JP2019132839A - Method of determining mean red blood cell age - Google Patents

Method of determining mean red blood cell age Download PDF

Info

Publication number
JP2019132839A
JP2019132839A JP2019012253A JP2019012253A JP2019132839A JP 2019132839 A JP2019132839 A JP 2019132839A JP 2019012253 A JP2019012253 A JP 2019012253A JP 2019012253 A JP2019012253 A JP 2019012253A JP 2019132839 A JP2019132839 A JP 2019132839A
Authority
JP
Japan
Prior art keywords
average
value
hemoglobin
red blood
age
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019012253A
Other languages
Japanese (ja)
Other versions
JP7281633B2 (en
Inventor
征史 亀山
Masashi Kameyama
征史 亀山
壯介 竹内
Sosuke Takeuchi
壯介 竹内
伸弥 石井
Shinya Ishii
伸弥 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (TMGHIG)
Original Assignee
Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (TMGHIG)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (TMGHIG) filed Critical Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (TMGHIG)
Publication of JP2019132839A publication Critical patent/JP2019132839A/en
Application granted granted Critical
Publication of JP7281633B2 publication Critical patent/JP7281633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

To provide means that allow for easily and accurately deriving mean red blood cell age without making diagnosis that imposes burdens on patients.SOLUTION: A method disclosed herein comprises a step of plugging an average blood glucose (AG) level and a hemoglobin A1c (HbA1c) level of a subject into a formula selected from a group of formulas below to determine mean red blood cell age (MRBC). In the formulas, MRBC represents mean red blood cell age (day), HbA1c represents a hemoglobin A1c level, Kg represent a saccharification rate (dL/mg/day), and AG represents an average blood glucose level (mg/dL).SELECTED DRAWING: None

Description

本発明は、平均赤血球年齢を決定する方法、並びに平均赤血球年齢を決定するシステム及びプログラムに関する。   The present invention relates to a method for determining an average erythrocyte age, and a system and program for determining an average erythrocyte age.

糖尿病患者において血糖値を低くコントロールすることは重要であり、血糖値のモニタリングは不可欠であるが、血漿グルコースレベルは食事やその他の因子により容易に変動する。全ヘモグロビンに対する糖化ヘモグロビンの割合を示すヘモグロビンA1c(HbA1c)値は、過去1〜数箇月の血糖値の平均を反映して上下するため、平均血糖(AG)値のバイオマーカーとして用いられている。   Low control of blood glucose levels is important in diabetic patients, and monitoring of blood glucose levels is essential, but plasma glucose levels easily vary with diet and other factors. The hemoglobin A1c (HbA1c) value, which indicates the ratio of glycated hemoglobin to total hemoglobin, rises and falls reflecting the average of blood glucose levels in the past one to several months, and is therefore used as a biomarker for average blood glucose (AG) values.

ヘモグロビンA1c値から平均血糖値を推定するために、線形の関係を前提とした多くの研究が報告されており、例えば、Nathan et al., 2008(非特許文献1)により下記式(1)が提案されている:
In order to estimate the average blood glucose level from the hemoglobin A1c value, many studies on the premise of a linear relationship have been reported. For example, Nathan et al., 2008 (Non-patent Document 1) shows the following equation (1): Proposed:

前記式(1)は、米国糖尿病学会(American Diabetes Association; ADA)の推奨により医師の間で広く用いられている。また、前記式(1)を含む、これまで提案された線形関係式は、実際の臨床現場の使用において機能的かつ有効であるが、いくつかの数学的矛盾を含んでいる。   The formula (1) is widely used among doctors at the recommendation of the American Diabetes Association (ADA). In addition, the linear relational expression proposed so far including the above-described formula (1) is functional and effective in actual clinical use, but includes some mathematical contradictions.

第一に、これらの式では、血漿中にグルコースが存在しない場合(AG = 0 mg/mL)でも、ヘモグロビンが糖化される。これらの式をグラフ化した場合、原点を通過する必要がある。
第二に、これらの式では、ヘモグロビンA1c値が理論的限界値である100%を超える。赤血球を飽和砂糖水(約200,000 mg/mL)に浸漬させた場合であっても、ヘモグロビンA1c値は100%を超えてはならない。
First, in these formulas, hemoglobin is glycated even in the absence of glucose in the plasma (AG = 0 mg / mL). When these equations are graphed, it is necessary to pass through the origin.
Second, in these equations, the hemoglobin A1c value exceeds the theoretical limit value of 100%. Even when erythrocytes are immersed in saturated sugar water (about 200,000 mg / mL), the hemoglobin A1c value should not exceed 100%.

一方、平均赤血球年齢(MRBC)は、例えば、溶血性貧血(非特許文献2)、消化管内出血(例えば、大腸がんに起因する出血)などの診断におけるバイオマーカーとして知られている。例えば、赤血球の寿命は、正常では約120日間であるところ、出血や溶血性疾患がある場合には骨髄から生産される赤血球は増加し、それは通常の6〜8倍にも増大するため、例えば、溶血性貧血では100日以下に短縮している。血中の赤血球量が不足する傾向となった場合、即ち、何らかの要因で赤血球の分解・代謝が促進し、赤血球が不足する傾向となった場合には、骨髄組織の造血幹細胞が増殖、分化して赤血球を増産する。したがって、重篤な造血異常や大量の出血、溶血がない限りは血中赤血球数に大きく変化しない。したがって、血中赤血球数からは、体内の出血や溶血等の異常を捉えることは困難であった。 On the other hand, mean erythrocyte age (M RBC ) is known as a biomarker in diagnosis of hemolytic anemia (Non-patent Document 2), gastrointestinal bleeding (for example, bleeding due to colorectal cancer), and the like. For example, the lifespan of red blood cells is normally about 120 days, but if there is bleeding or hemolytic disease, the amount of red blood cells produced from the bone marrow increases, which increases 6 to 8 times the normal value. In hemolytic anemia, it is shortened to 100 days or less. If there is a tendency for the amount of red blood cells in the blood to become deficient, that is, if there is a tendency for red blood cells to decompose or metabolize due to some factor and a shortage of red blood cells, hematopoietic stem cells in the bone marrow tissue proliferate and differentiate. Increase the production of red blood cells. Therefore, unless there is a serious hematopoietic abnormality, a large amount of bleeding, or hemolysis, the blood red blood cell count does not change greatly. Therefore, it has been difficult to detect abnormalities such as hemorrhage and hemolysis in the body from the blood red blood cell count.

赤血球寿命を測定する従来法としては、放射性同位元素の51Crや、人工的に化学修飾(例えば、ビオチンラベル)した赤血球を注射剤として人体に投与し、それらの血中量の減少率を測定する方法があり、臨床使用されている。しかしながらこれらの方法は被験者の内部被爆の問題や、免疫的に異物となる化学修飾赤血球の反復投与によるアナフィラキシーショックなど、重篤な副作用が発生するリスクもあり、疾患の重篤度に応じて限定的にしか使用されてこなかった。こうした背景の中、非放射性で、かつ安全な赤血球寿命測定法の開発が待たれていた。 Conventional methods for measuring red blood cell lifetime include the administration of radioactive isotope 51 Cr and artificially chemically modified red blood cells (for example, biotin label) as an injection to the human body, and measuring the rate of decrease in their blood levels. There are ways to be used clinically. However, these methods also have the risk of serious side effects such as the problem of internal exposure in subjects and anaphylactic shock caused by repeated administration of chemically modified red blood cells that are immunologically foreign, and are limited according to the severity of the disease It has been used only for purpose. Against this background, development of a non-radioactive and safe red blood cell lifetime measurement method has been awaited.

Nathan, D. M., Kuenen, J., Borg, R., Zheng, H., Schoenfeld, D., Heine, R. J., 2008. Translating the A1C assay into estimated average glucose values. Diabetes Care 31 (8), 1473-1478.Nathan, DM, Kuenen, J., Borg, R., Zheng, H., Schoenfeld, D., Heine, RJ, 2008. Translating the A1C assay into estimated average glucose values. Diabetes Care 31 (8), 1473-1478 . 臼杵憲祐、2015、溶血性貧血:診断と治療、日本内科学会雑誌、104巻、7号、1389〜1396頁Usuki Kensuke, 2015, Hemolytic anemia: Diagnosis and treatment, Journal of the Japan Society for Internal Medicine, 104, 7, pp. 1389-1396 Shrestha, R. P., Horowitz, J., Hollot, C. V., Germain, M. J., Widness, J. A., Mock, D. M., Veng-Pedersen, P., Chait, Y., 2016. Models for the red blood cell lifespan. J Pharmacokinet Pharmacodyn 43 (3), 259-274.Shrestha, RP, Horowitz, J., Hollot, CV, Germain, MJ, Widness, JA, Mock, DM, Veng-Pedersen, P., Chait, Y., 2016. Models for the red blood cell lifespan. J Pharmacokinet Pharmacodyn 43 (3), 259-274. Beach, K. W., 1979. A theoretical model to predict the behavior of glycosylated hemoglobin levels. J Theor Biol 81 (3), 547-561.Beach, K. W., 1979. A theoretical model to predict the behavior of glycosylated hemoglobin levels. J Theor Biol 81 (3), 547-561. Higgins, P. J., Bunn, H. F., 1981. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J Biol Chem 256 (10), 5204-5208.Higgins, P. J., Bunn, H. F., 1981. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J Biol Chem 256 (10), 5204-5208. Ladyzynski, P.,Wojcicki, J. M., Bak, M., Sabalinska, S., Kawiak, J., Foltynski, P., Krzymien, J., Karnafel, W., 2008. Validation of hemoglobin glycation models 22 using glycemia monitoring in vivo and culturing of erythrocytes in vitro. Ann Biomed Eng 36 (7), 1188-1202.Ladyzynski, P., Wojcicki, JM, Bak, M., Sabalinska, S., Kawiak, J., Foltynski, P., Krzymien, J., Karnafel, W., 2008. Validation of hemoglobin glycation models 22 using glycemia monitoring in vivo and culturing of erythrocytes in vitro. Ann Biomed Eng 36 (7), 1188-1202. Lledo-Garcia, R., Mazer, N. A., Karlsson, M. O., 2013. A semi-mechanistic model of the relationship between average glucose and HbA1c in healthy and diabetic subjects. J Pharmacokinet Pharmacodyn 40 (2), 129-142.Lledo-Garcia, R., Mazer, N. A., Karlsson, M. O., 2013.A semi-mechanistic model of the relationship between average glucose and HbA1c in healthy and diabetic subjects.J Pharmacokinet Pharmacodyn 40 (2), 129-142. Malka, R., Nathan, D. M., Higgins, J. M., 2016. Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabetes monitoring. Sci Transl Med 8 (359), 359ra130.Malka, R., Nathan, D. M., Higgins, J. M., 2016.Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabetes monitoring.Sci Transl Med 8 (359), 359ra130.

本発明者は、前記の線形関係式が有するいくつかの数学的矛盾を解消するために、平均血糖値とヘモグロビンA1c値との間のより正確な関係式を模索する中で、新規かつ正確な非線形の関係式(後述する式(21))を得ることに成功した。更に、この関係式に基づいて、平均血糖値とヘモグロビンA1c値とから、容易かつ正確に平均赤血球年齢を求めることができる関係式又はその近似式を導き出すことに成功した。   In order to eliminate some mathematical contradictions of the linear relational expression, the present inventor searched for a more accurate relational expression between the average blood glucose level and the hemoglobin A1c value. A nonlinear relational expression (formula (21) described later) was successfully obtained. Furthermore, based on this relational expression, the inventors succeeded in deriving a relational expression or an approximate expression thereof that can easily and accurately determine the average erythrocyte age from the average blood glucose level and the hemoglobin A1c value.

従って、本発明の目的は、被験者の平均血糖値とヘモグロビンA1c値とから平均赤血球年齢を決定することのできる関係式又はその近似式を提案し、これらの式を用いる平均赤血球年齢を決定する方法、並びに平均赤血球年齢を決定するシステム及びプログラムを提供することにある。   Accordingly, an object of the present invention is to propose a relational expression that can determine the average erythrocyte age from the average blood glucose level and hemoglobin A1c value of the subject or an approximate expression thereof, and a method for determining the average erythrocyte age using these expressions And providing a system and program for determining mean erythrocyte age.

本発明の測定原理は、体内において新生された赤血球が血中グルコースにより、赤血球寿命の120日間を通して、非酵素的に継続的糖化を受ける事を利用し、赤血球寿命を測定する方法である。
新生赤血球は血中のグルコースに暴露する時間が長ければ長いほど、また、血中グルコース濃度が高ければ高いほど糖化が進行し、グルコースと赤血球タンパク質との結合において形成されたシフ塩基は時間とともに化学的に安定な結合へと変化していく。これにより、糖化は非可逆的に蓄積していく。その為、赤血球寿命が長いほど糖化が進む事となる。
当該の赤血球糖化のメカニズムは非酵素的反応であるため、他の酵素やタンパク質等の質的、量的変化の影響を受けず、体内で安定な糖化反応が継続して起き、この糖化反応は試験管内においても再現する事ができる。本発明はこの様な生体内の恒常的、非酵素的糖化反応を利用した赤血球寿命測定技術を提供する。
前述のように、ヒト血中の赤血球量は常に一定に保つように恒常性が保たれている。従って、体内において継続的な出血や溶血が起きている場合においては骨髄組織が赤血球を新生して正常値に戻そうとする。この場合、赤血球の供給と需要(代謝)速度が上昇し、赤血球寿命は通常よりも短くなる。したがって、この赤血球は血中のグルコースとの暴露時間が短い、即ち、赤血球は糖化が低いまま一生を終える事となる。
本発明の技術は前述のヒト体内に生理的に存在する赤血球の非酵素的糖化メカニズムを利用し、赤血球の血中グルコースへの暴露時間から赤血球寿命を算定する方法である。
The measurement principle of the present invention is a method for measuring the life of red blood cells by utilizing the fact that red blood cells newly born in the body undergo continuous saccharification non-enzymatically through blood glucose for 120 days.
The longer nascent red blood cells are exposed to blood glucose, the higher the blood glucose concentration, and the higher the blood glucose concentration, the more saccharification progresses. Changes to a stable bond. Thereby, saccharification accumulates irreversibly. Therefore, the longer the red blood cell life, the more saccharification proceeds.
Since the mechanism of erythrocyte glycation is a non-enzymatic reaction, it is not affected by qualitative and quantitative changes in other enzymes, proteins, etc., and stable saccharification occurs continuously in the body. It can also be reproduced in a test tube. The present invention provides a technique for measuring erythrocyte lifetime utilizing such a constant, non-enzymatic saccharification reaction in a living body.
As described above, homeostasis is maintained so that the amount of red blood cells in human blood is always kept constant. Therefore, when continuous hemorrhage or hemolysis occurs in the body, the bone marrow tissue attempts to regenerate red blood cells to return to a normal value. In this case, the supply and demand (metabolism) rate of red blood cells increases, and the life of red blood cells becomes shorter than usual. Therefore, this red blood cell has a short exposure time with glucose in the blood, that is, the red blood cell ends its life with low glycation.
The technique of the present invention is a method for calculating the lifetime of erythrocytes from the exposure time of erythrocytes to blood glucose using the aforementioned non-enzymatic glycation mechanism of erythrocytes physiologically present in the human body.

前記課題は、本発明による、
[1]被験者の平均血糖(AG)値とヘモグロビンA1c(HbA1c)値に基づいて、平均赤血球年齢を決定する方法;
[2]被験者の平均血糖(AG)値とヘモグロビンA1c(HbA1c)値を、下記式(30)、(34)、及び(35):
[式中、MRBCは平均赤血球年齢(day)であり、HbA1cはヘモグロビンA1c値であり、kは糖化率(dL/mg/day)であり、AGは平均血糖値(mg/dL)である]
からなる群から選択される式に代入することにより、平均赤血球年齢(MRBC)を決定する、[1]の方法;
[3](1)平均血糖(AG)値とヘモグロビンA1c(HbA1c)値を入力する手段;
(2)入力された前記平均血糖値とヘモグロビンA1c値に基づいて、平均赤血球年齢を算出する演算手段;
(3)算出された前記平均赤血球年齢を出力する手段;
を含む、平均赤血球年齢を決定するシステム;
[4]前記演算手段が、下記式(30)、(34)、又は(35):
[式中、MRBCは平均赤血球年齢(day)であり、HbA1cはヘモグロビンA1c値であり、kは糖化率(dL/mg/day)であり、AGは平均血糖値(mg/dL)である]
の少なくともいずれか1つに基づいて、平均赤血球年齢を算出する、[3]のシステム;
[5]コンピュータを下記の手段(1)、手段(2)、手段(3)として機能させるための、平均赤血球年齢(MRBC)を決定するプログラム:
(1)平均血糖(AG)値とヘモグロビンA1c(HbA1c)値を入力する手段;
(2)入力された前記平均血糖値とヘモグロビンA1c値に基づいて、平均赤血球年齢(MRBC)を算出する演算手段;
(3)算出された前記平均赤血球年齢を出力する手段;
[6]前記演算手段が、下記式(30)、(34)、又は(35):
[式中、MRBCは平均赤血球年齢(day)であり、HbA1cはヘモグロビンA1c値であり、kは糖化率(dL/mg/day)であり、AGは平均血糖値(mg/dL)である]
の少なくともいずれか1つに基づいて、平均赤血球年齢を算出する、[5]のプログラム;
により解決することができる。
Said subject is according to the invention,
[1] A method of determining an average erythrocyte age based on a subject's average blood glucose (AG) value and hemoglobin A1c (HbA1c) value;
[2] The subject's average blood glucose (AG) value and hemoglobin A1c (HbA1c) value are expressed by the following formulas (30), (34), and (35):
Wherein, M RBC is the mean red blood cell age (day), HbA1c is hemoglobin A1c value, k g is the glycation rate (dL / mg / day), AG is an average blood glucose level (mg / dL) is there]
Determining the mean erythrocyte age (M RBC ) by substituting into an expression selected from the group consisting of:
[3] (1) Means for inputting an average blood glucose (AG) value and a hemoglobin A1c (HbA1c) value;
(2) Calculation means for calculating an average erythrocyte age based on the inputted average blood glucose level and hemoglobin A1c value;
(3) means for outputting the calculated mean erythrocyte age;
A system for determining mean erythrocyte age, comprising:
[4] The computing means is represented by the following formula (30), (34), or (35):
Wherein, M RBC is the mean red blood cell age (day), HbA1c is hemoglobin A1c value, k g is the glycation rate (dL / mg / day), AG is an average blood glucose level (mg / dL) is there]
The system of [3], which calculates an average erythrocyte age based on at least one of
[5] A program for determining an average red blood cell age (M RBC ) for causing a computer to function as the following means (1), means (2), and means (3):
(1) Means for inputting an average blood glucose (AG) value and a hemoglobin A1c (HbA1c) value;
(2) Calculation means for calculating an average red blood cell age (M RBC ) based on the inputted average blood glucose level and hemoglobin A1c value;
(3) means for outputting the calculated mean erythrocyte age;
[6] The computing means is represented by the following formula (30), (34), or (35):
Wherein, M RBC is the mean red blood cell age (day), HbA1c is hemoglobin A1c value, k g is the glycation rate (dL / mg / day), AG is an average blood glucose level (mg / dL) is there]
The program according to [5], wherein an average erythrocyte age is calculated based on at least one of the following:
Can be solved.

本発明によれば、従来のアイソトープ投与や化学修飾赤血球注射剤の投与によらず、血糖値測定と採血により、従来よりもより低侵襲的に、容易かつ正確に平均赤血球年齢を求めることができる。   According to the present invention, the average erythrocyte age can be determined more easily and accurately in a less invasive manner than conventional methods by blood glucose level measurement and blood sampling, regardless of conventional isotope administration or chemically modified erythrocyte injection administration. .

また、糖尿病患者では血管が脆弱になり、重症化すると組織内出血が起きることがある。この様な出血は、消化管内出血であれば便中赤血球の鋭敏な検出法など,比較的間便な検査法があるが、消化管以外で出血または溶血が発生する場合には検出が難しく、病状が重篤化してからでないと発見する事ができなかった。
本発明の方法は血中のHbA1cの測定と、糖尿病患者の血中グルコース濃度を測るといった、糖尿病患者に通常適用する検査法のみで赤血球の寿命、即ち、出血や溶血の存在を検知することができる。言い換えると、通常の糖尿病患者に実施される検査法のデータのみから、赤血球寿命を判定する事ができる新しい技術である。このような仕様である本発明の技術は、患者への一切の追加、侵襲的措置を行うことなしに赤血球寿命を算出する事ができる初めての方法である。
一方、骨髄移植の現場においては、本発明の方法を用いる事により、移植骨髄からの赤血球供給率をモニターすることができる。本発明の方法は放射線の被爆リスクや薬剤の反復投与リスクがないため、継続的に赤血球寿命を測定する事ができるようになった。
本発明の技術はこの様な仕様によって構成される方法であるため、放射線取扱に伴う特殊な医療施設や専門技術者を必要とせず、臨床現場において容易に赤血球寿命を測定する事が可能となっている。
In diabetic patients, blood vessels become fragile, and when they become severe, tissue bleeding may occur. Such hemorrhage is relatively inconvenient, such as sensitive detection of red blood cells in the stool if it is in the gastrointestinal tract, but it is difficult to detect if bleeding or hemolysis occurs outside the gastrointestinal tract, It could not be discovered until the medical condition became serious.
The method of the present invention can detect the life of erythrocytes, that is, the presence of bleeding and hemolysis, only by a test method usually applied to diabetic patients, such as measurement of HbA1c in blood and measurement of blood glucose concentration of diabetic patients. it can. In other words, this is a new technique that can determine the life span of red blood cells only from data of examination methods performed on normal diabetic patients. The technology of the present invention having such a specification is the first method that can calculate the red blood cell lifetime without performing any additional or invasive treatment on the patient.
On the other hand, at the site of bone marrow transplantation, the erythrocyte supply rate from the transplanted bone marrow can be monitored by using the method of the present invention. Since the method of the present invention has no risk of exposure to radiation or repeated administration of drugs, the lifetime of red blood cells can be continuously measured.
Since the technology of the present invention is a method constituted by such specifications, it is possible to easily measure the life of red blood cells in the clinical field without requiring special medical facilities and specialists for radiation handling. ing.

図1Aは、赤血球の確率密度関数p(t)であり、図1Bは、正規化した赤血球寿命分布である。FIG. 1A is a probability density function p (t) of red blood cells, and FIG. 1B is a normalized red blood cell lifetime distribution. 図2Aは、ヘモグロビン糖化の3コンパートメントモデルを示し、図2Bは、簡略化した2コンパートメントモデルを示す。FIG. 2A shows a three-compartment model of hemoglobin glycation and FIG. 2B shows a simplified two-compartment model. 図3Aは、式(21)で示す平均血糖とHbA1cとの関係を視覚化したグラフであり、図3Bは、それを部分的に拡大したグラフである。FIG. 3A is a graph that visualizes the relationship between the average blood glucose and HbA1c shown in Equation (21), and FIG. 3B is a graph that partially enlarges it. 図4Aは、平均血糖とHbA1cとの関係の近似を、元になった完全な関係式(21)と共に示すグラフであり、図4Bは、それを部分的に拡大したグラフである。FIG. 4A is a graph showing an approximation of the relationship between average blood glucose and HbA1c together with the original complete relational expression (21), and FIG. 4B is a graph in which it is partially enlarged. 図5は、平均赤血球年齢(MRBC)とiA1c/(1000-2/3×iA1c)の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the mean erythrocyte age (M RBC ) and iA1c / (1000-2 / 3 × iA1c).

本発明の平均赤血球年齢を決定する方法(以下、本発明方法と称することがある)では、被験者から得られた平均血糖(AG)値とヘモグロビンA1c(HbA1c)値から平均赤血球年齢(MRBC)を決定することができる。本発明では、後述するとおり、平均赤血球年齢を求めることのできる具体的な複数の近似式を提供するが、本発明の本質は、これらの個々の近似式に限定されるものではなく、平均血糖値とヘモグロビンA1c値という2つの検査値から平均赤血球年齢を求められるという新規の技術的思想にある。 In the method for determining the average erythrocyte age of the present invention (hereinafter sometimes referred to as the method of the present invention), the average erythrocyte age (M RBC ) is calculated from the average blood glucose (AG) value obtained from the subject and the hemoglobin A1c (HbA1c) value. Can be determined. In the present invention, as will be described later, a plurality of specific approximate expressions that can determine the average erythrocyte age are provided. However, the essence of the present invention is not limited to these individual approximate expressions. This is based on a new technical idea that the average age of red blood cells can be obtained from two test values, ie, the hemoglobin A1c value and the hemoglobin A1c value.

前記の平均血糖値とヘモグロビンA1c値は常法により取得することができる。特に、平均血糖値については、体に装着することのできる持続血糖測定装置により、日常の血糖値を長時間にわたって経時的に測定することができる。なお、HbA1cは、全ヘモグロビンに対する糖化ヘモグロビンの割合であるが、本明細書における各式においては、100%を1とした場合の値(例えば、5.5%であれば、0.055)を使用する。   The average blood glucose level and hemoglobin A1c level can be obtained by a conventional method. In particular, the average blood glucose level can be measured over time over a long period of time with a continuous blood glucose measurement device that can be worn on the body. HbA1c is a ratio of glycated hemoglobin to total hemoglobin. In each formula in this specification, 100% is assumed to be 1 (for example, 0.055 if 5.5%). use.

本発明方法、又は、後述する本発明システム若しくは本発明プログラムで用いる、平均血糖値とヘモグロビンA1c値と平均赤血球年齢との関係式又はその近似式(以下、本発明における当該関係式又はその近似式と称することがある)、特に近似式は、後述する実施例で詳細に説明するとおり、平均血糖値とヘモグロビンA1c値との関係式(21):
[式中、HbA1cはヘモグロビンA1c値であり、AGは平均血糖値(mg/dL)であり、kは糖化率(dL/mg/day)であり、α、βはガンマ分布のパラメータである]
を元にして導き出したものである。
A relational expression of an average blood glucose level, a hemoglobin A1c value, and an average erythrocyte age or an approximate expression thereof (hereinafter, the relational expression in the present invention or an approximate expression thereof) used in the method of the present invention or the system or program of the present invention described later In particular, the approximate expression is a relational expression (21) between the average blood sugar level and the hemoglobin A1c value, as will be described in detail in the examples described later:
Wherein, HbA1c is hemoglobin A1c value, AG is an average blood glucose (mg / dL), k g is the glycation rate (dL / mg / day), α, β is a parameter of the gamma distribution ]
It is derived based on.

ここで、前記式(21)は、Shrestha et al., 2016(非特許文献3)により提案された3種類の分布の内、本発明者が最も好ましいと判断したガンマ分布に従う、赤血球死の確率密度関数p(t):
[式中、α、βはガンマ分布のパラメータであり、Γはオイラーのガンマ関数を意味する]
に基づくものである。
Here, the equation (21) is the probability of erythrocyte death according to the gamma distribution determined by the present inventor among the three types of distribution proposed by Shrestha et al., 2016 (Non-patent Document 3). Density function p (t):
[Where α and β are parameters of the gamma distribution, and Γ means Euler's gamma function]
It is based on.

本発明における当該関係式又はその近似式としては、以下に限定されるものではないが、例えば、
[式中、MRBCは平均赤血球年齢(day)であり、HbA1cはヘモグロビンA1c値であり、kは糖化率(dL/mg/day)であり、AGは平均血糖値(mg/dL)である]
を挙げることができる。
The relational expression or the approximate expression thereof in the present invention is not limited to the following, for example,
Wherein, M RBC is the mean red blood cell age (day), HbA1c is hemoglobin A1c value, k g is the glycation rate (dL / mg / day), AG is an average blood glucose level (mg / dL) is there]
Can be mentioned.

式(21)の双曲線近似である式(30)、式(21)の近似式(34)、式(21)の線形近似である式(35)は、いずれも平均赤血球年齢を求めるために使用することができる近似式であるが、定常状態におけるAGとHbA1cとの間の、新規かつ正確な非線形の関係を与える式(21)に近い近似であり、非線形近似である点で、式(30)、式(34)が好ましく、最も近い近似である点で式(30)がより好ましい。   Equation (30), which is a hyperbolic approximation of equation (21), approximation equation (34) of equation (21), and equation (35), which is a linear approximation of equation (21), are all used to determine the average erythrocyte age. Although it is an approximate expression that can be performed, it is an approximation close to Expression (21) that gives a new and accurate nonlinear relationship between AG and HbA1c in the steady state, and in that it is a nonlinear approximation, Expression (30 ) And (34) are preferable, and (30) is more preferable because it is the closest approximation.

前記式におけるk(糖化率、単位:dL/mg/day)は、後述の表1に示すように、その推定値として6〜10×10−6dL/mg/dayとの報告があり、例えば、この範囲で適宜選択することができる。また、或る集団において、平均赤血球年齢、ヘモグロビンA1c値平均血糖値を測定し、それに基づいてkを決定することもできる。更には、本発明の利用態様として、kを含んだままの平均赤血球年齢であっても、正常値に対して、相対的な高低を判定することができ、この態様では、kを特定しなくても有用な情報を入手することができる。 As shown in Table 1 described later, k g (saccharification rate, unit: dL / mg / day) in the above formula is reported as 6 to 10 × 10 −6 dL / mg / day as an estimated value, For example, it can select suitably in this range. Moreover, in a certain group, average erythrocyte age, hemoglobin A1c value, and average blood glucose level can be measured, and kg can be determined based on the measured average blood glucose level. Furthermore, as an application mode of the present invention, even if the average erythrocyte age still contains k g , the relative level can be determined with respect to the normal value. In this mode, k g is specified. You can get useful information without doing it.

本発明の平均赤血球年齢を決定するシステム(以下、本発明システムと称することがある)は、先述した、本発明における当該関係式又はその近似式に限定されるものではないが、例えば、
(1)平均血糖(AG)値とヘモグロビンA1c(HbA1c)値を入力する手段(以下、入力手段と称する);
(2)入力された前記平均血糖値とヘモグロビンA1cを、先述した、本発明における当該関係式又はその近似式に代入することにより平均赤血球年齢(MRBC)を算出する演算手段(以下、演算手段と称する);
(3)算出された前記平均赤血球年齢を出力する手段(以下、演算手段と称する);
を含むことができる。
The system for determining the average erythrocyte age of the present invention (hereinafter sometimes referred to as the present invention system) is not limited to the above-described relational expression in the present invention or an approximate expression thereof.
(1) means for inputting an average blood glucose (AG) value and a hemoglobin A1c (HbA1c) value (hereinafter referred to as input means);
(2) Calculation means (hereinafter referred to as calculation means) for calculating the mean erythrocyte age (M RBC ) by substituting the inputted average blood glucose level and hemoglobin A1c into the relational expression in the present invention described above or an approximate expression thereof. Called);
(3) means for outputting the calculated mean erythrocyte age (hereinafter referred to as calculation means);
Can be included.

本発明システムにおける前記入力手段は、前記演算手段が利用できるように平均血糖値及びヘモグロビンA1c値を入力できる限り、特に限定されるものではなく、例えば、キーボード、タッチパネル、光学的読取装置、音声認識装置等を挙げることができる。   The input means in the system of the present invention is not particularly limited as long as the average blood glucose level and hemoglobin A1c value can be input so that the calculation means can be used. For example, a keyboard, a touch panel, an optical reader, voice recognition An apparatus etc. can be mentioned.

また、後述するように、本発明システムを持続血糖測定装置に組み込んだ装置では、前記持続血糖装置それ自体が入力手段として機能することができ、前記持続血糖装置から出力される平均血糖値を前記演算手段が利用できるように入力することができる。なお、この場合、ヘモグロビンA1c値は、先に例示した各種入力手段(例えば、キーボード等)により、別途入力することができる。   Further, as will be described later, in a device incorporating the system of the present invention in a continuous blood glucose measurement device, the continuous blood glucose device itself can function as an input means, and the average blood glucose level output from the continuous blood glucose device is Input can be made so that the computing means can be used. In this case, the hemoglobin A1c value can be input separately by the various input means (for example, a keyboard) exemplified above.

本発明システムにおける前記演算手段は、前記入力手段から入力された平均血糖値とヘモグロビンA1cから、以下に限定されるものではないが、例えば、本発明における当該関係式又はその近似式に基づいて平均赤血球年齢を算出できる演算手段を挙げることができ、例えば、コンピュータのCPU等を挙げることができる。   The calculation means in the system of the present invention is not limited to the following from the average blood glucose level and hemoglobin A1c input from the input means, but for example, based on the relational expression in the present invention or its approximate expression An arithmetic means capable of calculating the age of red blood cells can be given, and examples thereof include a CPU of a computer.

本発明システムにおける前記出力手段は、前記演算手段が算出した平均赤血球年齢をシステム使用者が認識できるように、あるいは、更に別の装置で利用できるように、出力できる限り、特に限定されるものではなく、例えば、ディスプレー、プリンター、スピーカー等を挙げることができる。また、前記演算手段が算出した平均赤血球年齢を、更に別の装置(例えば、総合診断システム)で利用する場合には、前記装置への伝達手段を前記出力手段として用いることができる。   The output means in the system of the present invention is not particularly limited as long as it can be output so that the average erythrocyte age calculated by the arithmetic means can be recognized by the system user or can be used by another device. For example, a display, a printer, a speaker, etc. can be mentioned. Further, when the average erythrocyte age calculated by the calculation means is used in another apparatus (for example, a comprehensive diagnosis system), a transmission means to the apparatus can be used as the output means.

本発明システムは、前記の入力手段、演算手段、出力手段を含むが、例えば、一体化した1つの装置として構成することもできるし、あるいは、別の装置に組み込んだ構成とすることもできるし、更には、通信回線(例えば、インターネット)を介して接続する構成(例えば、クラウドシステム)とすることもできる。   The system of the present invention includes the input means, calculation means, and output means described above. For example, the system of the present invention can be configured as one integrated device, or can be configured to be incorporated in another device. Furthermore, it is possible to adopt a configuration (for example, a cloud system) connected via a communication line (for example, the Internet).

別の装置に組み込んだ構成としては、例えば、本発明システムを持続血糖測定装置に組み込んだ装置を挙げることができる。前記装置では、ヘモグロビンA1c値を入力するだけで平均赤血球年齢を算出することができる。   As a configuration incorporated in another device, for example, a device incorporating the system of the present invention in a continuous blood glucose measurement device can be cited. In the apparatus, the average erythrocyte age can be calculated only by inputting the hemoglobin A1c value.

通信回線を介して接続されている態様としては、入力手段および出力手段については、システム使用者が利用できる場所に設置され、演算手段が任意の場所に設置されている態様を挙げることができる。   As an aspect connected via a communication line, the input means and the output means can be installed in a place where the system user can use, and the operation means can be installed in an arbitrary place.

本発明の平均赤血球年齢を決定するプログラム(以下、本発明プログラムと称することがある)は、コンピュータを、前記の入力手段、演算手段、出力手段として機能させるためのプラグラムである。本発明プログラムにおける「入力手段」、「演算手段」、「出力手段」については、本発明システムにおける当該説明をそのまま適用することができる。
なお、本発明プログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明に含まれる。
The program for determining the mean erythrocyte age according to the present invention (hereinafter sometimes referred to as the present program) is a program for causing a computer to function as the input means, calculation means, and output means. For the “input means”, “calculation means”, and “output means” in the program of the present invention, the description in the system of the present invention can be applied as it is.
A computer-readable recording medium that records the program of the present invention is also included in the present invention.

以下、本発明において本発明者が導き出した各式についてその過程を具体的に説明するが、これらは本発明の範囲を限定するものではない。   Hereinafter, although the process is concretely demonstrated about each formula which this inventor derived in this invention, these do not limit the scope of the present invention.

《1.赤血球寿命》
赤血球死の確率密度関数p(t)は、Shrestha et al., 2016(非特許文献3)により提案された3種類の分布の内、本発明者が最も好ましいと判断したガンマ分布に従って、以下のように表すことができる:
[式中、α、βはガンマ分布のパラメータであり、Γはオイラーのガンマ関数を意味する]
<< 1. Red blood cell life
The probability density function p (t) of erythrocyte death is expressed as follows according to the gamma distribution that the present inventor determined to be most preferable among the three distributions proposed by Shrestha et al., 2016 (Non-patent Document 3). Can be expressed as:
[Where α and β are parameters of the gamma distribution, and Γ means Euler's gamma function]

赤血球の数は、p(t)に従って減少する。
[式中、R(t)は赤血球の誕生からt日後の赤血球数であり、R(/day)は赤血球産生速度である]
p(t)及びR(t)を視覚化したグラフを図1に示す。
The number of red blood cells decreases according to p (t).
[Where R (t) is the number of red blood cells t days after the birth of red blood cells, and R 0 (/ day) is the rate of red blood cell production]
A graph visualizing p (t) and R (t) is shown in FIG.

図1において、図1Aは、赤血球の確率密度関数p(t)であり、図1Bは、正規化した赤血球寿命分布であり、いずれも、それぞれの例示である。本発明者は、一定の赤血球産生速度Rを想定したため、寿命分布は、赤血球の現在の年齢分布と同じになる。実線は、α= 7.83、β= 12.72、平均寿命= 99.59日、MRBC = 56.16日であり、点線は、α= 46.38、β= 2.77、平均寿命= 128.47日、MRBC = 65.62日である。 In FIG. 1, FIG. 1A is a probability density function p (t) of red blood cells, and FIG. 1B is a normalized red blood cell lifetime distribution, both of which are examples of each. Since the present inventor assumed a constant erythrocyte production rate R 0 , the lifetime distribution is the same as the current age distribution of erythrocytes. The solid line, alpha = 7.83, beta = 12.72, life expectancy = 99. Day 59, a M RBC = 56. 16 days, the dotted line, alpha = 46.38, beta = 2.77, average life = 128. Day 47, a M RBC = 65. 62 days.

赤血球数(RBC)は、以下のように算出する:
前記式(5)から導かれた以下の式を使用した。
Red blood cell count (RBC) is calculated as follows:
The following equation derived from equation (5) was used.

平均赤血球年齢(MRBC)は、以下のようにして算出することができる。
従って、MRBC
となる。
The average erythrocyte age (M RBC ) can be calculated as follows.
Therefore, M RBC is
It becomes.

《2.ヘモグロビン糖化》
図2にヘモグロビン糖化の2つのモデルを示す。図2Aは、ヘモグロビン糖化の3コンパートメントモデルであり、図2Bは、簡略化した2コンパートメントモデルである。HbAaldはアルジミン複合体(中間体)であり、k、k、k、kは速度定数である。
<< 2. Hemoglobin Saccharification >>
FIG. 2 shows two models of hemoglobin glycation. FIG. 2A is a three-compartment model of hemoglobin glycation, and FIG. 2B is a simplified two-compartment model. HbA ald is an aldimine complex (intermediate), and k 1 , k 2 , k 3 , and k g are rate constants.

ヘモグロビン糖化は、3コンパートメントモデル(図2A)に従うものと仮定する。
[式中、[G]はグルコース濃度(定常状態ではAGと同じ)であり、HbAaldはアルジミン複合体(中間体)濃度である]
dHbAald/dtは定常状態において無視することができ、Hb(t)+HbAald+HbA1cは定数であるので、次式が成立する。
従って、ヘモグロビンは、インタクトのヘモグロビンに比例して糖化され、前記モデルは、2コンパートメントモデルに簡略化することができる(図2B)。
[式中、kは糖化率(dL/mg/day)である]
式(16)は、総糖化率がk(HbAaldに変換する力)とk/(k+k)(HbA1cに変換する保持画分)との積であることを示している。過去に報告されたkの推定値(非特許文献4〜8)を表1に示す。
It is assumed that hemoglobin glycation follows a three compartment model (FIG. 2A).
[ Wherein [G] is the glucose concentration (same as AG in steady state) and HbA ald is the aldimine complex (intermediate) concentration)
Since dHbA ald / dt can be ignored in the steady state, and Hb (t) + HbA ald + HbA1c is a constant, the following equation is established.
Thus, hemoglobin is glycated in proportion to intact hemoglobin, and the model can be simplified to a two-compartment model (FIG. 2B).
[In the formula, k g is the saccharification rate (dL / mg / day)]
Equation (16) shows that the total saccharification rate is the product of k 1 (power to convert to HbA ald ) and k 3 / (k 2 + k 3 ) (retained fraction to convert to HbA1c). . Table 1 shows estimated values of kg reported in the past (Non-Patent Documents 4 to 8).

[式中、Hb(t)は、t日齢の赤血球における非糖化ヘモグロビンの値であり、Hbは、赤血球誕生時のインタクトヘモグロビンの値である]
従って、
は、t日齢の赤血球における糖化ヘモグロビンの割合を示す。
[Where Hb (t) is the value of non-glycated hemoglobin in t-day-old red blood cells, and Hb 0 is the value of intact hemoglobin at the time of red blood cell birth]
Therefore,
Indicates the percentage of glycated hemoglobin in t-day-old red blood cells.

採取した血液は種々の年齢の赤血球を含む。ここで、ヘモグロビン合成速度(RHb)は変動しないものと仮定する。
従って、HbA1cは
となる。
The collected blood contains red blood cells of various ages. Here, it is assumed that the hemoglobin synthesis rate (R 0 Hb 0 ) does not vary.
Therefore, HbA1c is
It becomes.

式(21)で示す平均血糖(AG)とHbA1cとの関係を視覚化したグラフを図3に示す。
図3Aは、α= 40、β= 4、MRBC = 82の条件(灰色の太い実線)、α= 6、β= 12、MRBC = 42の条件(黒の細い実線)でのAGとHbA1cとの完全な関係を示す。kは8×10−6とした。
図3Bは、前記関係を生理学的範囲で拡大し、AG = 200におけるそれらの接線(点線)と共に示す。
A graph visualizing the relationship between the average blood glucose (AG) and HbA1c represented by formula (21) is shown in FIG.
FIG. 3A shows AG and HbA1c under conditions of α = 40, β = 4, M RBC = 82 (gray thick solid line), α = 6, β = 12, M RBC = 42 (black thin solid line). To show the complete relationship. The kg was 8 × 10 −6 .
FIG. 3B expands the relationship in the physiological range and shows them with their tangent lines (dashed lines) at AG = 200.

《3.切片の由来−接線》
AG周辺における式(21)の接線は以下のとおりであり(x、yは、それぞれ、接線におけるAG、HbA1cを示す)、正の切片を示す:
式(21)、式(22)における関係を視覚化したグラフを図3Bに示す。
AG= 0における接線は、テーラー展開を用いることにより得られる。
<< 3. Section Origin-Tangent >>
The tangent lines of the formula (21) around AG 0 are as follows (x and y indicate AG and HbA1c at the tangent lines, respectively), and indicate positive intercepts:
FIG. 3B shows a graph visualizing the relationship in Expression (21) and Expression (22).
The tangent at AG 0 = 0 is obtained by using the Taylor expansion.

《4.派生関係の近似》
式(21)によれば、AGとHbA1cとの正確な関係が与えられる。しかしながら、この式は、HbA1cをAGに変換するのに必要な逆関数を得るためには複雑すぎる。また、α、βの2つのパラメータを1つのパラメータMRBCに減らしたいとも思う。
<< 4. Approximation of derivation relationship >>
Equation (21) gives the exact relationship between AG and HbA1c. However, this equation is too complicated to obtain the inverse function needed to convert HbA1c to AG. We also want to reduce the two parameters α and β to one parameter MRBC .

まず始めに、式(23)は以下の線形近似を与える(図4)。
この式から、MRBCを簡単に求めることができる〔式(35)〕。
First, equation (23) gives the following linear approximation (FIG. 4).
From this equation, M RBC can be easily obtained [Equation (35)].

より良い近似として、テーラー展開は下記式を与える:
式(25)を式(21)に代入すると、
α>> 1であるので、
この式は、二次元(2D)近似を与える(図4)。
As a better approximation, Taylor expansion gives:
Substituting equation (25) into equation (21),
Since α >> 1,
This equation gives a two-dimensional (2D) approximation (FIG. 4).

xが限りなく0に近づくとき、
が成立するので、式(27)は以下のように再編成できる:
この式は、双曲線近似を与える(図4)。
When x approaches 0 infinitely
(27) can be reorganized as follows:
This equation gives a hyperbolic approximation (FIG. 4).

これで、以下の逆関数を簡単に導き出すことができる。
この式を使って、MRBCを求めることができる:
Thus, the following inverse function can be easily derived.
Using this equation, M RBC can be determined:

平均血糖(AG)とHbA1cとの関係の近似を、元になった完全な関係(original:α= 40、β= 4の条件下の式(21))と共に、図4に示す。図4において、「hyperbolic」は式(28)の双曲線近似であり、「2D」は式(27)の二次元近似であり、「linear」は式(24)の線形近似である。   An approximation of the relationship between mean blood glucose (AG) and HbA1c is shown in FIG. 4 together with the original complete relationship (original: equation (21) under conditions of α = 40, β = 4). In FIG. 4, “hyperbolic” is a hyperbolic approximation of equation (28), “2D” is a two-dimensional approximation of equation (27), and “linear” is a linear approximation of equation (24).

式(25)を式(21)に代入したところで、2次近似から以下の式を導き出すことができる。
xが限りなく0に近づくとき、
が成立するので、
を代入すると、
従って、MRBC
となる。
When the formula (25) is substituted into the formula (21), the following formula can be derived from the quadratic approximation.
When x approaches 0 infinitely
So that
Substituting
Therefore, M RBC is
It becomes.

《5.考察》
本発明者は、定常状態におけるAGとHbA1cとの間の、新規かつ正確な非線形の関係に関する式(21)を提案するのに成功し、AGとHbA1cとの間の線形の関係における切片の由来を提示した(図3)。これは、正確な赤血球寿命分布(Shrestha et al., 2016)に基づくAGとHbA1cとの間の関係を示す最初の式である。先に提案された線形の関係は、非線形の関係の近似である。
<< 5. Discussion >>
The inventor has succeeded in proposing an equation (21) for a new and accurate nonlinear relationship between AG and HbA1c in steady state, and derived the intercept in the linear relationship between AG and HbA1c. Was presented (FIG. 3). This is the first equation showing the relationship between AG and HbA1c based on accurate red blood cell lifetime distribution (Shrestha et al., 2016). The previously proposed linear relationship is an approximation of a non-linear relationship.

本発明者の式(21)は、HbA1cの増加に伴って、AGが増加し、且つ、加速することを示している。双曲線近似である式(29)は、HbA1cの13%-18%間のAG値の変動が、HbA1cの5%-10%間のAG値の変動よりも1.12倍大きいことを示している。この関係は、実際の臨床現場において糖尿病患者と接する医師にとって、考慮に値する。   The present inventor's formula (21) indicates that AG increases and accelerates as HbA1c increases. Equation (29), which is a hyperbolic approximation, shows that the change in AG value between 13% -18% of HbA1c is 1.12 times greater than the change in AG value between 5% -10% of HbA1c. This relationship is worth considering for physicians who interact with diabetics in actual clinical settings.

近似は一種の技術である。或る範囲において或る関数に近い関数は数多く存在する。我々は、適切な式を決定・選択することを必要とする。本発明者は、自ら提案した式(21)を双曲線関数(28)に近似させることに成功した。この近似双曲線関数は、元になった関数(21)と極めて近いものであった(図4)。また、併せて、複数の近似式を得ることもできた。   Approximation is a kind of technique. There are many functions close to a certain function within a certain range. We need to determine and select an appropriate formula. The present inventor succeeded in approximating the formula (21) proposed by the present person to the hyperbolic function (28). This approximate hyperbolic function was very close to the original function (21) (FIG. 4). In addition, a plurality of approximate expressions could be obtained.

《6.近似式の検証》
(1)糖化率(k)の決定
溶血性貧血患者31名と非貧血者76名について、赤血球クレアチン(EC)値、ヘモグロビンA1c値(International Federation of Clinical Chemistry (IFCC)単位による。以下、iA1cと称する)を測定し、これらの測定値から平均赤血球年齢(MRBC)とiA1c/(1000-2/3×iA1c)を算出した。
<< 6. Verification of approximate expression >>
(1) Determination of glycation rate ( kg ) 31 erythrocyte creatine (EC) values and hemoglobin A1c values (International Federation of Clinical Chemistry (IFCC) units) for 31 patients with hemolytic anemia and 76 non-anemic individuals. The average erythrocyte age (M RBC ) and iA1c / (1000-2 / 3 × iA1c) were calculated from these measured values.

なお、ヘモグロビンA1c値に関して、臨床で使用されているNational Glycohemoglobin Standardization Program (NSGP)単位(HbA1cNGSP)と、前記iA1cとは、下記換算式により変換できる。
Regarding the hemoglobin A1c value, the National Glycohemoglobin Standardization Program (NSGP) unit (HbA1c NGSP ) used in clinical practice and the iA1c can be converted by the following conversion formula.

また、MRBCは、本発明者らが提案した下記式により算出した。
Further, the MRBC was calculated by the following formula proposed by the present inventors.

更に、iA1c/(1000-2/3×iA1c)は、近似式(30)から導き出した下記式に基づく。
Further, iA1c / (1000-2 / 3 × iA1c) is based on the following equation derived from the approximate equation (30).

算出した平均赤血球年齢(MRBC)とiA1c/(1000-2/3×iA1c)の関係を図5に示す。図5において、△は溶血性貧血患者を示し、〇は非貧血者を示す。図5に示すように、線形の関係が認められた。 FIG. 5 shows the relationship between the calculated mean red blood cell age (M RBC ) and iA1c / (1000-2 / 3 × iA1c). In FIG. 5, Δ indicates a hemolytic anemia patient, and ○ indicates a non-anemic patient. As shown in FIG. 5, a linear relationship was observed.

続いて、2つの方法(スロープ法及び直接法)により糖化率(k)を算出した。全集団(すなわち、溶血性貧血患者および非貧血者)と、非貧血者集団に関して、各方法で算出した糖化率(k)を表2に示す。 Subsequently, the saccharification rate ( kg ) was calculated by two methods (slope method and direct method). Table 2 shows the glycation rate ( kg ) calculated by each method for the entire population (ie, hemolytic anemia patients and non-anemic) and the non-anemic population.

スロープ法では、前記式(39)に関して、原点を通る回帰直線の傾き(横軸:MRBC、縦軸:iA1c/(1000-2/3×iA1c))を最小二乗モデルにより求めた。
直接法では、前記式(39)を変形した下記式により直接算出した。
なお、平均血糖(AG)値として、過去の複数の報告から、糖尿病患者を除いた正常値である100 mg/dLを使用した。
In the slope method, the slope of the regression line passing through the origin (horizontal axis: M RBC , vertical axis: iA1c / (1000-2 / 3 × iA1c)) was obtained by the least square model with respect to the equation (39).
In the direct method, it was directly calculated by the following formula obtained by modifying the formula (39).
In addition, as a mean blood glucose (AG) value, 100 mg / dL, which is a normal value excluding diabetic patients, was used from a plurality of past reports.

表2に示すように、4種類の糖化率(k)は約7×10−6であったが、図5によれば、重症の溶血性貧血患者でデータが安定していなかったため、表2に示す糖化率の内、全集団・直接法の値が正確でない可能性が考えられた。従って、全集団・直接法の値を除いた3種類の糖化率((6.94〜6.99)×10−6)から7.0×10−6に決定した。 As shown in Table 2, the four types of saccharification rates ( kg ) were about 7 × 10 −6 , but according to FIG. 5, since the data was not stable in patients with severe hemolytic anemia, Of the saccharification rates shown in Fig. 2, there was a possibility that the values for the whole population / direct method were not accurate. Therefore, it was determined to 7.0 × 10 −6 from the three types of saccharification rates ((6.94 to 6.99) × 10 −6 ) excluding the values of the whole population / direct method.

(2)本発明の近似式から求めた平均赤血球年齢と51Crを用いて測定した平均赤血球年齢との比較
過去に報告された三件の症例に基づいて、本発明の近似式(30)から求めた平均赤血球年齢(MRBC)と、51Crを用いて測定した平均赤血球年齢を表3にまとめた。
(2) Comparison of the average erythrocyte age determined from the approximate expression of the present invention and the average erythrocyte age measured using 51 Cr From the approximate expression (30) of the present invention, based on the three cases reported in the past The obtained average erythrocyte age (M RBC ) and the average erythrocyte age measured using 51 Cr are summarized in Table 3.

Herranz(Herranz, L., Grande, C., Janez, M., Pallardo, F., 1999. Red blood cell autoantibodies with a shortened erythrocyte life span as a cause of lack of relation between glycosylated hemoglobin and mean blood glucose levels in a woman with type 1 diabetes. Diabetes Care 22 (12), 2085-2086.)及び石井(石井主税、太根伸能、根岸清彦、片山茂裕、2001年、不顕性の自己免疫性溶血により血糖値とHbA1c値との乖離を示した2型糖尿病の1例、糖尿病、44巻2号、157−160)では、2回の測定を実施し、HbA1cが変化したため、別々にMRBCを算出し、その平均値も求めた。
Herranz及びIshiiでは、血糖セルフモニタリング(self-monitoring of blood glucose; SMBG)により得られたデータから平均値を算出することにより平均血糖(AG)値を求めた。
平谷(平谷和幸、刀塚俊起、末盛晋一郎、和田秀穂、古賀正史、2016年、不顕性溶血によりHbA1cが偽性低値を示した有口赤血球症を合併した2型糖尿病の1例、糖尿病、59巻10号、719−723)では、血糖持続測定(continuous glucose measurement; CGM)により平均血糖(AG)値を求めた。
51Crを用いる赤血球寿命測定では、MRBCの正常値が約60日であり、51Crを用いて測定した赤血球寿命(半減期)の正常範囲がHerranzによれば28〜30日、Ishiiによれば30±5日、Hirataniによれば26〜40日であるため、2.14(=60/28)を掛ける〔式(41)〕ことにより平均赤血球年齢(MRBC)を算出した。
Herranz (Herranz, L., Grande, C., Janez, M., Pallardo, F., 1999. Red blood cell autoantibodies with a shortened erythrocyte life span as a cause of lack of relation between glycosylated hemoglobin and mean blood glucose levels in Diabetes Care 22 (12), 2085-2086.) and Ishii (Ishii Tax, Nobuhiro Taine, Kiyohiko Negishi, Shigehiro Katayama, 2001, blood glucose level due to subclinical autoimmune hemolysis and one example of type 2 diabetes showed discrepancy between HbA1c values, diabetes, Vol. 44 No. 2, 157-160), the measurements were performed twice, because the HbA1c is changed, separately calculates M RBC, The average value was also obtained.
Herranz and Ishii determined the average blood glucose (AG) value by calculating the average value from data obtained by self-monitoring of blood glucose (SMBG).
Hiratani (Kazuyuki Hiratani, Toshizuka Totsuka, Shinichiro Suemori, Hideho Wada, Masafumi Koga, 2016, a case of type 2 diabetes mellitus complicated with oral erythrocytosis in which HbA1c showed a pseudo-low value due to invisible hemolysis In Diabetes, Vol. 59, No. 10, 719-723), an average blood glucose (AG) value was determined by continuous glucose measurement (CGM).
The red blood cell lifetime measurements using 51 Cr-, normal values of M RBC is of about 60 days, according the normal range of the measured erythrocyte life (half-life) using 51 Cr-within Herranz 28 to 30 days, according to the Ishii The average age of red blood cells (M RBC ) was calculated by multiplying 2.14 (= 60/28) [Equation (41)] because it was 30 ± 5 days and according to Hiratani it was 26-40 days.

iA1cから算出したMRBC〔表3の(e)欄の平均値〕は36.95±5.93であり、51Crから算出したMRBC〔表3の(g)欄の平均値〕は41.29±2.22であった。ペアt検定の結果は、t, -0.9278; df, 2; p (bilateral), 0.4514であり、両者に有意差はなく、本発明の近似式の正確さが確認できた。 The M RBC calculated from iA1c [average value in column (e) of Table 3] was 36.95 ± 5.93, and the M RBC calculated from 51 Cr [average value in column (g) of Table 3] was 41.29 ± 2.22. It was. The result of the pair t test was t, −0.9278; df, 2; p (bilateral), 0.4514, and there was no significant difference between the two, confirming the accuracy of the approximate expression of the present invention.

本発明により算出できる平均赤血球年齢は、例えば、溶血性貧血、消化管内出血(例えば、大腸がんに起因する出血)などの診断におけるバイオマーカーとして利用することができる。   The average erythrocyte age that can be calculated by the present invention can be used as a biomarker in the diagnosis of hemolytic anemia, gastrointestinal bleeding (for example, bleeding due to colorectal cancer), and the like.

Claims (6)

被験者の平均血糖(AG)値とヘモグロビンA1c(HbA1c)値に基づいて、平均赤血球年齢を決定する方法。   A method of determining an average erythrocyte age based on a subject's average blood glucose (AG) value and hemoglobin A1c (HbA1c) value. 被験者の平均血糖(AG)値とヘモグロビンA1c(HbA1c)値を、下記式(30)、(34)、及び(35):
[式中、MRBCは平均赤血球年齢(day)であり、HbA1cはヘモグロビンA1c値であり、kは糖化率(dL/mg/day)であり、AGは平均血糖値(mg/dL)である]
からなる群から選択される式に代入することにより、平均赤血球年齢(MRBC)を決定する、請求項1に記載の方法。
The average blood glucose (AG) value and hemoglobin A1c (HbA1c) value of the test subjects are represented by the following formulas (30), (34), and (35):
Wherein, M RBC is the mean red blood cell age (day), HbA1c is hemoglobin A1c value, k g is the glycation rate (dL / mg / day), AG is an average blood glucose level (mg / dL) is there]
The method of claim 1, wherein the mean age of red blood cells (M RBC ) is determined by substituting into an expression selected from the group consisting of:
(1)平均血糖(AG)値とヘモグロビンA1c(HbA1c)値を入力する手段;
(2)入力された前記平均血糖値とヘモグロビンA1c値に基づいて、平均赤血球年齢を算出する演算手段;
(3)算出された前記平均赤血球年齢を出力する手段;
を含む、平均赤血球年齢を決定するシステム。
(1) Means for inputting an average blood glucose (AG) value and a hemoglobin A1c (HbA1c) value;
(2) Calculation means for calculating an average erythrocyte age based on the inputted average blood glucose level and hemoglobin A1c value;
(3) means for outputting the calculated mean erythrocyte age;
A system for determining an average red blood cell age.
前記演算手段が、下記式(30)、(34)、又は(35):
[式中、MRBCは平均赤血球年齢(day)であり、HbA1cはヘモグロビンA1c値であり、kは糖化率(dL/mg/day)であり、AGは平均血糖値(mg/dL)である]
の少なくともいずれか1つに基づいて、平均赤血球年齢を算出する、請求項3に記載のシステム。
The computing means is represented by the following formula (30), (34), or (35):
Wherein, M RBC is the mean red blood cell age (day), HbA1c is hemoglobin A1c value, k g is the glycation rate (dL / mg / day), AG is an average blood glucose level (mg / dL) is there]
The system according to claim 3, wherein an average red blood cell age is calculated based on at least one of the following.
コンピュータを下記の手段(1)、手段(2)、手段(3)として機能させるための、平均赤血球年齢(MRBC)を決定するプログラム:
(1)平均血糖(AG)値とヘモグロビンA1c(HbA1c)値を入力する手段;
(2)入力された前記平均血糖値とヘモグロビンA1c値に基づいて、平均赤血球年齢(MRBC)を算出する演算手段;
(3)算出された前記平均赤血球年齢を出力する手段。
A program for determining mean red blood cell age (M RBC ) for causing a computer to function as the following means (1), means (2), and means (3):
(1) Means for inputting an average blood glucose (AG) value and a hemoglobin A1c (HbA1c) value;
(2) Calculation means for calculating an average red blood cell age (M RBC ) based on the inputted average blood glucose level and hemoglobin A1c value;
(3) A means for outputting the calculated average erythrocyte age.
前記演算手段が、下記式(30)、(34)、又は(35):
[式中、MRBCは平均赤血球年齢(day)であり、HbA1cはヘモグロビンA1c値であり、kは糖化率(dL/mg/day)であり、AGは平均血糖値(mg/dL)である]
の少なくともいずれか1つに基づいて、平均赤血球年齢を算出する、請求項5に記載のプログラム。
The calculation means is the following formula (30), (34), or (35):
Wherein, M RBC is the mean red blood cell age (day), HbA1c is hemoglobin A1c value, k g is the glycation rate (dL / mg / day), AG is an average blood glucose level (mg / dL) is there]
The program according to claim 5, wherein an average erythrocyte age is calculated based on at least one of the following.
JP2019012253A 2018-01-29 2019-01-28 How to Determine Mean Red Blood Cell Age Active JP7281633B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018012677 2018-01-29
JP2018012677 2018-01-29

Publications (2)

Publication Number Publication Date
JP2019132839A true JP2019132839A (en) 2019-08-08
JP7281633B2 JP7281633B2 (en) 2023-05-26

Family

ID=67547392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012253A Active JP7281633B2 (en) 2018-01-29 2019-01-28 How to Determine Mean Red Blood Cell Age

Country Status (1)

Country Link
JP (1) JP7281633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305207A (en) * 2020-10-20 2021-02-02 上海交通大学 Based on HbA1cMethod for detecting average life of red blood cells by taking blood glucose concentration as sensing variable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168539A1 (en) * 2008-12-31 2010-07-01 Palerm Cesar C Method and/or system for estimating glycation of hemoglobin
JP2017504568A (en) * 2013-11-18 2017-02-09 ルビウス セラピューティクス, インコーポレイテッド Synthetic membrane-receiver complex
US20170108487A1 (en) * 2014-06-05 2017-04-20 The General Hospital Corporation Predicting morbidity associated with red blood cell volume variance
WO2017106461A1 (en) * 2015-12-15 2017-06-22 The General Hospital Corporation Methods of estimating blood glucose and related systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168539A1 (en) * 2008-12-31 2010-07-01 Palerm Cesar C Method and/or system for estimating glycation of hemoglobin
JP2017504568A (en) * 2013-11-18 2017-02-09 ルビウス セラピューティクス, インコーポレイテッド Synthetic membrane-receiver complex
US20170108487A1 (en) * 2014-06-05 2017-04-20 The General Hospital Corporation Predicting morbidity associated with red blood cell volume variance
WO2017106461A1 (en) * 2015-12-15 2017-06-22 The General Hospital Corporation Methods of estimating blood glucose and related systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
COHEN, R. M. ET AL.: "Red cell life span heterogeneity in hematologically normal people in sufficient to alter HbA1c", BLOOD, vol. 112, no. 10, JPN6022050131, 15 November 2008 (2008-11-15), pages 4284 - 4291, XP055224156, ISSN: 0004931221, DOI: 10.1182/blood-2008-04-154112 *
MALKA, R. ET AL.: "Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabet", SCIENCE TRANSLATIONAL MEDICINE, vol. 8, no. 359, JPN6022050135, 5 October 2016 (2016-10-05), pages 1 - 9, ISSN: 0004931222 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305207A (en) * 2020-10-20 2021-02-02 上海交通大学 Based on HbA1cMethod for detecting average life of red blood cells by taking blood glucose concentration as sensing variable
CN112305207B (en) * 2020-10-20 2023-03-10 上海交通大学 Based on HbA 1c Erythrocyte average life span detection method using blood glucose concentration as sensing variable

Also Published As

Publication number Publication date
JP7281633B2 (en) 2023-05-26

Similar Documents

Publication Publication Date Title
Ketema et al. Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis
Kalantar-Zadeh et al. Associations of body fat and its changes over time with quality of life and prospective mortality in hemodialysis patients
Krishnasamy et al. The association between left ventricular global longitudinal strain, renal impairment and all-cause mortality
Dailey Assessing glycemic control with self-monitoring of blood glucose and hemoglobin A1c measurements
US20210208167A1 (en) Methods of estimating blood glucose and related systems
Nagrebetsky et al. Predictors of suboptimal glycaemic control in type 2 diabetes patients: the role of medication adherence and body mass index in the relationship between glycaemia and age
CA3156058A1 (en) Method, system and computer program product for evaluation of blood glucose variability in diabetes from self-monitoring data
Yin et al. Association of higher HbA1c within the normal range with adverse pregnancy outcomes: a cross-sectional study
Feng et al. Higher HbA1c and/or glucose levels alter the association patterns between glycated hemoglobin and fasting glucose levels
Cwynar et al. Blood pressure and arterial stiffness in patients with high sodium intake in relation to sodium handling and left ventricular diastolic dysfunction status
JP7281633B2 (en) How to Determine Mean Red Blood Cell Age
Ebenibo et al. Glucoregulatory function among African Americans and European Americans with normal or pre-diabetic hemoglobin A1c levels
Kim et al. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level
Khan et al. Correlation of fasting blood sugar and glycated hemoglobin (HbA1c) with thiamine levels in diabetic patients
Chen et al. Glycemic status and its association with retinal age gap: Insights from the UK biobank study
Jagannathan et al. Clinical utility of 30-min plasma glucose for prediction of type 2 diabetes among people with prediabetes: Ancillary analysis of the diabetes community lifestyle improvement program
Li et al. Associations of periodontitis with risk of all-cause and cause-specific mortality among us adults with chronic kidney disease
Shearer et al. Periodontitis is not associated with metabolic risk during the fourth decade of life
Du et al. Predicting the risk of acute kidney injury in patients after percutaneous coronary intervention (PCI) or cardiopulmonary bypass (CPB) surgery: development and assessment of a nomogram prediction model
US20220293210A1 (en) Single-cell modeling of clinical data to determine red blood cell regulation
Boutayeb et al. Simulation of a computed HbA 1c using a weighted average glucose
de Leiva et al. Quality of care for the woman with diabetes at pregnancy
CN107941722B (en) Blood sample analysis and test system
CN108169155B (en) Blood sample analysis and test system
Liabsuetrakul et al. Relationship of anthropometric measurements with glycated hemoglobin and 1‐h blood glucose after 50 g glucose challenge test in pregnant women: A longitudinal cohort study in Southern Thailand

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230414

R150 Certificate of patent or registration of utility model

Ref document number: 7281633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150