs, and to fix them separately in the villi portion and muscle layer portion. I can expect.

また、本発明の実施の形態に係る細胞シート作製方法は、脱細胞化担体を脱細胞化組織断片に薄層切片化する薄層切片化工程と、薄層切片化工程により薄層切片化された脱細胞化組織断片を洗浄し、培養細胞を播種する播種工程と、播種工程により培養細胞が播種された脱細胞化組織断片を培養する培養工程とを含むことを特徴とする。
ここで、この薄層切片の厚みは0.1〜5mm程度であることが好適である。また、培養細胞は、0.5〜10×105個程度の細胞を、複数回繰り返して播種してもよい。
このように構成し、本実施形態で製造された脱細胞化担体の1mm厚の薄層切片に細胞を播種した結果、従来技術より非常に短く、培養開始30分〜1時間に細胞接着していることを、予備実験で確認している。これは、脱細胞化の処理時間の短縮によって細胞骨格や細胞外マトリックスのアミノ酸の劣化や変性等の抑制を可能とした結果、得られた脱細胞化担体シートに播種した細胞が従来よりも短時間で細胞接着したものと考えられる。
この細胞接着した脱細胞化担体を細胞シートとして用いることが可能となる。つまり、iPS細胞やES細胞から分化誘導した機能細胞の正着及び機能発現した臓器の作成が可能となる。
なお、これらの細胞シートは、培養細胞を播種した後、一晩(オーバーナイト)程度インキュベートしてから用いてもよい。
In addition, the cell sheet preparation method according to the embodiment of the present invention includes a thin-layer sectioning step of thinning a decellularized carrier into a decellularized tissue fragment, and a thin-layer sectioning step. And a seeding step of washing the decellularized tissue fragment and seeding the cultured cell, and a culture step of culturing the decellularized tissue fragment seeded with the cultured cell by the seeding step.
Here, the thickness of the thin-layer slice is preferably about 0.1 to 5 mm. Further, the cultured cells may be seeded by repeating about 0.5 to 10 × 10 5 cells a plurality of times.
As a result of seeding cells on a 1 mm-thick thin-layer slice of the decellularized carrier produced in this embodiment, the cell adhesion was 30 minutes to 1 hour from the start of culture. It has been confirmed through preliminary experiments. This is because, as a result of shortening the decellularization processing time, it is possible to suppress degradation and degeneration of amino acids in the cytoskeleton and extracellular matrix, and as a result, the cells seeded on the obtained decellularized carrier sheet are shorter than before. It is thought that the cells adhered with time.
This cell-attached decellularized carrier can be used as a cell sheet. In other words, it is possible to create a correct adhesion of a functional cell derived from iPS cell or ES cell and a functionally expressed organ.
In addition, after seed | inoculating a cultured cell, you may use these cell sheets, after incubating overnight (overnight).

また、本発明の実施の形態に係る脱細胞化担体は、脱細胞化担体製造方法により製造されることを特徴とする。
このように構成した脱細胞化担体は、上述のように、細胞接着に優れ、又、細胞を充填した脱細胞化臓器は移植後も充填細胞が生着可能となる。すなわち、脱細胞化担体として高品質である。
In addition, the decellularized carrier according to the embodiment of the present invention is manufactured by a method for producing a decellularized carrier.
As described above, the decellularized carrier thus configured is excellent in cell adhesion, and the decellularized organ filled with cells can engraft the filled cells even after transplantation. That is, it is high quality as a decellularization carrier.

また、本実施形態の脱細胞化担体は、30%ショ糖液が浸漬されて凍結保存されることを特徴とする。
このように構成することで、本実施形態の脱細胞化担体は容易に凍結保存することが可能となる。また、本実施形態の脱細胞化担体の品質を保ちつつ、特殊な方法を用いずに使用可能状態とすることができる。このため、脱細胞化担体の応用が容易となる。
Further, the decellularized carrier of the present embodiment is characterized in that a 30% sucrose solution is immersed and stored frozen.
By comprising in this way, the decellularization support | carrier of this embodiment can be cryopreserved easily. Moreover, it can be made into a usable state, without using a special method, maintaining the quality of the decellularization support | carrier of this embodiment. This facilitates the application of the decellularized carrier.

なお、上述した各工程は、同時並行的に実行可能な工程を含んでいてもよく、工程の前後が一部変更されてもよく、当業者により本発明の趣旨を逸脱しない範囲での最適化が行われてもよい。   Each of the above-described steps may include a step that can be executed in parallel, and some of the steps before and after the step may be changed. Optimization within the scope of the present invention by a person skilled in the art is possible. May be performed.

また、本発明の実施の形態に係る脱細胞化担体製造方法は、他の組成物を用いた工程等と併用することも可能である。   In addition, the method for producing a decellularized carrier according to the embodiment of the present invention can be used in combination with a process using another composition.

また、本発明の実施の形態において、脱細胞化担体を治療用に用いた場合、疾患が改善又は軽減される期間は特に限定されないが、一時的な改善又は軽減であってもよいし、一定期間の改善又は軽減であってもよい。   In the embodiment of the present invention, when a decellularized carrier is used for treatment, the period during which the disease is improved or alleviated is not particularly limited, but may be temporary improvement or alleviation. It may be an improvement or reduction of the period.

以下で、本発明の実施の形態に係る脱細胞化担体製造方法について、実験を基にして、実施例としてさらに具体的に説明する。しかしながら、この実施例は一例にすぎず、これに限定されるものではない。   Hereinafter, the method for producing a decellularized carrier according to the embodiment of the present invention will be described more specifically as examples based on experiments. However, this embodiment is only an example, and the present invention is not limited to this.

〔試薬〕
本実施例で使用した試薬及び製造元を以下に記載する:
NP−40 Substitute(和光純薬工業株式会社製)、10%SDS溶液(和光純薬工業株式会社製)、生理食塩液(大塚製薬工場株式会社製、以下、「生食」という。)、ヘパリンナトリウム(ニプロ株式会社製)、過酸化水素(和光純薬工業株式会社製)、注射用水(大塚製薬工場株式会社製)、抗生物質−抗真菌剤混合溶液(Antibiotic−Antimycotic,100X、Gibco社製)、MEMalpha(Gibco社製)、FBS(Fetal Bovine Serum、Gibco社製)、PBS(TaKaRaBio社製)、タンパク質分解抑制剤(ProteoGuard EDTA−Free Protease Inhibitor Coctail、Clontech社製)、セファメジンナトリウム注射液(アステラス製薬株式会社社製)、スクロース(和光純薬工業株式会社社製)、10%中性緩衝ホルマリン又はホルムアルデヒド(和光純薬工業株式会社製)。
〔reagent〕
The reagents and manufacturers used in this example are listed below:
NP-40 Substitute (manufactured by Wako Pure Chemical Industries, Ltd.), 10% SDS solution (manufactured by Wako Pure Chemical Industries, Ltd.), physiological saline (manufactured by Otsuka Pharmaceutical Factory Co., Ltd., hereinafter referred to as “raw food”), heparin sodium (Manufactured by Nipro Co., Ltd.), hydrogen peroxide (manufactured by Wako Pure Chemical Industries, Ltd.), water for injection (manufactured by Otsuka Pharmaceutical Factory Co., Ltd.), antibiotic-antifungal mixed solution (Antibiotic-Antimycotic, 100X, manufactured by Gibco) , MEMalpha (Gibco), FBS (Fetal Bovine Serum, Gibco), PBS (TaKaRaBio), protein degradation inhibitor (ProteoGuard EDTA-Free Protease Inhibitor Cocktail, Clontech) Lilium injection solution (manufactured by Astellas Pharma Inc.), sucrose (manufactured by Wako Pure Chemical Industries, Ltd.), 10% neutral buffered formalin or formaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.).

〔器具〕
ガーゼ、ステンレス製クリップ、モスキート鉗子、鑷子、及び剪刀を手術器具等として用いた。これらの手術器具等は、使用前にオートクレーブで121℃15分処理の滅菌処理した。
タッパ(処置用)及び密閉式パックの器具等は、使用前にEOG滅菌した。
[Equipment]
Gauze, stainless steel clips, mosquito forceps, levers and scissors were used as surgical instruments. These surgical instruments were sterilized at 121 ° C. for 15 minutes in an autoclave before use.
The tapper (for treatment) and the equipment of the sealed pack were EOG sterilized before use.

以下の器具等は、滅菌済みの購入品を用いた:汎用吸入用カテーテル、アスピレーター、コネクティングチューブ、ポリプロピレン製ディスポーザブルシリンジ、注射針(26G)、6ウェルプレート。   The following instruments used were sterilized purchased items: general-purpose inhalation catheter, aspirator, connecting tube, polypropylene disposable syringe, injection needle (26G), 6-well plate.

〔試薬の調製〕
本実施例では、脱細胞化工程における難水溶性界面活性剤灌流工程にて、難水溶性界面活性剤として、NP−40を用いた。本実施例において、このNP−40を用いた難水溶性界面活性剤含有溶液を、以下「A液」という。具体的には、本実施例では、注射用水又は精製水1980mLにNP−40 Substituteを20mL加え、泡立たないように溶解することで、A液として用いた。
また、脱細胞化工程における親水溶性界面活性剤灌流工程にて、親水溶性界面活性剤として、SDSを用いた。本実施例において、このSDSを用いた親水溶性界面活性剤含有溶液を、以下、「B液」という。具体的には、本実施例では、注射用水又は精製水1800mLに10%SDS溶液を200mL加え、1%SDS溶液となるよう泡立たないように溶解して、B液として用いた。
また、その他の溶液については、試薬のマニュアルに記載の容量に従って調製した。
(Preparation of reagents)
In this example, NP-40 was used as the poorly water-soluble surfactant in the poorly water-soluble surfactant perfusion step in the decellularization step. In this example, the poorly water-soluble surfactant-containing solution using NP-40 is hereinafter referred to as “solution A”. Specifically, in this example, 20 mL of NP-40 substrate was added to 1980 mL of water for injection or purified water, and dissolved so as not to foam, and used as solution A.
Moreover, SDS was used as the hydrophilic water-soluble surfactant in the hydrophilic water-soluble surfactant perfusion step in the decellularization step. In this example, the water-soluble surfactant-containing solution using SDS is hereinafter referred to as “Liquid B”. Specifically, in this example, 200 mL of 10% SDS solution was added to 1800 mL of water for injection or purified water, and dissolved so as not to be foamed to become a 1% SDS solution, and used as B solution.
Other solutions were prepared according to the volumes described in the reagent manual.

<脱細胞化担体製造の処理例>
以下、本実施例に係る脱細胞化担体製造方法の各工程における処理の詳細について説明する。
<Example of processing for production of decellularized carrier>
Hereafter, the detail of the process in each process of the decellularization support | carrier manufacturing method based on a present Example is demonstrated.

〔凍結保存工程〕
まず、本実施例における、摘出された臓器又は組織を凍結保存する凍結保存工程について説明する。
本実施例の凍結保存工程では、以下の例で示すように、凍結時脱血工程、凍結保存溶液灌流工程、膨化工程、余剰溶液除去工程、及び凍結工程を実行した。
[Freeze preservation process]
First, a cryopreservation process for cryopreserving an extracted organ or tissue in the present example will be described.
In the cryopreservation process of this example, as shown in the following examples, a blood removal process during freezing, a cryopreservation solution perfusion process, a swelling process, a surplus solution removal process, and a freezing process were performed.

(凍結時脱血工程)
本実施例の凍結時脱血工程では、灌流固定用カテーテルを留置し、臓器又は組織をヘパリン加生理食塩液(2000Unit(U)/500mL、以下、「ヘパリン生食」という。)で灌流して脱血した。
(Bleeding process when frozen)
In the blood removal step at the time of freezing in this example, a catheter for perfusion fixation is placed, and the organ or tissue is perfused with heparinized physiological saline (2000 Unit (U) / 500 mL, hereinafter referred to as “heparin saline”) to remove it. Blooded.

このため、まず、臓器又は組織に灌流固定用カテーテルを留置した。具体的には、臓器又は組織の血管を露出剥離し、メジャーで当該血管外径を測定した。次に、血管の外径に適したカテーテルを選択した。このカテーテルとしては、血管外形に対応して、輸血用延長チューブ若しくはIVHカテーテルを選択した。この血管外径と、使用したカテーテルと、縫合糸とは、下記のように選択した:

血管外径 カテーテル 縫合糸
>4.0mm、左心耳 輸血用延長チューブ 3−0絹糸
3.0〜4.0mm 輸血用延長チューブ 3−0絹糸
2.0〜2.9mm 14GIVHカテーテル 4−0ナイロン糸
1.5〜2.0mm 16GIVHカテーテル 4−0ナイロン糸
1.0〜1.4mm 18GIVHカテーテル 5−0ナイロン糸
For this reason, first, a perfusion fixation catheter was placed in an organ or tissue. Specifically, the blood vessel of an organ or tissue was exposed and peeled, and the blood vessel outer diameter was measured with a measure. Next, a catheter suitable for the outer diameter of the blood vessel was selected. As this catheter, an extension tube for blood transfusion or an IVH catheter was selected corresponding to the outer shape of the blood vessel. The vessel outer diameter, the catheter used, and the suture were selected as follows:

Vascular outer diameter Catheter Suture> 4.0 mm, left atrial appendage Transfusion extension tube 3-0 silk thread 3.0-4.0 mm Transfusion extension tube 3-0 silk thread 2.0-2.9 mm 14 GIVH catheter 4-0 nylon thread 1.5-2.0mm 16GIVH catheter 4-0 nylon thread 1.0-1.4mm 18GIVH catheter 5-0 nylon thread

次に、選択したカテーテルに三方活栓と20mLシリンジ(テルモ株式会社)を取り付け、ヘパリン生食で満たし、臓器又は組織のエア抜きをした。次に、カテーテルを、三方活栓連結部から40cmの位置で切断した。次に、血管中枢側を結紮縫合した。次に、血管中枢側にメッツェンで切り込みを入れ、カテーテルを挿入した。次に、ブルドッグ鉗子で、血管とカテーテルを簡易固定した。そして、カテーテル挿入部位の2ヵ所及びカテーテルの1箇所で、結紮固定した。   Next, a three-way stopcock and a 20 mL syringe (Terumo Corporation) were attached to the selected catheter, filled with heparinized saline, and the organ or tissue was vented. Next, the catheter was cut at a position of 40 cm from the three-way stopcock connecting portion. Next, the vascular center side was ligated and sutured. Next, an incision was made with a metzen on the blood vessel center side, and a catheter was inserted. Next, the blood vessel and the catheter were simply fixed with bulldog forceps. Then, ligation and fixation were performed at two places of the catheter insertion site and one place of the catheter.

次に、実際に、臓器又は組織への脱血のための灌流を行った。
具体的には、各臓器又は組織の動脈及び静脈にカテーテルを約1cm挿入、留置した。この上で、ヘパリン生食を動脈側カテーテルから200mL以上ポンピング注入し、静脈側カテーテルから血液が排出されることを確認した。白く色が抜けてきていることを確認した。
Next, perfusion for blood removal to an organ or tissue was actually performed.
Specifically, about 1 cm of a catheter was inserted and placed in the artery and vein of each organ or tissue. Then, 200 mL or more of heparin saline was pumped and injected from the artery side catheter, and it was confirmed that blood was discharged from the vein side catheter. It was confirmed that white color was missing.

(凍結保存溶液灌流工程)
次に、凍結保存溶液灌流工程では、上述の凍結時脱血工程にて脱血された臓器又は組織を、凍結保存溶液で灌流した。
本実施例の凍結保存溶液は、生理食塩水に0.1%過酸化水素に調整した液を用いた。また、静脈側の三方活栓を閉にし、凍結保存溶液を動脈側より注入した。
(Cryopreservation solution perfusion process)
Next, in the cryopreservation solution perfusion step, the organ or tissue that was blood-depleted in the above-described blood removal step during freezing was perfused with the cryopreservation solution.
As the cryopreservation solution of this example, a solution adjusted to 0.1% hydrogen peroxide in physiological saline was used. Further, the three-way stopcock on the venous side was closed, and a cryopreservation solution was injected from the arterial side.

(膨化工程)
膨化工程では、凍結保存溶液で灌流した凍結保存溶液灌流工程にて灌流された臓器又は組織を、凍結保存溶液で満たして膨化させた。
具体的には、凍結保存溶液が注入されて臓器又は組織内が膨化(全体的に張った状態)になったことを確認し、動脈側の三方活栓を閉にした。
(Expansion process)
In the swelling step, the organ or tissue perfused in the cryopreservation solution perfusion step perfused with the cryopreservation solution was filled with the cryopreservation solution and swollen.
Specifically, it was confirmed that the cryopreservation solution was injected and the internal organ or tissue was swollen (as a whole), and the arterial three-way stopcock was closed.

(余剰溶液除去工程)
余剰溶液除去工程では、膨化された臓器又は組織に付着した余剰の凍結保存溶液を除去した。
具体的には、臓器又は組織の表面に付着した余剰水分をペーパータオルで除去した。
(Excess solution removal step)
In the surplus solution removing step, surplus cryopreservation solution adhering to the swollen organ or tissue was removed.
Specifically, excess water adhering to the surface of the organ or tissue was removed with a paper towel.

(凍結工程)
凍結工程では、余剰溶液除去工程にて余剰の凍結保存溶液を除去された臓器又は組織を−20℃以下で凍結した。
具体的には、ジップロック等の容器内に臓器又は組織を移し、−20℃又は−80℃にて凍結保管した。
(Freezing process)
In the freezing step, the organ or tissue from which the excess cryopreservation solution was removed in the surplus solution removing step was frozen at −20 ° C. or lower.
Specifically, the organ or tissue was transferred into a container such as Ziplock and stored frozen at -20 ° C or -80 ° C.

〔解凍工程及び脱細胞化工程〕
ここで、体重10kg前後の実験用豚から摘出された肝臓、腎臓、心臓、脾臓、肺のそれぞれについて、上述の凍結保存工程を経て、解凍工程及び脱細胞化工程を実行した例について下記で説明する。
なお、下記の臓器の各灌流時間は目安であり、目視による確認を優先した。
[Thawing step and decellularization step]
Here, an example of performing the thawing step and the decellularization step through the cryopreservation step described above for each of the liver, kidney, heart, spleen, and lung extracted from a laboratory pig weighing about 10 kg will be described below. To do.
In addition, each perfusion time of the following organ is a standard, and priority was given to visual confirmation.

[肝臓]
(低温冷蔵解凍工程)
凍結保存された臓器を低温冷蔵状態で解凍した。具体的には、凍結された臓器を24±1時間、4℃で解凍した。臓器が完全に解凍していることを確認した。
[liver]
(Low temperature refrigeration thawing process)
The cryopreserved organ was thawed in a low-temperature refrigerated state. Specifically, frozen organs were thawed at 4 ° C. for 24 ± 1 hours. It was confirmed that the organ was completely thawed.

(解凍時脱血工程、確認工程、接続工程)
次に、低温冷蔵解凍工程にて解凍された臓器を、タンパク質分解抑制剤含有の生理食塩水で灌流して脱血した。
具体的には、まず、肝臓に生食をかけて、付着、残存している血餅等を洗い落とした。
次に、門脈カテーテル及び肝動脈カテーテルから、ディスポーザブルシリンジを用いて、生食(各50mL×5)を注入し、抵抗や漏れがなく、肝静脈から排出されることを確認した。最初のポンピングでは抵抗を感じたものの、この時点で無理に押し込むと血管や皮膜が破裂する可能性があるので注意した。次第に抵抗がなくなり、スムーズに生食をポンピング注入できることを確認した。
次に、門脈カテーテルの三方活栓に自動灌流装置の注入チューブを接続し、更に門脈カテーテルの三方活栓と肝動脈カテーテルの三方活栓を、コネクターで結合した。
タンパク質分解抑制剤をマニュアル記載容量含有させた生食(以下、「含タンパク質分解抑制剤生食」という。)を調製し、滅菌パックに2000mLを入れ、滅菌ガーゼを上部に取り付けた。肝臓が1cm程生食に浸かるようにガーゼに乗せた。この際、臓器が液面に浸りすぎると、浮遊して灌流液中で動いてしまうので注意した。また、臓器全体がガーゼに乗っているよう注意した。また、肝動脈、門脈共に血管が肝門部から出て、折れ曲がっていないことを確認した。
次に、肝臓を10℃の冷蔵庫又は10℃の環境下に移動した。ここで、4℃に設定した場合、後の工程で灌流液が析出してくる可能性があるので注意した。また、室温だと自己融解によるタンパク分解酵素産生により、脱細胞化担体の構築傷害が起こる可能性があるので避けた。
次に、肝動脈の三方活栓を閉鎖し、門脈のみ三方活栓を開放にして、自動灌流装置を用いて含タンパク質分解抑制剤生食を60〜80mL/分で15分灌流した。
次に、門脈の三方活栓を閉鎖し、肝動脈のみ三方活栓を開放にして、自動灌流装置を用いて含タンパク質分解抑制剤生食を60〜80mL/分で15分灌流した。
次に、門脈及び肝動脈の三方活栓を両方開放にし、自動灌流装置を用いて含タンパク質分解抑制剤生食を80mL/分で30分×2回灌流した。生食が赤く濁った場合、再度15分灌流した。
つまり、このように生食が赤く濁らなくなるまで灌流することで、解凍時脱血工程における血栓除去工程として、臓器又は組織から微小血栓を除去することが可能であった。これは以下の他の臓器でも同様である。
(Through blood removal process, confirmation process, connection process)
Next, the organs thawed in the low-temperature refrigerated thawing step were perfused with physiological saline containing a proteolysis inhibitor to remove blood.
Specifically, first, the liver was slaughtered to remove blood clots and the like that had adhered and remained.
Next, a raw meal (50 mL × 5 each) was injected from the portal vein catheter and the hepatic artery catheter using a disposable syringe, and it was confirmed that there was no resistance or leakage, and that it was discharged from the hepatic vein. I felt resistance in the first pumping, but I was careful because if I push it forcibly at this point, the blood vessels and the membrane may burst. It was confirmed that the resistance gradually disappeared and the raw food could be pumped smoothly.
Next, an infusion tube of an automatic perfusion device was connected to the three-way stopcock of the portal vein catheter, and the three-way stopcock of the portal vein catheter and the three-way stopcock of the hepatic artery catheter were connected by a connector.
A raw food containing a proteolysis inhibitor in a volume described in the manual (hereinafter referred to as “proteolysis-containing inhibitor raw food”) was prepared, 2000 mL was placed in a sterile pack, and a sterile gauze was attached to the top. The liver was placed on a gauze so that the liver was immersed in about 1 cm. At this time, if the organ is immersed in the liquid level too much, it will float and move in the perfusate. Also, care was taken that the whole organ was on the gauze. In addition, it was confirmed that both the hepatic artery and the portal vein were not bent because the blood vessels came out of the hepatic portal portion.
Next, the liver was moved to a 10 ° C. refrigerator or a 10 ° C. environment. Here, when it set to 4 degreeC, since the perfusate may precipitate in a next process, it was careful. In addition, at room temperature, the construction damage of the decellularized carrier may occur due to the production of proteolytic enzyme by autolysis.
Next, the three-way stopcock of the hepatic artery was closed, the three-way stopcock was opened only in the portal vein, and a protein-containing degradation inhibitor raw diet was perfused at 60-80 mL / min for 15 minutes using an automatic perfusion apparatus.
Next, the three-way stopcock of the portal vein was closed, the three-way stopcock was opened only in the hepatic artery, and a protein-containing degradation inhibitor raw diet was perfused at 60-80 mL / min for 15 minutes using an automatic perfusion device.
Next, the three-way stopcocks of the portal vein and hepatic artery were both opened, and a protein-containing degradation inhibitor saline was perfused twice at 80 mL / min for 30 minutes using an automatic perfusion apparatus. When the raw food became red and cloudy, it was perfused again for 15 minutes.
That is, by irrigating until the raw food becomes red and cloudy in this way, it was possible to remove microthrombus from an organ or tissue as a thrombus removal step in the blood removal step upon thawing. The same applies to the other organs described below.

最終的な確認工程として、解凍時脱血工程にて脱血された肝臓の破損有無を確認した。この際、亀裂又は穿孔が生じた臓器又は組織は、脱細胞化担体製造から除外した。
なお、この確認工程は、他の臓器でも同様の処理を行った。
As a final confirmation step, the presence or absence of damage to the liver that had been blood-removed in the blood removal step during thawing was confirmed. At this time, organs or tissues with cracks or perforations were excluded from the decellularized carrier production.
In addition, this confirmation process performed the same process also with another organ.

(難水溶性界面活性剤灌流工程)
ここで、自動灌流装置を停止し、A液に置換した。そして、自動灌流装置を用いてA液を肝動脈及び門脈の順に60mL/分で15〜30分灌流し、その後両方開放にし、80〜120mL/分で20分×3回灌流した。この際、A液に置換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。
図1(a)(b)によると、灌流後しばらくしたと血管周囲が半透明状に変化してきた。ここで、図1(a)は灌流直後、図1(b)は3回目の灌流の際の写真を示す。
図1(c)によると、その後、肝臓の辺縁部も少し半透明状に変化してくることを確認した。
(Slightly water-soluble surfactant perfusion process)
Here, the automatic perfusion apparatus was stopped and replaced with solution A. Then, using an automatic perfusion apparatus, solution A was perfused in the order of hepatic artery and portal vein at 60 mL / min for 15 to 30 minutes, and then both were opened, and perfusion was performed at 80 to 120 mL / min for 20 minutes × 3 times. At this time, immediately after the replacement with the liquid A, it was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed and gradually increased to 60 mL / min.
According to FIGS. 1 (a) and 1 (b), the circumference of the blood vessel changed to a translucent state after a while after perfusion. Here, FIG. 1A shows a photograph immediately after perfusion, and FIG. 1B shows a photograph of the third perfusion.
According to FIG.1 (c), it confirmed that the edge part of the liver also changed a little translucent after that.

(親水溶性界面活性剤灌流工程)
その後、自動灌流装置を停止し、B液に置換した。そして、自動灌流装置を用いてB液を肝動脈及び門脈の順に60mL/分で15〜30分灌流し、その後両方開放にし、80〜120mL/分で20分×6回灌流した。この際、B液に交換した直後は難水溶性界面活性剤灌流工程と同様に20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。
図2(a)(b)によると、B液の初回灌流では、劇的に肝臓が透明になってくるため、灌流後、液がすぐ濁ってくる。図2(a)は初回灌流の前、図2(b)は初回灌流後の写真を示す。
図2(c)によると、この灌流完了後に、完全に肝臓が半透明状の脱細胞化組織になっていることを確認した。
(Water-soluble surfactant perfusion process)
Then, the automatic perfusion apparatus was stopped and replaced with solution B. Then, using an automatic perfusion apparatus, solution B was perfused in the order of hepatic artery and portal vein at 60 mL / min for 15 to 30 minutes, and then both were opened and perfused 20 to 6 times at 80 to 120 mL / min. At this time, immediately after exchanging with the liquid B, the perfusion was perfused while observing the state at 20 mL / min as in the case of the poorly water-soluble surfactant perfusion step, and it was confirmed that the perfusate smoothly flowed and gradually increased to 60 mL / min. I went.
According to FIGS. 2 (a) and 2 (b), in the first perfusion of the B liquid, the liver becomes dramatically transparent, so that the liquid becomes cloudy immediately after the perfusion. FIG. 2A shows a photograph before the first perfusion, and FIG. 2B shows a photograph after the first perfusion.
According to FIG. 2 (c), it was confirmed that the liver was completely translucent decellularized tissue after the completion of the perfusion.

次に、灌流装置を一時的に外し、別途用意したB液で肝動脈カテーテル及び門脈から500mL×3回灌流した。3回目の灌流液の一部を回収し、吸光度計を用いてdsDNAを測定し、0.5ng/μL以下であることを確認した。この値を超える場合は、自動灌流装置を用いてB液を80〜120mL/分で30分追加実行し、再度同様の濃度測定を行った。また、B液の総灌流時間が6時間を越える場合は、この濃度測定を除外した。
次に、B液を全て吸引し、精製水(注射用水)に置換した。具体的には、自動灌流装置を用いて精製水を肝動脈及び門脈の順に60mL/分で15〜30分灌流し、その後両方開放にし、80〜120mL/分で15分×8回、30分×6回、その後は(120分×4回/日)×6日間灌流した。この際、脱細胞化臓器の中心部分は微細な網目構造となっているため、洗浄灌流には回数だけでなく十分な時間をかけた。
その後、最終灌流液(精製水)を採取し、吸光度計を用いてdsDNAを測定し、dsDNAが0.0ng/μL(検出限界以下)であることを確認し、更にPCRによる細胞残存の有無を確認した。
Next, the perfusion apparatus was temporarily removed, and perfusion was performed 500 mL × 3 times from the hepatic artery catheter and the portal vein with B liquid separately prepared. A part of the third perfusate was collected and dsDNA was measured using an absorptiometer to confirm that it was 0.5 ng / μL or less. When this value was exceeded, the B liquid was additionally executed at 80 to 120 mL / min for 30 minutes using an automatic perfusion apparatus, and the same concentration measurement was performed again. In addition, this concentration measurement was excluded when the total perfusion time of solution B exceeded 6 hours.
Next, all the B liquid was sucked and replaced with purified water (water for injection). Specifically, using an automatic perfusion device, purified water is perfused in the order of hepatic artery and portal vein at 60 mL / min for 15 to 30 minutes, and then both are opened, then 80 to 120 mL / min for 15 minutes × 8 times, 30 Perfusion was performed for 6 minutes, then (120 minutes × 4 times / day) × 6 days. At this time, since the central part of the decellularized organ has a fine network structure, the washing perfusion took not only the number of times but also a sufficient time.
Thereafter, the final perfusate (purified water) is collected, dsDNA is measured using an absorptiometer, and it is confirmed that the dsDNA is 0.0 ng / μL (below the detection limit). confirmed.

[腎臓]
(低温冷蔵解凍工程)
凍結保存された臓器を24±1時間、4℃で解凍した。臓器が完全に解凍していることを確認してから、以下の処理を行った。
[kidney]
(Low temperature refrigeration thawing process)
The cryopreserved organ was thawed at 4 ° C. for 24 ± 1 hour. After confirming that the organ was completely thawed, the following treatment was performed.

(解凍時脱血工程、確認工程、接続工程)
次に、腎臓に生食をかけて、付着、残存している血餅等を洗い落とした。
次に、腎動脈カテーテルから、ディスポーザブルシリンジを用いて、生食(50mL×3)を注入し、抵抗や漏れがなく、肝静脈から排出されることを確認した。最初のポンピングでは抵抗を感じたものの、この時点で無理に押し込むと血管や皮膜が破裂する可能性があるので注意した。次第に抵抗がなくなり、スムーズに生食をポンピング注入できることを確認した。
次に、腎動脈カテーテルの三方活栓に自動灌流装置の注入チューブを接続した。
次に、含タンパク質分解抑制剤生食2000mLを滅菌パックに入れ、滅菌ガーゼを上部に取り付けた。腎臓が1cm程生食に浸かるようにガーゼに乗せた。液面に浸りすぎると、浮遊して灌流液中で動いてしまうので注意した。臓器全体がガーゼに乗っているよう注意した。腎動静脈共に血管が腎門部から出て、折れ曲がっていないことを確認した。
次に、腎臓を10℃の冷蔵庫又は10℃の環境下に移動した。ここで、4℃に設定すると、後の工程で灌流液が析出してくる可能性があるので注意した。また、室温だと細胞化担体の構築傷害が起こる可能性があるので避けた。
次に、腎動脈の三方活栓を開放にして、自動灌流装置を用いて含タンパク質分解抑制剤生食を40〜60mL/分で15分×2回灌流した。生食が赤く濁るようなら、再度15分灌流した。
(Through blood removal process, confirmation process, connection process)
Next, a raw meal was applied to the kidneys to wash off any adhering or remaining blood clots.
Next, a raw meal (50 mL × 3) was injected from the renal artery catheter using a disposable syringe, and it was confirmed that there was no resistance or leakage and that it was discharged from the hepatic vein. I felt resistance in the first pumping, but I was careful because if I push it forcibly at this point, the blood vessels and the membrane may burst. It was confirmed that the resistance gradually disappeared and the raw food could be pumped smoothly.
Next, the injection tube of the automatic perfusion device was connected to the three-way stopcock of the renal artery catheter.
Next, 2000 mL of a protein-containing degradation inhibitor raw food was placed in a sterilized pack, and a sterilized gauze was attached to the top. I put it on the gauze so that the kidney was immersed in about 1 cm of raw food. Be careful not to immerse it too much in the liquid surface as it will float and move in the perfusate. Care was taken that the whole organ was on the gauze. It was confirmed that the blood vessels of the renal arteries and veins exited from the hilar part and were not bent.
The kidneys were then moved to a 10 ° C. refrigerator or 10 ° C. environment. Here, when it set to 4 degreeC, since the perfusate may precipitate in a next process, it was careful. In addition, it was avoided at room temperature because there is a possibility that the cell carrier is damaged.
Next, the three-way stopcock of the renal artery was opened, and the protein-containing degradation inhibitor raw diet was perfused twice for 15 minutes × 40-60 mL / min using an automatic perfusion apparatus. If the raw food became red and cloudy, it was perfused again for 15 minutes.

(難水溶性界面活性剤灌流工程)
最終的な確認工程の後、自動灌流装置を停止し、A液に置換した。そして、自動灌流装置を用いてA液を40〜60mL/分で20分×3回灌流した。A液に置換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。灌流後しばらくしたと血管周囲が半透明状に変化してきた。その後、腎臓全体が少し半透明状に変化してくることを確認した。
(Slightly water-soluble surfactant perfusion process)
After the final confirmation step, the automatic perfusion apparatus was stopped and replaced with solution A. And A liquid was perfused 20 times * 3 times by 40-60 mL / min using the automatic perfusion apparatus. Immediately after replacement with solution A, the solution was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed, and was gradually increased to 60 mL / min. After a while after perfusion, the circumference of the blood vessel changed to a translucent state. After that, it was confirmed that the whole kidney was slightly translucent.

(親水溶性界面活性剤灌流工程)
次に、自動灌流装置を停止し、B液に置換した。そして、自動灌流装置を用いてB液を60mL/分で20分×6回灌流した。B液に交換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。
図3(a)によると、B液の初回灌流では、劇的に腎臓が透明になってくるため、灌流後、液がすぐ濁ってきた。
図3(b)によると、6回灌流後に、完全に腎臓が半透明状の脱細胞化組織になっていることを確認した。
(Water-soluble surfactant perfusion process)
Next, the automatic perfusion apparatus was stopped and replaced with solution B. And B liquid was perfused 20 minutes x 6 times at 60 mL / min using the automatic perfusion apparatus. Immediately after the replacement with the B liquid, it was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed and gradually increased to 60 mL / min.
According to FIG. 3 (a), in the first perfusion of the B liquid, the kidney became dramatically transparent, so that the liquid became cloudy immediately after the perfusion.
According to FIG. 3B, it was confirmed that the kidney was completely translucent decellularized tissue after 6 perfusions.

次に、灌流装置を一時的に外し、別途用意したB液で腎動脈カテーテルから50mL×3回灌流した。3回目の灌流液の一部を回収し、吸光度計を用いてdsDNAを測定し、0.5ng/μL以下であることを確認した。この値を超える場合は、自動灌流装置を用いてB液を40〜60mL/分で15分追加灌流し、再度同様の濃度測定を行った。また、B液の総灌流時間が6時間を越える場合は、この濃度判定は行わなかった。
次に、B液を全て吸引し、精製水(注射用水)に置換した。そして、自動灌流装置を用いて精製水を40〜60mL/分で15分×8回、30分×6回、その後は(120分×4回/日)×6日間灌流した。この際、脱細胞化臓器の中心部分は微細な網目構造となっているため、洗浄灌流には回数だけでなく十分な時間をかけた。
その後、最終灌流液(精製水)を採取し、吸光度計を用いてdsDNAを測定し、dsDNAが0.0ng/μL(検出限界以下)であることを確認し、更にPCRによる細胞残存の有無を確認した。
Next, the perfusion apparatus was temporarily removed, and perfusion was performed 50 mL × 3 times from the renal artery catheter with a separately prepared B solution. A part of the third perfusate was collected and dsDNA was measured using an absorptiometer to confirm that it was 0.5 ng / μL or less. When this value was exceeded, the liquid B was additionally perfused at 40-60 mL / min for 15 minutes using an automatic perfusion apparatus, and the same concentration measurement was performed again. Further, when the total perfusion time of the liquid B exceeded 6 hours, this concentration determination was not performed.
Next, all the B liquid was sucked and replaced with purified water (water for injection). Then, using an automatic perfusion apparatus, purified water was perfused at 40 to 60 mL / min for 15 minutes × 8 times, 30 minutes × 6 times, and then (120 minutes × 4 times / day) × 6 days. At this time, since the central part of the decellularized organ has a fine network structure, the washing perfusion took not only the number of times but also a sufficient time.
Thereafter, the final perfusate (purified water) is collected, dsDNA is measured using an absorptiometer, and it is confirmed that the dsDNA is 0.0 ng / μL (below the detection limit). confirmed.

[脾臓]
(低温冷蔵解凍工程)
凍結臓器を24±1時間、4℃で解凍した。必ず臓器が完全に解凍していることを確認してから、以下の処理を行った。
[spleen]
(Low temperature refrigeration thawing process)
Frozen organs were thawed at 4 ° C. for 24 ± 1 hours. After confirming that the organ was completely thawed, the following treatment was performed.

(解凍時脱血工程、確認工程、接続工程)
次に、脾臓に生食をかけて、付着、残存している血餅等を洗い落とした。
次に、脾動脈カテーテルから、ディスポーザブルシリンジを用いて、生食(50mL×6)を注入し、抵抗や漏れがなく、脾静脈から排出されることを確認した。最初のポンピングでは抵抗を感じるが、この時点で無理に押し込むと血管や皮膜が破裂する可能性があるので注意した。特に脾動脈カテーテルは他の臓器に比べ細い可能性があるので、圧でカテーテルが抜けてしまわないよう注意した。次第に抵抗がなくなり、スムーズに生食をポンピング注入できることを確認した。
次に、脾動脈カテーテルの三方活栓に自動灌流装置の注入チューブを接続した。
次に、含タンパク質分解抑制剤生食を滅菌パックに2000mL入れ、滅菌ガーゼを上部に取り付けた。脾臓が1cm程生食に浸かるようにガーゼに乗せた。液面に浸りすぎると、浮遊して灌流液中で動いてしまうので注意した。臓器全体がガーゼに乗っているよう注意した。脾動静脈共に血管が脾門部から出て、折れ曲がっていないことを確認した。
次に、脾臓を10℃の冷蔵庫又は10℃の環境下に移動した。ここで、4℃に設定すると、後の工程で灌流液が析出してくる可能性があるので注意した。また、室温だと脱細胞化担体の構築傷害が起こる可能性があるので避けた。
次に、脾動脈の三方活栓を開放にして、自動灌流装置を用いて含タンパク質分解抑制剤生食を40〜60mL/分で15分×5回灌流した。生食が赤く濁るようなら、再度15分灌流した。脾臓の辺縁には血液が残存しがちであった。抜けが悪い場合は、軽く手でもむと脱血しやすい傾向があった。脱血出来ていない状況で次の工程へ進むと灌流時間が長時間になり、微細構造が保たれない可能性があるため注意した。
図4(a)によると、脾臓全体が脱血されてピンク色になるまでしっかりと生食で灌流した。
(Through blood removal process, confirmation process, connection process)
Next, the spleen was eaten raw, and the clots and the like that adhered and remained were washed away.
Next, a raw meal (50 mL × 6) was injected from the splenic artery catheter using a disposable syringe, and it was confirmed that there was no resistance or leakage and the splenic vein was discharged. At first pumping, you feel resistance, but be careful because if you force it in at this point, the blood vessels and skin may burst. In particular, the splenic artery catheter may be thinner than other organs, so care was taken to prevent the catheter from being pulled out by pressure. It was confirmed that the resistance gradually disappeared and the raw food could be pumped smoothly.
Next, the injection tube of the automatic perfusion device was connected to the three-way stopcock of the splenic artery catheter.
Next, 2000 mL of the protein-containing degradation inhibitor raw food was placed in a sterile pack, and a sterile gauze was attached to the top. The spleen was placed on a gauze so that it was immersed in about 1 cm of raw food. Be careful not to immerse it too much in the liquid surface as it will float and move in the perfusate. Care was taken that the whole organ was on the gauze. In both splenic arteries and veins, it was confirmed that the blood vessels exited from the splenic hilum and were not bent.
Next, the spleen was moved to a 10 ° C. refrigerator or a 10 ° C. environment. Here, when it set to 4 degreeC, since the perfusate may precipitate in a next process, it was careful. In addition, the construction damage of the decellularized carrier may occur at room temperature, so it was avoided.
Next, the three-way stopcock of the splenic artery was opened, and the protein-containing degradation inhibitor saline was perfused 15 times × 5 times at 40 to 60 mL / min using an automatic perfusion apparatus. If the raw food became red and cloudy, it was perfused again for 15 minutes. Blood tended to remain at the margin of the spleen. When the omission was poor, there was a tendency for blood removal to occur with a light hand. When proceeding to the next step in a situation where blood removal was not possible, the perfusion time would be long and the fine structure might not be maintained.
According to FIG. 4 (a), the whole spleen was thoroughly perfused with saline until it was bleeded and turned pink.

(難水溶性界面活性剤灌流工程)
最終的な確認工程の後、自動灌流装置を停止し、A液に置換した。そして、自動灌流装置を用いてA液を40〜60mL/分で20分×3回灌流した。A液に置換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。灌流後しばらくすると、脾臓全体が半透明状に変化してきた。その後、脾臓全体が少し半透明状に変化してくることを確認した。
(Slightly water-soluble surfactant perfusion process)
After the final confirmation step, the automatic perfusion apparatus was stopped and replaced with solution A. And A liquid was perfused 20 times * 3 times by 40-60 mL / min using the automatic perfusion apparatus. Immediately after replacement with solution A, the solution was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed, and was gradually increased to 60 mL / min. Some time after the perfusion, the entire spleen changed to translucent. After that, it was confirmed that the whole spleen changed slightly translucent.

(親水溶性界面活性剤灌流工程)
次に、自動灌流装置を停止し、B液に置換した。そして、自動灌流装置を用いてB液を60mL/分で20分×6回灌流した。B液に交換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。
図4(b)によると、B液の初回灌流では、劇的に腎臓が透明になってくるため、灌流後、液がすぐ濁ってきた。
図4(c)によると、6回灌流後に、完全に脾臓が半透明状の脱細胞化組織になっていることを確認した。
(Water-soluble surfactant perfusion process)
Next, the automatic perfusion apparatus was stopped and replaced with solution B. And B liquid was perfused 20 minutes x 6 times at 60 mL / min using the automatic perfusion apparatus. Immediately after the replacement with the B liquid, it was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed and gradually increased to 60 mL / min.
According to FIG.4 (b), in the first perfusion of B liquid, since the kidney became dramatically transparent, the liquid became cloudy immediately after perfusion.
According to FIG. 4 (c), it was confirmed that the spleen was completely translucent decellularized tissue after 6 perfusions.

次に、灌流装置を一時的に外し、別途用意したB液で脾動脈カテーテルから500mL×3回灌流した。3回目の灌流液の一部を回収し、吸光度計を用いてdsDNAを測定し、0.5ng/μL以下であることを確認した。この値を超える場合は、自動灌流装置を用いてB液を40〜60mL/分で15分追加灌流し、再度同様の濃度測定を行った。B液の総灌流時間が6時間を越える場合は、この濃度判定は行わなかった。
次に、B液を全て吸引し、精製水(注射用水)に置換した。そして、自動灌流装置を用いて精製水を40〜60mL/分で15分×8回、30分×6回、その後は(120分×4回/日)×6日間灌流した。この際、脱細胞化臓器の中心部分は微細な網目構造となっているため、洗浄灌流には回数だけでなく十分な時間をかけた。
その後、最終灌流液(精製水)を採取し、吸光度計を用いてdsDNAを測定し、dsDNAが0.0ng/μL(検出限界以下)であることを確認し、更にPCRによる細胞残存の有無を確認した。
Next, the perfusion apparatus was temporarily removed, and perfusion was performed 500 mL × 3 times from the splenic artery catheter with a separately prepared B solution. A part of the third perfusate was collected and dsDNA was measured using an absorptiometer to confirm that it was 0.5 ng / μL or less. When this value was exceeded, the liquid B was additionally perfused at 40-60 mL / min for 15 minutes using an automatic perfusion apparatus, and the same concentration measurement was performed again. When the total perfusion time of B liquid exceeded 6 hours, this concentration determination was not performed.
Next, all the B liquid was sucked and replaced with purified water (water for injection). Then, using an automatic perfusion apparatus, purified water was perfused at 40 to 60 mL / min for 15 minutes × 8 times, 30 minutes × 6 times, and then (120 minutes × 4 times / day) × 6 days. At this time, since the central part of the decellularized organ has a fine network structure, the washing perfusion took not only the number of times but also a sufficient time.
Thereafter, the final perfusate (purified water) is collected, dsDNA is measured using an absorptiometer, and it is confirmed that the dsDNA is 0.0 ng / μL (below the detection limit). confirmed.

[心臓]
(低温冷蔵解凍工程)
凍結臓器を24±1時間、4℃で解凍した。必ず臓器が完全に解凍していることを確認してから、以下の処理を行った。
[heart]
(Low temperature refrigeration thawing process)
Frozen organs were thawed at 4 ° C. for 24 ± 1 hours. After confirming that the organ was completely thawed, the following treatment was performed.

(解凍時脱血工程、確認工程、接続工程)
次に、心臓に生食をかけて、付着、残存している血餅等を洗い落とした。
次に、大動脈カテーテルから、ディスポーザブルシリンジを用いて、生食(50mL×6)を注入し、抵抗や漏れがなく、肺動脈から排出されることを確認した。最初のポンピングでは抵抗を感じるが、この時点で無理に押し込むと心耳が破裂する可能性があるので注意した。左心耳、右心耳ともに、ポンピングによって膨張した。また、この時点で冠状動脈内の血液が流れて心臓全体が灌流できていることを確認した。
次に、大動脈カテーテルの三方活栓に自動灌流装置の注入チューブを接続した。
次に、含タンパク質分解抑制剤生食を滅菌パックに2000mL入れ、滅菌ガーゼを上部に取り付けた。心臓が1cm程生食に浸かるようにガーゼに乗せた。液面に浸りすぎると、浮遊して灌流液中で動いてしまうので注意した。また、臓器全体がガーゼに乗っているよう注意した。
次に、心臓を10℃の冷蔵庫又は10℃の環境下に移動した。4℃に設定すると、後の工程で灌流液が析出してくる可能性があるので注意した。また、室温だと脱細胞化担体の構築傷害の可能性があるので避けた。
次に、大動脈の三方活栓を開放にして、自動灌流装置を用いて含タンパク質分解抑制剤生食を40〜60mL/分で15分×5回灌流した。生食が赤く濁るようなら、再度15分灌流した。
(Through blood removal process, confirmation process, connection process)
Next, the heart was eaten raw, and the clots and the like remaining on the heart were washed away.
Next, a raw meal (50 mL × 6) was injected from the aortic catheter using a disposable syringe, and it was confirmed that there was no resistance or leakage and the pulmonary artery was discharged. I felt resistance at the first pumping, but I was careful because the auricle could rupture if I push it forcibly at this point. Both left and right atrial appendages were inflated by pumping. At this time, it was confirmed that blood in the coronary artery was flowing and the entire heart was perfused.
Next, the injection tube of the automatic perfusion device was connected to the three-way stopcock of the aortic catheter.
Next, 2000 mL of the protein-containing degradation inhibitor raw food was placed in a sterile pack, and a sterile gauze was attached to the top. I put it on the gauze so that the heart was immersed in raw food about 1 cm. Be careful not to immerse it too much in the liquid surface as it will float and move in the perfusate. Also, care was taken that the whole organ was on the gauze.
Next, the heart was moved to a 10 ° C. refrigerator or a 10 ° C. environment. When set to 4 ° C., it was noted that the perfusate may precipitate in a later step. Also, room temperature was avoided because there is a possibility of destructive carrier construction damage.
Next, the three-way stopcock of the aorta was opened, and the protein-containing degradation inhibitor saline was perfused 15 times × 5 times at 40 to 60 mL / min using an automatic perfusion apparatus. If the raw food became red and cloudy, it was perfused again for 15 minutes.

(難水溶性界面活性剤灌流工程)
最終的な確認工程の後、自動灌流装置を停止し、A液に置換した。そして、自動灌流装置を用いてA液を40〜60mL/分で20分×3回灌流した。A液に置換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。灌流後しばらくしたと血管周囲が半透明状に変化してきた。その後、心臓全体が少し半透明状に変化してくることを確認した。
(Slightly water-soluble surfactant perfusion process)
After the final confirmation step, the automatic perfusion apparatus was stopped and replaced with solution A. And A liquid was perfused 20 times * 3 times by 40-60 mL / min using the automatic perfusion apparatus. Immediately after replacement with solution A, the solution was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed, and was gradually increased to 60 mL / min. After a while after perfusion, the circumference of the blood vessel changed to a translucent state. After that, it was confirmed that the whole heart changed slightly translucent.

(親水溶性界面活性剤灌流工程)
次に、自動灌流装置を停止し、B液に置換した。そして、自動灌流装置を用いてB液を60mL/分で20分×6回灌流した。B液に交換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。
図5(a)によると、B液の初回灌流では、劇的に心臓が透明になってくるため、灌流後、液がすぐ濁ってきた。
図5(b)によると、6回灌流後に、完全に心臓が半透明状の脱細胞化組織になっていることを確認した。
(Water-soluble surfactant perfusion process)
Next, the automatic perfusion apparatus was stopped and replaced with solution B. And B liquid was perfused 20 minutes x 6 times at 60 mL / min using the automatic perfusion apparatus. Immediately after the replacement with the B liquid, it was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed and gradually increased to 60 mL / min.
According to FIG. 5 (a), in the first perfusion of the B liquid, the heart became dramatically transparent, so that the liquid became cloudy immediately after the perfusion.
According to FIG. 5 (b), it was confirmed that the heart was completely translucent decellularized tissue after 6 perfusions.

次に、灌流装置を一時的に外し、別途用意したB液で大動脈カテーテルから50mL×3回灌流した。3回目の灌流液の一部を回収し、吸光度計を用いてdsDNAを測定し、0.5ng/μL以下であることを確認した。この値を超える場合は、自動灌流装置を用いてB液を40〜60mL/分で15分追加灌流し、再度同様の濃度測定を行った。B液の総灌流時間が6時間を越える場合は、この濃度判定は行わなかった。
次に、B液を全て吸引し、精製水(注射用水)に置換した。そして、自動灌流装置を用いて精製水を40〜60mL/分で15分×8回、30分×6回、その後は(120分×4回/日)×6日間灌流した。この際、脱細胞化臓器の中心部分は微細な網目構造となっているため、洗浄灌流には回数だけでなく十分な時間をかけた。
その後、最終灌流液(精製水)を採取し、吸光度計を用いてdsDNAを測定し、dsDNAが0.0ng/μL(検出限界以下)であることを確認し、更にPCRによる細胞残存の有無を確認した。
Next, the perfusion apparatus was temporarily removed, and perfusion was performed 50 mL × 3 times from the aortic catheter with a separately prepared B solution. A part of the third perfusate was collected and dsDNA was measured using an absorptiometer to confirm that it was 0.5 ng / μL or less. When this value was exceeded, the liquid B was additionally perfused at 40-60 mL / min for 15 minutes using an automatic perfusion apparatus, and the same concentration measurement was performed again. When the total perfusion time of B liquid exceeded 6 hours, this concentration determination was not performed.
Next, all the B liquid was sucked and replaced with purified water (water for injection). Then, using an automatic perfusion apparatus, purified water was perfused at 40 to 60 mL / min for 15 minutes × 8 times, 30 minutes × 6 times, and then (120 minutes × 4 times / day) × 6 days. At this time, since the central part of the decellularized organ has a fine network structure, the washing perfusion took not only the number of times but also a sufficient time.
Thereafter, the final perfusate (purified water) is collected, dsDNA is measured using an absorptiometer, and it is confirmed that the dsDNA is 0.0 ng / μL (below the detection limit). confirmed.

[肺]
(低温冷蔵解凍工程)
凍結臓器を24±1時間、4℃で解凍した。必ず臓器が完全に解凍していることを確認してから、以下の処理を行った。また、気管の辺縁を鉗子で摘み、完全に閉鎖した。
[lung]
(Low temperature refrigeration thawing process)
Frozen organs were thawed at 4 ° C. for 24 ± 1 hours. After confirming that the organ was completely thawed, the following treatment was performed. In addition, the edge of the trachea was picked with forceps and completely closed.

(解凍時脱血工程、確認工程、接続工程)
次に、肺に生食をかけて、付着、残存している血餅等を洗い落とした。
次に、肺動脈カテーテルから、ディスポーザブルシリンジを用いて、生食(50mL×10〜20)を注入し、抵抗や漏れがなく、肺静脈から排出されることを確認した。最初のポンピングでは抵抗を感じるが、この時点で無理に押し込むと肺胞が破裂する可能性があるので注意した。また、肺全体がピンク色に脱血、灌流できていることを確認した。
次に、肺動脈カテーテルの三方活栓に自動灌流装置の注入チューブを接続した。
次に、含タンパク質分解抑制剤生食を滅菌パックに2000mL入れ、滅菌ガーゼを上部に取り付けた。肺が1cm程生食に浸かるようにガーゼに乗せた。液面に浸りすぎると、浮遊して灌流液中で動いてしまうので注意した。臓器全体がガーゼに乗っているよう注意した。
次に、肺を10℃の冷蔵庫又は10℃の環境下に移動した。4℃に設定すると、後の工程で灌流液が析出してくる可能性があるので注意した。また、室温だと脱細胞化担体の構築傷害の可能性があるので避けた。
次に、肺動脈の三方活栓を開放にして、自動灌流装置を用いて含タンパク質分解抑制剤生食を40〜60mL/分で15分×5回灌流した。生食が赤く濁るようなら、再度15分灌流した。
(Through blood removal process, confirmation process, connection process)
Next, the lungs were subjected to a raw diet to wash away any clots that had adhered and remained.
Next, a raw meal (50 mL × 10 to 20) was injected from the pulmonary artery catheter using a disposable syringe, and it was confirmed that there was no resistance or leakage and that it was discharged from the pulmonary vein. I felt resistance at the first pumping, but I was careful because if I forced it at this point, the alveoli could rupture. In addition, it was confirmed that the whole lung could be exsanguinated and perfused pink.
Next, the injection tube of the automatic perfusion device was connected to the three-way stopcock of the pulmonary artery catheter.
Next, 2000 mL of the protein-containing degradation inhibitor raw food was placed in a sterile pack, and a sterile gauze was attached to the top. It was put on the gauze so that the lung could be immersed in the raw food about 1 cm. Be careful not to immerse it too much in the liquid surface as it will float and move in the perfusate. Care was taken that the whole organ was on the gauze.
The lungs were then moved to a 10 ° C refrigerator or 10 ° C environment. When set to 4 ° C., it was noted that the perfusate may precipitate in a later step. Also, room temperature was avoided because there is a possibility of destructive carrier construction damage.
Next, the three-way stopcock of the pulmonary artery was opened, and the protein-containing degradation inhibitor saline was perfused 15 times × 5 times at 40 to 60 mL / min using an automatic perfusion apparatus. If the raw food became red and cloudy, it was perfused again for 15 minutes.

(難水溶性界面活性剤灌流工程)
最終的な確認工程の後、自動灌流装置を停止し、A液に置換した。そして、自動灌流装置を用いてA液を40〜60mL/分で20分×3回灌流した。A液に置換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。灌流後しばらくすると、肺全体が半透明状に変化してくることを確認した。
(Slightly water-soluble surfactant perfusion process)
After the final confirmation step, the automatic perfusion apparatus was stopped and replaced with solution A. And A liquid was perfused 20 times * 3 times by 40-60 mL / min using the automatic perfusion apparatus. Immediately after replacement with solution A, the solution was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed, and was gradually increased to 60 mL / min. After a while after perfusion, it was confirmed that the whole lung changed to a translucent state.

(親水溶性界面活性剤灌流工程)
次に、自動灌流装置を停止し、B液に置換した。自動灌流装置を用いてB液を60mL/分で20分×6回灌流した。B液に交換した直後は20mL/分で様子をみながら灌流し、灌流液がスムーズに流れることを確認し、徐々に60mL/分に上げていった。
図6(a)によると、B液の初回灌流では、劇的に肺が透明になってくるため、灌流後、液がすぐ濁ってくる。
図6(b)によると、6回灌流後に、完全に心臓が半透明状の脱細胞化組織になっていることを確認した。
(Water-soluble surfactant perfusion process)
Next, the automatic perfusion apparatus was stopped and replaced with solution B. Using an automatic perfusion apparatus, solution B was perfused at 60 mL / min for 20 minutes × 6 times. Immediately after the replacement with the B liquid, it was perfused while observing the state at 20 mL / min, and it was confirmed that the perfusate smoothly flowed and gradually increased to 60 mL / min.
According to FIG. 6 (a), in the first perfusion of the B liquid, the lung becomes dramatically transparent, so that the liquid becomes cloudy immediately after the perfusion.
According to FIG. 6 (b), it was confirmed that the heart was completely translucent decellularized tissue after 6 perfusions.

次に、灌流装置を一時的に外し、別途用意したB液で肺動脈カテーテルから500mL×3回灌流した。3回目の灌流液の一部を回収し、吸光度計を用いてdsDNAを測定し、0.5ng/μL以下であることを確認した。この値を超える場合は、自動灌流装置を用いてB液を40〜60mL/分で15分追加灌流し、再度同様の濃度測定を行った。B液の総灌流時間が6時間を越える場合は、この濃度判定は行わなかった。
次に、B液を全て吸引し、精製水(注射用水)に置換した。そして、自動灌流装置を用いて精製水を40〜60mL/分で15分×8回、30分×6回、その後は(120分×4回/日)×6日間灌流した。脱細胞化臓器の中心部分は微細な網目構造となっているため、洗浄灌流には回数だけでなく十分な時間をかけた。
その後、最終灌流液(精製水)を採取し、吸光度計を用いてdsDNAを測定し、dsDNAが0.0ng/μL(検出限界以下)であることを確認し、更にPCRによる細胞残存の有無を確認した。
Next, the perfusion apparatus was temporarily removed, and perfusion was performed 500 mL × 3 times from the pulmonary artery catheter with a separately prepared B solution. A part of the third perfusate was collected and dsDNA was measured using an absorptiometer to confirm that it was 0.5 ng / μL or less. When this value was exceeded, the liquid B was additionally perfused at 40-60 mL / min for 15 minutes using an automatic perfusion apparatus, and the same concentration measurement was performed again. When the total perfusion time of B liquid exceeded 6 hours, this concentration determination was not performed.
Next, all the B liquid was sucked and replaced with purified water (water for injection). Then, using an automatic perfusion apparatus, purified water was perfused at 40 to 60 mL / min for 15 minutes × 8 times, 30 minutes × 6 times, and then (120 minutes × 4 times / day) × 6 days. Since the central part of the decellularized organ has a fine network structure, the washing perfusion took not only the number of times but also a sufficient time.
Thereafter, the final perfusate (purified water) is collected, dsDNA is measured using an absorptiometer, and it is confirmed that the dsDNA is 0.0 ng / μL (below the detection limit). confirmed.

<脱細胞化担体の凍結保存方法>
ここで、脱細胞化担体化された臓器又は組織の凍結保存方法について説明する。
まず、30%ショ糖液(PBS)を調製した。
そして、上述の脱細胞化担体製造方法で製造された脱細胞化担体に接続された自動灌流装置を停止し、精製水を全て吸引し、30%ショ糖液に置換した。自動灌流装置を用いて30%ショ糖液を60〜100mL/分で15分×3回灌流した。
次に、自動灌流装置を停止し、三方活栓を閉鎖した。臓器は張りすぎていない状態にした。そして、30%ショ糖液を満たした滅菌パックに、臓器を移動した。臓器が完全にショ糖液に浸かるように液面にガーゼを乗せた。
次に、保管庫(設定温度:4℃)で3時間、浸漬させた。その後、脱細胞化臓器を密閉式パックに入れ、冷凍保管庫(設定温度:−80℃)で凍結保管した。
<Method of cryopreserving decellularized carrier>
Here, a method for cryopreserving an organ or tissue converted into a decellularized carrier will be described.
First, a 30% sucrose solution (PBS) was prepared.
And the automatic perfusion apparatus connected to the decellularization support | carrier manufactured with the above-mentioned decellularization support | carrier manufacturing method was stopped, all the purified water was attracted | sucked, and it replaced with 30% sucrose solution. Using an automatic perfusion apparatus, 30% sucrose solution was perfused at 60-100 mL / min for 15 minutes × 3 times.
Next, the automatic perfusion device was stopped and the three-way stopcock was closed. The organs were not too tight. Then, the organ was moved to a sterile pack filled with 30% sucrose solution. Gauze was placed on the liquid surface so that the organ was completely immersed in the sucrose solution.
Next, it was immersed in a storage (set temperature: 4 ° C.) for 3 hours. Thereafter, the decellularized organ was placed in a sealed pack and stored frozen in a freezer (set temperature: −80 ° C.).

<凍結保存された脱細胞化担体の解凍、使用前の処理方法>
ここで、上述の脱細胞化担体の凍結保存方法で凍結保存された脱細胞化臓器又は組織を解凍して使用する際の処理について説明する。
まず、24±1時間、4℃で解凍した。臓器に凍結によるひび割れが無いことを確認した。そして、上述の自動灌流装置を再接続した。そして、ショ糖液を精製水に置換した。自動灌流装置を用いて精製水を60〜100mL/分で15分×10回灌流した。次に、精製水を生食に置換した。自動灌流装置を用いて生食を60〜100mL/分で15分×5回灌流した。目的に応じて、培養液等の最終置換液を1980mLに対し、抗生物質−抗真菌剤混合溶液を20mL添加し、更にセファメジン1アンプルを加えた調製液を調製した。最終的に、精製水を調製液に置換し、80mL/分で30分×2回灌流した。
<Thawing of cryopreserved decellularized carrier, treatment method before use>
Here, a process when the decellularized organ or tissue cryopreserved by the above-described cryopreservation method for a decellularized carrier is thawed and used will be described.
First, it thawed at 4 ° C. for 24 ± 1 hour. It was confirmed that the organ was free from cracks due to freezing. And the above-mentioned automatic perfusion apparatus was reconnected. Then, the sucrose solution was replaced with purified water. Purified water was perfused 15 times × 10 times at 60 to 100 mL / min using an automatic perfusion apparatus. Next, the purified water was replaced with raw food. The raw food was perfused 15 times × 5 times at 60-100 mL / min using an automatic perfusion apparatus. Depending on the purpose, 20 mL of an antibiotic-antimycotic mixed solution was added to 1980 mL of a final replacement solution such as a culture solution, and a preparation solution was further added with 1 ampule of cephamedin. Finally, the purified water was replaced with the preparation solution, and perfusion was performed twice at 80 mL / min for 30 minutes.

<凍結保存せずに脱細胞化担体を安定化する安定化方法>
(安定化工程)
ここで、本実施例において、脱細胞化担体化された臓器又は組織を安定化する安定化工程の具体例について説明する。本実施例では、脱細胞化担体を0.5%ホルムアルデヒド溶液により固定保存するホルムアルデヒド固定保存方法について説明する。この例では、凍結保存を行わず冷蔵保存する例について説明する。
まず、0.5%ホルムアルデヒド溶液(ホルマリン)を調製した。そして、上述の脱細胞化担体製造方法で製造された脱細胞化担体に接続された自動灌流装置を停止し、精製水を全て吸引し、0.5%ホルムアルデヒド溶液に置換した。
次に、自動灌流装置を用いて0.5%ホルムアルデヒド溶液を60〜100mL/分で15分×3回灌流した。そして、自動灌流装置を停止し、三方活栓を閉鎖した。臓器は張りすぎていない状態にした。ここで、臓器が凹んでいたり張りすぎていたりする状態で処理すると、その形状のまま固定されてしまうので十分気をつけた。
次に、0.5%ホルムアルデヒド溶液を満たした滅菌パックに、臓器を移動した。臓器が完全に0.5%ホルムアルデヒド溶液に浸かるように液面にガーゼを乗せた。
次に、脱細胞化臓器を密閉式パックに入れ、冷蔵保管庫(設定温度:4℃)で保管した。
<Stabilization method for stabilizing the decellularized carrier without cryopreservation>
(Stabilization process)
Here, in this example, a specific example of a stabilization process for stabilizing an organ or tissue converted to a decellularized carrier will be described. In this example, a formaldehyde fixed storage method in which a decellularized carrier is fixed and stored with a 0.5% formaldehyde solution will be described. In this example, an example of refrigerated storage without freezing storage will be described.
First, a 0.5% formaldehyde solution (formalin) was prepared. Then, the automatic perfusion apparatus connected to the decellularized carrier produced by the above-described decellularized carrier production method was stopped, and all purified water was sucked and replaced with a 0.5% formaldehyde solution.
Next, a 0.5% formaldehyde solution was perfused at 60 to 100 mL / min for 15 minutes × 3 times using an automatic perfusion apparatus. Then, the automatic perfusion device was stopped and the three-way stopcock was closed. The organs were not too tight. Here, if the treatment is performed in a state where the organ is concave or too tight, the shape will be fixed as it is.
The organs were then transferred to a sterile pack filled with 0.5% formaldehyde solution. Gauze was placed on the liquid surface so that the organ was completely immersed in a 0.5% formaldehyde solution.
Next, the decellularized organ was placed in a sealed pack and stored in a refrigerated storage (set temperature: 4 ° C.).

<脱細胞化担体の細胞残留度の測定>
脱細胞化担体化された臓器又は組織の品質確認について、下記の項目について確認した。
この確認は、ヒト(自己)由来細胞(初代継代細胞)、組織加工医薬品等の品質及び安全性の確保に関した指針に対応して実行した。dsDNA;凍結乾燥重量1gあたり、50ng以下であることを確認。DNA fragment length;200bp以下であることを確認。HE or DAP I:核染されないこと、残存細胞がないことをmicroで確認。超微細構造、電子顕微鏡:微細構造が保たれていること、細胞が残存していないことを確認。微生物学的検査(無菌試験):脱細胞化臓器の一部を採取し、無菌であることを確認した。マイコプラズマ否定試験:脱細胞化臓器の一部を採取し、マイコプラズマが存在しないことを確認した。エンドトキシン試験:脱細胞化臓器の一部を採取し、エンドトキシンが含まれていないことを確認した。
<Measurement of cell residue of decellularized carrier>
The following items were confirmed for the quality confirmation of organs or tissues converted into decellularized carriers.
This confirmation was carried out in accordance with the guidelines for ensuring the quality and safety of human (self) -derived cells (primary passage cells), tissue-processed pharmaceuticals and the like. dsDNA: Confirmed to be 50 ng or less per gram of lyophilized weight. DNA fragment length: confirmed to be 200 bp or less. HE or DAP I: Confirmed by micro that there is no nuclear staining and no remaining cells. Ultra-fine structure, electron microscope: Confirm that the fine structure is maintained and that no cells remain. Microbiological examination (sterility test): A part of the decellularized organ was collected and confirmed to be sterile. Mycoplasma negative test: A portion of the decellularized organ was collected and confirmed to be free of mycoplasma. Endotoxin test: A portion of the decellularized organ was collected and confirmed to contain no endotoxin.

<脱細胞化担体の細胞充填方法による細胞生着性確認の実験例1>
上述の脱細胞化担体の凍結保存方法で凍結保存、又はホルムアルデヒド固定保存方法で保存した脱細胞化担体について、生体外(in vitro)で細胞充填を行って細胞生着性確認した。この実験例1の処理について、以下で説明する。
<Experimental Example 1 for Confirming Cell Engraftment by Cell Loading Method of Decellularized Carrier>
The cell-freeness of the decellularized carrier preserved by the cryopreservation method of the above-mentioned decellularized carrier or preserved by the formaldehyde fixed preservation method was filled in vitro to confirm cell engraftment. The process of Experimental Example 1 will be described below.

(薄層切片化工程)
脱細胞化担体を準備し、自動灌流装置を用いて精製水を40〜60mL/分で20分×10回灌流した。
また、この時点で、充填したい細胞を準備した。本実施例では、1〜5×105個のHepG2細胞を用意した。
また、脱細胞化担体を10mm×10mm×2mmのブロック片(脱細胞化組織断片)に切り出した。
(Thin layer sectioning process)
A decellularized carrier was prepared, and purified water was perfused 20 times × 10 times at 40 to 60 mL / min using an automatic perfusion apparatus.
At this point, cells to be filled were prepared. In this example, 1-5 × 10 5 HepG2 cells were prepared.
In addition, the decellularized carrier was cut into 10 mm × 10 mm × 2 mm block pieces (decellularized tissue fragments).

(播種工程)
薄層切片化工程により薄層切片化された脱細胞化組織断片を、精製水で再度5分×6回洗浄した。
次に、滅菌PBS180mLに抗生物質−抗真菌剤混合溶液を20mL(通常の5倍濃度)で、10分×4回洗浄した。
また、培地に脱細胞化組織断片を配置した。
また、2〜5倍濃度抗生物質−抗真菌剤混合溶液+10%FBS付加MEM(以下、「付加MEM」という。)を調製した。
滅菌した鑷子で脱細胞化組織断片の隅を摘み、26Gの注射針を取り付けたディスポーザブルシリンジを用いて、1〜5×105/mLの細胞を、四方からTotal 1mL注入した。
(Seeding process)
The decellularized tissue fragment that had been sliced in the thin-layer sectioning step was washed again with purified water for 5 minutes × 6 times.
Next, the antibiotic-antimycotic mixed solution was washed with 180 mL of sterilized PBS with 20 mL (normal 5-fold concentration) for 10 minutes × 4 times.
In addition, decellularized tissue fragments were placed in the medium.
Moreover, a 2 to 5 times concentrated antibiotic-antifungal mixed solution + 10% FBS-added MEM (hereinafter referred to as “added MEM”) was prepared.
The corner of the decellularized tissue fragment was picked with a sterilized insulator, and 1 mL of 1 to 5 × 10 5 / mL of cells was injected from all directions using a disposable syringe equipped with a 26 G injection needle.

(培養工程)
付加MEM2mLを、培養細胞が播種された脱細胞化組織断片に注入した。
その後、一晩(Overnight)、37℃インキュベーションした。
そして、実体顕微鏡下で細胞生着性を確認した。
また、1日1回培地洗浄及び交換した。
また、培養72時間後、実体顕微鏡下で細胞の生着性を確認した。
(Culture process)
2 mL of additional MEM was injected into the decellularized tissue fragment seeded with cultured cells.
Then, it incubated at 37 degreeC overnight (Overnight).
The cell engraftment was confirmed under a stereomicroscope.
The medium was washed and replaced once a day.
In addition, after 72 hours of culture, cell viability was confirmed under a stereomicroscope.

図7Aは、心臓の脱細胞化組織断片について、実体顕微鏡下で生着性を確認した例を示す。この結果によれば、心臓の脱細胞化担体の構造に対応して、播種された細胞の膨化が認められた。
図7Bは、腎臓の脱細胞化組織断片について、実体顕微鏡下で生着性を確認した例を示す。この結果によれば、腎臓の脱細胞化担体の構造に対応して、播種された細胞はやや小型であった。
図7Cは、肺の脱細胞化組織断片について、実体顕微鏡下で生着性を確認した例を示す。この結果によれば、肺の脱細胞化担体の構造に対応して、播種された細胞が平坦な層状に定着していた。
FIG. 7A shows an example of confirming engraftment of a decellularized tissue fragment of the heart under a stereomicroscope. According to this result, swelling of the seeded cells was observed corresponding to the structure of the decellularized carrier of the heart.
FIG. 7B shows an example of confirming engraftment of a decellularized tissue fragment of kidney under a stereomicroscope. According to this result, the seeded cells were somewhat small, corresponding to the structure of the decellularized carrier of the kidney.
FIG. 7C shows an example of confirming engraftment of a decellularized tissue fragment of lung under a stereomicroscope. According to this result, in accordance with the structure of the decellularized carrier of the lung, the seeded cells were fixed in a flat layer shape.

<脱細胞化担体の細胞充填方法による細胞生着性確認の実験例2>
また、脱細胞化担体について、臓器の種類によっては、細胞液を脱細胞化担体に滴下することで、生体外(in vitro)の細胞生着性確認した。この実験例2の処理について、以下に説明する。
<Experimental Example 2 for Confirming Cell Engraftment by Cell Loading Method of Decellularized Carrier>
Moreover, about the decellularization support | carrier, depending on the kind of organ, the cell viability was confirmed in vitro (in vitro) by dripping the cell fluid on the decellularization support. The process of Experimental Example 2 will be described below.

(薄層切片化工程)
まず、脱細胞化担体を20mm×20mm×1mmの脱細胞化組織断片に切り出した。
そして、脱細胞化組織断片を6ウェルプレートのウェル内に配置した。
(Thin layer sectioning process)
First, the decellularized carrier was cut into 20 mm × 20 mm × 1 mm decellularized tissue fragments.
The decellularized tissue fragment was then placed in a well of a 6-well plate.

(播種工程)
次に、各ウェルに5×105/mLの細胞液1mLを徐々に滴下、横に漏れ出た細胞液を吸引し再度滴下×3回行った。
次に、6ウェルプレートを、15分、37度インキュベーションした。
これらの播種工程の処理を3回繰り返した。
(Seeding process)
Next, 1 mL of 5 × 10 5 / mL cell solution was gradually dropped into each well, and the cell solution leaked to the side was aspirated and dropped again three times.
The 6-well plate was then incubated at 37 degrees for 15 minutes.
These seeding processes were repeated three times.

(培養工程)
播種工程により培養細胞が播種された脱細胞化組織断片に、付加MEM 2mLを滴下した。
その後、Overnight、37℃でインキュベーションした。
そして、実体顕微鏡下で細胞生着性を確認した。
また、1日1回培地洗浄及び交換した。
また、培養72時間後、実体顕微鏡下で細胞の生着性を確認した。
(Culture process)
2 mL of added MEM was added dropwise to the decellularized tissue fragment in which the cultured cells were seeded by the seeding process.
Thereafter, incubation was performed at Overnight at 37 ° C.
The cell engraftment was confirmed under a stereomicroscope.
The medium was washed and replaced once a day.
In addition, after 72 hours of culture, cell viability was confirmed under a stereomicroscope.

図7Dは、肝臓の脱細胞化組織断片について、実体顕微鏡下で生着性を確認した例を示す。この結果によれば、肝臓の脱細胞化担体の構造に対応して、肝小葉のように規則的な配置で生着された細胞が散見された。   FIG. 7D shows an example of confirming engraftment of a decellularized tissue fragment of liver under a stereomicroscope. According to this result, cells engrafted in a regular arrangement, such as liver lobule, were found in some cases corresponding to the structure of the decellularized carrier of the liver.

ここで、上述の実験例2においては、その後、培養液を回収し、脱細胞化組織断片を生食で軽く洗浄した。
次に、脱細胞化組織断片を4%PFA溶液又は10%中性緩衝ホルマリン溶液に5分×2回浸漬した。
次に、脱細胞化組織断片の病理組織学的検査を実行し、HE染色及び抗HLA免疫組織化学染色によって、最終的に、細胞生着性を確認した。
Here, in Experimental Example 2 described above, the culture solution was then collected, and the decellularized tissue fragment was lightly washed with a saline diet.
Next, the decellularized tissue fragment was immersed in a 4% PFA solution or a 10% neutral buffered formalin solution for 5 minutes × 2 times.
Next, a histopathological examination of the decellularized tissue fragment was performed, and finally cell engraftment was confirmed by HE staining and anti-HLA immunohistochemical staining.

<電子顕微鏡解析>
各脱細胞化担体を受託業者に送付し、電子顕微鏡画像を得た。
図8Aは腎臓及び脾臓、図8Bは心臓及び肺、図8Cは肝臓及び小腸の電子顕微鏡画像である。各図において、腎臓、脾臓、心臓肺、及び肝臓の電子顕微鏡画像では、左図の拡大画像を右図に示す。また、小腸においては、左図は絨毛部分の電子顕微鏡画像を示し、右図は筋層部分の電子顕微鏡画像を示す。
これらの各電子顕微鏡写真は、より、細胞骨格を含む臓器構築に沿った細胞外基質が非常に高度に残存していることを示していた。
<Electron microscope analysis>
Each decellularized carrier was sent to a contractor to obtain an electron microscope image.
FIG. 8A is an electron microscope image of the kidney and spleen, FIG. 8B is the heart and lung, and FIG. 8C is the liver and small intestine. In each figure, in the electron microscopic images of the kidney, spleen, heart lung, and liver, an enlarged image of the left figure is shown in the right figure. In the small intestine, the left figure shows an electron microscopic image of the villus part, and the right figure shows an electron microscopic image of the muscle layer part.
Each of these electron micrographs showed that the extracellular matrix along the organ construction including the cytoskeleton remained very highly.

<細胞外基質に関した解析(免疫染色)>
次に、各脱細胞化担体を薄層切片にし、市販されている各抗体及びキット(タカラバイオ社製)を用いてDAB(3,3'‐ジアミノベンジジン四塩酸塩)染色を行った。
図9によると、H&E(ヘマトキシリンとエオシンの二重染色)の画像より、細胞核が消失していることが確認できた。また、Sirius red、Collagen IV染色により、細胞質の消失と細胞膜の残存とが確認された。また、Fibronectin、Lamininの染色により、細胞膜上に残存している各細胞外基質を調べた結果、細胞外基質の構成要因に従って、DAB染色の濃淡が確認された。
<Analysis of extracellular matrix (immunostaining)>
Next, each decellularized carrier was made into a thin-layer section, and DAB (3,3′-diaminobenzidine tetrahydrochloride) staining was performed using each commercially available antibody and kit (manufactured by Takara Bio Inc.).
According to FIG. 9, it was confirmed from the image of H & E (double staining of hematoxylin and eosin) that the cell nucleus disappeared. Further, Sirius red and Collagen IV staining confirmed the disappearance of the cytoplasm and the remaining cell membrane. In addition, as a result of examining each extracellular matrix remaining on the cell membrane by staining with Fibronectin and Laminin, the density of DAB staining was confirmed according to the constituent factors of the extracellular matrix.

<脱細胞化担体(肝臓)の移植実験>
肝臓について本実施例の脱細胞化方法による処理を行った脱細胞化担体(細胞未充填)をブタ体内に移植し、担体内部に血液が充填されることを確認した。自治医科大学構内に併設されている先端医療技術開発センターにて実行した。
<Transplantation experiment of decellularized carrier (liver)>
The liver was transplanted with a decellularized carrier (unfilled with cells) that had been treated by the decellularization method of the present example for the liver, and it was confirmed that blood was filled inside the carrier. The program was conducted at the Advanced Medical Technology Development Center in Jichi Medical University.

図10(a)〜(c)によると、心臓拍動下にてAPOLT法にて移植した脱細胞化肝臓に門脈から血管造影剤を投与し、C−arm(放射線画像診断装置)で造影画像を得た。図10(a)は施術の写真、図10(b)(c)は造影の写真である。結果として、細胞未充填の担体でも細部に渡り、血管構造が維持されていることが判明した。このことは、毛細血管のような脆弱な構造体であっても、本実施例の脱細胞化方法で処理された脱細胞化担体は、高度に細胞骨格等を維持していることを示していた。
図10(d)、(e)では、移植した脱細胞化肝臓を切片化して赤血球の箇所を確認した。これによると、肝臓の特徴的な構造である肝小葉構造が血液(赤血球)のみで示された。この事実も、本実施例の脱細胞化担体は、細胞骨格等を高度に維持していることを示している。
According to FIGS. 10 (a) to 10 (c), an angiographic agent is administered from the portal vein to a decellularized liver transplanted by the APOLT method under a heart beat, and contrasted by a C-arm (radiological imaging apparatus). I got an image. 10A is a photograph of the treatment, and FIGS. 10B and 10C are contrast photographs. As a result, it was found that the vascular structure was maintained in detail even with the carrier not filled with cells. This indicates that the decellularized carrier treated by the decellularization method of the present example maintains a high cytoskeleton etc. even in a fragile structure such as a capillary. It was.
10D and 10E, the transplanted decellularized liver was sectioned to confirm the location of red blood cells. According to this, the liver lobule structure, which is a characteristic structure of the liver, was shown only by blood (erythrocytes). This fact also indicates that the decellularized carrier of this example maintains a high cytoskeleton and the like.

なお、上記実施の形態の構成及び動作は例であって、本発明の趣旨を逸脱しない範囲で適宜変更して実行したことができることは言うまでもない。   It should be noted that the configuration and operation of the above-described embodiment are examples, and it is needless to say that the configuration and operation can be appropriately changed and executed without departing from the gist of the present invention.

本発明によれば、各種実験、先端医療に応用可能な脱細胞化担体を製造可能となるため、産業上利用可能である。   According to the present invention, since a decellularized carrier applicable to various experiments and advanced medicine can be produced, it can be used industrially.

Claims (16)

摘出された臓器又は組織を凍結保存する凍結保存工程と、
前記凍結保存工程にて凍結保存された前記臓器又は前記組織を解凍する解凍工程と、
前記解凍工程にて解凍された前記臓器又は前記組織を脱細胞化する脱細胞化工程とを含み、
前記脱細胞化工程は、
解凍された前記臓器又は前記組織を難水溶性界面活性剤含有溶液で灌流する難水溶性界面活性剤灌流工程と、
前記難水溶性界面活性剤含有溶液により灌流された前記臓器又は前記組織を親水溶性界面活性剤含有溶液で灌流する親水溶性界面活性剤灌流工程とを含む
ことを特徴とする脱細胞化担体製造方法。
A cryopreservation step of cryopreserving the removed organ or tissue;
A thawing step of thawing the organ or tissue cryopreserved in the cryopreservation step;
A decellularization step of decellularizing the organ or tissue thawed in the thawing step,
The decellularization step includes
A poorly water-soluble surfactant perfusion step of perfusing the thawed organ or tissue with a poorly water-soluble surfactant-containing solution;
A method of producing a decellularized carrier, comprising: a hydrophilic water-soluble surfactant perfusion step of perfusing the organ or the tissue perfused with the poorly water-soluble surfactant-containing solution with the hydrophilic water-soluble surfactant-containing solution. .
前記凍結保存工程は、
前記臓器又は前記組織を生理食塩水で灌流して脱血する凍結時脱血工程と、
前記凍結時脱血工程にて脱血された前記臓器又は前記組織を、凍結保存溶液で灌流する凍結保存溶液灌流工程と、
前記凍結保存溶液灌流工程にて灌流された前記臓器又は前記組織を、前記凍結保存溶液で満たして膨化させる膨化工程と、
膨化された前記臓器又は前記組織に付着した余剰の前記凍結保存溶液を除去する余剰溶液除去工程と、
前記余剰溶液除去工程にて余剰の前記凍結保存溶液を除去された前記臓器又は前記組織を−20℃以下で凍結する凍結工程とを含む
ことを特徴とする請求項1に記載の脱細胞化担体製造方法。
The cryopreservation step includes
A blood removal step upon freezing by perfusion of the organ or the tissue with physiological saline,
A cryopreservation solution perfusion step of perfusing the organ or the tissue that has been exsanguinated in the blood removal step during freezing with a cryopreservation solution;
A swelling step of filling and swelling the organ or tissue perfused in the cryopreservation solution perfusion step with the cryopreservation solution;
A surplus solution removing step of removing surplus cryopreservation solution adhering to the swollen organ or tissue;
The decellularization carrier according to claim 1, further comprising a freezing step of freezing the organ or the tissue from which the surplus cryopreservation solution has been removed in the surplus solution removing step at -20 ° C or lower. Production method.
前記凍結保存工程は、
前記凍結工程後、脱細胞化工程前の前記臓器又は前記組織を特定期間保存する期間保存工程を更に含む
ことを特徴とする請求項2に記載の脱細胞化担体製造方法。
The cryopreservation step includes
The method for producing a decellularized carrier according to claim 2, further comprising a period storage step of storing the organ or the tissue before the decellularization step after the freezing step for a specific period.
前記凍結保存溶液は、0.01〜0.3%の過酸化水素水を含む生理食塩水であり、
前記凍結時脱血工程の生理食塩水及び/又前記凍結保存溶液は、500〜4000Uヘパリンを含んでいてもよい
ことを特徴とする請求項2又は3に記載の脱細胞化担体製造方法。
The cryopreservation solution is a physiological saline solution containing 0.01 to 0.3% hydrogen peroxide solution,
The method for producing a decellularized carrier according to claim 2 or 3, wherein the physiological saline and / or the cryopreservation solution in the blood removal step upon freezing contain 500 to 4000 U heparin.
前記解凍工程は、
凍結保存された前記臓器又は前記組織を低温冷蔵状態で解凍する低温冷蔵解凍工程と、
前記低温冷蔵解凍工程にて解凍された前記臓器又は前記組織を、タンパク質分解抑制剤含有の生理食塩水で灌流して脱血する解凍時脱血工程と、
前記解凍時脱血工程にて脱血された前記臓器又は前記組織の破損有無を確認する確認工程と、
前記確認工程により確認された前記臓器又は前記組織を灌流用容器に接続する接続工程とを含む
ことを特徴とする請求項1乃至4のいずれか1項に記載の脱細胞化担体製造方法。
The thawing step includes
A low-temperature refrigeration thawing step for thawing the organ or tissue that has been cryopreserved in a low-temperature refrigerated state;
A blood removal step during thawing in which the organ or tissue thawed in the low temperature refrigeration and thawing step is perfused with a physiological saline containing a proteolysis inhibitor to remove blood;
A confirmation step for confirming the presence or absence of damage to the organ or the tissue that has been removed by the blood removal step at the time of thawing;
The method for producing a decellularized carrier according to any one of claims 1 to 4, further comprising a connection step of connecting the organ or the tissue confirmed in the confirmation step to a perfusion container.
前記解凍時脱血工程は、
前記臓器又は前記組織に含まれる微小血栓を除去する血栓除去工程を含む
ことを特徴とする請求項5に記載の脱細胞化担体製造方法。
The thawing blood removal step includes
The method for producing a decellularized carrier according to claim 5, further comprising a thrombus removal step of removing a microthrombus contained in the organ or the tissue.
前記脱細胞化工程は、
前記難水溶性界面活性剤含有溶液に含まれる難水溶性界面活性剤は、NP−40であり、
前記親水溶性界面活性剤含有溶液に含まれる親水溶性界面活性剤は、SDSである
ことを特徴とする請求項1乃至6のいずれか1項に記載の脱細胞化担体製造方法。
The decellularization step includes
The poorly water-soluble surfactant contained in the poorly water-soluble surfactant-containing solution is NP-40,
The method for producing a decellularized carrier according to any one of claims 1 to 6, wherein the water-soluble surfactant contained in the solution containing the water-soluble surfactant is SDS.
前記脱細胞化工程は、
前記親水溶性界面活性剤灌流工程にて灌流された前記臓器又は前記組織を洗浄後、安定化する安定化工程を含む
ことを特徴とする請求項1乃至7のいずれか1項に記載の脱細胞化担体製造方法。
The decellularization step includes
The decellularization according to any one of claims 1 to 7, further comprising a stabilization step of stabilizing the organ or the tissue perfused in the hydrophilic water-soluble surfactant perfusion step after washing. A method for producing a carrier
前記安定化工程は、
前記臓器又は前記組織を0.1〜3%ホルムアルデヒド溶液で灌流する
ことを特徴とする請求項8に記載の脱細胞化担体製造方法。
The stabilization step includes
Perfuse the organ or tissue with a 0.1-3% formaldehyde solution
The method for producing a decellularized carrier according to claim 8.
前記臓器は、肝臓、腎臓、脾臓、心臓、肺、小腸、及び精巣を含み、
前記組織は、皮膚、尿管、及び血管を含む
ことを特徴とする請求項1乃至9のいずれか1項に記載の脱細胞化担体製造方法。
Said organs include liver, kidney, spleen, heart, lung, small intestine, and testis,
The method for producing a decellularized carrier according to any one of claims 1 to 9, wherein the tissue includes skin, ureters, and blood vessels.
請求項1乃至10のいずれか1項に記載の脱細胞化担体製造方法により製造される
ことを特徴とする脱細胞化担体。
A decellularized carrier produced by the method for producing a decellularized carrier according to any one of claims 1 to 10.
30%ショ糖液が浸漬されて凍結保存される
ことを特徴とする請求項11に記載の脱細胞化担体。
The decellularized carrier according to claim 11, wherein 30% sucrose solution is immersed and cryopreserved.
請求項11又は12に記載の脱細胞化担体を生理食塩水で灌流する生理食塩水灌流工程と、
前記生理食塩水灌流工程により灌流された前記脱細胞化担体を培養液で灌流して置き換える置換工程と、
前記置換工程にて前記培養液が灌流された前記脱細胞化担体の動脈から培養細胞を注入する細胞注入工程と、
前記細胞注入工程により前記培養細胞が注入された後に灌流を停止して細胞を前記脱細胞化担体に接着させる細胞接着工程と、
前記細胞接着工程により前記細胞が接着された前記脱細胞化担体に前記培養液の灌流を再開させて培養する灌流培養工程とを含む
ことを特徴とする細胞充填方法。
A physiological saline perfusion step of perfusing the decellularized carrier according to claim 11 or 12 with physiological saline;
A replacement step of replacing the decellularized carrier perfused in the physiological saline perfusion step by perfusion with a culture solution;
A cell injection step of injecting cultured cells from the decellularized carrier artery perfused with the culture medium in the replacement step;
A cell adhesion step in which the perfusion is stopped after the cultured cells are injected by the cell injection step and the cells are adhered to the decellularized carrier;
A perfusion culture step of culturing by resuming perfusion of the culture solution on the decellularized carrier to which the cells are adhered by the cell adhesion step.
前記臓器又は前記組織が小腸の場合、
動脈と門脈とを接続して灌流を行う
ことを特徴とする請求項13に記載の細胞充填方法。
When the organ or tissue is the small intestine,
The cell filling method according to claim 13, wherein perfusion is performed by connecting an artery and a portal vein.
請求項11又は12に記載の脱細胞化担体を脱細胞化組織断片に薄層切片化する薄層切片化工程と、
前記薄層切片化工程により薄層切片化された前記脱細胞化組織断片を洗浄し、培養細胞を播種する播種工程と、
前記播種工程により前記培養細胞が播種された前記脱細胞化組織断片を培養する培養工程とを含む
ことを特徴とする細胞シート作製方法。
A thin-layer sectioning step of thin-sectioning the decellularized carrier according to claim 11 or 12 into a decellularized tissue fragment,
Washing the decellularized tissue fragment that has been sliced by the thin-layer sectioning step, and seeding the cultured cells; and
And a culture step of culturing the decellularized tissue fragment in which the cultured cells are seeded by the seeding step.
臓器又は組織から脱細胞化担体を製造するための脱細胞化溶液キットであって、
解凍された前記臓器又は前記組織を灌流する難水溶性界面活性剤含有溶液と、
前記難水溶性界面活性剤含有溶液により灌流された前記臓器又は前記組織を灌流する親水溶性界面活性剤含有溶液とを含む
ことを特徴とする脱細胞化溶液キット。
A decellularization solution kit for producing a decellularized carrier from an organ or tissue,
A poorly water-soluble surfactant-containing solution for perfusing the thawed organ or tissue;
A decellularized solution kit comprising a hydrophilic water-soluble surfactant-containing solution for perfusing the organ or the tissue perfused with the poorly water-soluble surfactant-containing solution.
JP2018024965A 2018-02-15 2018-02-15 Decellularized carrier production method, decellularized carrier storage method, cell filling method, cell sheet preparation method, and decellularized solution kit Active JP7174984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024965A JP7174984B2 (en) 2018-02-15 2018-02-15 Decellularized carrier production method, decellularized carrier storage method, cell filling method, cell sheet preparation method, and decellularized solution kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024965A JP7174984B2 (en) 2018-02-15 2018-02-15 Decellularized carrier production method, decellularized carrier storage method, cell filling method, cell sheet preparation method, and decellularized solution kit

Publications (2)

Publication Number Publication Date
JP2019136011A true JP2019136011A (en) 2019-08-22
JP7174984B2 JP7174984B2 (en) 2022-11-18

Family

ID=67692986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024965A Active JP7174984B2 (en) 2018-02-15 2018-02-15 Decellularized carrier production method, decellularized carrier storage method, cell filling method, cell sheet preparation method, and decellularized solution kit

Country Status (1)

Country Link
JP (1) JP7174984B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891551A (en) * 2022-04-19 2022-08-12 抚顺市望花演武化工厂 Preparation method and composition of biological cell hydrogen carrier skeleton
CN115453021A (en) * 2022-08-15 2022-12-09 首都医科大学附属北京友谊医院 SDS (sodium dodecyl sulfate) decellularized solution and application thereof in decellularization treatment or identification of insoluble components of extracellular matrix
CN115463259A (en) * 2022-10-24 2022-12-13 广州远想医学生物技术有限公司 Processing method of acellular biological membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531355A (en) * 2002-06-28 2005-10-20 株式会社カルディオ Decellularized tissue
JP2006255288A (en) * 2005-03-18 2006-09-28 National Cardiovascular Center Stent
JP2013507164A (en) * 2009-10-07 2013-03-04 ケレシス・イーエイチエフ Skeletal material for wound care and / or other tissue healing applications
JP2015510391A (en) * 2011-12-23 2015-04-09 アントフロゲネシス コーポレーション Organoids containing decellularized and reconstructed placental vascular scaffolds
JP2015164549A (en) * 2005-08-26 2015-09-17 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Decellularization and recellularization of organ and tissue
JP2017522009A (en) * 2014-06-03 2017-08-10 ユーシーエル ビジネス ピーエルシー Human liver scaffold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531355A (en) * 2002-06-28 2005-10-20 株式会社カルディオ Decellularized tissue
JP2006255288A (en) * 2005-03-18 2006-09-28 National Cardiovascular Center Stent
JP2015164549A (en) * 2005-08-26 2015-09-17 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Decellularization and recellularization of organ and tissue
JP2013507164A (en) * 2009-10-07 2013-03-04 ケレシス・イーエイチエフ Skeletal material for wound care and / or other tissue healing applications
JP2015510391A (en) * 2011-12-23 2015-04-09 アントフロゲネシス コーポレーション Organoids containing decellularized and reconstructed placental vascular scaffolds
JP2017522009A (en) * 2014-06-03 2017-08-10 ユーシーエル ビジネス ピーエルシー Human liver scaffold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
人工臓器, 2016, VOL. 45, NO. 1, PP. 67-70, JPN6021036949, ISSN: 0004880866 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891551A (en) * 2022-04-19 2022-08-12 抚顺市望花演武化工厂 Preparation method and composition of biological cell hydrogen carrier skeleton
CN115453021A (en) * 2022-08-15 2022-12-09 首都医科大学附属北京友谊医院 SDS (sodium dodecyl sulfate) decellularized solution and application thereof in decellularization treatment or identification of insoluble components of extracellular matrix
CN115453021B (en) * 2022-08-15 2023-11-14 首都医科大学附属北京友谊医院 SDS decellularized solution and application thereof in decellularized treatment or identification of extracellular matrix insoluble components
CN115463259A (en) * 2022-10-24 2022-12-13 广州远想医学生物技术有限公司 Processing method of acellular biological membrane
CN115463259B (en) * 2022-10-24 2023-11-07 广州远想医学生物技术有限公司 Processing method of decellularized biological membrane

Also Published As

Publication number Publication date
JP7174984B2 (en) 2022-11-18

Similar Documents

Publication Publication Date Title
US20220098548A1 (en) Isolated adult cells, artificial organs, rehabilitated organs, research tools, organ encasements, organ perfusion systems, and methods for preparing and utilizing the same
JP7361591B2 (en) human liver scaffold
Orlando et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations
Ko et al. Bioengineered transplantable porcine livers with re-endothelialized vasculature
JP2019134723A (en) Decellularization and recellularization of organs and tissues
JP6336392B2 (en) Long-term maintenance method of organ or tissue for transplantation
TWI500385B (en) Perfusion culture of organs or tissues, and perfusion culture devices
US9615947B2 (en) Artificial blood vessel using decellularized blood vessel sheet
JP7174984B2 (en) Decellularized carrier production method, decellularized carrier storage method, cell filling method, cell sheet preparation method, and decellularized solution kit
EP0977480B1 (en) Preservation solution for organs or tissues or parts thereof from humans or animals
Kakabadze et al. Prospect of using decellularized human placenta and cow placentome for creation of new organs: targeting the liver (part I: anatomic study)
Liu et al. Hemocompatibility improvement of decellularized spleen matrix for constructing transplantable bioartificial liver
WO1997022244A9 (en) Preservation solution
Miñambres et al. Outcomes of lung and liver transplantation after simultaneous recovery using abdominal normothermic regional perfusion in donors after the circulatory determination of death versus donors after brain death
Ghiringhelli et al. Simple and quick method to obtain a decellularized, functional liver bioscaffold
AU2019315049B2 (en) Methods of preparing personalized blood vessels
BR122023002098B1 (en) METHODS FOR PREPARING CUSTOM BLOOD VESSELS
CA2240331C (en) Preservation solution
Skaaring et al. Ultrastructure of the glomerular filtration membrane of autotransplanted canine kidneys stored for 24 hours

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R150 Certificate of patent or registration of utility model

Ref document number: 7174984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150