JP2019135316A - Gutter-connecting structure and anti-corrosion tank - Google Patents

Gutter-connecting structure and anti-corrosion tank Download PDF

Info

Publication number
JP2019135316A
JP2019135316A JP2018017799A JP2018017799A JP2019135316A JP 2019135316 A JP2019135316 A JP 2019135316A JP 2018017799 A JP2018017799 A JP 2018017799A JP 2018017799 A JP2018017799 A JP 2018017799A JP 2019135316 A JP2019135316 A JP 2019135316A
Authority
JP
Japan
Prior art keywords
layer
end surface
upper layer
lower layer
liquid discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018017799A
Other languages
Japanese (ja)
Other versions
JP6958398B2 (en
Inventor
陽平 大道
Yohei Omichi
陽平 大道
諭 松原
Satoshi Matsubara
諭 松原
達也 秋山
Tatsuya Akiyama
達也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018017799A priority Critical patent/JP6958398B2/en
Publication of JP2019135316A publication Critical patent/JP2019135316A/en
Application granted granted Critical
Publication of JP6958398B2 publication Critical patent/JP6958398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

To provide a gutter-connecting structure in which a liquid is hard to leak out.SOLUTION: A liquid-discharging part 13 has a first bottom part 30 consisting of: a first upper layer 31, on an upper surface of which a liquid flows; and a first lower layer 32. A gutter 113 has a second bottom part 40 consisting of: a second upper layer 41, on an upper surface of which the liquid flows; and a second lower layer 42. The liquid-discharging part 13 and the gutter 113 are connected with each other by: bringing an end face 31f of the first upper layer 31 into contact with an end face 41f of the second upper layer 41; and bringing an end face 32f of the first lower layer 32 into contact with an end face 42f of the second lower layer 42. The end face 31f of the first upper layer 31 is protruded closer to the side of the gutter 113 than the end face 32f of the first lower layer 32, and the end face 42f of the second lower layer 42 is protruded closer to the side of the liquid-discharging part 13 than the end face 41f of the second upper layer 41.SELECTED DRAWING: Figure 5

Description

本発明は、樋連結構造および耐食槽に関する。さらに詳しくは、本発明は、槽の液排出部と樋との連結構造、およびその連結構造が採用された耐食槽に関する。   The present invention relates to a basket connection structure and a corrosion-resistant tank. More specifically, the present invention relates to a connection structure between a liquid discharge part of a tank and a basket, and a corrosion-resistant tank in which the connection structure is adopted.

銅の電解精製においては、不純物を含有する粗銅をアノードとし、純銅、ステンレス、またはチタンなどの薄板をカソードとして、複数枚のアノードとカソードとを電解槽に交互に挿入する。電解槽に電解液を供給しつつアノードとカソードとの間に通電して、カソード上に銅を電着させて電気銅を得る。   In electrolytic refining of copper, a plurality of anodes and cathodes are alternately inserted into an electrolytic cell using crude copper containing impurities as an anode and a thin plate of pure copper, stainless steel, or titanium as a cathode. While supplying an electrolytic solution to the electrolytic cell, current is passed between the anode and the cathode, and copper is electrodeposited on the cathode to obtain electrolytic copper.

アノードに含有された銅は、銅イオンとして電解液中に溶出する。それと同時に、アノードに含有されたヒ素、ビスマス、アンチモン、ニッケルなどの不純物も電解液中に溶出する。カソードでは電解液中の銅イオンのみがカソード上に電着する。そのため、高純度な電気銅を得ることができる。   Copper contained in the anode is eluted into the electrolyte as copper ions. At the same time, impurities such as arsenic, bismuth, antimony and nickel contained in the anode are also eluted into the electrolyte. At the cathode, only copper ions in the electrolyte are electrodeposited on the cathode. Therefore, high purity electrolytic copper can be obtained.

アノードから溶出した不純物は電解液中に残るため、電解精製が進むに従い電解液の不純物濃度が高くなる。電解液の不純物濃度が高くなると、不純物が銅とともに共析して電気銅の銅品位を低下させたり、電解液の配管にスケールが生じて操業を阻害したり、電解液の電気伝導度を低下させて電力コストを増加させるなど好ましくない。そのため、電解液を浄液工程に送り不純物を除去する。   Since the impurities eluted from the anode remain in the electrolytic solution, the impurity concentration of the electrolytic solution increases as electrolytic purification proceeds. If the concentration of impurities in the electrolyte increases, the impurities co-deposit with copper, reducing the copper quality of the electrolytic copper, causing scale in the electrolyte piping, hindering operation, and reducing the electrical conductivity of the electrolyte. Such as increasing the power cost. Therefore, the electrolytic solution is sent to the liquid purification process to remove impurities.

銅の電解精製における浄液工程はつぎのように行われる。電解槽から排出された電解液を真空蒸発して濃縮し、急冷することで過飽和となった銅を粗硫酸銅として析出させて除去する。ついで残留した銅、ヒ素、ビスマス、アンチモンをカソード上に析出させるなどして除去する脱銅電解を行なう。得られた脱銅電解液を電気蒸発槽で加熱して水分を蒸発させて濃縮した後、冷却して粗硫酸ニッケルを析出させ、濾過により分離除去する脱ニッケル工程を行なう。得られた脱ニッケル後液は再度電解槽に供給される(例えば、特許文献1)。   The liquid purification process in the electrolytic purification of copper is performed as follows. The electrolyte discharged from the electrolytic cell is concentrated by evaporation in vacuo, and the supersaturated copper is precipitated and removed as crude copper sulfate by rapid cooling. Next, copper removal electrolysis is performed to remove residual copper, arsenic, bismuth, and antimony by depositing on the cathode. The obtained copper removal electrolytic solution is heated in an electric evaporation tank to evaporate the water and concentrated, and then cooled to precipitate crude nickel sulfate, which is separated and removed by filtration. The obtained post-nickel removal solution is supplied again to the electrolytic cell (for example, Patent Document 1).

脱ニッケル工程では、電気蒸発槽に供給された脱銅電解液に黒鉛電極棒を浸漬して通電し、脱銅電解液をジュール熱により加熱して水分を蒸発させることで濃縮する。濃縮の過程で脱銅電解液は高温、高濃度の硫酸ニッケル水溶液となり、腐食性が強くなる。硫酸ニッケル水溶液は電気蒸発槽の液排出部から排出され、樋を通じて冷却結晶槽に導かれる。ここで、硫酸ニッケル水溶液は腐食性が強いことから、液排出部と延長樋との連結部から硫酸ニッケル水溶液が漏洩することを防止する必要がある。   In the nickel removal step, the graphite electrode rod is immersed in the copper removal electrolyte supplied to the electric evaporation tank and energized, and the copper removal electrolyte is heated by Joule heat to evaporate the moisture. During the concentration process, the copper removal electrolyte becomes a high-temperature, high-concentration nickel sulfate aqueous solution, which is highly corrosive. The nickel sulfate aqueous solution is discharged from the liquid discharge portion of the electric evaporation tank, and is led to the cooling crystal tank through the soot. Here, since the nickel sulfate aqueous solution is highly corrosive, it is necessary to prevent the nickel sulfate aqueous solution from leaking from the connecting portion between the liquid discharge portion and the extension rod.

特開2014−101546号公報JP 2014-101546 A

本発明は上記事情に鑑み、液が漏洩しにくい樋連結構造、およびその樋連結構造が採用された耐食槽を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a basket connection structure in which liquid does not easily leak, and a corrosion-resistant tank in which the basket connection structure is employed.

第1発明の樋連結構造は、槽の液排出部と樋との連結構造であって、前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、前記樋は上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有し、前記液排出部と前記樋とは、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で連結され、前記第1上層の前記端面は前記第1下層の前記端面よりも前記樋側に突出しており、前記第2下層の前記端面は前記第2上層の前記端面よりも前記液排出部側に突出していることを特徴とする。
第2発明の樋連結構造は、第1発明において、前記第1底部および前記第2底部は、前記液排出部から前記樋に向かって下がる傾斜を有しており、前記第1上層の前記端面の上縁は、前記第1下層の前記端面の上縁よりも低い位置に配置されていることを特徴とする。
第3発明の樋連結構造は、槽の液排出部と樋との連結構造であって、前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、前記樋は上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有し、前記液排出部と前記樋とは、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で連結され、前記第1下層の前記端面は前記第1上層の前記端面よりも前記樋側に突出しており、前記第2上層の前記端面は前記第2下層の前記端面よりも前記液排出部側に突出していることを特徴とする。
第4発明の耐食槽は、上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有する樋と連結する液排出部を備え、前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、前記液排出部は、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で、前記樋と連結されるよう構成されており、前記第1上層の前記端面は前記第1下層の前記端面よりも前記樋側に突出していることを特徴とする。
第5発明の耐食槽は、第4発明において、前記第1底部は、前記液排出部から前記樋に向かって下がる傾斜を有しており、前記第1上層の前記端面の上縁は、前記第1下層の前記端面の上縁よりも低い位置に配置されていることを特徴とする。
第6発明の耐食槽は、上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有する樋と連結する液排出部を備え、前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、前記液排出部は、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で、前記樋と連結されるよう構成されており、前記第1下層の前記端面は前記第1上層の前記端面よりも前記樋側に突出していることを特徴とする。
The spear connection structure of the first invention is a connection structure between a liquid discharge portion of a tank and a spear, wherein the liquid discharge portion includes a first upper layer through which liquid flows on an upper surface, a first lower layer below the first upper layer, A first bottom portion comprising: a second bottom layer composed of a second upper layer through which liquid flows on an upper surface; and a second lower layer below the second upper layer; Is connected in a state where the end surface of the first upper layer and the end surface of the second upper layer are in contact with each other, and the end surface of the first lower layer and the end surface of the second lower layer are in contact with each other. The end surface protrudes to the heel side from the end surface of the first lower layer, and the end surface of the second lower layer protrudes to the liquid discharger side from the end surface of the second upper layer. .
The scissor connection structure according to a second aspect of the present invention is the first aspect, wherein the first bottom portion and the second bottom portion have an inclination that descends from the liquid discharge portion toward the scissors, and the end surface of the first upper layer The upper edge is arranged at a position lower than the upper edge of the end face of the first lower layer.
The spear connection structure of the third invention is a connection structure of a liquid discharge part of a tank and a spear, wherein the liquid discharge part includes a first upper layer through which liquid flows on an upper surface, a first lower layer below the first upper layer, A first bottom portion comprising: a second bottom layer composed of a second upper layer through which liquid flows on an upper surface; and a second lower layer below the second upper layer; Is connected in a state where the end surface of the first upper layer and the end surface of the second upper layer are in contact with each other, and the end surface of the first lower layer and the end surface of the second lower layer are in contact with each other. The end surface protrudes to the heel side from the end surface of the first upper layer, and the end surface of the second upper layer protrudes to the liquid discharger side from the end surface of the second lower layer. .
The corrosion-resistant tank according to a fourth aspect of the present invention includes a liquid discharge portion connected to a basket having a second bottom portion composed of a second upper layer through which liquid flows on the upper surface and a second lower layer below the second upper layer, and the liquid discharge portion Has a first bottom part composed of a first upper layer through which liquid flows and a first lower layer below the first upper layer, and the liquid discharge part has end faces of the first upper layer and end faces of the second upper layer. And the end surface of the first lower layer and the end surface of the second lower layer are in contact with each other, and the end surface of the first upper layer is the first surface. It protrudes in the said heel side rather than the said end surface of a lower layer, It is characterized by the above-mentioned.
According to a fifth aspect of the corrosion-resistant tank, in the fourth aspect, the first bottom portion has an inclination that descends from the liquid discharge portion toward the ridge, and the upper edge of the end surface of the first upper layer is It is arrange | positioned in the position lower than the upper edge of the said end surface of a 1st lower layer.
A corrosion-resistant tank according to a sixth aspect of the present invention includes a liquid discharge portion connected to a basket having a second bottom portion composed of a second upper layer through which liquid flows on an upper surface and a second lower layer below the second upper layer, and the liquid discharge portion Has a first bottom part composed of a first upper layer through which liquid flows and a first lower layer below the first upper layer, and the liquid discharge part has end faces of the first upper layer and end faces of the second upper layer. And the end surface of the first lower layer and the end surface of the second lower layer are in contact with each other, and the end surface of the first lower layer is connected to the first layer. It protrudes in the said heel side rather than the said end surface of an upper layer, It is characterized by the above-mentioned.

本発明によれば、液排出部と樋との上層同士の接続面と下層同士の接続面とが離れているため、上層同士の接続面に生じた隙間に液が浸入したとしても、液が下層同士の接続面に達しにくい。その結果、液排出部と樋との連結部から液が漏洩しにくい。   According to the present invention, since the connection surface between the upper layers and the connection surface between the lower layers of the liquid discharge part and the ridge are separated from each other, even if the liquid enters the gap generated in the connection surface between the upper layers, It is difficult to reach the connection surface between lower layers. As a result, it is difficult for the liquid to leak from the connecting portion between the liquid discharge portion and the ridge.

本発明の一実施形態に係る耐食槽の縦断面図である。It is a longitudinal cross-sectional view of the corrosion-resistant tank which concerns on one Embodiment of this invention. 図1の耐食槽の底部、側壁および液排出部の積層構造の説明図である。It is explanatory drawing of the laminated structure of the bottom part of the corrosion-resistant tank of FIG. 1, a side wall, and a liquid discharge part. 図1におけるIII部拡大図である。It is the III section enlarged view in FIG. 図1におけるIV部拡大図である。It is the IV section enlarged view in FIG. 液排出部と樋との連結部の拡大図である。It is an enlarged view of the connection part of a liquid discharge part and a ridge. 他の実施形態における、液排出部と樋との連結部の拡大図である。It is an enlarged view of the connection part of a liquid discharge part in another embodiment. さらに他の実施形態における、液排出部と樋との連結部の拡大図である。It is an enlarged view of the connection part of a liquid discharge part and a ridge in other embodiment. 比較例1の耐食槽の縦断面図である。4 is a longitudinal sectional view of a corrosion resistant tank of Comparative Example 1. FIG. 脱ニッケル設備の説明図である。It is explanatory drawing of a nickel removal installation.

つぎに、本発明の実施形態を図面に基づき説明する。
銅の電解精製では電解液から不純物を除去する浄液工程が行われる。浄液工程には脱ニッケル工程が含まれる。本発明の一実施形態に係る耐食槽は、脱ニッケル工程を行なう脱ニッケル設備に用いられる。
Next, an embodiment of the present invention will be described with reference to the drawings.
In the electrolytic purification of copper, a liquid purification process for removing impurities from the electrolytic solution is performed. The liquid purification process includes a nickel removal process. The corrosion-resistant tank which concerns on one Embodiment of this invention is used for the nickel removal installation which performs a nickel removal process.

(脱ニッケル設備)
脱ニッケル工程は図9に示す設備で行われる。脱ニッケル設備は電気蒸発槽110を有する。電気蒸発槽110には脱銅電解液が供給される。脱銅電解液は電解液から銅を除去して得られた液であり、粗硫酸ニッケル水溶液である。脱銅電解液は50〜90℃に予熱した後に電気蒸発槽110に供給される。
(Nickel removal equipment)
The nickel removal step is performed with the equipment shown in FIG. The nickel removal equipment has an electric evaporation tank 110. A copper removal electrolyte is supplied to the electric evaporation tank 110. The copper removal electrolytic solution is a solution obtained by removing copper from the electrolytic solution, and is a crude nickel sulfate aqueous solution. The copper removal electrolytic solution is preheated to 50 to 90 ° C. and then supplied to the electric evaporation tank 110.

電気蒸発槽110は上部が蓋111で覆われた円筒形の槽である。蓋111には電気蒸発槽110内に脱銅電解液を供給する供給口が設けられている。また、蓋111には所定間隔を空けて複数ヶ所に挿入孔が形成されており、それぞれに黒鉛電極棒112が挿入されている。各黒鉛電極棒112は電気蒸発槽110内の脱銅電解液に浸漬されている。黒鉛電極棒112には図示しない電線が接続されている。この電線を通じて黒鉛電極棒112間に電流を流すことで、電気蒸発槽110内の脱銅電解液に通電する。これにより、脱銅電解液をジュール熱により加熱して水分を蒸発させ濃縮する。電気蒸発槽110における脱銅電解液の加熱温度は、脱銅電解液の沸点以上の温度であればよいが、通常150〜200℃である。   The electric evaporation tank 110 is a cylindrical tank whose upper part is covered with a lid 111. The lid 111 is provided with a supply port for supplying a copper removal electrolyte into the electric evaporation tank 110. The lid 111 is formed with insertion holes at a plurality of positions with a predetermined interval, and a graphite electrode rod 112 is inserted into each of the holes. Each graphite electrode rod 112 is immersed in a copper removal electrolytic solution in the electric evaporation tank 110. An electric wire (not shown) is connected to the graphite electrode rod 112. By passing a current between the graphite electrode rods 112 through the electric wires, the copper removal electrolyte in the electric evaporation tank 110 is energized. Thus, the copper removal electrolyte is heated by Joule heat to evaporate and concentrate the water. The heating temperature of the copper removal electrolytic solution in the electric evaporation tank 110 may be a temperature equal to or higher than the boiling point of the copper removal electrolytic solution, but is usually 150 to 200 ° C.

電気蒸発槽110の側壁には樋113が接続されている。濃縮された脱銅電解液は粗硫酸ニッケル結晶が析出してスラリーとなっている。このスラリーは樋113を通じて冷却結晶槽120に導かれる。   A trough 113 is connected to the side wall of the electric evaporation tank 110. In the concentrated copper removal electrolyte, crude nickel sulfate crystals are deposited to form a slurry. This slurry is guided to the cooling crystal tank 120 through the basket 113.

電気蒸発槽110から排出されたスラリーを冷却結晶槽120で冷却する。これにより溶解度が顕著に低下して、スラリー中で粗硫酸ニッケル結晶がさらに析出する。このスラリーを冷却結晶槽120から排出して濾過機130で固液分離することで粗硫酸ニッケル結晶を回収する。   The slurry discharged from the electric evaporation tank 110 is cooled in the cooling crystal tank 120. As a result, the solubility is remarkably lowered, and crude nickel sulfate crystals are further precipitated in the slurry. The slurry is discharged from the cooling crystal tank 120 and separated into solid and liquid by the filter 130 to recover the crude nickel sulfate crystals.

回収した粗硫酸ニッケル結晶は容器140に収容される。一方、濾液はレシーバタンク150に溜められる。レシーバタンク150に溜められた濾液は、系外に払い出されるか、電解液に補給する硫酸として再利用される。   The recovered crude nickel sulfate crystals are stored in a container 140. On the other hand, the filtrate is stored in the receiver tank 150. The filtrate stored in the receiver tank 150 is discharged out of the system or reused as sulfuric acid to replenish the electrolyte.

(耐食槽)
電気蒸発槽110では高温・高濃度の粗硫酸ニッケル水溶液が製造される。したがって、電気蒸発槽110は高温、高濃度硫酸に対する耐腐食性を有する必要がある。本発明の一実施形態に係る耐食槽1はこの電気蒸発槽110に用いられる。
(Corrosion-resistant tank)
In the electric evaporation tank 110, a high-temperature and high-concentration crude nickel sulfate aqueous solution is produced. Therefore, the electric evaporation tank 110 needs to have corrosion resistance against high temperature and high concentration sulfuric acid. A corrosion-resistant tank 1 according to an embodiment of the present invention is used for the electric evaporation tank 110.

図1に示すように、電気蒸発槽110は槽本体としての耐食槽1と、耐食槽1の上部開口部を覆う蓋111とからなる。耐食槽1は底部11と、底部11の周縁に立設した側壁12とからなる略円筒形の槽である。   As shown in FIG. 1, the electric evaporation tank 110 includes a corrosion-resistant tank 1 as a tank body and a lid 111 that covers an upper opening of the corrosion-resistant tank 1. The corrosion-resistant tank 1 is a substantially cylindrical tank composed of a bottom 11 and a side wall 12 standing on the periphery of the bottom 11.

側壁12の一部にはその外面から外側に突出する液排出部13が設けられている。液排出部13には耐食槽1の内容液(粗硫酸ニッケル水溶液)が流れる流路14が形成されている。流路14は側壁12の内面に達しており、耐食槽1の内部と外部とを連通している。濃縮された粗硫酸ニッケル水溶液は結晶とともに流路14を通して耐食槽1の外部に排出される。液排出部13の先端には樋113が接続されている。   A part of the side wall 12 is provided with a liquid discharge portion 13 that protrudes outward from its outer surface. The liquid discharge part 13 is formed with a flow path 14 through which the content liquid (crude nickel sulfate aqueous solution) of the corrosion-resistant tank 1 flows. The flow path 14 reaches the inner surface of the side wall 12 and communicates the inside and the outside of the corrosion-resistant tank 1. The concentrated crude nickel sulfate aqueous solution is discharged out of the corrosion-resistant tank 1 through the flow path 14 together with the crystals. A flange 113 is connected to the tip of the liquid discharger 13.

液排出部13の流路14は、耐食槽1の外側に向かって下がる傾斜を有している。また、樋113も耐食槽1の外側に向かって下がる傾斜を有している。したがって、内容液は流路14および樋113の傾斜に従って、自然に流下する。   The flow path 14 of the liquid discharge part 13 has an inclination that decreases toward the outside of the corrosion-resistant tank 1. Further, the ridge 113 also has an inclination that decreases toward the outside of the corrosion-resistant tank 1. Therefore, the content liquid naturally flows down according to the inclination of the flow path 14 and the ridge 113.

なお、液排出部13は内部に孔状の流路14が形成された筒形でもよいし、溝状の流路14の上方を開放した樋形でもよい。いずれの形状であっても、液排出部13は内容液と接触する底部30を有している。   The liquid discharge portion 13 may have a cylindrical shape in which a hole-like flow path 14 is formed, or may have a bowl shape in which an upper portion of the groove-shaped flow path 14 is opened. In any shape, the liquid discharge part 13 has a bottom part 30 that comes into contact with the content liquid.

樋113は側壁12の外面から離れた位置で耐食槽1に接続している。そのため、液排出部13と樋113とが十分に密着せず、連結部に隙間が生じたとしても、連結部から漏れた粗硫酸ニッケル水溶液が側壁12の外面を伝うことがなく、側壁12の広い範囲が腐食される恐れがない。   The trough 113 is connected to the corrosion-resistant tank 1 at a position away from the outer surface of the side wall 12. Therefore, even if the liquid discharge part 13 and the flange 113 do not sufficiently adhere to each other and a gap is generated in the connecting part, the crude nickel sulfate aqueous solution leaking from the connecting part does not travel along the outer surface of the side wall 12, There is no risk of corroding a wide area.

底部11および側壁12は、それぞれ、最も外側の層を構成する外殻21と、最も内側の層を構成するレンガ層24とから構成されている。また、液排出部13の底部30は、最も下側の層を構成する外殻21と、最も上側の層を構成するレンガ層24とから構成されている。外殻21はステンレス鋼などの金属、FRP(繊維強化プラスチック)などの樹脂などで形成されており、耐食槽1の外形を構成している。   The bottom part 11 and the side wall 12 are each comprised from the outer shell 21 which comprises the outermost layer, and the brick layer 24 which comprises the innermost layer. In addition, the bottom 30 of the liquid discharge unit 13 includes an outer shell 21 that forms the lowermost layer and a brick layer 24 that forms the uppermost layer. The outer shell 21 is formed of a metal such as stainless steel or a resin such as FRP (fiber reinforced plastic), and constitutes the outer shape of the corrosion-resistant tank 1.

レンガ層24は耐酸性のレンガを積み重ねて形成されている。レンガ層24はレンガを複数層積層して形成してもよいし、1層で形成してもよい。なお、各レンガの周囲には、接着固定のため、および液の浸入防止のために、目地材が塗布・充填される。   The brick layer 24 is formed by stacking acid-resistant bricks. The brick layer 24 may be formed by laminating a plurality of bricks or may be formed by one layer. In addition, joint material is applied and filled around each brick in order to fix the adhesive and prevent liquid from entering.

図2に示すように、底部11、側壁12および液排出部13を構成する外殻21とレンガ層24との間には、フッ素樹脂層22と、断熱層23とが配置されている。すなわち、外殻21、フッ素樹脂層22、断熱層23、レンガ層24がこの順に積層されている。   As shown in FIG. 2, a fluororesin layer 22 and a heat insulating layer 23 are disposed between the outer shell 21 and the brick layer 24 that constitute the bottom portion 11, the side wall 12, and the liquid discharge portion 13. That is, the outer shell 21, the fluororesin layer 22, the heat insulation layer 23, and the brick layer 24 are laminated in this order.

フッ素樹脂層22は外殻21の内面(上面)に施されている。フッ素樹脂層22はPFA(四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体)、PTFE(四フッ化エチレン)、FEP(四フッ化エチレン・六フッ化プロピレン共重合体)などのフッ素樹脂で形成されている。フッ素樹脂のなかでも、耐熱性の高いPFA、PTFEを用いることが好ましい。   The fluororesin layer 22 is applied to the inner surface (upper surface) of the outer shell 21. The fluororesin layer 22 is made of a fluororesin such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), PTFE (tetrafluoroethylene), FEP (tetrafluoroethylene / hexafluoropropylene copolymer). Has been. Among fluororesins, it is preferable to use PFA and PTFE having high heat resistance.

フッ素樹脂層22は薄すぎると強度が弱くなる。逆に厚すぎると外殻21とフッ素樹脂層22との熱膨張係数の差により、フッ素樹脂層22が外殻21から剥がれやすくなる。そのため、フッ素樹脂層22の厚さは1〜10mmが好ましい。   If the fluororesin layer 22 is too thin, the strength becomes weak. On the other hand, if it is too thick, the fluororesin layer 22 is easily peeled off from the outer shell 21 due to the difference in thermal expansion coefficient between the outer shell 21 and the fluororesin layer 22. Therefore, the thickness of the fluororesin layer 22 is preferably 1 to 10 mm.

フッ素樹脂層22を形成する方法としてシートライニングとコートライニングとがある。シートライニングは複数枚のフッ素樹脂シートを外殻21に貼り付ける方法である。コートライニングは、モノマーなどの重合度の低いフッ素樹脂剤を刷毛などで塗布して重合反応を生じさせることにより、外殻21にフッ素樹脂をコーティングする方法である。重合反応にはある程度の温度を要するので、フッ素樹脂剤を塗布した後にヘアドライヤーなどで加熱して重合反応を生じさせる。電気蒸発槽110の使用に伴う熱で重合反応を生じさせることも可能である。   As a method of forming the fluororesin layer 22, there are sheet lining and coating lining. Sheet lining is a method of attaching a plurality of fluororesin sheets to the outer shell 21. Coat lining is a method of coating the outer shell 21 with a fluororesin by applying a fluororesin agent having a low degree of polymerization such as a monomer with a brush or the like to cause a polymerization reaction. Since the polymerization reaction requires a certain temperature, after applying the fluororesin agent, it is heated with a hair dryer or the like to cause the polymerization reaction. It is also possible to cause a polymerization reaction with heat accompanying use of the electric evaporation tank 110.

シートライニングの場合、フッ素樹脂シートの間に継ぎ目が生じる。この継ぎ目は化学的、機械的、熱的に弱い部分であり、変形、劣化、破損の起点になる。具体的には、フッ素樹脂シートは反応開始に足る活性がないため、フッ素樹脂シートの継ぎ目は結合が進まず化学的に弱い部分となる。また、フッ素樹脂シートは平板状のものしか流通しておらず、外殻21の形に合わせて湾曲面や折り曲げ辺を作る必要がある。フッ素樹脂シートに湾曲面や折り曲げ辺を作ると、フッ素樹脂シートの継ぎ目に応力がかかって機械的に弱い部分となる。さらに、フッ素樹脂シートと接着剤とは、成分や純度を互いに一致させてライニングすることが難しく、平均分子長さや密度の差が生じるので、フッ素樹脂シートの継ぎ目は熱膨張に弱い部分となる。そのため、シートライニングを採用する場合にはフッ素樹脂シートを複数層ライニングすることが好ましい。   In the case of sheet lining, a seam is generated between the fluororesin sheets. This seam is a chemically, mechanically and thermally weak part, and is the starting point for deformation, deterioration and breakage. Specifically, since the fluororesin sheet does not have enough activity to start the reaction, the joint of the fluororesin sheet becomes a chemically weak part without bonding. Further, only a flat sheet of fluororesin sheet is distributed, and it is necessary to make a curved surface or a bent side in accordance with the shape of the outer shell 21. When a curved surface or a bent side is formed on the fluororesin sheet, stress is applied to the seam of the fluororesin sheet, resulting in a mechanically weak portion. Furthermore, since it is difficult to line the fluororesin sheet and the adhesive with the same components and purity, and the difference in average molecular length and density occurs, the seam of the fluororesin sheet becomes a portion that is vulnerable to thermal expansion. Therefore, when adopting sheet lining, it is preferable to lining the fluororesin sheet with a plurality of layers.

一方、コートライニングの場合、実質的に重合が完了する前に外殻21全体へのフッ素樹脂剤の塗布が完了するので、フッ素樹脂層22に継ぎ目が生じない。しかも、シートの折り曲げなどの変形を必要としないので、フッ素樹脂が外殻21に溶着している。さらに、フッ素樹脂剤の製造ロットが異なっても、撹拌混合によって平均分子長さや密度などの熱膨張にかかわる特性を一様に保つことができる。そのため、フッ素樹脂層22に応力が集中する部分が生じることがなく、フッ素樹脂層22の変形、劣化、破損を抑制できる。その結果、耐食槽1の耐腐食性をより高くできる。   On the other hand, in the case of coating lining, since the application of the fluororesin agent to the entire outer shell 21 is completed before the polymerization is substantially completed, no seam is formed in the fluororesin layer 22. In addition, since deformation such as bending of the sheet is not required, the fluororesin is welded to the outer shell 21. Furthermore, even if the production lots of the fluororesin agent are different, the characteristics related to thermal expansion such as average molecular length and density can be kept uniform by stirring and mixing. Therefore, a portion where stress concentrates on the fluororesin layer 22 does not occur, and deformation, deterioration, and breakage of the fluororesin layer 22 can be suppressed. As a result, the corrosion resistance of the corrosion-resistant tank 1 can be further increased.

断熱層23はガラスクロスなどの繊維など、断熱性を有する素材で形成されている。なお、断熱層23を空気の層で形成してもよい。フッ素樹脂は比較的高温に弱い。断熱層23をフッ素樹脂層22とレンガ層24との間に配置することで、レンガ層24から伝わる内容液の熱を断熱層23により遮断できる。そのため、フッ素樹脂層22を外殻21や外気の温度に近い低い温度に保つことができ、フッ素樹脂層22の劣化を抑制できる。なお、レンガ層24も断熱層23と同様に断熱性を有しており、断熱層23、フッ素樹脂層22、外殻21を低い温度に保つことができる。レンガ層24は、厚みを増やすほど断熱性を高めることができる。   The heat insulation layer 23 is formed of a material having heat insulation properties such as fibers such as glass cloth. The heat insulating layer 23 may be formed of an air layer. Fluoropolymers are vulnerable to relatively high temperatures. By disposing the heat insulating layer 23 between the fluororesin layer 22 and the brick layer 24, the heat of the content liquid transmitted from the brick layer 24 can be blocked by the heat insulating layer 23. Therefore, the fluororesin layer 22 can be maintained at a temperature close to the temperature of the outer shell 21 and the outside air, and deterioration of the fluororesin layer 22 can be suppressed. In addition, the brick layer 24 has heat insulation similarly to the heat insulation layer 23, and can maintain the heat insulation layer 23, the fluororesin layer 22, and the outer shell 21 at low temperature. The brick layer 24 can improve heat insulation, so that thickness is increased.

耐食槽1の底部11、側壁12および液排出部13が以上に説明したような積層構造であるため、耐食槽1の内容液がフッ素樹脂層22の内側に位置するレンガ層24を浸透したとしても、フッ素樹脂層22により内容液が外殻21に到達するのを抑制できる。また、耐食槽1の内容液はレンガ層24を浸透する過程で冷えるため、腐食性が弱くなる。そのため、外殻21が腐食しにくく、耐食槽1の耐腐食性を高くできる。   Since the bottom part 11, the side wall 12 and the liquid discharge part 13 of the corrosion-resistant tank 1 have the laminated structure as described above, it is assumed that the content liquid in the corrosion-resistant tank 1 has permeated the brick layer 24 located inside the fluororesin layer 22. In addition, the content liquid can be prevented from reaching the outer shell 21 by the fluororesin layer 22. Moreover, since the content liquid of the corrosion-resistant tank 1 cools in the process of permeating the brick layer 24, the corrosivity becomes weak. Therefore, the outer shell 21 is hardly corroded, and the corrosion resistance of the corrosion-resistant tank 1 can be increased.

図3に示すように、側壁12を構成する外殻21は、上縁にフランジ部21aを有している。フランジ部21aに蓋111が連結される。側壁12を構成するフッ素樹脂層22はフランジ部21aまで延長されており、フランジ部21aの座面を覆っている。このように、フランジ部21aの座面をフッ素樹脂層22で覆うことで、フランジ部21aの腐食を抑制できる。   As shown in FIG. 3, the outer shell 21 constituting the side wall 12 has a flange portion 21a at the upper edge. The lid 111 is connected to the flange portion 21a. The fluororesin layer 22 constituting the side wall 12 extends to the flange portion 21a and covers the seating surface of the flange portion 21a. Thus, by covering the seating surface of the flange portion 21a with the fluororesin layer 22, corrosion of the flange portion 21a can be suppressed.

図4に示すように、液排出部13を構成する外殻21は、先端にフランジ部21bを有している。液排出部13にはフランジ部21bを介して樋113が連結される。液排出部13を構成するフッ素樹脂層22はフランジ部21bまで延長されており、フランジ部21bの座面を覆っている。このように、フランジ部21bの座面をフッ素樹脂層22で覆うことで、フランジ部21bの腐食を抑制できる。   As shown in FIG. 4, the outer shell 21 constituting the liquid discharge portion 13 has a flange portion 21 b at the tip. A flange 113 is connected to the liquid discharge part 13 via a flange part 21b. The fluororesin layer 22 constituting the liquid discharge portion 13 extends to the flange portion 21b and covers the seating surface of the flange portion 21b. Thus, by covering the seating surface of the flange portion 21b with the fluororesin layer 22, corrosion of the flange portion 21b can be suppressed.

電気蒸発槽110には粗硫酸ニッケル水溶液が間欠的に供給される場合がある。この場合、流路14からの粗硫酸ニッケル水溶液の排出も間欠的となる。加熱された粗硫酸ニッケル水溶液が排出される期間と、排出されない期間とが繰り返されることから、液排出部13は加熱と放冷とが繰り返される。そのため、液排出部13には熱膨張、熱収縮の繰り返しによる負荷がかかり、これが液排出部13の劣化の原因となる。   The electric evaporation tank 110 may be intermittently supplied with a crude nickel sulfate aqueous solution. In this case, the discharge of the crude nickel sulfate aqueous solution from the flow path 14 is also intermittent. Since the period during which the heated crude nickel sulfate aqueous solution is discharged and the period during which it is not discharged are repeated, the liquid discharge unit 13 is repeatedly heated and allowed to cool. For this reason, the liquid discharge unit 13 is subjected to a load due to repeated thermal expansion and contraction, which causes the liquid discharge unit 13 to deteriorate.

図1に示すように、本実施形態の耐食槽1は、液排出部13の底部30を構成するレンガ層24の厚さT1が側壁12のレンガ層24の厚さT2と同程度に確保されている。具体的には厚さT1は厚さT2の0.5〜1.5倍である。このように、液排出部13のレンガ層24が比較的厚いので、液排出部13が熱膨張、熱収縮による負荷に耐えることができる。 As shown in FIG. 1, in the corrosion-resistant tank 1 of the present embodiment, the thickness T 1 of the brick layer 24 constituting the bottom 30 of the liquid discharge unit 13 is approximately the same as the thickness T 2 of the brick layer 24 of the side wall 12. It is secured. Specifically, the thickness T 1 is 0.5 to 1.5 times the thickness T 2 . Thus, since the brick layer 24 of the liquid discharge part 13 is comparatively thick, the liquid discharge part 13 can endure the load by thermal expansion and thermal contraction.

以上のように、耐食槽1は耐腐食性が高く、また、液排出部13が熱膨張、熱収縮による負荷に耐えることができる構成である。そのため、耐食槽1は耐用年数が長い。そのため、耐食槽1の更新に伴う操業停止による機会損失、耐食槽1の更新にかかるコストを低減できる。   As described above, the corrosion-resistant tank 1 has a high corrosion resistance, and the liquid discharger 13 can withstand a load caused by thermal expansion and contraction. Therefore, the corrosion resistant tank 1 has a long service life. Therefore, the opportunity loss by the operation stop accompanying the update of the corrosion-resistant tank 1 and the cost concerning the update of the corrosion-resistant tank 1 can be reduced.

なお、耐食槽1の用途は電気蒸発槽110に限定されず、高温、高濃度硫酸などの腐食性の高い液を処理する槽として好適に用いられる。   In addition, the use of the corrosion-resistant tank 1 is not limited to the electric evaporation tank 110, but is suitably used as a tank for treating a highly corrosive liquid such as high temperature and high concentration sulfuric acid.

(樋連結構造)
つぎに、耐食槽1の液排出部13と樋113との連結構造を説明する。
図5に示すように、液排出部13はその上面を液が流れる底部30と、側壁を構成する側部33とを有する。底部30は液排出部13から樋113に向かって下がる傾斜を有している。以下、説明の便宜のため、液排出部13の底部30を「第1底部30」と称する。
(樋 connection structure)
Below, the connection structure of the liquid discharge part 13 of the corrosion-resistant tank 1 and the ridge 113 is demonstrated.
As shown in FIG. 5, the liquid discharge part 13 has a bottom part 30 through which the liquid flows on the upper surface and side parts 33 constituting the side walls. The bottom portion 30 has an inclination that descends from the liquid discharge portion 13 toward the ridge 113. Hereinafter, for convenience of explanation, the bottom 30 of the liquid discharger 13 is referred to as a “first bottom 30”.

第1底部30は第1上層31と第1下層32とからなる。第1上層31の上面を液が流れる。第1上層31の下に第1下層32が配置されている。第1上層31と第1下層32とは物理的に別の層でもよいし、単一の部材を仮想的に分けたものでもよい。第1上層31と第1下層32との厚みの比率は特に限定されない。   The first bottom portion 30 includes a first upper layer 31 and a first lower layer 32. The liquid flows on the upper surface of the first upper layer 31. A first lower layer 32 is disposed below the first upper layer 31. The first upper layer 31 and the first lower layer 32 may be physically separate layers, or may be a single member virtually separated. The ratio of the thickness of the first upper layer 31 and the first lower layer 32 is not particularly limited.

例えば、レンガ層24がレンガを複数層積層して形成されている場合、上側のレンガで第1上層31を構成し、下側のレンガで第1下層32を構成してもよい。レンガ層24がレンガ1層で形成されている場合、そのレンガを仮想的に上下に分けて、第1上層31、第1下層32としてもよい。本実施形態では、第1上層31はレンガ層24の上部分で構成されており、第1下層32はレンガ層24の下部分と外殻21とで構成されている。これに対して、第1上層31をレンガ層24の全部で構成し、第1下層32を外殻21で構成してもよい。   For example, when the brick layer 24 is formed by laminating a plurality of bricks, the first upper layer 31 may be constituted by the upper brick, and the first lower layer 32 may be constituted by the lower brick. When the brick layer 24 is formed of one brick layer, the bricks may be virtually divided into upper and lower layers to form the first upper layer 31 and the first lower layer 32. In the present embodiment, the first upper layer 31 is constituted by the upper part of the brick layer 24, and the first lower layer 32 is constituted by the lower part of the brick layer 24 and the outer shell 21. On the other hand, the first upper layer 31 may be constituted by the entire brick layer 24, and the first lower layer 32 may be constituted by the outer shell 21.

第1上層31の液排出側の端面31fは、第1下層32の液排出側の端面32fよりも樋113側に突出している。すなわち、第1上層31は第1下層32よりも樋113側に突出している。以下、第1上層31の突出部分を突出部31aと称する。   The end surface 31f on the liquid discharge side of the first upper layer 31 protrudes closer to the flange 113 than the end surface 32f on the liquid discharge side of the first lower layer 32. That is, the first upper layer 31 protrudes closer to the ridge 113 than the first lower layer 32. Hereinafter, the protruding portion of the first upper layer 31 is referred to as a protruding portion 31a.

液排出部13のフランジ部21bは第1下層32の外側に設けられている。フランジ部21bの座面は第1下層32の端面32fに沿っている。   The flange portion 21 b of the liquid discharge portion 13 is provided outside the first lower layer 32. The seating surface of the flange portion 21 b is along the end surface 32 f of the first lower layer 32.

樋113は液排出部13と同様に、最も下側の層を構成する外殻21と、最も上側の層を構成するレンガ層24とから構成されている。外殻21とレンガ層24との間にフッ素樹脂層22および断熱層23を配置してもよいし、配置しなくてもよい。   As with the liquid discharge portion 13, the ridge 113 is composed of an outer shell 21 that constitutes the lowermost layer and a brick layer 24 that constitutes the uppermost layer. Between the outer shell 21 and the brick layer 24, the fluororesin layer 22 and the heat insulating layer 23 may be disposed, or may not be disposed.

樋113はその上面を液が流れる底部40と、側壁を構成する側部43とを有する。底部40は液排出部13から樋113に向かって下がる傾斜を有している。以下、説明の便宜のため、樋113の底部40を「第2底部40」と称する。   The eaves 113 have a bottom 40 through which liquid flows on the upper surface and side portions 43 constituting side walls. The bottom portion 40 has an inclination that descends from the liquid discharge portion 13 toward the ridge 113. Hereinafter, for convenience of explanation, the bottom 40 of the ridge 113 is referred to as a “second bottom 40”.

第2底部40は第2上層41と第2下層42とからなる。第2上層41の上面を液が流れる。第2上層41の下に第2下層42が配置されている。第2上層41と第2下層42とは物理的に別の層でもよいし、単一の部材を仮想的に分けたものでもよい。第2上層41の厚みは第1上層31の厚みと実質的に同一であり、第2下層42の厚みは第1下層32の厚みと実質的に同一である。   The second bottom portion 40 includes a second upper layer 41 and a second lower layer 42. The liquid flows on the upper surface of the second upper layer 41. A second lower layer 42 is disposed below the second upper layer 41. The second upper layer 41 and the second lower layer 42 may be physically separate layers, or may be a single member virtually separated. The thickness of the second upper layer 41 is substantially the same as the thickness of the first upper layer 31, and the thickness of the second lower layer 42 is substantially the same as the thickness of the first lower layer 32.

第2下層42の液流入側の端面42fは、第2上層41の液流入側の端面41fよりも液排出部13側に突出している。すなわち、第2下層42は第2上層41よりも液排出部13側に突出している。これにより、第2底部40の上部に、突出部31aが嵌る窪み41aが形成されている。第2下層42の突出幅は第1上層31の突出幅と実質的に同一である。   An end surface 42f on the liquid inflow side of the second lower layer 42 protrudes closer to the liquid discharger 13 than an end surface 41f on the liquid inflow side of the second upper layer 41. That is, the second lower layer 42 protrudes closer to the liquid discharger 13 than the second upper layer 41. Thereby, the hollow 41a in which the protrusion part 31a fits is formed in the upper part of the 2nd bottom part 40. As shown in FIG. The protruding width of the second lower layer 42 is substantially the same as the protruding width of the first upper layer 31.

樋113のフランジ部21cは第2下層42の外側に設けられている。フランジ部21cの座面は第2下層42の端面42fに沿っている。   The flange portion 21 c of the flange 113 is provided outside the second lower layer 42. The seating surface of the flange portion 21 c is along the end surface 42 f of the second lower layer 42.

液排出部13と樋113とは、液排出部13の突出部31aが樋113の窪み41aに嵌められて連結される。液排出部13と樋113とが連結されると、第1上層31の端面31fと第2上層41の端面41fとが面接触し、かつ、第1下層32の端面32fと第2下層42の端面42fとが面接触した状態となる。また、突出部31aの下面と窪み41aの上面とが面接触した状態となる。第1底部30の上面と第2底部40の上面とは実質的に面一に接続される。   The liquid discharge part 13 and the flange 113 are connected by fitting the protrusion 31 a of the liquid discharge part 13 into the recess 41 a of the flange 113. When the liquid discharge portion 13 and the ridge 113 are connected, the end surface 31f of the first upper layer 31 and the end surface 41f of the second upper layer 41 are in surface contact, and the end surface 32f of the first lower layer 32 and the second lower layer 42 are in contact with each other. The end surface 42f comes into surface contact. Further, the lower surface of the protruding portion 31a and the upper surface of the recess 41a are in surface contact. The upper surface of the first bottom portion 30 and the upper surface of the second bottom portion 40 are substantially flush with each other.

液排出部13のフランジ部21bと樋113のフランジ部21cとは、ボルト、万力などにより締結される。これにより、液排出部13と樋113との間の隙間を最小化できる。ただし、液排出部13と樋113との接続部には僅かな隙間が生じることがある。また、腐食性を有する液がその僅かな隙間に浸入すると、液排出部13および樋113の構成部材が腐食され、隙間が広がることがある。   The flange portion 21b of the liquid discharge portion 13 and the flange portion 21c of the flange 113 are fastened by a bolt, a vise, or the like. Thereby, the clearance gap between the liquid discharge part 13 and the collar 113 can be minimized. However, a slight gap may occur at the connection portion between the liquid discharge portion 13 and the ridge 113. Moreover, when the liquid which has corrosiveness penetrate | invades into the slight clearance gap, the structural member of the liquid discharge part 13 and the ridge 113 may be corroded, and a clearance gap may spread.

液排出部13および樋113を流れる液は、液排出部13と樋113との上層31、41同士の接続面(端面31fと端面41fとの接続面)に生じた隙間から浸入する。ここで、本実施形態では、上層31、41同士の接続面と、下層32、42同士の接続面(端面32fと端面42fとの接続面)とが、面一に連続しておらず、離れた位置に配置されている。そのため、上層31、41同士の接続面に生じた隙間に液が浸入したとしても、その液が下層32、42同士の接続面に達しにくい。その結果、液排出部13と樋113との連結部から液が漏洩しにくい。   The liquid flowing through the liquid discharge unit 13 and the ridge 113 enters through a gap generated on the connection surface (the connection surface between the end surface 31f and the end surface 41f) between the upper layers 31 and 41 of the liquid discharge unit 13 and the ridge 113. Here, in the present embodiment, the connection surface between the upper layers 31 and 41 and the connection surface between the lower layers 32 and 42 (connection surface between the end surface 32f and the end surface 42f) are not flush with each other and are separated from each other. It is arranged at the position. Therefore, even if the liquid enters the gap generated on the connection surface between the upper layers 31 and 41, the liquid hardly reaches the connection surface between the lower layers 32 and 42. As a result, it is difficult for the liquid to leak from the connecting portion between the liquid discharge portion 13 and the flange 113.

本実施形態では、窪み41aの上面が、上層31、41同士の接続面から下層32、42同士の接続面に向かって上がる傾斜を有する。そのため、上層31、41同士の接続面から液が浸入したとしても、その液は窪み41aの上面の傾斜に阻まれて下層32、42同士の接続面に達しにくい。   In the present embodiment, the upper surface of the recess 41 a has an inclination that rises from the connection surface between the upper layers 31 and 41 toward the connection surface between the lower layers 32 and 42. Therefore, even if the liquid enters from the connection surface between the upper layers 31 and 41, the liquid is blocked by the inclination of the upper surface of the recess 41 a and hardly reaches the connection surface between the lower layers 32 and 42.

なお、図6に示すように、第1上層31の突出幅を長くしてもよい。そうすると、第1上層31の端面31fの上縁Aは、第1下層32の端面32fの上縁Bよりも低い位置に配置される。すなわち、液排出部13と樋113との上層31、41同士の接続面の上縁Aよりも下層32、42同士の接続面の上縁Bの方が高い位置に配置される。上縁A、Bの高低差により上層31、41同士の接続面に浸入した液は下層32、42同士の接続面に達しにくい。これは、上縁Aから浸入した液は、外力が加わらない限り、それより高い位置に流れることはないからである。   In addition, as shown in FIG. 6, you may make the protrusion width | variety of the 1st upper layer 31 long. Then, the upper edge A of the end surface 31 f of the first upper layer 31 is disposed at a position lower than the upper edge B of the end surface 32 f of the first lower layer 32. That is, the upper edge B of the connection surface between the lower layers 32 and 42 is arranged at a higher position than the upper edge A of the connection surface between the upper layers 31 and 41 of the liquid discharger 13 and the ridge 113. The liquid that has entered the connection surface between the upper layers 31 and 41 due to the difference in height between the upper edges A and B hardly reaches the connection surface between the lower layers 32 and 42. This is because the liquid that has entered from the upper edge A does not flow to a higher position unless an external force is applied.

さらに、図7に示すように、第1下層32を樋113側に突出させ、第2上層41を液排出部13側に突出させてもよい。図7に示す実施形態では、第1下層32の端面32fが第1上層31の端面31fよりも樋113側に突出している。また、第2上層41の端面41fは第2下層42の端面42fよりも液排出部13側に突出している。第2上層41が突出部41bを構成する。第1底部30の上部に、突出部41bが嵌る窪み31bが形成されている。   Further, as shown in FIG. 7, the first lower layer 32 may be protruded toward the ridge 113, and the second upper layer 41 may be protruded toward the liquid discharge unit 13. In the embodiment shown in FIG. 7, the end surface 32 f of the first lower layer 32 protrudes closer to the flange 113 than the end surface 31 f of the first upper layer 31. Further, the end surface 41 f of the second upper layer 41 protrudes toward the liquid discharger 13 than the end surface 42 f of the second lower layer 42. The second upper layer 41 constitutes the protruding portion 41b. A recess 31 b into which the protruding portion 41 b is fitted is formed on the upper portion of the first bottom portion 30.

このような構成でも、上層31、41同士の接続面と、下層32、42同士の接続面とが離れている。そのため、上層31、41同士の接続面に生じた隙間に液が浸入したとしても、その液が下層32、42同士の接続面に達しにくい。その結果、液排出部13と樋113との連結部から液が漏洩しにくい。   Even in such a configuration, the connection surface between the upper layers 31 and 41 and the connection surface between the lower layers 32 and 42 are separated from each other. Therefore, even if the liquid enters the gap generated on the connection surface between the upper layers 31 and 41, the liquid hardly reaches the connection surface between the lower layers 32 and 42. As a result, it is difficult for the liquid to leak from the connecting portion between the liquid discharge portion 13 and the flange 113.

特に、電気蒸発槽110では、大気温度以上に加熱されたスラリーが液排出部13から排出される。この高温のスラリーが上層31、41同士の接続面に生じた隙間に浸入した場合、スラリーが下層32、42同士の接続面に達する前に液相分が蒸発し、固形分が生じる。この固形分が液排出部13と樋113との間の隙間に固着して、隙間を埋めることができる。   In particular, in the electric evaporation tank 110, the slurry heated to the atmospheric temperature or higher is discharged from the liquid discharge unit 13. When this high-temperature slurry enters a gap formed on the connection surface between the upper layers 31 and 41, the liquid phase is evaporated before the slurry reaches the connection surface between the lower layers 32 and 42, and a solid content is generated. This solid content adheres to the gap between the liquid discharger 13 and the ridge 113, and can fill the gap.

なお、樋連結構造は耐食槽1に限定されず、種々の槽に適用できる。   In addition, the saddle connection structure is not limited to the corrosion-resistant tank 1 and can be applied to various tanks.

つぎに、実施例を説明する。
図9に示す脱ニッケル設備を用いた操業を行った。電気蒸発槽110に供給される脱銅電解液は、ニッケル濃度30〜35g/L、銅濃度0.05g/L以下、砒素濃度1.0g/L以下である。脱銅電解液を90℃に予熱した後に電気蒸発槽110に供給した。電気蒸発槽110の加熱温度の設定値は160℃である。
Next, examples will be described.
The operation using the nickel removal equipment shown in FIG. 9 was performed. The copper removal electrolytic solution supplied to the electric evaporation tank 110 has a nickel concentration of 30 to 35 g / L, a copper concentration of 0.05 g / L or less, and an arsenic concentration of 1.0 g / L or less. The copper removal electrolyte was preheated to 90 ° C. and then supplied to the electric evaporation tank 110. The set value of the heating temperature of the electric evaporation tank 110 is 160 ° C.

(実施例1)
電気蒸発槽110の槽本体として図1に示す耐食槽1を用いた。図2に示すように、底部11、側壁12および液排出部13は、それぞれ、外殻21、フッ素樹脂層22、断熱層23、レンガ層24がこの順に積層されて構成されている。フッ素樹脂層22はコートライニングにより形成した。また、液排出部13と樋113との連結構造は図5に示す通りである。
Example 1
The corrosion resistant tank 1 shown in FIG. As shown in FIG. 2, the bottom part 11, the side wall 12, and the liquid discharge part 13 are each configured by laminating an outer shell 21, a fluororesin layer 22, a heat insulating layer 23, and a brick layer 24 in this order. The fluororesin layer 22 was formed by coating lining. Moreover, the connection structure of the liquid discharge part 13 and the ridge 113 is as shown in FIG.

その結果、電気蒸発槽110の耐用年数は5年以上であった。また、5年間の操業において、液排出部13と樋113との連結部から液の漏洩は確認されなかった。   As a result, the service life of the electric evaporation tank 110 was 5 years or more. Moreover, in the operation for 5 years, the leakage of the liquid was not confirmed from the connection part of the liquid discharge part 13 and the basket 113.

(比較例1)
電気蒸発槽110の槽本体として図8に示す耐食槽2を用いた。この耐食槽2の構成は図1に示す耐食槽1の構成と基本的に同じであるが、液排出部13の底部を構成するレンガ層24の厚さT1が、側壁12のレンガ層24の厚さT2の0.2倍である。また、フッ素樹脂層22はシートライニングにより形成した。その結果、電気蒸発槽110の耐用年数は約2.5年であった。
(Comparative Example 1)
The corrosion resistant tank 2 shown in FIG. The configuration of the corrosion-resistant tank 2 is basically the same as the configuration of the corrosion-resistant tank 1 shown in FIG. 1, but the thickness T 1 of the brick layer 24 that forms the bottom of the liquid discharge unit 13 is the brick layer 24 of the side wall 12. of 0.2 times the thickness T 2. The fluororesin layer 22 was formed by sheet lining. As a result, the service life of the electric evaporation tank 110 was about 2.5 years.

1 耐食槽
11 底部
12 側壁
13 液排出部
30 第1底部
31 第1上層
32 第1下層
40 第2底部
41 第2上層
42 第2下層
113 樋
DESCRIPTION OF SYMBOLS 1 Corrosion-resistant tank 11 Bottom part 12 Side wall 13 Liquid discharge part 30 1st bottom part 31 1st upper layer 32 1st lower layer 40 2nd bottom part 41 2nd upper layer 42 2nd lower layer 113 樋

Claims (6)

槽の液排出部と樋との連結構造であって、
前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、
前記樋は上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有し、
前記液排出部と前記樋とは、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で連結され、
前記第1上層の前記端面は前記第1下層の前記端面よりも前記樋側に突出しており、
前記第2下層の前記端面は前記第2上層の前記端面よりも前記液排出部側に突出している
ことを特徴とする樋連結構造。
It is a connection structure between the liquid discharge part of the tank and the tank,
The liquid discharge part has a first bottom part composed of a first upper layer through which liquid flows on the upper surface and a first lower layer below the first upper layer,
The scissors have a second bottom part composed of a second upper layer through which liquid flows on the upper surface and a second lower layer below the second upper layer,
The liquid discharge part and the ridge are connected in a state in which the end surface of the first upper layer and the end surface of the second upper layer are in contact with each other, and the end surface of the first lower layer and the end surface of the second lower layer are in contact with each other And
The end surface of the first upper layer protrudes toward the heel side from the end surface of the first lower layer,
The scissor connection structure, wherein the end surface of the second lower layer protrudes closer to the liquid discharger than the end surface of the second upper layer.
前記第1底部および前記第2底部は、前記液排出部から前記樋に向かって下がる傾斜を有しており、
前記第1上層の前記端面の上縁は、前記第1下層の前記端面の上縁よりも低い位置に配置されている
ことを特徴とする請求項1記載の樋連結構造。
The first bottom part and the second bottom part have an inclination that descends from the liquid discharge part toward the bowl,
The hook connection structure according to claim 1, wherein an upper edge of the end surface of the first upper layer is disposed at a position lower than an upper edge of the end surface of the first lower layer.
槽の液排出部と樋との連結構造であって、
前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、
前記樋は上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有し、
前記液排出部と前記樋とは、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で連結され、
前記第1下層の前記端面は前記第1上層の前記端面よりも前記樋側に突出しており、
前記第2上層の前記端面は前記第2下層の前記端面よりも前記液排出部側に突出している
ことを特徴とする樋連結構造。
It is a connection structure between the liquid discharge part of the tank and the tank,
The liquid discharge part has a first bottom part composed of a first upper layer through which liquid flows on the upper surface and a first lower layer below the first upper layer,
The scissors have a second bottom part composed of a second upper layer through which liquid flows on the upper surface and a second lower layer below the second upper layer,
The liquid discharge part and the ridge are connected in a state in which the end surface of the first upper layer and the end surface of the second upper layer are in contact with each other, and the end surface of the first lower layer and the end surface of the second lower layer are in contact with each other And
The end surface of the first lower layer protrudes toward the heel side from the end surface of the first upper layer,
The end surface of the second upper layer projects from the end surface of the second lower layer to the liquid discharger side.
上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有する樋と連結する液排出部を備え、
前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、
前記液排出部は、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で、前記樋と連結されるよう構成されており、
前記第1上層の前記端面は前記第1下層の前記端面よりも前記樋側に突出している
ことを特徴とする耐食槽。
A liquid discharge part connected to a ridge having a second bottom part composed of a second upper layer through which liquid flows on the upper surface and a second lower layer below the second upper layer;
The liquid discharge part has a first bottom part composed of a first upper layer through which liquid flows on the upper surface and a first lower layer below the first upper layer,
The liquid discharge portion is connected to the flange in a state where an end surface of the first upper layer and an end surface of the second upper layer are in contact with each other, and an end surface of the first lower layer and an end surface of the second lower layer are in contact with each other. Configured to be
The said end surface of the said 1st upper layer protrudes in the said heel side rather than the said end surface of the said 1st lower layer, The corrosion-resistant tank characterized by the above-mentioned.
前記第1底部は、前記液排出部から前記樋に向かって下がる傾斜を有しており、
前記第1上層の前記端面の上縁は、前記第1下層の前記端面の上縁よりも低い位置に配置されている
ことを特徴とする請求項4記載の耐食槽。
The first bottom portion has an inclination that descends from the liquid discharge portion toward the ridge,
The corrosion-resistant tank according to claim 4, wherein an upper edge of the end surface of the first upper layer is disposed at a position lower than an upper edge of the end surface of the first lower layer.
上面を液が流れる第2上層と、該第2上層の下の第2下層とからなる第2底部を有する樋と連結する液排出部を備え、
前記液排出部は上面を液が流れる第1上層と、該第1上層の下の第1下層とからなる第1底部を有し、
前記液排出部は、前記第1上層の端面と前記第2上層の端面とが接触し、かつ、前記第1下層の端面と前記第2下層の端面とが接触した状態で、前記樋と連結されるよう構成されており、
前記第1下層の前記端面は前記第1上層の前記端面よりも前記樋側に突出している
ことを特徴とする耐食槽。
A liquid discharge part connected to a ridge having a second bottom part composed of a second upper layer through which liquid flows on the upper surface and a second lower layer below the second upper layer;
The liquid discharge part has a first bottom part composed of a first upper layer through which liquid flows on the upper surface and a first lower layer below the first upper layer,
The liquid discharge portion is connected to the flange in a state where an end surface of the first upper layer and an end surface of the second upper layer are in contact with each other, and an end surface of the first lower layer and an end surface of the second lower layer are in contact with each other. Configured to be
The said end surface of the said 1st lower layer protrudes in the said ridge side rather than the said end surface of the said 1st upper layer, The corrosion-resistant tank characterized by the above-mentioned.
JP2018017799A 2018-02-05 2018-02-05 Gutter connection structure and corrosion resistant tank Active JP6958398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018017799A JP6958398B2 (en) 2018-02-05 2018-02-05 Gutter connection structure and corrosion resistant tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017799A JP6958398B2 (en) 2018-02-05 2018-02-05 Gutter connection structure and corrosion resistant tank

Publications (2)

Publication Number Publication Date
JP2019135316A true JP2019135316A (en) 2019-08-15
JP6958398B2 JP6958398B2 (en) 2021-11-02

Family

ID=67624070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017799A Active JP6958398B2 (en) 2018-02-05 2018-02-05 Gutter connection structure and corrosion resistant tank

Country Status (1)

Country Link
JP (1) JP6958398B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244952U (en) * 1975-09-25 1977-03-30
US4129494A (en) * 1977-05-04 1978-12-12 Norman Telfer E Electrolytic cell for electrowinning of metals
JPH02258993A (en) * 1989-03-30 1990-10-19 Toho Titanium Co Ltd Electrolytic cell for producing metal
JP3143414U (en) * 2008-05-09 2008-07-24 美佐子 杉本 Raw noodle sink
JP2009522450A (en) * 2006-11-02 2009-06-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for continuously or discontinuously recovering one or several metals from a slag containing a metal or metal compound
JP2014101546A (en) * 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Nickel removal method from copper removal electrolytic solution
US20150260322A1 (en) * 2014-03-13 2015-09-17 Frederick M. Mako, JR. Method for Joining Ceramics to Ceramics or Ceramics to Metals, and Apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244952U (en) * 1975-09-25 1977-03-30
US4129494A (en) * 1977-05-04 1978-12-12 Norman Telfer E Electrolytic cell for electrowinning of metals
JPH02258993A (en) * 1989-03-30 1990-10-19 Toho Titanium Co Ltd Electrolytic cell for producing metal
JP2009522450A (en) * 2006-11-02 2009-06-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for continuously or discontinuously recovering one or several metals from a slag containing a metal or metal compound
JP3143414U (en) * 2008-05-09 2008-07-24 美佐子 杉本 Raw noodle sink
JP2014101546A (en) * 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Nickel removal method from copper removal electrolytic solution
US20150260322A1 (en) * 2014-03-13 2015-09-17 Frederick M. Mako, JR. Method for Joining Ceramics to Ceramics or Ceramics to Metals, and Apparatus

Also Published As

Publication number Publication date
JP6958398B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US5082543A (en) Filter press electrolysis cell
JPS5822548B2 (en) Multipolar electrode unit
JP2009519453A (en) Heating rod for pressurizer in primary cooling system of pressurized water reactor
US20090123803A1 (en) Fuel cell comprising a plurality of individual cells connected in series by current collectors
US4036714A (en) Electrolytic cells and processes
CN107004929B (en) Electrochemical device for storing electric energy and producing hydrogen and method for producing hydrogen
CA1043735A (en) Electrolytic cells and processes
CN101493298A (en) Corrosion resistant composite heat exchanger and method for producing the same
NO863292L (en) MONOPOLAR ELECTROCHEMICAL CELL, CELL UNIT AND PROCEDURE FOR EXECUTING ELECTROLYSIS IN A MONOPOLAR CELL SERIES.
JP2019135316A (en) Gutter-connecting structure and anti-corrosion tank
JP7077546B2 (en) Corrosion resistant tank
JP6859980B2 (en) Bipolar plate
WO2020085066A1 (en) Fluorine gas production device
EP0186008A1 (en) A partially fabricated electrochemical cell
EP4257732A1 (en) Alkaline water electrolysis system, and method for operating alkaline water electrolysis system
EP3976861B1 (en) An electrode assembly for electrochemical processes
CN201292408Y (en) High-capacity corrosion resistant electrolytic tank for production of fluorine
KR20230131926A (en) Electrowinning cell and method of using same for production of metal products
JP2009280891A (en) Electrode plate and metal manufacturing method
NO863294L (en) PROCEDURE FOR THE MANUFACTURE OF ELECTROCHEMICAL CELL AND AN ELECTROCHEMICAL CELL.
EP3604629B1 (en) Plating treatment device
JP2005029843A (en) Electrode plate for electrolytic refining, its production method, and electrolytic refining method using the electrode plate for electrolytic refining
TW201510284A (en) Anode and method for manufacturing same
CN110474066A (en) The bipolar plates and its moulding process of fuel cell
CN211921724U (en) Stable temperature control device for aluminum alloy section electrophoresis tank liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6958398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150