JP2019131076A - Railway wheel and device for measuring shape of railway wheel - Google Patents

Railway wheel and device for measuring shape of railway wheel Download PDF

Info

Publication number
JP2019131076A
JP2019131076A JP2018015660A JP2018015660A JP2019131076A JP 2019131076 A JP2019131076 A JP 2019131076A JP 2018015660 A JP2018015660 A JP 2018015660A JP 2018015660 A JP2018015660 A JP 2018015660A JP 2019131076 A JP2019131076 A JP 2019131076A
Authority
JP
Japan
Prior art keywords
cross
railway wheel
sectional shape
rim portion
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018015660A
Other languages
Japanese (ja)
Other versions
JP7028664B2 (en
Inventor
西村 和彦
Kazuhiko Nishimura
和彦 西村
勝祥 花井
Katsuyoshi Hanai
勝祥 花井
孝博 溝上
Takahiro Mizogami
孝博 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2018015660A priority Critical patent/JP7028664B2/en
Publication of JP2019131076A publication Critical patent/JP2019131076A/en
Application granted granted Critical
Publication of JP7028664B2 publication Critical patent/JP7028664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a railway wheel that can measure a tread shape while grasping a position in a circumferential direction and suppresses cost, time and effort.SOLUTION: A railway wheel 1 travels on a rail. The railway wheel 1 includes an annular rim part 2. The rim part 2 includes: a tread 2A coming into contact with the rail; and a side surface 2C crossing with the tread 2A. The side surface 2C has an uneven pattern 4 of which cross-sectional shape at a virtual surface including a rotation axis P1 of the rim part 2 varies in a circumferential direction of the rim part 2.SELECTED DRAWING: Figure 1

Description

本開示は、鉄道車輪及び鉄道車輪の形状測定装置に関する。   The present disclosure relates to a railway wheel and a railway wheel shape measuring apparatus.

鉄道車輪は、走行安定性、及び乗り心地の観点からその踏面の形状管理が重要である。踏面の形状管理の方法としては、レーザを踏面に照射し、踏面の形状を測定する方法が考案されている(特許文献1参照)。   As for railway wheels, it is important to manage the shape of the tread from the viewpoint of running stability and riding comfort. As a tread shape management method, a method has been devised in which a tread is irradiated with a laser to measure the tread shape (see Patent Document 1).

特開2015−215267号公報JP 2015-215267 A

鉄道車輪は、滑走の影響などによって、必ずしも周方向に均一に摩耗しない。そのため、車輪の周方向全体における路面形状の把握が求められる。しかしながら、従来技術では、踏面の形状は測定できるが、形状を測定した位置(つまり位相)を特定することが困難である。   Railway wheels do not always wear uniformly in the circumferential direction due to the effect of sliding. Therefore, grasping | ascertaining of the road surface shape in the whole circumferential direction of a wheel is calculated | required. However, in the prior art, the shape of the tread can be measured, but it is difficult to specify the position (that is, the phase) at which the shape is measured.

従来技術で周方向における測定位置を特定するには、複数の装置によって踏面形状を連続的に測定する、装置を鉄道車両と並走させながら測定する、車体から台車、車軸、及び車輪をこの順に取り外してから車輪を測定する、などの必要がある。これらの方法はいずれも、コスト又は労力が著大である。   In order to specify the measurement position in the circumferential direction with the prior art, the tread surface shape is continuously measured by a plurality of devices, the device is measured while running in parallel with the railway vehicle, the body, the carriage, the axle, and the wheels in this order. It is necessary to measure the wheel after removing it. Both of these methods are costly and labor intensive.

本開示の一局面は、コスト及び労力を抑制しつつ、周方向の位置を把握しながら踏面形状を測定できる鉄道車輪を提供することを目的としている。   One aspect of the present disclosure is to provide a railway wheel capable of measuring a tread shape while grasping a circumferential position while suppressing cost and labor.

本開示の一態様は、レール上を走行する鉄道車輪である。鉄道車輪は、円環状のリム部を備える。リム部は、レールと接触する踏面と、踏面と交差する側面とを有する。側面は、リム部の回転軸を含む仮想面での断面形状がリム部の周方向に沿って変化する凹凸パターンを有する。   One aspect of the present disclosure is a railway wheel that travels on a rail. The railway wheel includes an annular rim portion. The rim portion has a tread surface that contacts the rail and a side surface that intersects the tread surface. The side surface has a concavo-convex pattern in which a cross-sectional shape at a virtual plane including the rotation axis of the rim portion changes along the circumferential direction of the rim portion.

このような構成によれば、踏面の断面形状の測定時に凹凸パターンの断面形状も測定することで、凹凸パターンの断面形状に基づいて踏面の断面形状の周方向の位置を特定することができる。したがって、鉄道車輪を車両に取り付けたまま、かつ比較的簡便な測定機器を用いて、鉄道車輪における周方向の位置を把握しながら踏面形状を測定することができる。   According to such a configuration, it is possible to specify the circumferential position of the cross-sectional shape of the tread surface based on the cross-sectional shape of the concave-convex pattern by measuring the cross-sectional shape of the concave-convex pattern when measuring the cross-sectional shape of the tread surface. Therefore, it is possible to measure the tread shape while grasping the circumferential position of the railway wheel using a relatively simple measuring device while the railway wheel is attached to the vehicle.

本開示の一態様では、凹凸パターンは、リム部の回転軸を囲うように側面に形成される少なくとも2つの溝又は少なくとも2つの凸条によって構成されてもよい。少なくとも2つの溝又は少なくとも2つの凸条は、リム部の径方向における互いの距離がリム部の周方向に沿って変化するように構成されてもよい。このような構成によれば、周方向の位置を特定するための凹凸パターンを容易かつ確実に設けることができる。   In one aspect of the present disclosure, the concavo-convex pattern may be configured by at least two grooves or at least two ridges formed on the side surface so as to surround the rotation axis of the rim portion. The at least two grooves or the at least two ridges may be configured such that the distance from each other in the radial direction of the rim portion varies along the circumferential direction of the rim portion. According to such a structure, the uneven | corrugated pattern for pinpointing the position of the circumferential direction can be provided easily and reliably.

本開示の別の態様は、円環状のリム部を備える鉄道車輪の形状測定装置である。リム部は、レールと接触する踏面と、踏面と交差する側面とを有する。鉄道車輪の形状測定装置は、リム部の回転軸を含む仮想面での踏面の断面形状を測定するように構成された測定部を備える。踏面の断面形状は、リム部の側面に設けられた凹凸パターンの断面形状を含む。凹凸パターンは、断面形状がリム部の周方向に沿って変化するように構成される。   Another aspect of the present disclosure is a railway wheel shape measuring device including an annular rim portion. The rim portion has a tread surface that contacts the rail and a side surface that intersects the tread surface. The railway wheel shape measuring device includes a measuring unit configured to measure a cross-sectional shape of a tread on a virtual surface including a rotation axis of the rim. The cross-sectional shape of the tread includes the cross-sectional shape of the concavo-convex pattern provided on the side surface of the rim portion. The concavo-convex pattern is configured such that the cross-sectional shape changes along the circumferential direction of the rim portion.

このような構成によれば、測定部によって踏面の断面形状と凹凸パターンの断面形状とを同時に測定することで、凹凸パターンの断面形状に基づいて踏面の断面形状の周方向の位置を特定することができる。   According to such a configuration, the cross-sectional shape of the tread surface and the cross-sectional shape of the concavo-convex pattern are simultaneously measured by the measurement unit, and the circumferential position of the cross-sectional shape of the tread surface is specified based on the cross-sectional shape of the concavo-convex pattern. Can do.

本開示の一態様では、測定部は、レーザ光を用いた光切断法によって踏面の断面形状を計測してもよい。このような構成によれば、高精度に踏面の断面形状を測定することができる。   In one aspect of the present disclosure, the measurement unit may measure the cross-sectional shape of the tread by a light cutting method using laser light. According to such a configuration, the cross-sectional shape of the tread can be measured with high accuracy.

図1は、実施形態における鉄道車輪の模式的な側面図である。FIG. 1 is a schematic side view of a railway wheel in the embodiment. 図2は、図1のII−II線での模式的な断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 図3は、図1の鉄道車輪における溝間の距離と周方向の位相との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the distance between the grooves and the phase in the circumferential direction in the railway wheel of FIG. 図4A,4B,4C,4D,4E,4F,4G,4Hは、それぞれ、図1とは異なる実施形態における側面の凹凸パターンの模式的な説明図である。4A, 4B, 4C, 4D, 4E, 4F, 4G, and 4H are schematic explanatory views of the uneven pattern on the side surface in the embodiment different from FIG. 図5は、実施形態における鉄道車輪の形状測定装置の構成を概略的に示すブロック図である。FIG. 5 is a block diagram schematically showing the configuration of the railway wheel shape measuring apparatus in the embodiment. 図6Aは、図1とは異なる実施形態における側面の凹凸パターンの模式的な説明図であり、図6Bは、図6AのVIB−VIB線での模式的な断面図であり、図6Cは、図6AのVIC−VIC線での模式的な断面図であり、図6Dは、図6AのVID−VID線での模式的な断面図である。6A is a schematic explanatory view of a concavo-convex pattern on a side surface in an embodiment different from FIG. 1, FIG. 6B is a schematic cross-sectional view taken along line VIB-VIB in FIG. 6A, and FIG. 6A is a schematic cross-sectional view taken along line VIC-VIC in FIG. 6A, and FIG. 6D is a schematic cross-sectional view taken along line VID-VID in FIG. 6A.

以下、本開示が適用された実施形態について、図面を用いて説明する。
[1.第1実施形態]
[1−1.鉄道車輪]
図1に示す鉄道車輪1は、鉄道車両用の車輪である。鉄道車輪1は、軌道を構成するレール上を走行する。軌道は2つのレールで構成され、2つの鉄道車輪1が1つの車軸の両端に組み付けられて使用される。
Hereinafter, embodiments to which the present disclosure is applied will be described with reference to the drawings.
[1. First Embodiment]
[1-1. Railway wheel]
A railway wheel 1 shown in FIG. 1 is a wheel for a railway vehicle. The railway wheel 1 travels on a rail that constitutes a track. The track is composed of two rails, and two rail wheels 1 are used by being assembled at both ends of one axle.

鉄道車輪1は、円環状のリム部2と、リム部2の内側に配置された円盤状の板部3とを備える。
リム部2は、図2に示すように、踏面2Aと、フランジ2Bと、側面2Cとを有している。
The railway wheel 1 includes an annular rim portion 2 and a disk-shaped plate portion 3 disposed inside the rim portion 2.
As shown in FIG. 2, the rim portion 2 has a tread surface 2A, a flange 2B, and a side surface 2C.

<踏面>
踏面2Aは、鉄道車輪1がレール上を走行する際に、レールと接触する面である。リム部2の回転軸P1を含む仮想面での踏面2Aの断面(つまり、回転軸P1を含む踏面2Aの断面)は、鉄道車輪1の回転軸P1と概ね平行な方向、つまり鉄道車輪1がレール上に設置された状態における概ね水平方向に延伸している。
<Tread>
The tread 2A is a surface that comes into contact with the rail when the railway wheel 1 travels on the rail. The cross section of the tread surface 2A at the virtual plane including the rotation axis P1 of the rim portion 2 (that is, the cross section of the tread surface 2A including the rotation axis P1) is substantially parallel to the rotation axis P1 of the railway wheel 1, that is, the railway wheel 1 is It extends in a generally horizontal direction when installed on the rail.

<フランジ>
フランジ2Bは、リム部2の周方向全体にわたって、踏面2Aよりもリム部2の径方向外側に突出した円環状の部位である。フランジ2Bは、レールの内側の側面、つまりレール同士が対向する面に接触する。
<Flange>
The flange 2B is an annular portion that protrudes radially outward of the rim portion 2 from the tread surface 2A over the entire circumferential direction of the rim portion 2. The flange 2B contacts the inner side surface of the rail, that is, the surface where the rails face each other.

<側面>
側面2Cは、踏面2Aと交差する面である。本実施形態では、側面2Cは、鉄道車輪1がレール上に設置された状態で、鉛直方向に延伸している。つまり、側面2Cは、鉄道車輪1の回転軸P1に対し垂直な面である。また、側面2Cは、鉄道車輪1の軸方向(図2中左右方向)において、フランジ2Bとは反対側(つまりレールの外側)に配置された面である。
<Side>
The side surface 2C is a surface that intersects the tread surface 2A. In the present embodiment, the side surface 2C extends in the vertical direction in a state where the railway wheel 1 is installed on the rail. That is, the side surface 2C is a surface perpendicular to the rotation axis P1 of the railway wheel 1. Further, the side surface 2C is a surface disposed on the opposite side to the flange 2B (that is, the outside of the rail) in the axial direction of the railway wheel 1 (left and right direction in FIG. 2).

(凹凸パターン)
側面2Cは、図1に示すように、凹凸パターン4を有する。凹凸パターン4は、リム部2の回転軸P1を囲うように側面2Cに形成された3つの溝(第1溝4A、第2溝4B、及び第3溝4C)によって構成されている。
(Uneven pattern)
The side surface 2C has a concavo-convex pattern 4 as shown in FIG. The concavo-convex pattern 4 includes three grooves (a first groove 4A, a second groove 4B, and a third groove 4C) formed in the side surface 2C so as to surround the rotation axis P1 of the rim portion 2.

第1溝4Aは、リム部2の回転軸P1を中心とした真円を構成する環状の溝である。第2溝4Bは、第1溝4Aと同心で、第1溝4Aよりも大径の真円を構成する環状の溝である。つまり、第2溝4Bは、第1溝4Aの外側に配置されている。   The first groove 4 </ b> A is an annular groove that forms a perfect circle around the rotation axis P <b> 1 of the rim portion 2. The second groove 4B is an annular groove that is concentric with the first groove 4A and forms a perfect circle having a larger diameter than the first groove 4A. That is, the second groove 4B is disposed outside the first groove 4A.

第3溝4Cは、第1溝4Aと第2溝4Bとの間に配置され、リム部2の回転軸P1の周りを一周する渦巻き曲線状の溝である。第3溝4Cの第1端4Dは第1溝4Aに接続され、第3溝4Cの第2端4Eは第2溝4Bに接続されている。第3溝4Cは、第1端4Dから第2端4Eに向かって、リム部2の回転軸P1からの距離が大きくなる。   The third groove 4 </ b> C is a spiral curved groove that is disposed between the first groove 4 </ b> A and the second groove 4 </ b> B and makes a round around the rotation axis P <b> 1 of the rim portion 2. The first end 4D of the third groove 4C is connected to the first groove 4A, and the second end 4E of the third groove 4C is connected to the second groove 4B. In the third groove 4C, the distance from the rotation axis P1 of the rim portion 2 increases from the first end 4D to the second end 4E.

なお、第3溝4Cの第1端4Dと第2端4Eとは、リム部2の周方向の同じ位相に位置している。厳密には、溝幅によって、第1端4Dと第2端4Eとは同じ位相に位置しないが、第1端4Dと第2端4Eとはリム部2の少なくとも周方向において重なっている。そのため、全周に亘って第1溝4Aと第3溝4Cとの径方向の距離の測定が可能である。   The first end 4D and the second end 4E of the third groove 4C are positioned at the same phase in the circumferential direction of the rim portion 2. Strictly speaking, the first end 4D and the second end 4E are not positioned in the same phase due to the groove width, but the first end 4D and the second end 4E overlap at least in the circumferential direction of the rim portion 2. Therefore, the radial distance between the first groove 4A and the third groove 4C can be measured over the entire circumference.

第3溝4Cは、第1端4Dから第2端4Eに向かって、第1溝4Aとのリム部2の径方向における互いの距離が連続的に大きくなり、かつ第2溝4Bとの互いの距離が連続的に小さくなるように構成されている。つまり、凹凸パターン4は、リム部2の回転軸P1を含む仮想面での断面形状(図2参照)がリム部2の周方向に沿って変化する。   In the third groove 4C, the distance between the first groove 4A and the second groove 4B in the radial direction of the rim portion 2 is continuously increased from the first end 4D to the second end 4E, and the third groove 4C is in contact with the second groove 4B. The distance is continuously reduced. That is, in the concavo-convex pattern 4, the cross-sectional shape (see FIG. 2) at the virtual plane including the rotation axis P <b> 1 of the rim portion 2 changes along the circumferential direction of the rim portion 2.

したがって、図3に示すように、リム部2の側面2C側から視て時計回りの周方向の位相をθとしたとき、第1溝4Aと第3溝4Cとの径方向の距離は、θの関数R(θ)となる。これにより、R(θ)を測定することで、R(θ)を測定した位置における位相θを求めることができる。なお、本実施形態では、R(θ)は、θの一次関数であり、θに比例する。   Therefore, as shown in FIG. 3, when the phase in the clockwise circumferential direction when viewed from the side surface 2C of the rim portion 2 is θ, the radial distance between the first groove 4A and the third groove 4C is θ The function R (θ) of Accordingly, by measuring R (θ), the phase θ at the position where R (θ) is measured can be obtained. In the present embodiment, R (θ) is a linear function of θ and is proportional to θ.

第1溝4A、第2溝4B、及び第3溝4Cの延伸方向と垂直な仮想面での断面形状は、特に限定されない。個々の凹部の断面形状としては、例えば、三角形、四角形等の多角形のほか、半円などが挙げられる。   The cross-sectional shape in the virtual plane perpendicular to the extending direction of the first groove 4A, the second groove 4B, and the third groove 4C is not particularly limited. Examples of the cross-sectional shape of each concave portion include a polygon such as a triangle and a quadrangle, and a semicircle.

なお、本実施形態では、第1溝4Aと第3溝4Cとの距離の代わりに、第2溝4Bと第3溝4Cとの距離を測定してもよい。また、第1溝4Aと第3溝4Cとの距離と、第2溝4Bと第3溝4Cとの距離との両方を測定してもよい。   In the present embodiment, the distance between the second groove 4B and the third groove 4C may be measured instead of the distance between the first groove 4A and the third groove 4C. Further, both the distance between the first groove 4A and the third groove 4C and the distance between the second groove 4B and the third groove 4C may be measured.

本開示における凹凸パターン4は図1に示すものに限定されない。例えば、図4Aに示すように、凹凸パターン4は、第1溝4Aと第3溝4Cとのみから構成されてもよい。また、図4Bに示すように、凹凸パターン4は、第2溝4Bと第3溝4Cとのみから構成されてもよい。   The uneven | corrugated pattern 4 in this indication is not limited to what is shown in FIG. For example, as shown to FIG. 4A, the uneven | corrugated pattern 4 may be comprised only from the 1st groove | channel 4A and the 3rd groove | channel 4C. Moreover, as shown to FIG. 4B, the uneven | corrugated pattern 4 may be comprised only from the 2nd groove | channel 4B and the 3rd groove | channel 4C.

さらに、凹凸パターン4は、図4Cに示すように、2つの真円の溝14A,14Bが中心をずらして配置されたものでもよい。又は、凹凸パターン4は、図4Dに示すように、真円と楕円とを組み合わせた2つの溝14C,14Dが中心をずらして配置されたものでもよい。   Furthermore, as shown in FIG. 4C, the concave / convex pattern 4 may be one in which two circular grooves 14A and 14B are arranged with their centers shifted. Alternatively, as shown in FIG. 4D, the concavo-convex pattern 4 may be a pattern in which two grooves 14C and 14D that are a combination of a perfect circle and an ellipse are shifted from each other.

また、凹凸パターン4は、図4Eに示すように、真円の溝14Aと涙滴型(つまり、円形の一部が他の部分よりも径方向に突出した型)の環状の溝14Eとの組み合わせで構成されてもよい。さらに、図4Eの凹凸パターン4を、図4Fに示すように、左半分と右半分とで上下を反転させて得られる2つの溝14F,14Gの組み合わせで凹凸パターン4を構成してもよい。   Further, as shown in FIG. 4E, the concave / convex pattern 4 includes a perfect groove 14A and a teardrop-shaped (that is, a shape in which a part of a circle protrudes in a radial direction from the other part) and an annular groove 14E. You may comprise in combination. Further, as shown in FIG. 4F, the uneven pattern 4 may be configured by a combination of two grooves 14F and 14G obtained by inverting the left and right sides of the uneven pattern 4 in FIG. 4E.

さらに、溝の代わりに、リム部2の回転軸P1を囲うように側面2Cに形成された2つ以上の凸条によって、凹凸パターン4を形成してもよい。個々の凸条の断面形状は、溝と同様、任意の形状とすることができる。   Furthermore, the uneven pattern 4 may be formed by two or more protrusions formed on the side surface 2C so as to surround the rotation axis P1 of the rim portion 2 instead of the groove. The cross-sectional shape of each ridge can be set to an arbitrary shape as in the case of the groove.

例えば、図4Gに示すように、第1ライン24Aと第2ライン24Bとの間の領域を削って得られる2つの凸条(第1凸条34A及び第2凸条34B)によって、凹凸パターン4を形成してもよい。   For example, as shown in FIG. 4G, the concavo-convex pattern 4 is formed by two ridges (the first ridge 34A and the second ridge 34B) obtained by cutting the region between the first line 24A and the second line 24B. May be formed.

第1ライン24Aは、図3の第1溝4Aと重なるラインであり、第2ライン24Bは、図3の第3溝4Cと重なるラインである。第1凸条34Aは、第1ライン24Aよりも径方向内側の領域に設けられており、第2凸条34Bは、第2ライン24Bよりも径方向外側の領域に設けられている。   The first line 24A is a line that overlaps the first groove 4A in FIG. 3, and the second line 24B is a line that overlaps the third groove 4C in FIG. The first ridge 34A is provided in a region radially inward of the first line 24A, and the second ridge 34B is provided in a region radially outside of the second line 24B.

同様に、図4Hに示すように、第2ライン24Bと第3ライン24Cとの間の領域を削って得られる2つの凸条(第3凸条34C及び第4凸条34D)によって、凹凸パターン4を形成してもよい。ここで、第3ライン24Cは、図3の第2溝4Bと重なるラインである。   Similarly, as shown in FIG. 4H, the concavo-convex pattern is obtained by two ridges (the third ridge 34C and the fourth ridge 34D) obtained by cutting the region between the second line 24B and the third line 24C. 4 may be formed. Here, the third line 24C is a line overlapping the second groove 4B of FIG.

[1−2.鉄道車輪の形状測定装置]
図5に示す鉄道車輪の形状測定装置(以下、単に「形状測定装置」ともいう。)10は、鉄道車輪1の形状を測定するための装置である。形状測定装置10は、測定部11と、処理部12とを備える。
[1-2. Railway wheel shape measuring device]
A railway wheel shape measuring device (hereinafter, also simply referred to as “shape measuring device”) 10 shown in FIG. 5 is a device for measuring the shape of the railway wheel 1. The shape measuring apparatus 10 includes a measuring unit 11 and a processing unit 12.

<測定部>
測定部11は、リム部2の回転軸P1を含む仮想面での踏面2Aの断面形状を測定する。具体的には、測定部11は、踏面2Aへのレーザ光の照射及びカメラによる撮像を用いた光切断法によって、図2に示される踏面2Aの断面形状を測定する。
<Measurement unit>
The measurement unit 11 measures the cross-sectional shape of the tread surface 2A on a virtual surface including the rotation axis P1 of the rim portion 2. Specifically, the measurement unit 11 measures the cross-sectional shape of the tread surface 2A shown in FIG. 2 by a light cutting method using laser light irradiation to the tread surface 2A and imaging by a camera.

測定部11が測定した踏面2Aの断面形状は、リム部2の側面2Cに設けられた凹凸パターン4の断面形状を含んでいる。
なお、測定部11は、走行中の鉄道車輪1に対して測定を行うことができる。
The cross-sectional shape of the tread surface 2 </ b> A measured by the measurement unit 11 includes the cross-sectional shape of the concavo-convex pattern 4 provided on the side surface 2 </ b> C of the rim portion 2.
Note that the measurement unit 11 can perform measurement on the traveling railway wheel 1.

<処理部>
処理部12は、測定部11の測定結果から、断面形状と位相θとの関係を演算する。処理部12は、例えば入出力部を備えるコンピュータにより構成される。
<Processing unit>
The processing unit 12 calculates the relationship between the cross-sectional shape and the phase θ from the measurement result of the measurement unit 11. The processing unit 12 is configured by a computer including an input / output unit, for example.

処理部12は、例えば、位相θと凹凸パターン4における2つの凹部又は2つの凸部の距離R(θ)との既知の関係を用い、測定した断面形状における距離からその断面形状の位相θを算出し、踏面2Aの断面形状と位相θとの紐付けを行う。   The processing unit 12 uses, for example, a known relationship between the phase θ and the distance R (θ) between the two concave portions or the two convex portions in the concavo-convex pattern 4, and calculates the phase θ of the cross-sectional shape from the distance in the measured cross-sectional shape. The cross-sectional shape of the tread surface 2A and the phase θ are calculated and linked.

また、処理部12は、1つの鉄道車輪1に対し、測定部11から位相の異なる複数の断面形状を得ることで、鉄道車輪1の踏面2Aにおける真円度の算出及び評価を容易に行うことができる。位相の異なる複数の断面形状は、1回の測定で同時に測定されてもよい。また、1つの位相における断面形状の測定を、例えば1か月等の一定期間内で繰り返すことで位相の異なる複数の断面形状を得てもよい。   Further, the processing unit 12 can easily calculate and evaluate the roundness on the tread 2A of the railway wheel 1 by obtaining a plurality of cross-sectional shapes having different phases from the measurement unit 11 for one railway wheel 1. Can do. A plurality of cross-sectional shapes with different phases may be measured simultaneously in one measurement. Moreover, you may obtain several cross-sectional shape from which a phase differs by repeating the measurement of the cross-sectional shape in one phase, for example within fixed periods, such as one month.

[1−3.効果]
以上詳述した実施形態によれば、以下の効果が得られる。
(1a)踏面2Aの断面形状の測定時に凹凸パターン4の断面形状も測定することで、凹凸パターン4の断面形状に基づいて踏面2Aの断面形状の周方向の位置(つまり位相Θ)を特定することができる。したがって、鉄道車輪1を車両に取り付けたまま、かつ比較的簡便な測定機器を用いて、鉄道車輪1における周方向の位置を把握しながら踏面形状を測定することができる。
[1-3. effect]
According to the embodiment detailed above, the following effects can be obtained.
(1a) By measuring the cross-sectional shape of the concavo-convex pattern 4 at the time of measuring the cross-sectional shape of the tread surface 2A, the circumferential position (ie, phase Θ) of the cross-sectional shape of the tread surface 2A is specified based on the cross-sectional shape of the concavo-convex pattern 4. be able to. Therefore, the shape of the tread can be measured while grasping the position in the circumferential direction of the railway wheel 1 using a relatively simple measuring device while the railway wheel 1 is attached to the vehicle.

(1b)リム部2の回転軸P1を囲うように側面2Cに形成された少なくとも2つの溝又は少なくとも2つの凸条によって凹凸パターン4を構成することで、位相θを特定するための凹凸パターン4を容易かつ確実に設けることができる。   (1b) The concavo-convex pattern 4 for specifying the phase θ by configuring the concavo-convex pattern 4 by at least two grooves or at least two ridges formed on the side surface 2C so as to surround the rotation axis P1 of the rim portion 2. Can be provided easily and reliably.

(1c)測定部11においてレーザ光を用いた光切断法を用いることで、高精度に踏面2Aの断面形状を測定することができる。
(1d)車両基地、停車場などの車両が高頻度に走行する線路脇に測定部11を設置できる。これにより、短期間で多量の踏面2Aの断面形状を蓄積できる。
(1c) The cross-sectional shape of the tread surface 2A can be measured with high accuracy by using a light cutting method using laser light in the measurement unit 11.
(1d) The measuring unit 11 can be installed on the side of a track on which vehicles such as a vehicle base and a stop travel frequently. Thereby, a large amount of the cross-sectional shape of the tread surface 2A can be accumulated in a short period of time.

(1e)車両の快適性につながる車輪の真円度を測定することができ、乗り心地が悪化する前に真円度の低下を検知して、削正等の補修をすることができる。
(1f)踏面摩耗、フランジ厚さ、車輪径などの検査に替えて、本開示の形状測定装置10による形状測定を行うことで、大幅な省力化が実現できる。
(1e) It is possible to measure the roundness of a wheel that leads to the comfort of the vehicle, and to detect a decrease in the roundness before the ride comfort deteriorates and to repair such as correction.
(1f) In place of inspection of tread wear, flange thickness, wheel diameter, and the like, by performing shape measurement by the shape measuring device 10 of the present disclosure, significant labor saving can be realized.

(1g)蓄積した踏面2Aの断面形状を解析することによって、摩耗メカニズムを解明することができる。また、検査周期、削正方法、メンテナンス基準等の見直しを行うことができる。   (1g) The wear mechanism can be clarified by analyzing the cross-sectional shape of the accumulated tread surface 2A. In addition, the inspection cycle, correction method, maintenance standards, etc. can be reviewed.

[2.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[2. Other Embodiments]
As mentioned above, although embodiment of this indication was described, it cannot be overemphasized that this indication can take various forms, without being limited to the above-mentioned embodiment.

(2a)上記実施形態の鉄道車輪1において、凹凸パターン4は、必ずしも、少なくとも2つの溝又は少なくとも2つの凸条によって構成されなくてもよい。凹凸パターン4は、図6Aに示すように、ブロック状の複数の凹部44A及び凸部44Bを組み合わせたものであってもよい。   (2a) In the railway wheel 1 of the above embodiment, the uneven pattern 4 does not necessarily have to be configured by at least two grooves or at least two ridges. As shown in FIG. 6A, the concavo-convex pattern 4 may be a combination of a plurality of block-shaped concave portions 44A and convex portions 44B.

図6Aの凹凸パターン4では、図6B,6C,6Dに示すように、位相によって凹凸パターン4の断面形状が断続的に変化する。したがって、位相と凹凸パターン4の断面形状との関係を表すテーブルを用意しておくことで、踏面2Aの断面形状の位相を特定することができる。   In the uneven pattern 4 of FIG. 6A, as shown in FIGS. 6B, 6C, and 6D, the cross-sectional shape of the uneven pattern 4 changes intermittently depending on the phase. Therefore, by preparing a table representing the relationship between the phase and the sectional shape of the concavo-convex pattern 4, the phase of the sectional shape of the tread surface 2A can be specified.

(2b)上記実施形態の鉄道車輪の形状測定装置10において、測定部11は、凹凸パターン4の断面形状が測定できれば、光切断法以外の手法で踏面2Aの断面形状を測定するように構成されてもよい。   (2b) In the railway wheel shape measuring apparatus 10 of the above embodiment, the measuring unit 11 is configured to measure the cross-sectional shape of the tread surface 2A by a method other than the light cutting method if the cross-sectional shape of the uneven pattern 4 can be measured. May be.

さらに、測定部11は、鉄道車輪1の形状を測定する複数の機器を有し、これらの機器から得られたデータを組み合わせることで踏面2Aの断面形状を得るように構成されてもよい。例えば、測定部11は、凹凸パターン4を除いた踏面2Aの断面形状を測定する機器と、凹凸パターン4の断面形状を測定する機器とから構成されてもよい。   Furthermore, the measurement unit 11 may include a plurality of devices that measure the shape of the railway wheel 1, and may be configured to obtain the cross-sectional shape of the tread surface 2A by combining data obtained from these devices. For example, the measurement unit 11 may be configured by a device that measures the cross-sectional shape of the tread surface 2 </ b> A excluding the uneven pattern 4 and a device that measures the cross-sectional shape of the uneven pattern 4.

(2c)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。   (2c) The functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

1…鉄道車輪、2…リム部、2A…踏面、2B…フランジ、2C…側面、3…板部、
4…凹凸パターン、4A…第1溝、4B…第2溝、4C…第3溝、4D…第1端、
4E…第2端、10…形状測定装置、11…測定部、12…処理部、
14A,14B,14C,14D,14E,14F,14G…溝、
24A…第1ライン、24B…第2ライン、24C…第3ライン、34A…第1凸条、
34B…第2凸条、34C…第3凸条、34D…第4凸条、
44A…凹部、44B…凸部。
DESCRIPTION OF SYMBOLS 1 ... Railway wheel, 2 ... Rim part, 2A ... Tread surface, 2B ... Flange, 2C ... Side surface, 3 ... Plate part,
4 ... Uneven pattern, 4A ... 1st groove, 4B ... 2nd groove, 4C ... 3rd groove, 4D ... 1st end,
4E ... second end, 10 ... shape measuring device, 11 ... measuring unit, 12 ... processing unit,
14A, 14B, 14C, 14D, 14E, 14F, 14G ... groove,
24A ... 1st line, 24B ... 2nd line, 24C ... 3rd line, 34A ... 1st ridge,
34B ... 2nd ridge, 34C ... 3rd ridge, 34D ... 4th ridge,
44A ... concave part, 44B ... convex part.

Claims (4)

レール上を走行する鉄道車輪であって、
レールと接触する踏面と、前記踏面と交差する側面とを有する円環状のリム部を備え、
前記側面は、前記リム部の回転軸を含む仮想面での断面形状が前記リム部の周方向に沿って変化する凹凸パターンを有する、鉄道車輪。
A railway wheel traveling on a rail,
An annular rim portion having a tread surface that contacts the rail and a side surface that intersects the tread surface;
The rail wheel has a concavo-convex pattern in which a cross-sectional shape at a virtual plane including a rotation axis of the rim portion changes along a circumferential direction of the rim portion.
請求項1に記載の鉄道車輪であって、
前記凹凸パターンは、前記リム部の回転軸を囲うように前記側面に形成される少なくとも2つの溝又は少なくとも2つの凸条によって構成され、
前記少なくとも2つの溝又は前記少なくとも2つの凸条は、前記リム部の径方向における互いの距離が前記リム部の周方向に沿って変化するように構成される、鉄道車輪。
The railway wheel according to claim 1,
The concavo-convex pattern is constituted by at least two grooves or at least two ridges formed on the side surface so as to surround the rotation axis of the rim portion,
The railway wheel, wherein the at least two grooves or the at least two ridges are configured such that a distance from each other in a radial direction of the rim portion varies along a circumferential direction of the rim portion.
レールと接触する踏面と、前記踏面と交差する側面とを有する円環状のリム部を備える鉄道車輪の形状測定装置であって、
リム部の回転軸を含む仮想面での踏面の断面形状を測定するように構成された測定部を備え、
前記踏面の前記断面形状は、前記リム部の側面に設けられた凹凸パターンの断面形状を含み、
前記凹凸パターンは、前記断面形状が前記リム部の周方向に沿って変化するように構成される、鉄道車輪の形状測定装置。
A railway wheel shape measuring device comprising an annular rim portion having a tread surface contacting a rail and a side surface intersecting the tread surface,
A measuring unit configured to measure the cross-sectional shape of the tread on a virtual plane including the rotation axis of the rim,
The cross-sectional shape of the tread includes a cross-sectional shape of a concavo-convex pattern provided on a side surface of the rim portion,
The said uneven | corrugated pattern is a shape measuring apparatus of a railway wheel comprised so that the said cross-sectional shape may change along the circumferential direction of the said rim | limb part.
請求項3に記載の鉄道車輪の形状測定装置であって、
前記測定部は、レーザ光を用いた光切断法によって前記踏面の断面形状を計測する、鉄道車輪の形状測定装置。
It is a shape measuring apparatus of a railway wheel according to claim 3,
The measuring unit is a railway wheel shape measuring device that measures a cross-sectional shape of the tread by a light cutting method using laser light.
JP2018015660A 2018-01-31 2018-01-31 Railroad wheels and shape measuring devices for railroad wheels Active JP7028664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018015660A JP7028664B2 (en) 2018-01-31 2018-01-31 Railroad wheels and shape measuring devices for railroad wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018015660A JP7028664B2 (en) 2018-01-31 2018-01-31 Railroad wheels and shape measuring devices for railroad wheels

Publications (2)

Publication Number Publication Date
JP2019131076A true JP2019131076A (en) 2019-08-08
JP7028664B2 JP7028664B2 (en) 2022-03-02

Family

ID=67544727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018015660A Active JP7028664B2 (en) 2018-01-31 2018-01-31 Railroad wheels and shape measuring devices for railroad wheels

Country Status (1)

Country Link
JP (1) JP7028664B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131090A (en) * 2000-10-23 2002-05-09 Koyo Seiko Co Ltd Rotary angle detector, torque detector and steering device
JP2006090982A (en) * 2004-09-27 2006-04-06 Hitachi Cable Ltd Rotation angle detector
JP2008180619A (en) * 2007-01-25 2008-08-07 Act Denshi Kk Wheel measuring method and wheel measuring apparatus therefor
JP2010181216A (en) * 2009-02-04 2010-08-19 Hankyu Corp Apparatus for measuring shape of wheel
JP2011068242A (en) * 2009-09-25 2011-04-07 Railway Technical Res Inst Profile measuring device and profile measuring method for wheel of railroad vehicle
JP2011169699A (en) * 2010-02-17 2011-09-01 Tdk Corp Angle sensor
JP2015215267A (en) * 2014-05-12 2015-12-03 精研工業株式会社 Wheel shape measurement method and wheel shape measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131090A (en) * 2000-10-23 2002-05-09 Koyo Seiko Co Ltd Rotary angle detector, torque detector and steering device
JP2006090982A (en) * 2004-09-27 2006-04-06 Hitachi Cable Ltd Rotation angle detector
JP2008180619A (en) * 2007-01-25 2008-08-07 Act Denshi Kk Wheel measuring method and wheel measuring apparatus therefor
JP2010181216A (en) * 2009-02-04 2010-08-19 Hankyu Corp Apparatus for measuring shape of wheel
JP2011068242A (en) * 2009-09-25 2011-04-07 Railway Technical Res Inst Profile measuring device and profile measuring method for wheel of railroad vehicle
JP2011169699A (en) * 2010-02-17 2011-09-01 Tdk Corp Angle sensor
JP2015215267A (en) * 2014-05-12 2015-12-03 精研工業株式会社 Wheel shape measurement method and wheel shape measuring device

Also Published As

Publication number Publication date
JP7028664B2 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP6677347B2 (en) Pneumatic tire, tire wear information acquisition system, and pneumatic tire wear information acquisition method
JP6610557B2 (en) Flange wear measurement method for railway vehicle wheels
US8794398B2 (en) Brake disc for railway vehicle
CN110228333A (en) System and method for tracking tire tread wear
ES2755755T3 (en) Procedure and device for the revision of railway wheels
US8950339B2 (en) Encoder device for using a magnetic sensor arrangement and bearing unit comprising the same
JP2017521609A (en) Disc brake pads for vehicles
CN104501719A (en) Method for determining axial line of train wheel set
JP2011068242A (en) Profile measuring device and profile measuring method for wheel of railroad vehicle
JP2019131076A (en) Railway wheel and device for measuring shape of railway wheel
JP2022164765A (en) Magnetic encoder and manufacturing method therefor
CN104913703A (en) Tubeless wheel rim end and radial runout detection device
US7677077B2 (en) Sensor calibration device and method for a tire
US10252580B2 (en) Tread wear indicator
EP2979896A1 (en) Soundproof wheel for railway vehicle
BR112018015736A2 (en) ? tire for vehicle wheels?
JP6937128B2 (en) Magnetic encoder and its manufacturing method
TWI694021B (en) Brake pads for railway vehicles and disc brakes with the same
JP7211788B2 (en) Shape measuring device for railroad vehicle wheelsets and railroad wheels
JP2008164454A (en) Method for detecting forward and backward force of tire, and air-filled tire used therefor
JP2008215841A (en) Management method of circular arc shape of inner ring raceway surface of self-aligning roller bearing
SE7603742L (en) VEHICLE WHEELS AND FOR INSTALLATION OF THIS INTENDED TIRE-BEATING WHEELS
US20160297241A1 (en) Spoked wheel aligners and method for aligning spoked wheels using said aligner
MX2022003200A (en) Method and device for measuring vehicle wheel position.
Staśkiewicz et al. Out-of-round tram wheels–current state and measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150